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In this first Part of the book we shall study aspects of classical statistical physics that ev-
ery physicist should know but are not usually treated in elementary thermodynamics courses.
Our study will lay the microphysical (particle-scale) foundations for the continuum physics
of Parts II—VI; and it will elucidate the intimate connections between relativistic statistical
physics and Newtonian theory, and between quantum statistical physics and classical the-
ory. (The quantum-classical connection is of practical importance; even for fully classical
systems, a quantum viewpoint can be computationally powerful; see, e.g., Chap. 22.) As
in Chap. 1, our treatment will be so organized that readers who wish to restrict themselves
to Newtonian theory can easily do so. Throughout, we presume the reader is familiar with
elementary thermodynamics, but not with other aspects of statistical physics.

In Chap. 2 we will study kinetic theory — the simplest of all formalisms for analyzing
systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through
a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic
theory the key concept is the “distribution function” or “number density of particles in
phase space”, N ; i.e., the number of particles per unit 3-dimensional volume of ordinary
space and per unit 3-dimensional volume of momentum space. Despite first appearances, N
turns out to be a geometric, frame-independent entity. This N and the frame-independent
laws it obeys provide us with a means for computing, from microphysics, the macroscopic
quantities of continuum physics: mass density, thermal energy density, pressure, equations
of state, thermal and electrical conductivities, viscosities, diffusion coefficients, ... .

In Chap. 3 we will develop the foundations of statistical mechanics. Here our statistical
study will be more sophisticated than in kinetic theory: we shall deal with “ensembles” of
physical systems. Each ensemble is a (conceptual) collection of a huge number of physical
systems that are identical in the sense that they have the same degrees of freedom, but
different in that their degrees of freedom may be in different states. For example, the
systems in an ensemble might be balloons that are each filled with 1023 air molecules so each
is describable by 3 × 1023 spatial coordinates (the x, y, z of all the molecules) and 3 × 1023

momentum coordinates (the px, py, pz of all the molecules). The state of one of the balloons
is fully described, then, by 6× 1023 numbers. We introduce a distribution function N which
is a function of these 6 × 1023 different coordinates, i.e., it is defined in a phase space with
6 × 1023 dimensions. This distribution function tells us how many systems (balloons) in
our ensemble lie in a unit volume of that phase space. Using this distribution function we
will study such issues as the statistical meaning of entropy, the relationship between entropy
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and information, the statistical origin of the second law of thermodynamics, the statistical
meaning of “thermal equilibrium”, and the evolution of ensembles into thermal equilibrium.
Our applications will include derivations of the Fermi-Dirac distribution for fermions in
thermal equilibrium and the Bose-Einstein distribution for bosons, a study of Bose-Einstein
condensation in a dilute gas, and explorations of the meaning and role of entropy in gases,
in black holes and in the universe as a whole.

In Chap. 4 we will use the tools of statistical mechanics to study statistical thermodynam-
ics, i.e. ensembles of systems that are in or near thermal equilibrium (also called statistical
equilibrium). Using statistical mechanics, we shall derive the laws of thermodynamics, and
we shall learn how to use thermodynamic and statistical mechanical tools, hand in hand,
to study not only equilibria, but also the probabilities for random, spontaneous fluctuations
away from equilibrium. Among the applications we shall study are: (i) chemical and particle
reactions such as ionization equilibrium in a hot gas, and electron-positron pair formation in
a still hotter gas; and (ii) phase transitions, such as the freezing, melting, vaporization and
condensation of water. We shall focus special attention on a Ferromagnetic phase transition
in which the magnetic moments of atoms spontaneously align with each other as iron is
cooled, using it to illustrate two elegant and powerful techniques of statistical physics: the
renormalization group, and Monte Carlo methods.

In Chap. 5 we will develop the theory of random processes (a modern, mathematical
aspect of which is the theory of stochastic differential equations). Here we shall study
the dynamical evolution of processes that are influenced by a huge number of factors over
which we have little control and little knowledge, except their statistical properties. One
example is the Brownian motion of a dust particle being buffeted by air molecules; another
is the motion of a pendulum used, e.g., in a gravitational-wave interferometer, when one
monitors that motion so accurately that one can see the influences of seismic vibrations and
of fluctuating “thermal” (“Nyquist”) forces in the pendulum’s suspension wire. The position
of such a dust particle or pendulum cannot be predicted as a function of time, but one can
compute the probability that it will evolve in a given manner. The theory of random processes
is a theory of the evolution of the position’s probability distribution (and the probability
distribution for any other entity driven by random, fluctuating influences). Among the
random-process concepts we shall study are spectral densities, correlation functions, the
Fokker-Planck equation which governs the evolution of probability distributions, and the
fluctuation-dissipation theorem which says that, associated with any kind of friction there
must be fluctuating forces whose statistical properties are determined by the strength of the
friction and the temperature of the entities that produce the friction.

The theory of random processes, as treated in Chap. 5, also includes the theory of signals
and noise. At first sight this undeniably important topic, which lies at the heart of experi-
mental and observational science, might seem outside the scope of this book. However, we
shall discover that it is intimately connected to statistical physics and that similar principles
to those used to describe, say, Brownian motion are appropriate when thinking about, for
example, how to detect the electronic signal of a rare particle event against a strong and
random background. We shall study techniques for extracting weak signals from noisy data
by filtering the data, and the limits that noise places on the accuracies of physics experiments
and on the reliability of communications channels.
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Please send comments, suggestions, and errata via email to kip@caltech.edu, or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 3.1
Reader’s Guide

This chapter develops nonrelativistic (Newtonian) kinetic theory and also the relativis-
tic theory. As in Chap. 1, sections and exercises labeled [N] are Newtonian and those
labeled [R] are relativistic. The N material can be read without the R material, but the
R material requires the N material as a foundation.

This chapter relies on Chap. 1’s geometric viewpoint on physics, both N and R; and
it especially relies on Secs. 1.4 and 1.6 (Particle kinetics), Sec. 1.11.4 (the number-flux
4-vector) and Sec. 1.12 (the Newtonian stress tensor and relativistic stress-energy tensor).

This chapter (mostly the N part) is a crucial foundation for the remainder of Part I of
this book (Statistical Physics), for small portions of Part IV (Fluid Mechanics; especially
equations of state of fluids, the origin of viscosity, and the diffusion of heat in fluids),
and for half of Part V (Plasma Physics: Chaps. 21 and 22).

3.1 Overview

In this chapter we shall study kinetic theory, the simplest of all branches of statistical
physics. Kinetic theory deals with the statistical distribution of a “gas” made from a huge
number of “particles” that travel freely, without collisions, for distances (mean free paths)
long compared to their sizes.

Examples of particles (italicized) and phenomena that can be studied via kinetic theory
are these: (i) How galaxies, formed in the early universe, congregate into clusters as the
universe expands. (ii) How spiral structure develops in the distribution of our galaxy’s stars.
(iii) How, deep inside a white-dwarf star, relativistic degeneracy influences the equation
of state of the star’s electrons and protons. (iv) How a supernova explosion affects the
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evolution of the density and temperature of interstellar molecules. (v) How anisotropies in
the expansion of the universe affect the temperature distribution of the cosmic microwave
photons—the remnants of the big-bang. (vi) How changes of a metal’s temperature affect its
thermal and electrical conductivity (with the heat and current carried by electrons). Whether
neutrons in a nuclear reactor can survive long enough to maintain a nuclear chain reaction
and keep the reactor hot.

Most of these applications involve particle speeds small compared to light and so can be
studied with Newtonian theory, but some involve speeds near or at the speed of light and
require relativity. Accordingly, we shall develop both versions of the theory, Newtonian and
relativistic, and shall demonstrate that the Newtonian theory is the low-speed limit of the
relativistic theory.

We begin in Sec. 3.2 by introducing the concepts of momentum space, phase space, and
the distribution function. In Sec. 3.3 we study the distribution functions that characterize
systems of particles in thermal equilibrium. There are three such equilibrium distributions:
one for quantum mechanical particles with half-integral spin (fermions), another for quantum
particles with integral spin (bosons), and a third for classical particles. As special applica-
tions, we derive the Maxwell velocity distribution for low-speed, classical particles (Ex. 3.4)
and its high-speed relativistic analog (Ex. 3.5 and Fig. 3.6) and we compute the effects of
observers’ motions on their measurements of the cosmic microwave radiation created in the
big-bang origin of the universe (Ex. 3.6). In Sec. 3.4 we learn how to compute macroscopic,
physical-space quantities (particle density and flux, energy density, stress tensor, stress-
energy tensor, ...) by integrating over the momentum portion of phase space. In Sec. 3.5
we show that, if the momentum distribution is isotropic in some reference frame, then on
macroscopic scales the particles constitute a perfect fluid, and we use our momentum-space
integrals to evaluate the equations of state of various kinds of perfect fluids: a nonrelativistic,
hydrogen gas in both the classical, nondegenerate regime and the regime of electron degener-
acy (Sec. 3.5.2), a relativistically degenerate gas (Sec. 3.5.4), and a photon gas (Sec. 3.5.5),
and we use our results to discuss the physical nature of matter as a function of density
and temperature (Fig. 3.7). In Sec. 3.6 we study the evolution of the distribution function,
as described by Liouville’s theorem and by the associated collisionless Boltzmann equation
when collisions between particles are unimportant, and by the Boltzmann Transport Equa-
tion when collisions are significant, and we use a simple variant of these evolution laws to
study the heating of the Earth by the Sun, and the key role played by the Greenhouse effect
(Ex. 3.14). Finally, in Sec. 3.7 we learn how to use the Boltzmann transport equation to
compute the transport coefficients (diffusion coefficient, electrical conductivity, thermal con-
ductivity, and viscosity) which describe the diffusive transport of particles, charge, energy,
and momentum through a gas of particles that collide frequently; and we use the Boltzmann
transport equation to study a chain reaction in a nuclear reactor (Ex. 3.20).
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Fig. 3.1: (a) Euclidean physical space, in which a particle moves along a curve x(t) that is
parametrized by universal time t, and in which the particle’s momentum p(t) is a vector tangent to
the curve. (b) Momentum space in which the particle’s momentum vector p is placed, unchanged,
with its tail at the origin. As time passes, the momentum’s tip sweeps out the indicated curve p(t).

3.2 Phase Space and Distribution Function

3.2.1 [N] Newtonian Number density in phase space, N
In Newtonian, 3-dimensional space (physical space), consider a particle with rest mass m
that moves along a path x(t) as universal time t passes [Fig. 3.1(a)]. The particle’s time-
varying velocity and momentum are v(t) = dx/dt and p(t) = mv. The path x(t) is a curve
in the physical space, and the momentum p(t) is a time-varying, coordinate-independent
vector in the physical space.

It is useful to introduce an auxiliary 3-dimensional space, called momentum space, in
which we place the tail of p(t) at the origin. As time passes, the tip of p(t) sweeps out a curve
in momentum space [Fig. 3.1(b)]. This momentum space is “secondary” in the sense that it
relies for its existence on the physical space of Fig. 3.1(a). Any Cartesian coordinate system
of physical space, in which the location x(t) of the particle has coordinates (x, y, z), induces in
momentum space a corresponding coordinate system (px, py, pz). The 3-dimensional physical
space and 3-dimensional momentum space together constitute a 6-dimensional phase space,
with coordinates (x, y, z, px, py, pz).

In this chapter we study a collection of a very large number of identical particles (all with
the same rest mass m). As tools for this study, consider a tiny 3-dimensional volume dVx

centered on some location x in physical space, and a tiny 3-dimensional volume dVp centered
on location p in momentum space. Together these make up a tiny 6-dimensional volume

d2V ≡ dVxdVp . (3.1)

In any Cartesian coordinate system, we can think of dVx as being a tiny cube located at
(x, y, z) and having edge lengths dx, dy, dz; and similarly for dVp. Then, as computed in
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this coordinate system, these tiny volumes are

dVx = dx dy dz , dVp = dpx dpy dpz , d2V = dx dy dz dpx dpy dpz . (3.2)

Denote by dN the number of particles (all with rest mass m) that reside inside d2V in
phase space (at some moment of time t). Stated more fully: dN is the number of particles
that, at time t, are located in the 3-volume dVx centered on the location x in physical space,
and that also have momentum vectors whose tips at time t lie in the 3-volume dVp centered
on location p in momentum space. Denote by

N (x,p, t) ≡ dN

d2V =
dN

dVx dVp
(3.3)

the number density of particles at location (x,p) in phase space at time t. This is also called
the distribution function.

This distribution function is kinetic theory’s principal tool for describing any collection
of a large number of identical particles.

3.2.2 [N] Distribution function f(x,v, t) for Particles in a Plasma.

Throughout Part II of this book (including this chapter), we will adopt the above definition
(3.3) for the non-relativistic distribution function and will regard it as depending on position
and momentum. However, in Part V, when dealing with nonrelativistic plasmas (collections
of electrons and ions that have speeds small compared to light), we will adopt a different
viewpoint, one that is common among plasma physicists: We will regard the distribution
function as depending on time t, location x in Euclidean space, and velocity v (instead of
momentum p), and we will denote it

f(t,x,v) ≡ dN

dVx dVv
=

dN

dxdydz dvxdvydvz
= m3N . (3.4)

(This change of viewpoint and notation when transitioning to plasma physics is typical
of the textbook you are reading. When presenting any subfield of physics, we shall usually
adopt the conventions, notation, and also the system of units that are generally used in that
subfield.)

3.2.3 T2 [R] Relativistic Number Density in Phase Space, N
Phase Space

We shall define the special relativistic distribution function in precisely the same way
as the non-relativistic one, N (x,p, t) ≡ dN/d2V = dN/dVxdVp, except that now p is the
relativistic momentum, (p = mv/

√
1 − v2 if the particle has nozero rest mass m). This def-

inition of N appears, at first sight, to be frame-dependent, since the physical 3-volume dVx

and momentum 3-volume dVp do not even exist until we have selected a specific reference
frame. In other words, this definition appears to violate our insistence that relativistic physi-
cal quantities be described by frame-independent geometric objects that live in 4-dimensional
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Fig. 3.2: (a) The world line !x(ζ) of a particle in spacetime (with one spatial coordinate, z,
suppressed), parametrized by a parameter ζ that is related to the particle’s 4-momentum by !p =
d!x/dζ. (b) The trajectory of the particle in momentum space. The particle’s momentum is confined
to the mass hyperboloid, !p2 = −m2.

spacetime. In fact, the distribution function defined in this way is frame-independent, though
it does not look so. In order to elucidate this, we shall develop carefully and somewhat slowly
the 4-dimensional spacetime ideas that underlie this relativistic distribution function:

Consider, as shown in Fig. 3.2(a), a classical particle with rest mass m, moving through
spacetime along a world line P(ζ), or equivalently #x(ζ), where ζ is an affine parameter related
to the particle’s 4-momentum by

#p = d#x/dζ . (3.5a)

[Eq. (1.18)]. If the particle has non-zero rest mass, then its 4-velocity #u and proper time τ
are related to its 4-momentum and affine parameter by

#p = m#u , ζ = τ/m (3.5b)

[Eqs. (1.18) and (1.19)], and we can parametrize the world line by either τ or ζ . If the
particle has zero rest mass, then its world line is null and τ does not change along it, so we
have no choice but to use ζ as the world line’s parameter.

The particle can be thought of not only as living in four-dimensional spacetime [Fig. 3.2(a)],
but also as living in a four-dimensional momentum space [Fig. 3.2(b)]. Momentum space,
like spacetime, is a geometric, coordinate-independent concept: each point in momentum
space corresponds to a specific 4-momentum #p. The tail of the vector #p sits at the origin
of momentum space and its head sits at the point representing #p. The momentum-space
diagram drawn in Fig. 3.2(b) has as its coordinate axes the components (p0, p1 = p1 ≡ px,
p2 = p2 ≡ py, p3 = p3 ≡ pz) of the 4-momentum as measured in some arbitrary inertial
frame. Because the squared length of the 4-momentum is always −m2,

#p · #p = −(p0)2 + (px)
2 + (py)

2 + (pz)
2 = −m2 , (3.5c)

the particle’s 4-momentum (the tip of the 4-vector #p) is confined to a hyperboloid in mo-
mentum space. This mass hyperboloid requires no coordinates for its existence; it is the
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frame-independent set of points, in momentum space, for which #p · #p = −m2. If the particle
has zero rest mass, then #p is null and the mass hyperboloid is a cone with vertex at the
origin of momentum space. As in Chap. 1, we shall often denote the particle’s energy p0 by

E ≡ p0 (3.5d)

(with the E in script font to distinguish it from the nonrelativistic energy of a particle,
E = 1

2mv2), and we shall embody its spatial momentum in the 3-vector p = pxex+pyey+pzez,
and therefore shall rewrite the mass-hyperboloid relation (3.5c) as

E2 = m2 + |p|2 . (3.5e)

If no forces act on the particle, then its momentum is conserved and its location in
momentum space remains fixed. A force (e.g., due to an electromagnetic field) will push
the particle’s 4-momentum along some curve in momentum space that lies on the mass
hyperboloid. If we parametrize that curve by the same parameter ζ as we use in spacetime,
then the particle’s trajectory in momentum space can be written abstractly as #p(ζ). Such a
trajectory is shown in Fig. 3.2(b). Because the mass hyperboloid is three dimensional, we can
characterize the particle’s location on it by just three coordinates rather than four. We shall
typically use as those coordinates the spatial components of the particle’s 4-momentum,
(px, py, pz) or the spatial momentum vector p as measured in some specific (but usually
arbitrary) inertial frame.

Momentum space and spacetime, taken together, constitute the relativistic phase space.
We can regard phase space as eight dimensional (four spacetime dimensions plus four mo-
mentum space dimensions). Alternatively, if we think of the 4-momentum as confined to the
three-dimensional mass hyperboloid, then we can regard phase space as seven dimensional.
This 7 or 8 dimensional phase space, by contrast with the non-relativistic 6-dimensional
phase space, is frame-independent. No coordinates or reference frame are actually needed
to define spacetime and explore its properties, and none are needed to define and explore
4-momentum space or the mass hyperboloid — though inertial (Lorentz) coordinates are
often helpful in practical situations.

Volumes in Phase Space and Distribution Function
Turn attention, now, from an individual particle to a collection of a huge number of

identical particles, each with the same rest mass m, and allow m to be finite or zero, it does
not matter which. Examine those particles that pass close to a specific event P (also denoted
#x) in spacetime; and examine them from the viewpoint of a specific observer, who lives in a
specific inertial reference frame. Fig. 3.3(a) is a spacetime diagram drawn in that observer’s
frame. As seen in that frame, the event P occurs at time t and at spatial location (x, y, z).

We ask the observer, at the time t of the chosen event, to define the distribution function
N in identically the same way as in Newtonian theory, except that p is the relativistic
spatial momentum p = mv/

√
1 − v2 instead of the nonrelativistic p = mv. Specifically, the

observer, in her inertial frame, chooses a tiny 3-volume

dVx = dxdydz (3.6a)
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Fig. 3.3: Definition of the distribution function from the viewpoint of a specific observer in a
specific inertial reference frame, whose axes are used in these drawings: At the event P [denoted by
the dot in drawing (a)], the observer selects a 3-volume dVx, and she focuses on the set G of particles
that lie in dVx and have momenta lying in a region of the mass hyperboloid that is centered on !p
and has 3-momentum volume dVp [drawing (b)]. If dN is the number of particles in that set G,
then N (P, !p) ≡ dN/dVxdVp.

centered on location x [little horizontal rectangle shown in drawing 3.3(a)] and a tiny 3-
volume

dVp = dpxdpydpz (3.6b)

centered on p in momentum space [little rectangle in the px-py plane in drawing 3.3(b)].
Ask the observer to focus on that collection G of particles which lie in dVx and have spatial
momenta in dVp [Fig. 3.3]. If there are dN particles in this collection G, then the observer
will identify

N ≡ dN

dVxdVp
≡ dN

d2V (3.7)

as the number density of particles in phase space.
Notice in drawing 3.3(b) that the 4-momenta of the particles in G have their tails at

the origin of momentum space (as by definition do all 4-momenta), and have their tips in
a tiny rectangular box on the mass hyperboloid — a box centered on the 4-momentum
#p whose spatial part is p and temporal part is p0 = E =

√
m2 + p2. The momentum

volume element dVp is the projection of that mass-hyperboloid box onto the horizontal (px-
py-pz) plane in momentum space. (The mass-hyperboloid box itself can be thought of as a

(frame-independent) vectorial 3-volume d#Σp — the momentum-space version of the vectorial
3-volume introduced in Sec. 1.11.2; see below.)

The number density N depends on the location P in spacetime of the 3-volume dVx

and on the 4-momentum #p about which the momentum volume on the mass hyperboloid is
centered: N = N (P, #p). From the chosen observer’s viewpoint, it can be regarded as a
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function of time t and spatial location x (the coordinates of P) and of spatial momentum p.
At first sight, one might expect N to depend also on the inertial reference frame used in

its definition, i.e., on the 4-velocity of the observer. If this were the case, i.e., if N at fixed P
and #p were different when computed by the above prescription using different inertial frames,
then we would feel compelled to seek some other object—one that is frame-independent—to
serve as our foundation for kinetic theory. This is because the principle of relativity insists
that all fundamental physical laws should be expressible in frame-independent language.

Fortunately, the distribution function (3.7) is frame-independent by itself, i.e. it is a
frame-independent scalar field in phase space; so we need seek no further.

Proof of Frame Independence of N = dN/d2V:

To prove the frame independence of N , we shall consider, first, the frame dependence of
the spatial 3-volume dVx, then the frame dependence of the momentum 3-volume dVp, and
finally the frame dependence of their product d2V = dVxdVp and thence of the distribution
function N = dN/d2V.

The thing that identifies the 3-volume dVx and 3-momentum dVp is the set of particles G.
We shall select that set once and for all and hold it fixed, and correspondingly the number
of particles dN in the set will be fixed. Moreover, we shall assume that the particles’ rest
mass m is nonzero and shall deal with the zero-rest-mass case at the end by taking the limit
m → 0. Then there is a preferred frame in which to observe the particles G: their own rest
frame, which we shall identify by a prime.

In their rest frame and at a chosen event P, the particles G occupy the interior of some box
with imaginary walls that has some 3-volume dVx′. As seen in some other “laboratory” frame,
their box has a Lorentz-contracted volume dVx =

√
1 − v2dVx′. Here v is their speed as seen

in the laboratory frame. The Lorentz-contraction factor is related to the particles’ energy,
as measured in the laboratory frame, by

√
1 − v2 = m/E , and therefore EdVx = mdVx′.

The right-hand side is a frame-independent constant m times a well-defined number that
everyone can agree on: the particles’ rest-frame volume dVx′; i.e.

EdVx = (a frame-independent quantity) . (3.8a)

Thus, the spatial volume dVx occupied by the particles is frame-dependent, and their energy
E is frame-dependent, but the product of the two is independent of reference frame.

Turn now to the frame dependence of the particles’ 3-volume dVp. As one sees from
Fig. 3.3(b), dVp is the projection of the frame-independent mass-hyperboloid region d#Σp

onto the laboratory’s xyz 3-space. Equivalently, it is the time component dΣ0
p of d#Σp. Now,

the 4-vector d#Σp, like the 4-momentum #p, is orthogonal to the mass hyperboloid at the

common point where they intersect it, and therefor d#Σp is parallel to #p. This means that,
when one goes from one reference frame to another, the time components of these two vectors
will grow or shrink in the same manner, i.e., d#Σ0

p = dVp is proportional to p0 = E . This
means that their ratio is frame-independent:

dVp

E = (a frame-independent quantity) . (3.8b)
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Fig. 3.4: Geometric construction used in defining the “specific intensity” Iν .

(If this sophisticated argument seems too slippery to you, then you can develop an alter-
native, more elementary proof using simpler two-dimensional spacetime diagrams: Exercise
3.1.)

By taking the product of Eqs. (3.8a) and (3.8b) we see that for our chosen set of particles
G,

dVxdVp = d2V = (a frame-independent quantity) ; (3.8c)

and since the number of particles in the set, dN , is obviously frame-independent, we conclude
that

N =
dN

dVxdVp
≡ dN

d2V = (a frame-independent quantity) . (3.9)

Although we assumed nonzero rest mass, m &= 0, in our derivation, the conclusions that
EdVx and dVp/E are frame-independent continue to hold if we take the limit as m → 0 and
the 4-momenta become null. Correspondingly, all of Eqs. (3.8a) – (3.9) are valid for particles
with zero rest mass as well as nonzero.

The normalization that one uses for the distribution function is arbitrary; renormalize
N by multiplying with any constant, and N will still be a geometric, frame-independent
quantity and will still contain the same information as before. In this book, we shall use
several renormalized versions of N , depending on the situation. We shall now introduce
them:

3.2.4 [N & R] Distribution function Iν/ν3 for Photons.

[Note to those readers who are restricting themselves to the Newtonian portions of this book:
Please read Box 1.4, which lists a few items of special relativity that you will need. As
described there, you can deal with photons fairly easily by simply remembering that a
photon has zero rest mass and has an energy E = hν and momentum p = (hν/c)n, where ν
is its frequency and n is a unit vector pointing in its spatial direction.]

When dealing with photons or other zero-rest-mass particles, one often reexpresses N
in terms of the specific intensity, Iν . This quantity is defined as follows (cf. Fig. 3.4): An
observer places a CCD (or other measuring device) perpendicular to the photons’ propagation
direction n—perpendicular as measured in her reference frame. The region of the CCD that
the photons hit has surface area dA as measured by her, and because the photons move at
the speed of light c, the product of that surface area with c times the time dt that they take
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to all go through the CCD is equal to the volume they occupy at a specific moment of time:

dVx = dAcdt . (3.10a)

The photons all have nearly the same frequency ν as measured by the observer, and their
energy E and momentum p are related to that frequency and to their propagation direction
n by

E = hν , p = (hν/c)n , (3.10b)

where h is Planck’s constant. Their frequencies lie in a range dν centered on ν, and they
come from a small solid angle dΩ centered on −n; and the volume they occupy in momentum
space is related to these by

dVp = |p|2dΩd|p| = (hν/c)2dΩ(hdν/c) = (h/c)3ν2dΩdν . (3.10c)

The photons’ specific intensity, as measured by the observer, is defined to be the total energy,

dE = hνdN (3.10d)

(where dN is the number of photons) that crosses the CCD per unit area dA, per unit time
dt, per unit frequency dν, and per unit solid angle dΩ (i.e., “per unit everything”):

Iν ≡ dE
dAdtdνdΩ

. (3.11)

(This Iν is sometimes denoted IνΩ.) From Eqs. (3.9), (3.10) and (3.11) we readily deduce
the following relationship between this specific intensity and the distribution function:

N =
c2

h4

Iν
ν3

. (3.12)

This relation shows that, with an appropriate renormalization, Iν/ν3 is the photons’ distri-
bution function.

Astronomers and opticians regard the specific intensity (or equally well Iν/ν3) as a func-
tion of the photon propagation direction n, photon frequency ν, location x in space, and time
t. By contrast, nonrelativistic physicists regard the distribution function N as a function of
the photon momentum p, location in space, and time; and relativistic physicists regard it
as a function of the photon 4-momentum #p (on the photons’ mass hyperboloid, which is the
light cone) and of location P in spacetime. Clearly, the information contained in these three
sets of variables, the astronomers’ set and the two physicists’ sets, is the same.

If two different astronomers in two different reference frames at the same event in space-
time examine the same set of photons, they will measure the photons to have different
frequencies ν (because of the Doppler shift between their two frames); and they will measure
different specific intensities Iν (because of Doppler shifts of frequencies, Doppler shifts of
energies, dilation of times, Lorentz contraction of areas of CCD’s, and aberrations of photon
propagation directions and thence distortions of solid angles). However, if each astronomer
computes the ratio of the specific intensity that she measures to the cube of the frequency
she measures, that ratio, according to Eq. (3.12), will be the same as computed by the other
astronomer; i.e., the distribution function Iν/ν3 will be frame-independent.
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3.2.5 [N & R] Mean Occupation Number, η

Although this book is about classical physics, we cannot avoid making occasional contact
with quantum theory. The reason is that classical physics is quantum mechanical in origin.
Classical physics is an approximation to quantum physics, and not conversely. Classical
physics is derivable from quantum physics, and not conversely.

In statistical physics, the classical theory cannot fully shake itself free from its quantum
roots; it must rely on them in crucial ways that we shall meet in this chapter and the next.
Therefore, rather than try to free it from its roots, we shall expose the roots and profit
from them by introducing a quantum mechanically based normalization for the distribution
function: the “mean occupation number” η.

As an aid in defining the mean occupation number, we introduce the concept of the
density of states : Consider a particle of mass m, described quantum mechanically. Suppose
that the particle is known to be located in a volume dVx (as observed in a specific inertial
reference frame) and to have a spatial momentum in the region dVp centered on p. Suppose,
further, that the particle does not interact with any other particles or fields; for example,
ignore Coulomb interactions. (In portions of Chaps. 3 and 4 we will include interactions.)
Then how many single-particle quantum mechanical states1 are available to the free particle?
This question is answered most easily by constructing (in some arbitrary inertial frame), a
complete set of wave functions for the particle’s spatial degrees of freedom, with the wave
functions (i) confined to be eigenfunctions of the momentum operator, and (ii) confined to
satisfy the standard periodic boundary conditions on the walls of a box with volume dVx.
For simplicity, let the box have edge length L along each of the three spatial axes of the
Cartesian spatial coordinates, so dVx = L3. (This L is arbitrary and will drop out of our
analysis shortly.) Then a complete set of wave functions satisfying (i) and (ii) is the set
{ψj,k,l} with

ψj,k,l(x, y, z) =
1

L3/2
ei(2π/L)(jx+ky+lz)e−iωt (3.13a)

[cf., e.g., pp. 1440–1442 of Cohen-Tannoudji, Diu and Laloe (1977), especially the Comment
at the end of this section]. Here the demand that the wave function take on the same values
at the left and right faces of the box (x = −L/2 and x = +L/2), and at the front and
back faces, and at the top and bottom faces (the demand for periodic boundary conditions)
dictates that the quantum numbers j, k, and l be integers. The basis states (3.13a) are
eigenfunctions of the momentum operator (!/i)∇ with momentum eigenvalues

px =
2π!
L

j , py =
2π!
L

k , pz =
2π!
L

; (3.13b)

and correspondingly the wave function’s frequency ω has the following values in Newtonian

1A quantum mechanical state for a single particle is called an “orbital” in the chemistry literature and in
the classic thermal physics textbook by Kittel and Kroemer (1980); we shall use physicists’ more conventional
but cumbersome phrase “single-particle quantum state”.



12

theory [N] and relativity [R]:

[N] !ω = E =
p2

2m
=

1

2m

(
2π!
L

)2

(j2 + k2 + l2) ; (3.13c)

[R] !ω = E =
√

m2 + p2 → m + E in the Newtonian limit. (3.13d)

Equations (3.13b) tell us that the allowed values of the momentum are confined to “lattice
sites” in 3-momentum space with one site in each cube of side 2π!/L. Correspondingly, the
total number of states in the region dVxdVp of phase space is the number of cubes of side
2π!/L in the region dVp of momentum space:

dNstates =
dVp

(2π!/L)3
=

L3dVp

(2π!)3
=

dVxdVp

h3
. (3.14)

This is true no matter how relativistic or nonrelativistic the particle may be.
Thus far we have considered only the particle’s spatial degrees of freedom. Particles can

also have an internal degree of freedom called “spin”. For a particle with spin s, the number
of independent spin states is

gs =






2s + 1 if m &= 0; e.g., an electron or proton or atomic nucleus,
2 if m = 0 & s > 0; e.g., a photon (s = 1) or graviton (s = 2),
1 if m = 0 & s = 0; i.e., a hypothethical massless scalar particle.

(3.15)

We shall call this number of internal spin states the particle’s multiplicity . [It will turn out
to play a crucial role in computing the entropy of a system of particles (Chap. 3); i.e., it
places the imprint of quantum theory on the entropy of even a highly classical system.]

Taking account both of the particle’s spatial degrees of freedom and its spin degree of
freedom, we conclude that the total number of independent quantum states available in
the region dVxdVp ≡ d2V of phase space is dNstates = (gs/h3)d2V, and correspondingly the
number density of states in phase space is

Nstates ≡
dNstates

d2V
=

gs

h3
. (3.16)

[Relativistic remark: Note that, although we derived this number density of states using a
specific inertial frame, it is a frame-independent quantity, with a numerical value depending
only on Planck’s constant and (through gs) the particle’s rest mass m and spin s.]

The ratio of the number density of particles to the number density of quantum states is
obviously the number of particles in each state (the state’s occupation number), averaged over
many neighboring states—but few enough that the averaging region is small by macroscopic
standards. In other words, this ratio is the quantum states’ mean occupation number η:

η =
N

Nstates
=

h3

gs
N ; i.e., N = Nstatesη =

gs

h3
η . (3.17)

The mean occupation number η plays an important role in quantum statistical mechanics,
and its quantum roots have a profound impact on classical statistical physics:
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From quantum theory we learn that the allowed values of the occupation number for a
quantum state depend on whether the state is that of a fermion (a particle with spin 1/2,
3/2, 5/2, . . .) or that of a boson (a particle with spin 0, 1, 2, . . .). For fermions, no two
particles can occupy the same quantum state, so the occupation number can only take on
the eigenvalues 0 and 1. For bosons, one can shove any number of particles one wishes into
the same quantum state, so the occupation number can take on the eigenvalues 0, 1, 2, 3,
. . .. Correspondingly, the mean occupation numbers must lie in the ranges

0 ≤ η ≤ 1 for fermions , 0 ≤ η < ∞ for bosons . (3.18)

Quantum theory also teaches us that when η ) 1, the particles, whether fermions or bosons,
behave like classical, discrete, distinguishable particles ; and when η * 1 (possible only for
bosons), the particles behave like a classical wave—if the particles are photons (s = 1), like a
classical electromagnetic wave; and if they are gravitons (s = 2), like a classical gravitational
wave. This role of η in revealing the particles’ physical behavior will motivate us frequently
to use η as our distribution function instead of N .

Of course η, like N , is a function of location in phase space, η(P, #p) in relativity with no
inertial frame chosen; or η(t,x,p) in both relativity and Newtonian theory when an inertial
frame is in use.

****************************

EXERCISES

t'
p0

(b)(a)
dpxdpx'

p0'

px

px'
x'

x

t

mass
hyperboloid

dx
dx'

G

Fig. 3.5: (a) Spacetime diagram drawn from viewpoint of the (primed) rest frame of the particles
G for the special case where the laboratory frame moves in the −x′ direction with respect to them.
(b) Momentum space diagram drawn from viewpoint of the unprimed observer.

Exercise 3.1 Derivation and Practice: Frame-Dependences of dVx and dVp

Use the two-dimensional spacetime diagrams of Fig. 3.5 to show that EdVx and dVp/E are
frame-independent [Eqs. (3.8a) and (3.8b)].
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Exercise 3.2 **Example: T2 [R] Distribution function for Particles with a Range of Rest
Masses
A galaxy such as our Milky Way contains ∼ 1012 stars—easily enough to permit a kinetic-
theory discription of their distribution; and each star contains so many atoms (∼ 1056) that
the masses of the stars can be regarded as continuously distributed, not discrete. Almost
everywhere in a galaxy, the stars move with speeds small compared to light, but deep in
the cores of some galaxies there may develop a cluster of stars and black holes with rela-
tivistic speeds. In this exercise we shall explore the foundations for treating such a system:
“particles” with continuously distributed rest masses and relativistic speeds.

(a) For a subset G of particles like that of Fig. 3.3 and associated discussion, but with a
range of rest masses dm centered on some value m, introduce the phase-space volume
d2V ≡ dVxdVpdm that the particles G occupy. Explain why this occupied volume is
frame-invariant.

(b) Show that this invariant occupied volume can be rewritten as d2V = (dVxE/m)(dVpdE) =
(dVxE/m)(dp0dpxdpydpz). Explain the physical meaning of each of the terms in paren-
theses, and show that each is frame-invariant.

If the number of particles in the set G is dN , then we define the frame-invariant distribution
function by

N ≡ dN

d2V =
dN

dVxdVpdm
. (3.19)

This is a function of location P in 4-dimensional spacetime and location #p in 4-dimensional
momentum space (not confined to the mass hyperboloid), i.e. a function of location in 8-
dimensional phase space. We will explore the evolution of this distribution function in Box
3.2 below.

Exercise 3.3 Practice & Example: [N & R] Regimes of Particulate and Wave-like Behavior

(a) A gamma-ray burster is an astrophysical object (probably a fireball of hot gas exploding
outward from the vicinity of a newborn black hole or colliding neutron stars or colliding
neutron star and black hole) at a cosmological distance from earth (∼ 1010 light years).
The fireball emits gamma rays with individual photon energies as measured at earth
E ∼ 100 keV. These photons arive at Earth in a burst whose total energy per unit area
is roughly 10−6 ergs/cm2 and that lasts about one second. Assume the diameter of the
emitting surface as seen from earth is ∼ 1000 km and there is no absorption along the
route to earth. Make a rough estimate of the mean occupation number of the burst’s
photon states. Your answer should be in the region η ) 1, so the photons behave like
classical, distinguishable particles. Will the occupation number change as the photons
propagate from the source to earth?

(b) A highly nonspherical supernova in the Virgo cluster of galaxies (40 million light years
from earth) emits a burst of gravitational radiation with frequencies spread over the
band 500 Hz to 2000 Hz, as measured at earth. The burst comes out in a time of about
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10 milliseconds, so it lasts only a few cycles, and it carries a total energy of roughly
10−3M#c2, where M# = 2×1033 g is the mass of the sun. The emitting region is about
the size of the newly forming neutron-star core (10 km), which is small compared to
the wavelength of the waves; so if one were to try to resolve the source spatially by
imaging the waves with a gravitational lens, one would see only a blur of spatial size
one wavelength rather than seeing the neutron star. What is the mean occupation
number of the burst’s graviton states? Your answer should be in the region η * 1, so
the gravitons behave like a classical gravitational wave.

****************************

3.3 [N & R] Thermal-Equilibrium Distribution Func-
tions

In Chap. 3 we will introduce with care, and explore in detail, the concept of “statistical
equilibrium”—also called “thermal equilibrium”. For now, we rely on the reader’s prior
experience with this concept.

If a collection of many identical particles is in thermal equilibrium in the neighborhood
of an event P then, as we shall see in Chap. 3, there is a special inertial reference frame (the
mean rest frame of the particles near P) in which there are equal numbers of particles of
any given speed going in all directions, i.e. the mean occupation number η is a function only
of the magnitude |p| of the particle momentum and does not depend on the momentum’s
direction. Equivalently, η is a function of the particle’s energy. In the relativistic regime we
shall use two different energies, one denoted E that includes the contribution of the particle’s
rest mass and the other denoted E that does not and is defined by

E ≡ E − m =
√

m2 + p2 − m → p2

2m
in the low-velocity, Newtonian limit. (3.20)

In the nonrelativistic, Newtonian regime we shall use only E = p2/2m.
Most readers will already know that the details of the thermal equilibrium are fixed by two

quantities: the mean density of particles and the mean energy per particle, or equivalently
(as we shall see) by the chemical potential µ and the temperature T . By analogy with our
treatment of relativistic energy, we shall use two different chemical potentials: one, µ̃ that
includes rest mass and the other

µ ≡ µ̃ − m (3.21)

that does not. In the Newtonian regime we shall use only µ.
As we shall prove by an elegant argument in Chap. 3, in thermal equilibrium the mean

occupation number has the following form at all energies, relativistic or nonrelativistic:

η =
1

e(E−µ)/kBT + 1
for fermions , (3.22a)
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η =
1

e(E−µ)/kBT − 1
for bosons . (3.22b)

Here kB = 1.381 × 10−16erg K−1 = 1.381 × 10−23J K−1 is Boltzmann’s constant. Equation
(3.22a) for fermions is called the Fermi-Dirac distribution; Eq. (3.22b) for bosons is called
the Bose-Einstein distribution. In the relativistic regime, we can also write these distribution
functions in terms of the energy E that includes the rest mass as

[R] η =
1

e(E−µ)/kBT ± 1
=

1

e(E−µ̃)/kBT ± 1
. (3.22c)

Notice that the equilibrium mean occupation number (3.22a) for fermions lies in the
range 0 to 1 as required, while that (3.22b) for bosons lies in the range 0 to ∞. In
the regime µ ) −kBT , the mean occupation number is small compared to unity for all
particle energies E (since E is never negative, i.e. E is never less than m). This is the
domain of distinguishable, classical particles, and in it both the Fermi-Dirac and Bose-
Einstein distributions become

η , e−(E−µ)/kBT = e−(E−µ̃)/kBT when µ ≡ µ̃ − m ) −kBT (classical particles). (3.22d)

This limiting distribution is called the Boltzmann distribution.2

By scrutinizing the distribution functions (3.22), one can deduce that the larger the
temperature T at fixed µ, the larger will be the typical energies of the particles, and the
larger the chemical potential µ at fixed T , the larger will be the total density of particles; see
Ex. 3.4 and Eqs. (3.37). For bosons, µ must always be negative or zero, i.e. µ̃ cannot exceed
the particle rest mass m; otherwise η would be negative at low energies, which is physically
impossible. For bosons with µ extremely close to zero, there is a huge number of very low
energy particles, leading quantum mechanically to a boson condensate; we shall study boson
condensates in Sec. 3.5.

In the special case that the particles of interest can be created and destroyed completely
freely, with creation and destruction constrained only by the laws of 4-momentum conser-
vation, the particles quickly achieve a thermal equilibrium in which the relativistic chemical
potential vanishes, µ̃ = 0 (as we shall see in Sec. 4.4). For example, inside a box whose walls
are perfectly emitting and absorbing and have temperature T , the photons acquire the mean
occupation number (3.22b) with zero chemical potential, leading to the standard black-body
(Planck) form

η =
1

ehν/kBT − 1
, N =

2

h3

1

ehν/kBT − 1
, Iν =

(2h/c2)ν3

ehν/kBT − 1
. (3.23)

(Here we have set E = hν where ν is the photon frequency as measured in the box’s rest
frame, and in the third expression we have inserted the factor c−2 so that Iν will be in
ordinary units.) On the other hand, if one places a fixed number of photons inside a box

2Lynden-Bell (1967) identifies a fourth type of thermal distribution which occurs in the theory of violent
relaxation of star clusters. It corresponds to individually distinguishable, classical particles (in his case stars
with a range of masses) that obey the same kind of exclusion principle as fermions.
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whose walls cannot emit or absorb them but can scatter them, exchanging energy with them
in the process, then the photons will acquire the Bose-Einstein distribution (3.22b) with
temperature T equal to that of the walls and with nonzero chemical potential µ fixed by
the number of photons present; the more photons there are, the larger will be the chemical
potential.

****************************

EXERCISES
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Fig. 3.6: (a) Maxwell velocity distribution for thermalized, classical, nonrelativistic particles.
(b) Extension of the Maxwell velocity distribution into the relativistic domain. In both plots
vo =

√
2kBT/m

Exercise 3.4 **Example: [N] Maxwell Velocity Distribution
Consider a collection of thermalized, classical particles with nonzero rest mass, so they have
the Boltzmann distribution (3.22d). Assume that the temperature is low enough, kBT ) mc2

that they are nonrelativistic.

(a) Explain why the total number density of particles n in physical space (as measured
in the particles’ mean rest frame) is given by the integral n =

∫
N dVp. Show that

n ∝ eµ/kBT , and derive the proportionality constant. [Hint: use spherical coordinates
in momentum space so dVp = 4πpdp with p ≡ |p|.] Your answer should be Eq. (3.37a)
below.

(b) Explain why the mean energy per particle is given by Ē =
∫

(p2/2m)dVp. Show that
Ē = 3

2kBT .

(c) Show that P (v)dv ≡(probability that a randomly chosen particle will have speed v ≡
|v| in the range dv) is given by

P (v) =
4√
π

v2

v3
o

e−v2/v3
o , where vo =

√
2kBT

m
. (3.24)

This is called the Maxwell velocity distribution; it is graphed in Fig. 3.6(a). Notice that
the peak of the distribution is at speed vo.
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[Side Remark: In the normalization of probability distributions such as this one, you
will often encounter integrals of the form

∫ ∞
0 x2ne−x2

dx. You can evaluate this quickly

via integration by parts, if you have memorized that
∫ ∞

0 e−x2
dx =

√
π/2.]

(d) Consider particles confined to move in a plane, or in one dimension (on a line). What
is their speed distribution P (v) and at what speed does it peak?

Exercise 3.5 Problem: [R] Velocity Distribution for Thermalized, Classical, Relativistic
Particles

Show that for thermalized, classical relativistic particles the probability distribution for
the speed [relativistic version of the Maxwell distribution (3.24)] is

P (v) = constant
v2

(1 − v2)5/2
exp

[
− 2/v2

o√
1 − v2

]
, where vo =

√
2kBT

m
. (3.25)

This is plotted in Fig. 3.6(b) for a sequence of temperatures ranging from the nonrelativistic
regime kBT ) m toward the ultrarelativistic regime kBT * m. In the ultrarelativistic
regime the particles are (almost) all moving at very close to the speed of light, v = 1.

Exercise 3.6 Example: [R] Observations of Cosmic Microwave Radiation from Earth
The universe is filled with cosmic microwave radiation left over from the big bang. At each
event in spacetime the microwave radiation has a mean rest frame; and as seen in that mean
rest frame the radiation’s distribution function η is almost precisely isotropic and thermal
with zero chemical potential:

η =
1

ehν/kBTo − 1
, with To = 2.73 K . (3.26)

Here ν is the frequency of a photon as measured in the mean rest frame.

(a) Show that the specific intensity of the radiation as measured in its mean rest frame
has the Planck spectrum

Iν =
(2h/c2)ν3

ehν/kBTo − 1
. (3.27)

Plot this specific intensity as a function of wavelength and from your plot determine
the wavelength of the intensity peak.

(b) Show that η can be rewritten in the frame-independent form

η =
1

e−$p·$uo/kBTo − 1
, (3.28)

where #p is the photon 4-momentum and #uo is the 4-velocity of the mean rest frame.
[Hint: See Sec. 1.6 and especially Eq. (1.38).]



19

(c) In actuality the earth moves relative to the mean rest frame of the microwave back-
ground with a speed v of roughly 400 km/sec toward the Hydra-Centaurus region
of the sky. An observer on earth points his microwave receiver in a direction that
makes an angle θ with the direction of that motion, as measured in the earth’s frame.
Show that the specific intensity of the radiation received is precisely Planckian in form
[Eq. (3.23)], but with a direction-dependent Doppler-shifted temperature

T = To

( √
1 − v2

1 − v cos θ

)
. (3.29)

Note that this Doppler shift of T is precisely the same as the Doppler shift of the
frequency of any specific photon. Note also that the θ dependence corresponds to an
anisotropy of the microwave radiation as seen from earth. Show that because the earth’s
velocity is small compared to the speed of light, the anisotropy is very nearly dipolar
in form. Measurements by the WMAP satellite give To = 2.725 K and (averaged over
a year) an amplitude of 3.346× 10−3 K for the dipolar temperature variations (Bennet
et. al. 2003). What, precisely, is the value of the Earth’s year-averaged speed v?

****************************

3.4 Macroscopic Properties of Matter as Integrals over
Momentum Space

3.4.1 [N] Newtonian Particle Density n, Flux S, and Stress Tensor
T

If one knows the Newtonian distribution function N = (gs/h3)η as a function of momentum
p at some location (x, t) in space and time, one can use it to compute various macroscopic
properties of the particles. Specifically:

From the definition N ≡ dN/dVxdVp of the distribution function, it is clear that the
number density of particles n(x, t) in physical space is given by the integral

n =
dN

dVx
=

∫
dN

dVxdVp
dVp =

∫
N dVp . (3.30a)

Similarly, the number of particles crossing a unit surface in the y-z plane per unit time, i.e.
the x component of the flux of particles, is

Sx =
dN

dydzdt
=

∫
dN

dxdydzdVp

dx

dt
dVp =

∫
N px

m
dVp ,

where dx/dt = px/m is the x component of the particle velocity. This and the analogous
equations for Sy and Sz can be combined into the single geometric, coordinate-independent



20

integral

S =

∫
N p

dVp

m
. (3.30b)

Finally, since the stress tensor T is the flux of momentum [Eq. (1.89)], its j-x component (j
component of momentum crossing a unit area in the y-z plane per unit time) must be

Tjx =

∫
dN

dydzdtdVp
pj dVp =

∫
dN

dxdydzdVp

dx

dt
pjdVp =

∫
N pj

px

m
dVp .

This and the corresponding equations for Tjy and Tjz can be collected together into the single
geometric, coordinate-independent integral

Tjk =

∫
N pjpk

dVp

m
, i.e., T =

∫
Np⊗ p

dVp

m
. (3.30c)

Notice that the number density n is the zero’th moment of the distribution function in
momentum space [Eq. (3.30a)], and aside from factors 1/m the particle flux is the first
moment [Eq. (3.30b)], and the stress is the second moment [Eq, (3.30c)]. All three moments
are geometric, coordinate-independent quantities, and they are the simplest such quantities
that one can construct by integrating the distribution function over momentum space.

3.4.2 T2 [R] Relativistic Number-Flux 4-Vector #S and Stress-Energy
Tensor T

When we switch from Newtonian theory to special relativity’s 4-dimensional spacetime view-
point, we require that all physical quantities be described by components of geometric,
frame-independent objects (scalars, vectors, tensors) in 4-dimensional spacetime. We can
construct such objects as momentum-space integrals over the frame-independent, relativistic
distribution function N (P, #p) = (gs/h3)η. The frame-independent quantities that can appear
in these integrals are (i) N itself, (ii) the 4-momentum #p, and (iii) the frame-independent
integration element dVp/E [Eq. (3.8b)], which takes the form dpxdpydpz/

√
m2 + p2 in any

inertial reference frame. By analogy with the Newtonian regime, the most interesting such
integrals are the lowest three moments of the distribution function:

R ≡
∫

N dVp

E ; (3.31a)

#S ≡
∫

N #p
dVp

E , i.e. Sµ ≡
∫

N pµ dVp

E ; (3.31b)

T ≡
∫

N #p ⊗ #p
dVp

E , i.e. T µν ≡
∫

N pµpν dVp

E . (3.31c)

Here and throughout this chapter, relativistic momentum-space integrals unless otherwise
specified are taken over the entire mass hyperboloid.
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We can learn the physical meanings of each of the momentum-space integrals (3.31) by
introducing a specific but arbitrary inertial reference frame, and using it to perform a 3+1
split of spacetime into space plus time [cf. the paragraph containing Eq. (1.37)]. When we
do this and rewrite N as dN/dVxdVp, the scalar field R of Eq. (3.31a) takes the form

R =

∫
dN

dVxdVp

1

E dVp (3.32)

(where of course dVx = dxdydz and dVp = dpxdpydpz). This is the sum, over all particles
in a unit 3-volume, of the inverse energy. Although it is intriguing that this quantity is a
frame-independent scalar, it is not a quantity that appears in any important way in the laws
of physics.

By contrast, the 4-vector field #S of Eq. (3.31b) plays a very important role in physics.
Its time component in our chosen frame is

S0 =

∫
dN

dVxdVp

p0

E dVp =

∫
dN

dVxdVp
dVp (3.33a)

(since p0 and E are just different notations for the same thing, the relativistic energy√
m2 + p2 of a particle). Obviously, this S0 is the number of particles per unit spatial

volume as measured in our chosen inertial frame:

S0 = n = (number density of particles) . (3.33b)

The x component of #S is

Sx =

∫
dN

dVxdVp

px

E dVp =

∫
dN

dxdydz dVp

dx

dt
dVp =

∫
dN

dtdydz dVp
dVp , (3.33c)

which is the number of particles crossing a unit area in the y-z plane per unit time, i.e. the
x-component of the particle flux; and similarly for other directions j,

Sj = (j-component of the particle flux vector S). (3.33d)

[In Eq. (3.33c), the second equality follows from

pj

E =
pj

p0
=

dxj/dζ

dt/dζ
=

dxj

dt
= (j-component of velocity) , (3.33e)

where ζ is the “affine parameter” such that #p = d#x/dζ .] Since S0 is the particle number
density and Sj is the particle flux, #S must be the number-flux 4-vector introduced and
studied in Sec. 1.11.4. Notice that in the Newtonian limit, where p0 = E → m, the temporal
and spatial parts of the formula #S =

∫
N #p (dVp/E) reduce to S0 =

∫
N dVp and S =∫

Np(dVp/m), which are the coordinate-independent expressions (3.30a) and (3.30b) for
the Newtonian number density of particles and flux of particles.

Turn to the quantity T µν defined by the integral (3.31c). When we perform a 3+1 split
of it in our chosen inertial frame, we find the following for its various parts:

T µ0 =

∫
dN

dVxdVp
pµp0dVp

p0
=

∫
dN

dVxdVp
pµdVp , (3.34a)
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is the µ-component of 4-momentum per unit volume (i.e., T 00 is the energy density and T j0

is the momentum density). Also,

T µx =

∫
dN

dVxdVp
pµpj dVp

p0
=

∫
dN

dxdydzdVp

dx

dt
pµdVp =

∫
dN

dtdydzdVp
pµdVp (3.34b)

is the amount of µ-component of 4-momentum that crosses a unit area in the y-z plane
per unit time; i.e., it is the x-component of flux of µ-component of 4-momentum. More
specifically, T 0x is the x-component of energy flux (which is the same as the momentum
density T x0) and T jx is the x component of spatial-momentum flux—or, equivalently, the jx
component of the stress tensor. These and the analogous expressions and interpretations of
T µy and T µz can be summarized by

T 00 = (energy density) , T j0 = (momentum density) = T 0j = (energy flux) ,

T jk = (stress tensor) . (3.34c)

Therefore [cf. Eq. (1.93f)], T must be the stress-energy tensor introduced and studied in
Sec. 1.12. Notice that in the Newtonian limit, where E → m, the coordinate-independent
equation (3.31c) for the spatial part of the stress-energy tensor (the stress) becomes

∫
Np⊗ p

dVp/m, which is the same as our coordinate-independent equation (3.30c) for the stress.

3.5 Isotropic Distribution Functions and Equations of
State

3.5.1 [N] Newtonian Density, Pressure, Energy Density and Equa-
tion of State

Let us return, for awhile, to Newtonian theory:
If the Newtonian distribution function is isotropic in momentum space, i.e. is a function

only of the magnitude p ≡ |p] =
√

p2
x + p2

y + p2
z of the momentum (as is the case, for

example, when the particle distribution is thermalized), then the particle flux S vanishes
(equal numbers of particles travel in all directions), and the stress tensor is isotropic, T = Pg,
i.e. Tjk = P δjk; i.e. it is that of a perfect fluid. [Here P is the isotropic pressure and g is
the metric tensor of Euclidan 3-space, with Cartesian components equal to the Kronecker
delta; Eq. (1.29f).] In this isotropic case, the pressure can be computed most easily as 1/3
the trace of the stress tensor (3.30c):

P =
1

3
Tjj =

1

3

∫
N (p2

x + p2
y + p2

z)
dVp

m
=

1

3

∫ ∞

o

N p24πp2dp

m
=

4π

3m

∫ ∞

0

N p4dp . (3.35a)

Here in the third step we have written the momentum-volume element in spherical polar
coordinates as dVp = p2dθdφdp and have integrated over angles to get 4πp2dp. Similarly, we
can reexpress the number density of particles (3.30a) and the corresponding mass density as

n = 4π

∫ ∞

0

N p2dp , ρ ≡ mn = 4πm

∫ ∞

0

p2dp . (3.35b)
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Finally, because each particle carries an energy E = p2/2m, the energy density in this
isotropic case is 3/2 the pressure:

ε =

∫
p2

2m
N dVp =

4π

2m

∫ ∞

0

N p2dp =
3

2
P ; (3.35c)

cf. Eq. (3.35a).
If we know the distribution function for an isotropic collection of particles, Eqs. (3.35)

give us a straightforward way of computing the collection’s number density of particles n,
mass density ρ = nm, perfect-fluid energy density ε, and perfect-fluid pressure P as measured
in the particles’ mean rest frame. For a thermalized gas, the distribution functions (3.22a),
(3.22b), and (3.22d) [with N = (gs/h3)η] depend on two parameters: the temperature T and
chemical potential µ, so this calculation gives n, ε and P in terms of µ and T . One can then
invert n(µ, T ) to give µ(n, T ) and insert into the expressions for ε and P to obtain equations
of state for thermalized, nonrelativistic particles

ε = ε(ρ, T ) , P = P (ρ, T ) . (3.36)

For a gas of nonrelativistic, classical particles, the distribution function is Boltzmann
[Eq. (3.22d)], N = (gs/h3)e(µ−E)/kBT with E = p2/2m, and this procedure gives, quite easily
[Ex. 3.7]:

n =
gseµ/kBT

λ3
T dB

=
gs

h3
(2πmkBT )3/2eµ/kBT , (3.37a)

ε =
3

2
nkBT , P = nkBT . (3.37b)

Notice that the mean energy per particle is

Ē =
3

2
kBT . (3.37c)

In Eq. (3.37a), λT dB ≡ h/
√

2πmkBT is the particles’ thermal de Broglie wavelength, i.e. the
wavelength of Schrödinger wave-function oscillations for a particle with the thermal kinetic
energy E = πkBT . Note that the classical regime η ) 1 (i.e. µ/kBT ) −1), in which our
computation is being performed, corresponds to a mean number of particles in a thermal de
Broglie wavelength small compared to one, nλ3

T dB ) 1, which should not be surprising.

3.5.2 [N] Equations of State for a Nonrelativistic Hydrogen Gas

As an application, consider ordinary matter. Fig. 3.7 shows its physical nature as a function
of density and temperature, near and above “room temperature”, 300 K. We shall study
solids (lower right) in Part III, fluids (lower middle) in Part IV, and plasmas (middle) in
Part V.

Our kinetic theory tools are well suited to any situation where the particles have mean
free paths large compared to their sizes; this is generally true in plasmas and sometimes in
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Fig. 3.7: Physical nature of matter at various densities and temperatures. The plasma regime
is discussed in great detail in Part V, and the equation of state there is Eq. (3.38). The region
of electron degeneracy (to the right of the slanted solid line) is analyzed in Sec. 3.5.4, and for the
nonrelativistic regime (between slanted solid line and vertical dotted line) in the second half of
Sec. 3.5.2. The boundary between the plasma regime and the electron-degenerate regime (slanted
solid line) is Eq. (3.39); that between nonrelativistic degeneracy and relativistic degeneracy (ver-
tical dotted line) is Eq. (3.43). The relativistic/nonrelativistic boundary (upper dashed curve) is
governed by electron-positron pair production (Ex. 4.5 and Fig. 4.6). The ionized-neutral boundary
(lower dashed curve) is governed by the Saha equation (Ex. 4.6).

fluids (e.g. air and other gases but not water), and even sometimes in solids (e.g. for electrons
in a metal). Here we shall focus on a nonrelativistic plasma, i.e. the region of Fig. 3.7 that is
bounded by the two dashed lines and the slanted solid line. For concreteness and simplicity,
we shall regard the plasma as made solely of hydrogen. (This is a good approximation in
most astrophysical situations; the modest amounts of helium and traces of other elements
usually do not play a major role in equations of state. By contrast, for a laboratory plasma
it can be a poor approximation; for quantitative analyses one must pay attention to the
plasma’s chemical composition.)

Our nonrelativistic Hydrogen plasma consists of a mixture of two gases (or “fluids”):
free electrons and free protons, in equal numbers. Each fluid has a particle number density
n = ρ/mp, where ρ is the total mass density and mp is the proton mass. (The electrons are
so light that they do not contribute significantly to ρ.) Correspondingly, the energy density
and pressure include equal contributions from the electrons and protons and are given by
[cf. Eqs. (3.37b)]

ε = 3(kB/mp)ρT , P = 2(kB/mp)ρT . (3.38)

In “zero’th approximation”, the high-temperature boundary of validity for this equation
of state is the temperature Trel = mec2/kB = 6 × 109 K at which the electrons become
strongly relativistic (top dashed line in Fig. 3.7). In Ex. 4.5 we shall compute the thermal
production of electron-positron pairs in the hot plasma and thereby shall discover that the
upper boundary is actually somewhat lower than this (Fig. 4.6). The bottom dashed line
in Fig. 3.7 is the temperature Trec ∼ (ionization energy of hydrogen)/(a few kB) ∼ 104 K
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at which electrons and protons begin to recombine and form neutral hydrogen. In Ex. 4.6
we shall analyze the conditions for ionization-recombination equilibrium and thereby shall
refine this boundary. The solid right boundary is the point at which the electrons cease to
behave like classical particles, because their mean occupation number ηe ceases to be small
compared to unity. As one can see from the Fermi-Dirac distribution (3.22a), for typical
electrons (which have energies E ∼ kBT ), the regime of classical behavior (ηe ) 1; left side
of solid line) is µe ) −kBT and the regime of strong quantum behavior (ηe , 1; electron
degeneracy; right side of solid line) is µe * +kBT . The slanted solid boundary in Fig. 3.7 is
thus the location µe = 0, which translates via Eq. (3.37a) to

ρ = ρdeg ≡ 2mp/λ
3
TdB = (2mp/h

3)(2πmekBT )3/2 = 0.01(T/104K)3/2g/cm3 . (3.39)

Although the hydrogen gas is degenerate to the right of this boundary, we can still
compute its equation of state using our kinetic-theory equations (3.46b) and (3.46c), so long
as we use the quantum mechanically correct distribution function for the electrons—the
Fermi-Dirac distribution (3.22a). In this electron-degenerate region, µe * kBT , the electron
mean occupation number ηe = 1/(e(E−µe)/kBT + 1) has the form shown in Fig. 3.8 and thus
can be well approximated by ηe = 1 for E = p2/2me < µe and ηe = 0 for E > µe; or,
equivalently by

ηe = 1 for p < pF ≡
√

2meµe , ηe = 0 for p > pF . (3.40)

Here pF is called the Fermi momentum. (The word “degenerate” refers to the fact that almost
all the quantum states are fully occupied or are empty; i.e., ηe is everywhere nearly one or
zero.) By inserting this degenerate distribution function [or, more precisely, Ne = (2/h2)ηe]
into Eqs. (3.35) and integrating, we obtain ne ∝ pF

3 and Pe ∝ pF
5. By then setting

ne = np = ρ/mp and solving for pF ∝ n1/3
e ∝ ρ1/3 and inserting into the expression for Pe

and evaluating the constants, we obtain (Ex. 3.8) the following equation of state for the

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

E/µe

ηe

4kT/µe

Fig. 3.8: The Fermi-Dirac distribution function for electrons in the nonrelativistic, degenerate
regime kBT ) µe ) me, with temperature such that kBT/µe = 0.03. Note that ηe drops from
near one to near zero over the range µe − 2kBT ! E ! µe + 2kBT . See Ex. 3.10(b).
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electron pressure

Pe =
1

20

(
3

π

)2/3 mec2

λ3
c

(
ρ

mp/λ3
c

)5/3

. (3.41)

Here λc = h/mc = 2.426 × 10−10 cm is the electron Compton wavelength.
The rapid growth Pe ∝ ρ5/3 of the electron pressure with increasing density is due to

the degenerate electrons’ being being confined by the Pauli exclusion Principle to regions of
ever shrinking size, causing their zero-point motions and associated pressure to grow. By
contrast, the protons, with their far larger rest masses, remain nondegenerate [until their
density becomes (mp/me)3/2 ∼ 105 times higher than Eq. (3.39)], and so their pressure is
negligible compared to that of the electrons: the total pressure is

P = Pe = Eq. (3.41) in regime of nonrelativistic electron degeneracy. (3.42)

This is the equation of state for the interior of a low-mass white-dwarf star, and in the outer
layers of a high-mass white dwarf—aside from tiny corrections due to Coulomb interactions.
We shall use it in Sec. 12.3.2 to explore the structures of white dwarfs. It is also the
equation of state for a neutron star, with me replaced by the rest mass of a neutron mn

(since neutron degeneracy pressure dominates over that due to the star’s tiny number of
electrons and protons) — except that for neutron stars there are large corrections due to the
strong nuclear force; see, e.g., Shapiro and Teukolsky (1983).

When the density of hydrogen, in this degenerate regime, is pushed on upward to

ρrel deg =
8πmp

3λ3
c

, 1.0 × 106g/cm3 (3.43)

(dotted vertical line in Fig. 3.7), the electrons’ zero-point motions become relativistically fast
(the electron chemical potential µe becomes of order mec2), so the non-relativistic, Newtonian
analysis fails and the matter enters a domain of “relativistic degeneracy” (Sec. 3.5.4 below).
Both domains, nonrelativistic degeneracy (µe ) mec2) and relativistic degeneracy (µe "
mec2), occur for matter inside a massive white-dwarf star—the type of star that the Sun
will become when it dies; see Shapiro and Teukolsky (1983). In Chap. 25 we shall see how
general relativity (spacetime curvature) modifies a star’s structure and helps force sufficiently
massive white dwarfs to collapse.

The (almost) degenerate Fermi-Dirac distribution function shown in Fig. 3.8 has a ther-
mal tail whose width is 4kT/µe. As the temperature T is increased, the number of electrons
in this tail increases, thereby increasing the electrons’ total energy Etot. This increase is
responsible for the electrons’ specific heat (Ex. 3.10)—a quantity of importance for both
the electrons in a metal (e.g. a copper wire) and the electrons in a white dwarf star. The
electrons dominate the specific heat when the temperature is sufficiently low; but at higher
temperatures it is dominated by the energies of sound waves (see Ex. 3.10 where we use the
kinetic theory of phonons to compute the sound waves’ specific heat).
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3.5.3 T2 [R] Relativistic Density, Pressure, Energy Density and
Equation of State

We turn, now, to the relativistic domain of kinetic theory, initially for a single species of
particle with rest mass m and then (in the next subsection) for matter composed of electrons
and protons.

The relativistic mean rest frame of the particles, at some event P in spacetime, is that
frame in which the particle flux Sj vanishes. We shall denote by #urf the 4-velocity of this
mean rest frame. As in Newtonian theory (above), we are especially interested in distribution
functions N that are isotropic in the mean rest frame, i.e., distribution functions that depend
on the magnitude |p| ≡ p of the spatial momentum of a particle, but not on its direction—or
equivalently that depend solely on the particles’ energy

E = −#urf · #p expressed in frame-independent form [Eq. (1.38)],

E = p0 =
√

m2 + p2 in mean rest frame . (3.44)

Such isotropy is readily produced by particle collisions (discussed later in this chapter).
Notice that isotropy in the mean rest frame, i.e., N = N (P, E) does not imply isotropy

in any other inertial frame. As seen in some other (“primed”) frame, #urf will have a time
component u0′

rf = γ and a space component u′
rf = γV [where V is the mean rest frame’s

velocity relative to the primed frame and γ = (1−V2)
1
2 ]; and correspondingly, in the primed

frame N will be a function of

E = −#urf · #p = γ[(m2 + p′2)
1
2 − V · p′] , (3.45)

which is anisotropic: it depends on the direction of the spatial momentum p′ relative to the
velocity V of the particle’s mean rest frame. An example is the cosmic microwave radiation
as viewed from earth, Ex. 3.6 above.

As in Newtonian theory, isotropy greatly simplifies the momentum-space integrals (3.31)
that we use to compute macroscopic properties of the particles: (i) The integrands of the ex-
pressions Sj =

∫
N pj(dVp/E) and T j0 = T 0j =

∫
N pjp0(dVp/E) for the particle flux, energy

flux and momentum density are all odd in the momentum-space coordinate pj and therefore
give vanishing integrals: Sj = T j0 = T 0j = 0. (ii) The integral T jk =

∫
N pjpkdVp/E pro-

duces an isotropic stress tensor, T jk = Pgjk = P δjk, whose pressure is most easily computed
from its trace, P = 1

3T
jj. Using this and the relations |p| ≡ p for the magnitude of the mo-

mentum, dVp = 4πp2dp for the momentum-space volume element, and E = p0 =
√

m2 + p2

for the particle energy, we can easily evaluate Eqs. (3.31) for the particle number density
n = S0, the total density of mass-energy T 00 (which we shall denote ρ—the same notation
as we use for mass density in Newtonian theory), and the pressure P . The results are:

n ≡ S0 =

∫
N dVp = 4π

∫ ∞

0

N p2dp , , (3.46a)

ρ ≡ T 00 =

∫
NEdVp = 4π

∫ ∞

0

NEp2dp , (3.46b)

P =
1

3

∫
N p2dVp

E
=

4π

3

∫ ∞

0

N p4dp√
m2 + p2

. (3.46c)
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3.5.4 T2 [R] Equation of State for a Relativistic Degenerate Hy-
drogen Gas

Return to the hydrogen gas whose nonrelativistic equations of state were computed in Sec.
3.5.1. As we deduced there, at densities ρ " 105g/cm3 (near and to the right of the dotted
line in Fig. 3.7) the electrons are squeezed into such tiny volumes that their zero-point
energies are " mec2, forcing us to treat them relativistically.

We can do so with the aid of the following approximation for the relativistic Fermi-Dirac
mean occupation number ηe = 1/[e(E−µ̃e)/kBT ) + 1)]:

ηe , 1 for E < µ̃e ≡ EF ; i.e., for p < pF =
√
E2

F − m2 , (3.47)

ηe , 0 for E > EF ; i.e., for p > pF . (3.48)

Here EF is called the relativistic Fermi energy and pF the relativistic Fermi momentum. By
inserting this ηe along with Ne = (2/h3)ηe into the integrals (3.46) for the electrons’ number
density ne, total density of mass-energy ρe and pressure, Pe, and performing the integrals
(Ex. 3.9), we obtain results that are expressed most simply in terms of a parameter t (not
to be confused with time) defined by

EF ≡ µ̃e ≡ me cosh(t/4) , pF ≡
√
E2

F − m2
e ≡ me sinh(t/4) . (3.49a)

The results are:

ne =
8π

3λ3
c

(
pF

me

)3

=
8π

3λ3
c

sinh3(t/4) , (3.49b)

ρe =
8π me

λ3
c

∫ pF /me

0

x2
√

1 + x2 dx =
π me

λ3
c

[sinh(t) − t] , (3.49c)

Pe =
8π me

λ3
c

∫ pF /me

0

x4

√
1 + x2

dx =
π me

12λ3
c

[sinh(t) − 8 sinh(t/2) + 3t] . (3.49d)

These parametric relationships for ρe and Pe as functions of the electron number density
ne are sometimes called the Anderson-Stoner equation of state, because they were first
derived by Wilhelm Anderson and Edmund Stoner in 1930 [see the history on pp. 153–154
of Thorne (1994)]. They are valid throughout the full range of electron degeneracy, from
nonrelativistic up to ultra-relativistic.

In a white-dwarf star, the protons, with their high rest mass, are nondegenerate, the total
density of mass-energy is dominated by the proton rest-mass density, and since there is one
proton for each electron in the hydrogen gas, that total is

ρ , mpne =
8πmp

λ3
c

sinh3(t/4) . (3.50a)

By contrast (as in the nonrelativistic regime), the pressure is dominated by the electrons
(because of their huge zero-point motions), not the protons; and so the total pressure is

P = Pe =
π me

12λ3
c

[sinh(t) − 8 sinh(t/2) + 3t] . (3.50b)
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In the low-density limit, where t ) 1 so pF ) me = mec, we can set solve the relativistic
equation (3.49b) for t as a function of ne = ρ/mp and insert the result into the relativistic
expression (3.50b); the result in the nonrelativistic equation of state (3.41).

The dividing line ρ = ρrel deg = 8πmp/3λ3
c , 1.0 × 106g/cm3 between nonrelativistic and

relativistic degeneracy is the point where the electron Fermi momentum is equal to the rest
mass, i.e. sinh t = 1 The equation of state (3.49d) implies

Pe ∝ ρ5/3 in the nonrelativistic regime, ρ ) ρrel deg ,

Pe ∝ ρ4/3 in the relativistic regime, ρ * ρrel deg . (3.50c)

These asymptotic equations of state turn out to play a crucial role in the structure and
stability of white-dwarf stars [Chaps. 12 and 25; Chap. 4 of Thorne(1994)].

3.5.5 [N & R] Equation of State for Radiation

As was discussed at the end of Sec. 3.3, for a gas of thermalized photons in an environment
where photons are readily created and absorbed, the distribution function has the black-
body (Planck) form η = 1/(eE/kBT − 1), which we can rewrite as 1/(ep/kBT − 1) since the
energy E of a photon is the same as the magnitude p of its momentum. In this case, the
relativistic integrals (3.46) give (see Ex. 3.12)

n = bT 3 , ρ = aT 4 , P =
1

3
ρ , (3.51a)

where

b = 16πζ(3)
k3

B

h3c3
= 20.28 cm−3K−3 , (3.51b)

a =
8π5

15

k4
B

h3c3
= 7.56 × 10−15erg cm−3 K−4 = 7.56 × 10−16J m−3 K−4 (3.51c)

are radiation constants. Here ζ(3) =
∑∞

n=1 n−3 = 1.2020569... is the Riemann Zeta function.
As we shall see in Sec. 27.4, when the Universe was younger than about 100,000 years, its

energy density and pressure were predominantly due to thermalized photons (plus neutrinos
which contributed roughly the same as the photons), so its equation of state was given by Eq.
(3.51a) with the coefficient changed by a factor of order unity. Einstein’s general relativistic
field equations (Part VI) required that

3

32πGτ 2
= ρ , aT 4 (3.52a)

[Eq. (27.45)], where G is Newton’s gravitation constant and τ was the age of the universe as
measured in the mean rest frame of the photons. Putting in numbers, we find that

ρ =
4.9 × 10−12g/cm3

(τ/1yr)2
, T , 106K√

τ/1yr
. (3.52b)
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This implies that when the universe was one minute old, its radiation density and temper-
ature were about 1 g/cm3 and 6 × 108 K. These conditions were well suited for burning
hydrogen to helium; and, indeed, about 1/4 of all the mass of the universe did get burned
to helium at this early epoch. We shall examine this in further detail in Sec. 27.4.

****************************

EXERCISES

Exercise 3.7 Derivation & Practice: [N] Equation of State for Nonrelativistic, Classical
Gas
Consider a collection of identical, classical (i.e., with η ) 1) particles with a distribution
function N which is thermalized at a temperature T such that kBT ) mc2 (nonrelativistic
temperature).

(a) Show that the distribution function, expressed in terms of the particles’ momentum or
velocity in their mean rest frame, is

N =
gs

h3
eµ/kBT e−p2/2mkBT , where p = |p| = mv , (3.53)

with v being the speed of a particle.

(b) Show that the number density of particles in the mean rest frame is given by Eq.
(3.37a).

(c) Show that this gas satisfies the equations of state (3.37b).

Note: The following integrals, for nonnegative integral values of q, will be useful:
∫ ∞

0

x2qe−x2
dx =

(2q − 1)!!

2q+1

√
π , (3.54)

where n!! ≡ n(n − 2)(n − 4) . . . (2 or 1); and
∫ ∞

0

x2q+1e−x2
dx =

1

2
q! . (3.55)

Exercise 3.8 Derivation and Practice: [N] Equation of State for Nonrelativistic, Electron-
Degenerate Hydrogen
Derive Eq. (3.41) for the electron pressure in a nonrelativistic, electron-degenerate hydrogen
gas.

Exercise 3.9 Derivation and Practice: [R] Equation of State for Relativistic, Electron-
Degenerate Hydrogen
Derive the equation of state (3.49d) for an electron-degenerate hydrogen gas. (Note: It might
be easiest to compute the integrals with the help of symbolic manipulation software such as
Mathematica or Maple.)
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Exercise 3.10 Example: [N] Specific Heat for Nonrelativistic, Degenerate Electrons in White
Dwarfs and in Metals
Consider a nonrelativistically degenerate electron gas at finite but small temperature.

(a) Show that the inequalities kBT ) µe ) me are equivalent to the words “nonrelativis-
tically degenerate”.

(b) Show that the electrons’ mean occupation number ηe(E) has the form depicted in Fig.
3.8: It is near unity out to (nonrelativistic) energy E , µe − 2kBT , and it then drops
to nearly zero over a range of energies ∆E ∼ 4kBT .

(c) If the electrons were nonrelativistic but nondegenerate, their thermal energy density
would be ε = 3

2nkBT , so the total electron energy (excluding rest mass) in a volume V
containing N = nV electrons would be Etot = 3

2NkBT , and the electron specific heat,
at fixed volume, would be

CV ≡
(
∂Etot

∂T

)

V

=
3

2
NkB (nondegenerate, nonrelativistic). (3.56)

Using the semiquantitative form of ηe depicted in Fig. 3.8, show that to within a
factor of order unity the specific heat of degenerate electrons is smaller than in the
nondegenerate case by a factor ∼ kBT/µe:

CV ≡
(
∂Etot

∂T

)

V

∼
(

kBT

µe

)
NkB (degenerate, nonrelativistic). (3.57)

(d) Compute the multiplicative factor in this equation for CV . More specifically, show
that, to first order in kBT/µe,

CV =
π2

2

(
kBT

µe

)
NkB . (3.58)

(e) As an application, consider hydrogen inside a white dwarf star with density ρ = 105

g cm−3 and temperature T = 106 K. (These are typical values for a white dwarf
interior). What are the numerical values of µe/me and kBT/µe for the electrons? What
is the numerical value of the dimensionless factor (π2/2)(kBT/µe) by which degeneracy
reduces the electron specific heat?

(f) As a second application, consider the electrons inside a copper wire in a laboratory
on earth at room temperature. Each copper atom donates about one electron to a
“gas” of freely traveling (conducting) electrons, and keeps the rest of its electrons
bound to itself. (We neglect interaction of this electron gas with the ions, thereby
missing important condensed-matter complexities such as conduction bands and what
distinguishes conducting materials from insulators.)

What are the numerical values of µe/me and kBT/µe for the conducting electron “gas”?
Verify that these are in the range corresponding to nonrelativistic degeneracy. What
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is the value of the factor (π2/2)(kBT/µe) by which degeneracy reduces the electron
specific heat? At room temperature, this electron contribution to the specific heat is
far smaller than the contribution from thermal vibrations of the copper atoms (i.e.,
thermal sound waves, i.e. thermal phonons), but at very low temperatures the electron
contribution dominates, as we shall see in the next exercise.

Exercise 3.11 Example: [N] Specific Heat for Phonons in an Isotropic Solid
In Sec. 11.2 we will study classical sound waves propagating through an isotropic, elastic

solid. As we shall see, there are two types of sound waves: longitudinal with frequency-
independent speed cL, and transverse with a somewhat smaller frequency-independent speed
cT . For each type of wave, s = L or T , the material of the solid undergoes an elastic
displacement ξ = Afs exp(ik · x − ωt), where A is the wave amplitude, fs is a unit vector
(polarization vector) pointing in the direction of the displacement, k is the wave vector,
and ω is the wave frequency. The wave speed is cs = ω/|k|. Associated with these waves
are quanta called phonons. As for any wave, each phonon has a momentum related to its
wave vector by p = !k, and an energy related to its frequency by E = !ω. Combining
these relations we learn that the relationship between a phonon’s energy and the magnitude
p = |p| of its momentum is E = csp. This is the same relationship as for photons, but
with the speed of light replaced by the speed of sound! For longitudinal waves, fL is in the
propagation direction k so there is just one polarization, gL = 1; for transverse waves, fT is
orthogonal to k, so there are two orthogonal polarizations (e.g. fT = ex and fT = ey when k
points in the ez direction); i.e., gT = 2.

(a) Phonons of both types, longitudinal and transverse, are bosons. Why?

(b) Phonons are fairly easily created, absorbed, scattered and thermalized. A general
argument regarding chemical reactions (Sec. 4.4) can be applied to phonon creation
and absorption to deduce that, once they reach complete thermal equilibrium with
their environment, the phonons will have vanishing chemical potential µ = 0. What,
then, will be their distribution functions η and N ?

(c) Ignoring the fact that the sound waves’ wavelengths λ = 2π/|k| cannot be larger than
about twice the spacing between the atoms of the solid, show that the total phonon
energy (wave energy) in a volume V of the solid is identical to that for black-body
photons in a volume V , but with the speed of light c replaced by the speed of sound cs,
and with the photons’ number of spin states, 2, replaced by gs (2 for transverse waves,
1 for longitudinal): Etot = asT 4V , with as = gs(4π5/15)(k4

B/h3c3
s); cf. Eqs. (3.51).

(d) Show that the specific heat of the phonon gas (the sound waves) is CV = 4asT 3V . This
scales as T 3, whereas in a metal the specific heat of the degenerate electrons scales as
T [previous exercise], so at sufficiently low temperatures the electron specific heat will
dominate over that of the phonons.

(d) Show that in the phonon gas, only phonon modes with wavelengths longer than ∼
λT = csh/kBT are excited; i.e., for λ ) λT the mean occupation number is η ) 1; for
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λ ∼ λT , η ∼ 1; and for λ * λT , η * 1. As T is increased, λT gets reduced. Ultimately
it becomes of order the interatomic spacing, and our computation fails because most
of the modes that our calculation assumes are thermalized actually don’t exist. What
is the critical temperature (Debye temperature) at which our computation fails and
the T 3 law for CV changes? Show by a ∼ one-line argument that above the Debye
temperature CV is independent of temperature.

Exercise 3.12 Derivation & Practice: [N, R] Equation of State for a Photon Gas

(a) Consider a collection of photons with a distribution function N which, in the mean
rest frame of the photons, is isotropic. Show, using Eqs. (3.46b) and (3.46c), that this
photon gas obeys the equation of state P = 1

3ρ.

(b) Suppose the photons are thermalized with zero chemical potential, i.e., they are isotropic
with a black-body spectrum. Show that ρ = aT 4, where a is the radiation constant of
Eq. (3.51c). Note: Do not hesitate to use Mathematica or Maple or other computer
programs to evaluate integrals!

(c) Show that for this isotropic, black-body photon gas the number density of photons is
n = bT 3 where b is given by Eq. (3.51b), and that the mean energy of a photon in the
gas is

Ēγ =
π4

30ζ(3)
kBT = 2.7011780... kBT . (3.59)

3.6 [N & R] Evolution of the Distribution Function:
Liouville’s Theorem, the Collisionless Boltzmann
Equation, and the Boltzmann Transport Equation

We now turn to the issue of how the distribution function η(P, #p), or equivalently N =
(gs/h3)η, evolves from point to point in phase space. We shall explore the evolution under
the simple assumption that between their very brief collisions, the particles all move freely,
uninfluenced by any forces. It is straightforward to generalize to a situation where the
particles interact with electromagnetic or gravitational or other fields as they move, and we
shall do so in Box 3.2, Sec. ??, and Chap. 27. However, in the body of this chapter we shall
restrict attention to the very common situation of free motion between collisions.

Initially we shall even rule out collisions; only at the end of this section will we restore
them, by inserting them as an additional term in our collision-free evolution equation for η.

The foundation for our collision-free evolution law will be Liouville’s Theorem: Consider
a collection G of particles which are initially all near some location in phase space and initially
occupy an infinitesimal (frame-independent) phase-space volume d2V = dVxdVp there. Pick
a particle at the center of the collection G and call it the “fiducial particle”. Since all the
particles in G have nearly the same initial position and velocity, they subsequently all move
along nearly the same world line through spacetime; i.e., they all remain congregated around
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Fig. 3.9: The phase space region (x-px part) occupied by a collection G of particles with finite rest
mass, as seen in the inertial frame of the central, fiducial particle. (a) The initial region. (b) The
region after a short time.

the fiducial particle. Liouville’s theorem says that the phase-space volume occupied by the
particles G is conserved along the world line (or Newtonian trajectory) of the fiducial particle:

d

d1
(dVxdVp) = 0 ; . (3.60)

Here 1 is an arbitrary paraemeter along the particle’s world line (trajectory); for example,
in Newtonian theory it could be universal time t or distance l travelled, and in relativity it
could be proper time τ as measured by the fiducial particle (if its rest mass is nonzero) or
the affine parameter ζ that is related to the fiducial particle’s 4-momentum by #p = d#x/dζ .

We can prove Liouville’s theorem with the aid of the diagrams in Fig. 3.9. Assume, for
simplicity, that the particles have nonzero rest mass. Consider the region in phase space
occupied by the particles, as seen in the inertial reference frame (rest frame) of the fiducial
particle, and choose for 1 the time t of that inertial frame (or in Newtonian theory the
universal time t). Choose the particles’ region dVxdVp at t = 0 to be a rectangular box
centered on the fiducial particle, i.e. on the origin xj = 0 of its inertial frame [Fig. 3.9(a)].
Examine the evolution with time t of the 2-dimensional slice y = py = z = pz = 0 through
the occupied region. The evolution of other slices will be similar. Then, as t passes, the
particle at location (x, px) moves with velocity dx/dt = px/m, (where the nonrelativistic
approximation to the velocity is used because all the particles are very nearly at rest in the
fiducial particle’s inertial frame). Because the particles move freely, each has a conserved px,
and their motion dx/dt = px/m (larger speed higher in the diagram) deforms the particles’
phase space region as shown in Fig. 3.9(b). Obviously, the area of the occupied region,
∆x∆px, is conserved.

This same argument shows that the x-px area is conserved at all values of y, z, py, pz; and
similarly for the areas in the y-py planes and the areas in the z-pz planes. As a consequence,
the total volume in phase space, dVxdVp = ∆x∆px∆y∆py∆z∆pz is conserved.

Although this proof of Liouville’s theorem relied on the assumption that the particles
have nonzero rest mass, the theorem is also true for particles with zero rest mass—as one
can deduce by taking the relativistic limit as the rest mass goes to zero and the particles’
4-momenta become null.

Since, in the absence of collisions or other nongravitational interactions, the number dN
of particles in the collection G is conserved, Liouville’s theorem immediately implies also the
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conservation of the number density in phase space, N = dN/dVxdVp:

dN
d1

= 0 along the trajectory of a fiducial particle. (3.61)

This conservation law is called the collisionless Boltzmann equation; and in the context of
plasma physics it is sometimes called the Vlasov equation. Note that it says that not only
is the distribution function N frame-independent (in relativity theory); N also is constant
along the phase-space trajectory of any freely moving particle.

The collisionless Boltzmann equation is actually far more general than is suggested by
the above derivation; see Box 3.2, which is best read after finishing this section.

The collisionless Boltzmann equation is most nicely expressed in the frame-independent
form (3.61). For some purposes, however, it is helpful to express the equation in a form that
relies on a specific but arbitrary choice of inertial reference frame. Then N can be regarded
as a function of the seven phase-space coordinates, N = N (t, xj, pk), and the collisionless
Boltzmann equation (3.61) then takes the coordinate-dependent form

dN
d1

=
dt

d1

∂N
∂t

+
dxj

d1

∂N
∂xj

+
dpj

d1

∂N
∂pj

=
dt

d1

(
∂N
∂t

+ vj
∂N
∂xj

)
= 0 . (3.62)

Here we have used the equation of straight-line motion dpj/dt = 0 for the particles and have
set dxj/dt equal to the particle velocity vj = vj .

Since our derivation of the collisionless Boltzmann equation relied on the assumption that
no particles are created or destroyed as time passes, the collisionless Boltzmann equation in
turn should guarantee conservation of the number of particles, #∇ · #S = 0 relativistically, or
∂n/∂t+∇ ·S in Newtonian theory or relativity (Sec. 1.11.4). Indeed, this is so; see Ex. 3.13.
Similarly (relativistically), since the collisionless Boltzmann equation is based on the law of
4-momentum conservation for all the individual particles, it is reasonable to expect that the
collisionless Boltzmann equation will guarantee the conservation of their total 4-momentum,
i.e. will guarantee that #∇ · T = 0 [Eq. (1.99a)]. Indeed, this conservation law does follow
from the collisionless Boltzmann equation; see Ex. 3.13.

Thus far we have assumed that the particles move freely through phase space with no
collisions. If collisions occur, they will produce some nonconservation of N along the trajec-
tory of a freely moving, noncolliding fiducial particle, and correspondingly, the collisionless
Boltzmann equation will get modified to read

dN
d1

=

(
dN
d1

)

collisions

, (3.63)

where the right-hand side represents the effects of collisions. This equation, with collision
terms present, is called the Boltzmann transport equation. The actual form of the collision
terms depends, of course, on the details of the collisions. We shall meet some specific
examples in the next section [Eqs. (3.73), (3.81a), (3.82), and Ex. 3.20] and in our study of
plasmas (Chaps. 21 and 22).

Whenever one applies the collisionless Boltzmann equation or Boltzmann transport equa-
tion to a given situation, it is helpful to simplify one’s thinking in two ways: (i) Adjust the
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normalization of the distribution function so it is naturally tuned to the situation. For ex-
ample, when dealing with photons, Iν/ν3 is typically best, and if—as is usually the case—the
photons do not change their frequencies as they move and only a single reference frame is of
any importance, then Iν alone may do; see Ex. 3.14. (ii) Adjust the differentiation parameter
1 so it is also naturally tuned to the situation.

****************************

EXERCISES

Exercise 3.13 [N & R] Derivation and Problem: Collisionless Boltzmann Implies Conser-
vation of Particles and of 4-Momentum
Consider a collection of freely moving, noncolliding particles, which satisfy the collisionless
Boltzmann equation dN /d1 = 0.

(a) Show that this equation guarantees that the particle conservation law ∂n/∂t+∇ ·S = 0
is satisfied, where n and S are expressed in terms of the distribution function N by
the Newtonian momentum-space integrals (3.30).

(b) Show that the relativistic Boltzmann equation guarantees the relativistic conservation
laws #∇ · #S = 0 and #∇ · T = 0,, where the number-flux vector #S and the stress-energy
tensor T are expressed in terms of N by the momentum-space integrals (3.31).

Exercise 3.14 Example: [N] Solar Heating of the Earth: The Greenhouse Effect
In this example we shall study the heating of the Earth by the Sun. Along the way, we shall
derive some important relations for black-body radiation.

Since we will study photon propagation from the Sun to the Earth with Doppler shifts
playing a negligible role, there is a preferred inertial reference frame: that of the Sun and
Earth with their relative motion neglected. We shall carry out our analysis in that frame.
Since we are dealing with thermalized photons, the natural choice for the distribution func-
tion is Iν/ν3; and since we use just one unique reference frame, each photon has a fixed
frequency ν, so we can forget about the ν3 and use Iν .

(a) Assume, as is very nearly true, that each spot on the sun emits black-body radiation in
all outward directions with a temperature T# = 5800 K. Show, by integrating over the
black-body Iν , that the total energy flux (i.e. power per unit surface area) F emitted
by the Sun is

F ≡ dE
dtdA

= σT 4
# , where σ =

ac

4
=

2π5

15

k4
B

h3c2
= 5.67 × 10−5 erg

cm2sK4
. (3.64)

(b) Since the distribution function Iν is conserved along each photon’s trajectory, observers
on Earth, looking at the sun, see identically the same black-body specific intensity Iν
as they would if they were on the Sun’s surface. (No wonder our eyes hurt if we look
directly at the Sun!) By integrating over Iν at the Earth [and not by the simpler
method of using Eq. (3.64) for the flux leaving the Sun], show that the energy flux
arriving at Earth is F = σT 4

#(R#/r)2, where R# = 696, 000 km is the Sun’s radius and
r = 1.496 × 108 km is the distance from the Sun to Earth.
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Box 3.2
Sophisticated Derivation of Relativistic Collisionless Boltzmann Equation

Denote by #X ≡ {P, #p} a point in 8-dimensional phase space. In an inertial frame
the coordinates of #X are {x0, x1, x2, x3, p0, p1, p2, p3}. [We use up indices (“contravariant”
indices) on x and down indices (“covariant” indices) on p because this is the form required
in Hamilton’s equations below; i.e., it is pα not pα that is canonically conjugate to xα.]
Regard N as a function of location #X in 8-dimensional phase space. The fact that our
particles all have the same rest mass so N is nonzero only on the mass hyperboloid means
that as a function of #X, N entails a delta function. For the following derivation that
delta function is irrelevant; the derivation is valid also for distributions of non-identical
particles, as treated in Ex. 3.2.
A particle in our distribution at location #X moves through phase space along a world
line with tangent vector d #X/dζ , where ζ is its affine parameter. The product N d #X/dζ
represents the number-flux 8-vector of particles through spacetime, as one can see by
an argument analogous to Eq. (3.33c). We presume that, as the particles move through
phase space, none are created or destroyed. The law of particle conservation in phase
space, by analogy with #∇ · #S = 0 in spacetime, takes the form #∇ · (N d #X/dζ) = 0. In
terms of coordinates in an inertial frame, this conservation law says

∂

∂xα

(
N dxα

dζ

)
+

∂

∂pα

(
N dpα

dζ

)
= 0 . (1)

The motions of individual particles in phase space are governed by Hamilton’s equations

dxα

dζ
=

∂H
∂pα

,
dpα

dζ
= − ∂H

∂xα
. (2)

For the freely moving particles of this chapter, the relativistic Hamiltonian is [cf. Sec. 8.4
of Goldstein, Poole and Safko (2002) and p. 489 of Misner, Thorne and Wheeler (1973)]

H =
1

2
(pαpβg

αβ − m2) . (3)

Our derivation of the collisionless Boltzmann equation does not depend on this specific
form of the Hamiltonian; it is valid for any Hamiltonian and thus, e.g., for particles inter-
acting with an electromagnetic field or even a relativistic gravitational field (spacetime
curvature; Part VI). By inserting Hamilton’s equations (2) into the 8-dimensional law of
particle conservation (1), we obtain

∂

∂xα

(
N ∂H

∂pα

)
− ∂

∂pα

(
N ∂H

∂xα

)
= 0 . (4)

Using the rule for differentiating products, and noting that the terms involving two
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Box 3.2, Continued

derivatives of H cancel, we bring this into the form

0 =
∂N
∂xα

∂H
∂pα

− ∂N
∂pα

∂H
∂xα

=
∂N
∂xα

dxα

dζ
− ∂N

∂pα

dpα

dζ
=

dN
dζ

, (5)

which is the collisionless Boltzmann equation. [To get the second expression we have
used Hamilton’s equations, and the third follows directly from the formulas of differen-
tial calculus.] Thus, the collisionless Boltzmann equation is a consequence of just two
assumptions, conservation of particles and Hamilton’s equations for the motion of each
particle, which implies it has very great generality. We shall extend and explore this
generality in the next chapter.

(c) Our goal is to compute the temperature T⊕ of the Earth’s surface. As a first attempt,
assume that all the Sun’s flux arriving at Earth is absorbed by the Earth’s surface,
heating it to the temperature T⊕, and then is reradiated into space as black-body
radiation at temperature T⊕. Show that this leads to a surface temperature of

T⊕ = T#

(
R#

2r

)1/2

= 280 K = 7 C . (3.65)

This is a bit cooler than the correct mean surface temperature (287 K = 14 C).

(d) Actually, the Earth has an “albedo” of A = 0.30, which means that 40 per cent of the
sunlight that falls onto it gets reflected back into space with an essentially unchanged
spectrum, rather than being absorbed. Show that with only a fraction 1 − A = 0.70
of the solar radiation being absorbed, the above estimate of the Earth’s temperature
becomes

T⊕ = T#

(√
1 − A R#

2r

)1/2

= 255 K = −18 C . (3.66)

This is even farther from the correct answer.

(e) The missing piece of physics, which raises the temperature from −18C to something
much nearer the correct 14C, is the Greenhouse Effect : The absorbed solar radiation
has most of its energy at wavelengths ∼ 0.5µm (in the visual band), which pass rather
easily through the Earth’s atmosphere. By contrast, the black-body radiation that
the Earth’s surface wants to radiate back into space, with its temperature ∼ 300K,
is concentrated in the infrared range from ∼ 8µm to ∼ 30µm. Water molecules and
carbon dioxide in the Earth’s atmosphere absorb about half of the energy that the Earth
tries to reradiate at these energies,3 causing the reradiated energy to be about half that
of a black body at the Earth’s surface temperature. Show that with this “Greenhouse”
correction, T⊕ becomes about 293K = +20C. Of course, the worry is that human

3See, e.g., the section and figures on “Absorption of Atmospheric Gases” in Allen (2000)
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activity is increasing the amount of carbon dioxide in the atmosphere by enough to
raise the Earth’s temperature significantly further and disrupt our comfortable lives.

Exercise 3.15 Challenge: [N] Olbers’ Paradox and Solar Furnace
Consider a universe in which spacetime is flat and is populated throughout by stars that
cluster into galaxies like our own and our neighbors, with interstellar and intergalactic dis-
tances similar to those in our neighborhood. Assume that the galaxies are not moving apart,
i.e., there is no universal expansion. Using the collisionless Boltzmann equation for photons,
show that the Earth’s temperature in this universe would be about the same as the surface
temperatures of the universe’s hotter stars, ∼ 10, 000 K, so we would all be fried. What
features of our universe protect us from this fate?

Motivated by this model universe, describe a design for a furnace that relies on sunlight
for its heat and achieves a temperature nearly equal to that of the sun’s surface, 5770 K.

3.7 [N] Transport Coefficients

In this section we turn to a practical application of kinetic theory: the computation of
transport coefficients. Our primary objective is to illustrate the use of kinetic theory, but
the transport coefficients themselves are also of interest: they will play important roles in
Parts IV and V of this book (Fluid Mechanics and Plasma Physics).

What are transport coefficients? An example is the electrical conductivity κe. When an
electric field E is imposed on a sample of matter, Ohm’s law tells us that the matter responds
by developing a current density

j = κeE . (3.67a)

The electrical conductivity is high if electrons can move through the material with ease; it
is low if electrons have difficulty moving. The impediment to electron motion is scatter-
ing off other particles—off ions, other electrons, phonons (sound waves), plasmons (plasma
waves), . . .. Ohm’s law is valid when (as almost always) the electrons scatter many times,
so they diffuse (random-walk their way) through the material. In order to compute the
electrical conductivity, one must analyze, statistcally, the effects of the many scatterings on
the electrons’ motions. The foundation for an accurate analysis is the Boltzmann transport
equation.

Another example of a transport coefficient is the thermal conductivity κ, which appears
in the law of heat conduction

q = −κ∇T . (3.67b)

Here q is the diffusive energy flux from regions of high temperature T to low. The impediment
to heat flow is scattering of the conducting particles; and, correspondingly, the foundation
for accurately computing κ is the Boltzmann transport equation.

Other examples of transport coefficients are (i) the coefficient of shear viscosity ηshear

which determines the stress Tij (diffusive flux of momentum) that arises in a shearing fluid

Tij = −2ηshearσij , where σij is the fluid’s “rate of shear”, Ex. 3.18; (3.67c)
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and (ii) the diffusion coefficient D, which determines the diffusive flux of particles S from
regions of high particle density n to low,

S = −D∇n . (3.67d)

There is a diffusion equation associated with each of these transport coefficients. For
example, the differential law of particle conservation ∂n/∂t + ∇ · S = 0 [Eq. (1.73)], when
applied to material in which the particles scatter many times so S = −D∇n, gives the
following diffusion equation for the particle number density:

∂n

∂t
= D∇2n . (3.68)

In Ex. 3.16, by exploring solutions to this equation, we shall see that the rms distance the
particles travel is proportional to the square root of their travel time, l̄ =

√
4Dt, a behavior

characteristic of diffusive random walks. Similarly, the law of energy conservation, when
applied to diffusive heat flow q = −κ∇T , leads to a diffusion equation for the thermal energy
density ε and thence for temperature (Ex. 3.17); Maxwell’s equations in a magnetized fluid,
when combined with Ohm’s law j = κeE, lead to a diffusion equation (18.6) for magnetic
field lines; and the law of angular momentum conservation, when applied to a shearing fluid
with Tij = −2ηshearσij , leads to a diffusion equation (13.6) for vorticity.

These diffusion equations, and all other physical laws involving transport coefficients,
are approximations to the real world—approximations that are valid if and only if (i) many
particles are involved in the transport of the quantity of interest (charge, heat, momen-
tum, particles) and (ii) on average each particle undergoes many scatterings in moving over
the length scale of the macroscopic inhomogeneities that drive the transport. This second
requirement can be expressed quantitatively in terms of the mean free path λ between scat-
terings (i.e., the mean distance a particle travels between scatterings, as measured in the
mean rest frame of the matter) and the macroscopic inhomogeneity scale L for the quantity
that drives the transport (for example, in heat transport that scale is L ∼ T/|∇T |, i.e., it is
the scale on which the temperature changes by an amount of order itself). In terms of these
quantities, the second criterion of validity is λ ) L. These two criteria (many particles and
λ ) L) together are called diffusion criteria, since they guarantee that the quantity being
transported (charge, heat, momentum, particles) will diffuse through the matter. If either
of the two diffusion criteria fails, then the standard transport law (Ohm’s law, the law of
heat conduction, the Navier-Stokes equation, or the diffusion equation) breaks down and the
corresponding transport coefficient becomes irrelevant and meaningless.

The accuracy with which one can compute a transport coefficient using the Boltzmann
transport equation depends on the accuracy of one’s description of the scattering. If one
uses a high-accuracy collision term (dN /d1)collisions in the Boltzmann equation, one can
derive a highly accurate transport coefficient. If one uses a very crude approximation for the
collision term, one’s resulting transport coefficient might be accurate only to within an order
of magnitude—in which case, it was probably not worth the effort to use the Boltzmann
equation; a simple order-of-magnitude argument would have done just as well.
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In this section we shall compute the coefficient of thermal conductivity κ first by an order-
of-magnitude argument, and then by the Boltzmann equation with a highly accurate collision
term. In Exs. 3.18and 3.19 readers will have the opportunity to compute the coefficient of
viscosity and the diffusion coefficient using moderately accurate collision terms, and in Ex.
3.20 we will meet diffusion in momentum space, by contrast with diffusion in physical space.

3.7.1 Problem to be Analyzed: Diffusive Heat Conduction Inside
a Star

The specific problem we shall treat here in the text is heat transport through hot gas deep
inside a young, massive star. We shall confine attention to that portion of the star in
which the temperature is 107 K ! T ! 109K, the mass density is ρ ! 10 g/cm3(T/107K)2,
and heat is carried primarily by diffusing photons rather than by diffusing electrons or ions
or by convection. (We shall study convection in Chap. 17.) In this regime the primary
impediment to the photons’ flow is collisions with electrons. The lower limit on temperature,
107K, guarantees that the gas is almost fully ionized, so there is a plethora of electrons to
do the scattering. The upper limit on density, ρ ∼ 10 g/cm3(T/107K)2 guarantees that
(i) the inelastic scattering, absorption, and emission of photons by electrons accelerating
in the coulomb fields of ions (“bremsstrahlung” processes) are unimportant as impediments
to heat flow compared to scattering off free electrons; and (ii) the scattering electrons are
nondegenerate, i.e., they have mean occupation numbers η small compared to unity and thus
behave like classical, free, charged particles. The upper limit on temperature, T ∼ 109K,
guarantees that (i) the electrons which do the scattering are moving thermally at much
less than the speed of light (the mean thermal energy 1.5kBT of an electron is much less
than its rest mass-energy mec2); and (ii) the scattering is nearly elastic, with negligible
energy exchange between photon and electron, and is describable with good accuracy by the
Thomson scattering cross section:

In the rest frame of the electron, which to good accuracy will be the same as the mean
rest frame of the gas since the electron’s speed relative to the mean rest frame is ) c, the
differential cross section dσ for a photon to scatter from its initial propagation direction n′

into a unit solid angle dΩ centered on a new propagation direction n is

dσ(n′ → n)

dΩ
=

3

16π
σT[1 + (n · n′)2] . (3.69a)

Here σT is the total Thomson cross section [the integral of the differential cross section
(3.69a) over solid angle]:

σT =

∫
dσ(n′ → n)

dΩ
dΩ =

8π

3
r2
o = 0.665 × 10−24 cm2 , (3.69b)

where ro = e2/mec2 is the classical electron radius. For a derivation and discussion of the
Thomson cross sections (3.69) see, e.g., Sec. 14.8 of Jackson (1999).
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Fig. 3.10: Heat exchange between two layers of gas separated by a distance of one photon mean
free path in the direction of the gas’s temperature gradient.

3.7.2 Order-of-Magnitude Analysis

Before embarking on any complicated calculation, it is always helpful to do a rough, order-
of-magnitude analysis, thereby identifying the key physics and the approximate answer. The
first step of a rough analysis of our heat transport problem is to identify the magnitudes of
the relevant lengthscales. The inhomogeneity scale L for the temperature, which drives the
heat flow, is the size of the hot stellar core, a moderate fraction of the Sun’s radius: L ∼ 105

km. The mean free path of a photon can be estimated by noting that, since each electron
presents a cross section σT to the photon and there are ne electrons per unit volume, the
probability of a photon being scattered when it travels a distance l through the gas is of
order neσTl; and therefore to build up to unit probability for scattering, the photon must
travel a distance

λ ∼ 1

neσT
∼ mp

ρσT
∼ 3 cm

(
1g/cm3

ρ

)
∼ 3 cm . (3.70)

Here mp is the proton rest mass, ρ ∼ 1 g/cm3 is the mass density in the core of a young,
massive star, and we have used the fact that stellar gas is mostly hydrogen to infer that
there is approximately one nucleon per electron in the gas and hence that ne , ρ/mp. Note
that L ∼ 105 km is 3 × 104 times larger than λ ∼ 3 cm, and the number of electrons and
photons inside a cube of side L is enormous, so the diffusion description of heat transport is
quite accurate.

In the diffusion description the heat flux q as measured in the gas’s rest frame is related
to the temperature gradient ∇T by the law of diffusive heat conduction q = −κ∇T , To
estimate the thermal conductivity κ, orient the coordinates so the temperature gradient is
in the z direction, and consider the rate of heat exchange between a gas layer located near
z = 0 and a layer one photon-mean-free-path away, at z = λ (Fig. 3.10). The heat exchange
is carried by photons that are emitted from one layer, propagate nearly unimpeded to the
other, and then scatter. Although the individual scatterings are nearly elastic (and we thus
are ignoring changes of photon frequency in the Boltzmann equation), tiny changes of photon
energy add up over many scatterings to keep the photons nearly in local thermal equilibrium
with the gas. Thus, we shall approximate the photons and gas in the layer at z = 0 to have
a common temperature T0 and those in the layer at z = λ to have a common temperature
Tλ = T0 + λdT/dz. Then the photons propagating from the layer at z = 0 to that at z = λ
carry an energy flux

q0→λ = αca(T0)
4 , (3.71a)
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where a is the radiation constant of Eq. (3.51c), a(T0)4 is the photon energy density at
z = 0, and α is a dimensionless constant of order 1/4 that accounts for what fraction of the
photons at z = 0 are moving rightward rather than leftward, and at what mean angle to
the z direction. (Throughout this section, by contrast with early sections of this chapter, we
shall use non-geometrized units, with the speed of light c present explicitly). Similarly, the
flux of energy from the layer at z = λ to the layer at z = 0 is

qλ→0 = −αca(Tλ)
4 ; (3.71b)

and the net rightward flux, the sum of (3.71a) and (3.71b), is

q = αca[(T0)
4 − (Tλ)

4] = −4αcaT 3λ
dT

dz
. (3.71c)

Noting that 4α is approximately one, inserting expression (3.70) for the photon mean free
path, and comparing with the law of diffusive heat flow q = −κ∇T , we conclude that the
thermal conductivity is

κ ∼ aT 3cλ =
acT 3

σTne
. (3.72)

3.7.3 Analysis Via the Boltzmann Transport Equation

With these physical insights and rough answer in hand, we turn to a Boltzmann transport
analysis of the heat transfer. Our first step is to formulate the Boltzmann transport equation
for the photons (including effects of Thomson scattering off the electrons) in the rest frame
of the gas.

To simplify the analysis, we use as the parameter 1 in the transport equation the distance
l that a fiducial photon travels, and we regard the distribution function N as a function of
location x in space, the photon propagation direction (unit vector) n, and the photon fre-
quency ν: N (x,n, ν). Because the photon frequency does not change during free propagation
nor in the Thomson scattering, it can be treated as a constant when solving the Boltzmann
equation.

Along the trajectory of a fiducial photon, N (x,n, ν) will change as a result of two things:
(i) the scattering of photons out of the n direction and into other directions, and (ii) the
scattering of photons from other directions n′ into the n direction. These effects produce
the following two “collision” terms in the Boltzmann transport equation (3.63):

dN (x,n, ν)

dl
= −σTneN (x,n, ν) +

∫
dσ(n′ → n)

dΩ
neN (t,x,n′, ν)dΩ′ . (3.73)

Because the mean free path λ = 1/σT ne is so short compared to the length scale L of
the temperature gradient, the heat flow will show up as a tiny correction to an otherwise
isotropic, perfectly thermal distribution function. Thus, we can write the photon distribution
function as the sum of an unperturbed, perfectly isotropic and thermalized piece N0 and a
tiny, anisotropic perturbation N1:

N = N0 + N1 , where N0 =
2

h3

1

ehν/kBT − 1
. (3.74a)
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Here the perfectly thermal piece N0 has the standard black-body form (3.23); it depends
on the photon 4-momentum only through the frequency ν as measured in the mean rest
frame of the gas, and it depends on location in spacetime only through the temperature
T , which we assume is time independent in the star but is a function of spatial location,
T = T (x). If the photon mean free path were vanishingly small, there would be no way
for photons at different locations x to discover that the temperature is inhomogeneous;
and, correspondingly, N1 would be vanishingly small. The finiteness of the mean free path
permits N1 to be finite, and so it is reasonable to expect (and turns out to be true) that the
magnitude of N1 is

N1 ∼
λ

LN0 . (3.74b)

Thus, N0 is the leading-order term, and N1 is the first-order correction in an expansion of
the distribution function N in powers of λ/L. This is called a two-lengthscale expansion; see
Box 3.3.

Box 3.3
Two-Lengthscale Expansions

Equation (3.74b) is indicative of the mathematical technique that underlies
Boltzmann-transport computations: a perturbative expansion in the dimensionless ratio
of two lengthscales, the tiny mean free path λ of the transporter particles and the far
larger macroscopic scale L of the inhomogeneities that drive the transport. Expansions
in lengthscale ratios λ/L are called two-lengthscale expansions, and are widely used in
physics and engineering. Most readers will previously have met such an expansion in
quantum mechanics: the WKB approximation, where λ is the lengthscale on which the
wave function changes and L is the scale of changes in the potential V (x) that drives
the wave function. Kinetic theory itself is the result of a two-lengthscale expansion: It
follows from the more sophisticated statistical-mechanics formalism in Chap. 3, in the
limit where the particle sizes are small compared to their mean free paths. In this book
we shall use two-lengthscale expansions frequently—e.g., in the geometric optics approxi-
mation to wave propagation (Chap. 6), in the study of boundary layers in fluid mechanics
(Secs. 13.4 and 14.4), in the quasi-linear formalism for plasma physics (Chap. 22), and
in the definition of a gravitational wave (Chap. 26).

Inserting N = N0 + N1 into our Boltzmann transport equation (eq:qbed) and using
d/dl = n ·∇ for the derivative with respect to distance along the fiducial photon trajectory,
we obtain

nj
∂N0

∂xj
+ nj

∂N1

∂xj
=

[
−σTneN0 +

∫
dσ(n′ → n)

dΩ
necN0dΩ′

]

+

[
−σTnecN1(n, ν) +

∫
dσ(n′ → n)

dΩ
necN1(n

′, ν)dΩ′
]

. (3.74c)

Because N0 is isotropic, i.e., is independent of photon direction n′, it can be pulled out of
the integral over n′ in the first square bracket on the right side; and when this is done, the
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first and second terms in that square bracket cancel each other. Thus, the unperturbed part
of the distribution, N0, completely drops out of the right side of (3.74c). On the left side
the term involving the perturbation N1 is tiny compared to that involving the unperturbed
distribution N0, so we shall drop it; and because the spatial dependence of N0 is entirely due
to the temperature gradient, we can bring the first term and the whole transport equation
into the form

nj
∂T

∂xj

∂N0

∂T
= −σTneN1(n, ν) +

∫
dσ(n′ → n)

dΩ
neN1(n

′, ν)dΩ′ . (3.74d)

The left side of this equation is the amount by which the temperature gradient causes N0

to fail to satisfy the Boltzmann equation, and the right side is the manner in which the
perturbation N1 steps into the breach and enables the Boltzmann equation to be satisfied.

Because the left side is linear in the photon propagation direction nj (i.e., it has a cos θ
dependence in coordinates where ∇T is in the z-direction; i.e., it has a “dipolar”, l = 1
angular dependence), N1 must also be linear in nj , i.e. dipolar, in order to fulfill Eq. (3.74d).
Thus, we shall write N1 in the dipolar form

N1 = Kj(x, ν)nj , (3.74e)

and we shall solve the transport equation (3.74d) for the function Kj .
[Important side remark : This is a special case of a general situation: When solving

the Boltzmann equation in diffusion situations, one is performing a power series expansion
in λ/L; see Box 3.3. The lowest-order term in the expansion, N0, is isotropic, i.e., it is
monopolar in its dependence on the direction of motion of the diffusing particles. The first-
order correction, N1, is down in magnitude by λ/L from N0 and is dipolar (or sometimes
quadrupolar; see Ex. 3.18) in its dependence on the particles’ direction of motion. The
second-order correction, N2, is down in magnitude by (λ/L)2 from N0 and its multipolar
order is one higher than N1 (quadrupolar here; octupolar in Ex. 3.18). And so it continues
on up to higher and higher orders.4]

When we insert the dipolar expression (3.74e) into the angular integral on the right side
of the transport equation (3.74d) and notice that the differential scattering cross section
(3.69a) is unchanged under n′ → −n′, but Kjn′

j changes sign, we find that the integral
vanishes. As a result the transport equation (3.74d) takes the simplified form

nj
∂T

∂xj

∂N0

∂T
= −σTneKjnj , (3.74f)

from which we can read off the function Kj and thence N1 = Kjnj :

N1 = −∂N0/∂T

σT ne

∂T

∂xj
nj . (3.74g)

Notice that, as claimed above, the perturbation has a magnitude

N1

N0
∼ 1

σT ne

1

T
|∇T | ∼ λ

L . (3.74h)

4For full details in nonrelativistic situations see, e.g., Grad (1957); and for full relativistic details see, e.g.,
Thorne (1981).
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We can now evaluate the energy flux qi carried by the diffusing photons. Relativity
physicists will recognize that flux as the T 0i part of the stress-energy tensor and will therefore
evaluate it as

qi = T 0i = c2

∫
N p0pi dVp

p0
= c2

∫
N pidVp (3.75)

[cf. Eq. (3.31c) with the factors of c restored]. Newtonian physicists can deduce this formula
by noticing that photons with momentum p in dVp carry energy E = |p|c and move with
velocity v = cp/|p|, so their energy flux is NEv dVp = c2Np dVp; integrating this up over
momentum space gives Eq. (3.75). Inserting N = N0 + N1 into this equation and noting
that the integral over N0 vanishes, and inserting Eq. (3.74h) for N1, we obtain

qi = c2

∫
N1pidVp = − c

σTne

∂T

∂xj

∂

∂T

∫
N0cnjpidVp. (3.76a)

(Here we have used the fact that the only way in which the integral can depend on location
x is through the photon temperature T .) The relativity physicist will identify the integral
as Eq. (3.31c) for the photons’ stress tensor Tij (since nj = pj/p0 = pj/E . The Newtonian
physicist, with a little thought, will recognize the integral in Eq. (3.76a) as the j-component
of the flux of i-component of momentum, which is precisely the stress tensor. Since this
stress tensor is being computed with the isotropic, thermalized part of N , it is isotropic
Tji = P δji and its pressure has the standard black-body-radiation form P = 1

3aT 4 [Eqs.
(3.51a)]. Replacing the integral in Eq. (3.76a) by this black-body stress tensor, we obtain
our final answer for the photons’ energy flux:

qi = − c

σTne

∂T

∂xj

d

dT

(
1

3
aT 4δji

)
= − c

σTne

4

3
aT 3 ∂T

∂xi
. (3.76b)

Thus, from the Boltzmann transport equation we have simultaneously derived the law of
diffusive heat conduction q = −κ∇T and evaluated the coefficient of heat conductivity

κ =
4

3

acT 3

σTne
. (3.77)

Notice that this heat conductivity is 4/3 times our crude, order-of-magnitude estimate (3.72).
The above calculation, while somewhat complicated in its details, is conceptually fairly

simple. The reader is encouraged to go back through the calculation and identify the main
conceptual steps (expansion of distribution function in powers of λ/L, insertion of zero-
order plus first-order parts into the Boltzmann equation, multipolar decomposition of the
zero and first-order parts with zero-order being monopolar and first-order being dipolar,
neglect of terms in the Boltzmann equation that are smaller than the leading ones by factors
λ/L, solution for the coefficient of the multipolar decomposition of the first-order part,
reconstruction of the first-order part from that coefficient, and insertion into a momentum-
space integral to get the flux of the quantity being transported). Precisely these same steps
are used to evaluate all other transport coefficients that are governed by classical physics. For
examples of other such calculations see, e.g., Shkarofsky, Johnston, and Bachynski (1966).

As an application of the thermal conductivity (3.77), consider a young (main-sequence) 7
solar mass (7M#) star as modeled, e.g., on page 480 of Clayton (1968). Just outside the star’s
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convective core, at radius r , 0.8R# , 6×105km (where R# is the Sun’s radius), the density
and temperature are ρ , 5g/cm3 and T , 1.6 × 107K, so the number density of electrons is
ne , ρ/mp , 3 × 1024cm−3. For these parameters, Eq. (3.77) gives a thermal conductivity
κ , 7 × 1017erg s−1cm−2K−1. The lengthscale L on which the temperature is changing
is approximately the same as the radius, so the temperature gradient is |∇T | ∼ T/r ∼
3 × 10−4K/cm. The law of diffusive heat transfer then predicts a heat flux q = κ|∇T | ∼
2×1014erg s−1cm−2, and thus a total luminosity L = 4πr2q ∼ 8×1036erg/s , 2000L# (2000
solar luminosities). What a difference the mass makes! The heavier a star, the hotter its
core, the faster it burns, and the higher its luminosity. Increasing the mass by a factor 7
drives the luminosity up by 2000.

****************************

EXERCISES

Exercise 3.16 Example: **Solution of Diffusion Equation in an Infinite, Homogeneous
Medium

(a) Show that the following is a solution to the diffusion equation (3.68) for particles in a
homogeneous, infinite medium:

n =
N

(4πDt)3/2
e−r2/4Dt , (3.78)

(where r ≡
√

x2 + y2 + z2 is radius), and that it satisfies
∫

n dVx = N , so N is the total
number of particles. Note that this is a Gaussian distribution with width σ =

√
4Dt.

Plot this solution for several values of σ. In the limit as t → 0, the particles are all
localized at the origin. As time passes, they random-walk (diffuse) away from the
origin, traveling a mean distance σ =

√
4Dt after time t. We will meet this square-

root-of-time evolution in other random-walk situations elsewhere in this book.

(b) Suppose that the particles have an arbitrary initial distribution no(x) at time t = 0.
Show that their distribution at a later time t is given by the following “Greens function”
integral:

n(x, t) =

∫
no(x′)

4πDt
e−|x−x′|2/4Dt . (3.79)

Exercise 3.17 Problem: Diffusion Equation for Temperature
Use the law of energy conservation to show that, when heat diffuses through a homoge-

neous medium whose volume is being kept fixed, the evolution of the temperature pertur-
bation δT ≡ T − (average temperature) is governed by the diffusion equation (3.68) with
diffusion constant D = κ/CV . Here CV is the specific heat at fixed volume.
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Exercise 3.18 Example: Viscosity of a Monatomic Gas
Consider a nonrelativistic fluid that, in the neighborhood of the origin, has fluid velocity
vi = σijxj , with σij symmetric and trace free. As we shall see in Sec. 12.6.1, this represents
a purely shearing flow, with no rotation or volume changes of fluid elements; σij is called the
fluid’s rate of shear. Just as a gradient of temperature produces a diffusive flow of heat, so
the gradient of velocity embodied in σij produces a diffusive flow of momentum, i.e. a stress.
In this exercise we shall use kinetic theory to show that, for a monatomic gas with isotropic
scattering of atoms off each other, this stress is

Tij = −2ηshearσij , (3.80a)

with the coefficient of shear viscosity

ηshear ,
1

3
ρλvth , (3.80b)

where ρ is the gas density, λ is the atoms’ mean free path between collisons, and vth =√
3kTB/m is the atoms’ rms speed. Our analysis will follow the same route as the analysis

of heat conduction in Secs. 3.7.2 and 3.7.3.

(a) Derive Eq. (3.80b) for the shear viscosity by an order of magnitude analysis like that
in Sec. 3.7.2.

(b) Regard the atoms’ distribution function N as being a function of the magnitude p and
direction n of an atom’s momentum, and of location x in space. Show that, if the
scattering is isotropic with cross section σs and the number density of atoms is n, then
the Boltzmann transport equation can be written as

dN
dl

= n · ∇N = −1

λ
N +

∫
1

4πλ
N (p,n′,x)dΩ′ , (3.81a)

where λ = 1/nσs is the atomic mean free path (mean distance traveled between scat-
terings) and l is distance traveled by a fiducial atom.

(b) Explain why, in the limit of vanishingly small mean free path, the distribution function
has the following form:

N0 =
n

(2πmkBT )3/2
exp[−(p − mσ · x)2/2mkBT ] . (3.81b)

(c) Solve the Boltzmann transport equation (3.81a) to obtain the leading-order correction
N1 to the distribution function at x = 0 . [Answer: N1 = −(λp/kBT )σabnanb N0.]

(d) Compute the stress via a momentum-space integral. Your answer should be Eq. (3.80a)
with ηshear given by Eq. (3.80b) to within a few tens of per cent accuracy. [Hint: Along
the way you will need the following angular integral:

∫
nanbninjdΩ =

4π

15
(δabδij + δaiδbj + δajδbi) . (3.81c)
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Derive this by arguing that the integral must have the above delta-function structure,
and by then computing the multiplicative constant by performing the integral for
a = b = i = j = z.]

Exercise 3.19 Example: Diffusion Coefficient Computed in the “Collision-Time” Approx-
imation
Consider a collection of identical “test particles” with rest mass m &= 0 that diffuse through a
collection of thermalized “scattering centers”. (The test particles might be molecules of one
species, and the scattering centers might be molecules of a much more numerous species.)
The scattering centers have a temperature T such that kBT ) mc2, so if the test particles
acquire this same temperature they will have thermal speeds small compared to the speed
of light, as measured in the mean rest frame of the scattering centers. We shall study the
effects of scattering on the test particles using the following “collision-time” approximation
for the collision terms in the Boltzmann equation:

(
dN
dt

)

collision

= (N0 −N )
1

τ̂
, where N0 ≡ e−p2/2mkBT

(2πmkBT )3/2
n . (3.82)

All frame-dependent quantities appearing here are evaluated in the mean rest frame of the
scattering centers; in particular, t is Lorentz time, T is the temperature of the scattering
centers, p = |p| is the magnitude of the test particles’ spatial momentum, n =

∫
N dVp is

the number density of test particles and τ̂ is a constant to be discussed below.

(a) Show that this collision term preserves test particles in the sense that
(

dn

dt

)

collision

≡
∫ (

dN
dt

)

collision

dpxdpydpz = 0 . (3.83)

(b) Explain why this collision term corresponds to the following physical picture: Each
test particle has a probability per unit time 1/τ̂ of scattering; and when it scatters,
its direction of motion is randomized and its energy is thermalized at the scattering
centers’ temperature.

(c) Suppose that the temperature T is homogeneous (spatially constant), but the test
particles are distributed inhomogeneously, n = n(x) &=const. Let L be the length scale
on which their number density n varies. What condition must L, τ̂ , T , and m satisfy
in order that the diffusion approximation be reasonably accurate? Assume that this
condition is satisfied.

(d) Compute, in order of magnitude, the particle flux S = −D∇n produced by the gradient
of the number density n, and thereby evaluate the diffusion coefficient D

(e) Show that the Boltzmann transport equation takes the form

∂N
∂t

+
pj

m

∂N
∂xj

=
1

τ̂
(N0 −N ) . (3.84a)
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(f) Show that to first order in a small diffusion-approximation parameter, the solution of
this equation is N = N0 + N1, where N0 is as defined in Eq. (3.82) above, and

N1 = −pj τ̂

m

∂n

∂xj

e−p2/2mkBT

(2πmkBT )3/2
. (3.84b)

Note that N0 is monopolar (independent of the direction of p), while N1 is dipolar
(linear in p).

(h) Show that the perturbation N1 gives rise to a particle flux given by Eq. (3.67d), with
the diffusion coefficient

D =
kBT

m
τ̂ . (3.85)

Exercise 3.20 Example: Neutron Diffusion in a Nuclear Reactor
Here are some salient, oversimplified facts about nuclear reactors (see, e.g., Stephenson 1954,
especially Chap. 4): A reactor’s core is made of a mixture of natural uranium (0.72 percent
235U and 99.28 percent 238U) and a solid or liquid material such as carbon (graphite) or
water, made of low-atomic-number atoms and called the moderator. For concreteness we shall
assume that the moderator is graphite. Slow (thermalized) neutrons, with kinetic energies
of ∼ 0.1 eV, get captured by the 235U nuclei and trigger them to fission, releasing ∼ 170
MeV of kinetic energy per fission (which ultimately goes into heat and then electric power),
and also releasing an average of about 2 fast neutrons (kinetic energies ∼ 1 MeV). The fast
neutrons must be slowed to thermal speeds so as to capture onto 235U atoms and induce
further fissions. The slowing is achieved by scattering off the moderator atoms—a scattering
in which the crucial effect, energy loss, occurs in momentum space. The momentum-space
scattering is elastic and isotropic in the center-of-mass frame, with total cross section σs ,
4.8× 10−24cm2 ≡ 4.8 barns. Using the fact that in the moderator’s rest frame, the incoming
neutron has a much higher kinetic energy than the moderator carbon atoms, and using energy
and momentum conservation and the isotropy of the scattering, one can show that in the
moderator’s rest frame, the logarithm of the neutron’s energy is reduced in each scattering
by an average amount ξ that is independent of energy and is given by:

ξ ≡ −∆ ln E = 1 +
(A − 1)2

2A
ln

(
A − 1

A + 1

)
, 0.158 . (3.86)

Here A , 12 is the ratio of the mass of the scattering atom to the mass of the scattered
neutron.

There is a dangerous hurdle that the diffusing neutrons must overcome during their
slowdown: as the neutrons pass through a critical energy region of about 7 to 6 eV, the
238U atoms can absorb them. The absorption cross section has a huge resonance there,
with width about 1 eV and resonance integral

∫
σad lnE , 240 barns. For simplicity, we

shall approximate the cross section in this absorption resonance by σa , 1600 barns at
6eV < E < 7eV, and zero outside this range. To achieve a viable fission chain reaction
and keep the reactor hot, it is necessary that about half of the neutrons (one per original
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235U fission) slow down through this resonant energy without getting absorbed. Those that
make it through will thermalize and trigger new 235U fissions (about one per original fission),
maintaining the chain reaction.

We shall idealize the Uranium and moderator atoms as homogeneously mixed on length-
scales small compared to the neutron mean free path, λs = 1/(σsns) , 2 cm, where ns is
the number density of moderator (carbon) atoms. Then the neutrons’ distribution function
N , as they slow down, will be isotropic in direction and independent of position; and in
our steady state situation, it will be independent of time. It therefore will depend only on
the magnitude p of the neutron momentum, or equivalently on the neutron kinetic energy
E = p2/2m: N = N (E).

Use the Boltzmann transport equation or other considerations to develop the theory of
the slowing down of the neutrons in momentum space, and of their struggle to pass through
the 238U resonance region without getting absorbed. More specifically:

(a) Use as the distribution function not N (E) but rather nE(E) ≡ dN/dVxdE = (number
of neutrons per unit volume and per unit kinetic energy), and denote by q(E) the
number of neutrons per unit volume that slow down through energy E per unit time.
Show that outside the resonant absorption region these two quantities are related by

q = σsnsξE nEv , where v =
√

2mE (3.87)

is the neutron speed, so q contains the same information as the distribution function
nE . Explain why the steady-state operation of the nuclear reactor requires q to be
independent of energy in this non-absorption region, and infer that nE ∝ E−3/2.

(b) Show further that inside the resonant absorption region, 6eV < E < 7eV, the relation-
ship between q and E is modified:

q = (σsns + σana)ξE nEv . (3.88)

Here ns is the number density of scattering (carbon) atoms and na is the number
density of absorbing (238U) atoms. [Hint: require that the rate at which neutrons
scatter into a tiny interval of energy δE ) ξE is equal to the rate at which they
leave that tiny interval.] Then show that the absorption causes q to vary with energy
according to the following differential equation:

d ln q

d lnE
=

σana

(σsns + σana)ξ
. (3.89)

(c) By solving this differential equation in our idealization of constant σa over the range 6
to 7 eV, show that the condition to maintain the chain reaction is

ns

na
, σa

σs

(
ln(7/6)

ξ ln 2
− 1

)
, 0.41

σa

σs
, 140 . (3.90)

Thus, to maintain the reaction in the presence of the huge 238U absorption resonance
for neutrons, it is necessary that more than 99 per cent of the reactor volume be taken
up by moderator atoms and less than 1 per cent by uranium atoms.
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We reiterate that this is a rather idealized version of what happens inside a nuclear reactor,
but it provides insight into some of the important processes and the magnitudes of various
relevant quantitities. For a graphic example of an additional complexity, see the description
of “Xenon poisoning” of the chain reaction in the first production-scale nuclear reactor
(built during World War II to make plutonium for the first American atomic bombs), in
John Archibald Wheeler’s autobiography (Wheeler 1998).

****************************

Bibliographic Note

Newtonian kinetic theory is treated in many textbooks on statistical physics. At an elemen-
tary level, Chap. 14 of Kittel and Kroemer (1980) is rather good. At a more advanced level,
see, e.g., Secs. 7.9–7.13 and Chaps. 12, 13, and 14 of Reiff (1965). For a very advanced treat-
ment with extensive applications to electrons and ions in plasmas, and electrons, phonons
and quasi-particles in liquids and solids, see Lifshitz and Pitaevskii (1981).

Relativistic kinetic theory is rarely touched on in statistical-physics textbooks but is well
known to researchers in general relativity and astrophysics. The treatment here is easily lifted
into general relativity theory; see, e.g., Sec. 22.6 of Misner, Thorne and Wheeler (1973).
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Box 3.4
Important Concepts in Chapter 2

• Foundational Concepts

– Momentum space and phase space, Secs. 3.2.1 and 3.2.3.

– Distribution function, three important variants: N = dN/dVxdVp (Secs. 3.2.1
and 3.2.3), mean occupation number η (Sec. 3.2.5), and for photons the specific
intensity Iν (Sec. 3.2.4).

– Frame invariance of N , η and Iν/ν3 in relativity theory, Sec. 3.2.3.

– Liouville’s theorem and collisionless Boltzmann equation (constancy of distri-
bution function along a particle trajectory in phase space): Sec. 3.6.

– Boltzmann transport equation with collisions: Eq. (3.63).

– Thermal equilibrium: Fermi-Dirac, Bose-Einstein and Boltzmann distribution
functions: Sec. 3.3.

– Electron degeneracy: Sec. 3.5.2.

– Macroscopic properties of matter expressed as momentum-space integrals—
density, pressure, stress tensor, stress-energy tensor: Sec. 3.4.

– Two-lengthscale expansion: Box 3.3.

• Equations of State Computed Via Kinetic Theory:

– Computed using momentum-space integrals: Eq. (3.36) and preceding discus-
sion.

– Important cases: nonrelativistic, classical gas, Sec. 3.5.1; degnerate Fermi gas,
Eq. (3.41) and Sec. 3.5.4; radiation, Sec. 3.5.5.

– Density-temperature plane for hydrogen gas: Sec. 3.5.2 and Fig. 3.7.

• Transport Coefficients

– Defined: beginning of Sec. 3.7.

– Electrical conductivity, thermal conductivity, shear viscosity and diffusion co-
efficient [Eqs. (3.67)]

– Order-of-magnitude computations of: Sec. 3.7.2

– Computations using Boltzmann transport equation: Sec. 3.7.3.


