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Prior to the opening up of the electromagnetic spectrum and the development of quantum
mechanics, the study of optics was only concerned with visible light. Reflection and refraction
were first described by the Greeks and further studied by the medieval scholastics like Roger
Bacon, who explained the rainbow, and used refraction in the design of crude magnifying
lenses and spectacles. However, it was not until the seventeenth century that there arose
a strong commercial interest in developing the telescope and the compound microscope.
Naturally, the discovery of Snell’s law in 1621 and the observation of diffractive phenomena
stimulated serious speculation about the physical nature of light. The corpuscular and wave
theories were propounded by Newton and Huygens, respectively. The corpuscular theory
initially held sway, but the studies of interference by Young and the derivation of a wave
equation for electromagnetic disturbances by Maxwell seemed to settle the matter in favor
of the undulatory theory, only for the debate to be resurrected with the discovery of the
photoelectric effect. After quantum mechanics was developed in the 1920’s, the dispute
was abandoned, the wave and particle descriptions of light became “complementary”, and
Hamilton’s optics-inspired formulation of classical mechanics was modified to produce the
Schrödinger equation.

Physics students are all too familiar with this potted history and may consequently re-
gard optics as an ancient precursor to modern physics that has been completely subsumed
by quantum mechanics. However, this is not the case. Optics has developed dramatically
and independently from quantum mechanics in recent decades, and is now a major branch
of classical physics. It is no longer concerned primarily with light. The principles of optics
are routinely applied to all types of wave propagation: from all parts of the electromagnetic
spectrum, to quantum mechanical waves, e.g. of electrons and neutrinos, to waves in elas-
tic solids (Part III of this book), fluids (Part IV), plasmas (Part V) and the geometry of
spacetime (Part VI). There is a commonality, for instance, to seismology, oceanography and
radio physics that allows ideas to be freely transported between these different disciplines.
Even in the study of visible light, there have been major developments: the invention of the
laser has led to the modern theory of coherence and has begotten the new field of nonlinear
optics.

An even greater revolution has occured in optical technology. From the credit card and
white light hologram to the laser scanner at a supermarket checkout, from laser printers to
CD’s and DVD’s, from radio telescopes capable of nanoradian angular resolution to Fabry-
Perot systems that detect displacements smaller than the size of an elementary particle, we
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are surrounded by sophisticated optical devices in our everyday and scientific lives. Many
of these devices turn out to be clever and direct applications of the fundamental principles
that we shall discuss.

The treatment of optics in this text differs from that found in traditional texts in that
we shall assume familiarity with basic classical and quantum mechanics and, consequently,
fluency in the language of Fourier transforms. This inversion of the historical development
reflects contemporary priorities and allows us to emphasize those aspects of the subject that
involve fresh concepts and modern applications.

In Chapter 6, we shall discuss optical (wave-propagation) phenomena in the geometric
optics approximation. This approximation is accurate whenever the wavelength and the
wave period are short compared with the lengthscales and timescales on which the wave
amplitude and the waves’ environment vary. We shall show how a wave equation can be
solved approximately in such a way that optical rays become the classical trajectories of
particles, e.g. photons, and how, in general, ray systems develop singularities or caustics
where the geometric optics approximation breaks down and we must revert to the wave
description.

In Chapter 7 we will develop the theory of diffraction that arises when the geometric
optics approximation fails and the waves’ energy spreads in a non-particle-like way. We
shall analyze diffraction in two limiting regimes, called Fresnel and Fraunhofer, after the
physicists who discovered them, in which the wavefronts are approximately spherical or
planar, respectively. Insofar as we are working with a linear theory of wave propagation,
we shall make heavy use of Fourier methods and shall show how elementary applications of
Fourier transforms can be used to design powerful optics instruments.

Most elementary diffractive phenomena involve the superposition of an infinite number of
waves. However, in many optical applications, only a small number of waves from a common
source are combined. This is known as interference and is the subject of Chapter 8. In this
chapter we will also introduce the notion of coherence, which is a quantitative measure of
the distributions of the combining waves and their capacity to interfere constructively.

The final chapter on optics, Chapter 9, is concerned with nonlinear phenomena that arise
when waves, propagating through a medium, become sufficiently strong to couple to each
other. These nonlinear phenomena can occur for all types of waves (we shall meet them
for fluid waves in Part IV and plasma waves in Part V). For light (the focus of Chapter 9),
they have become especially important; the nonlinear effects that arise when laser light is
shone through certain crystals are beginning to have a strong impact on technology and on
fundamental scientific research. We shall explore several examples.
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Kip Thorne, 130-33 Caltech, Pasadena CA 91125

Box 7.1
Reader’s Guide

• This chapter does not depend substantially on any previous chapter.

• Secs. 7.1–7.4 of this chapter are foundations for the remaining Optics chapters: 7,
8, and 9

• The discussion of caustics in Sec. 7.5 is a foundation for Sec. 7.6 on diffraction at
a caustic

• Secs. 7.2 and 7.3 (plane, monochromatic waves and wavepackets in a homogeneous,
time-independent medium, the dispersion relation, and the geometric optics equa-
tions) will be used extensively in subsequent Parts of this book, including

– Chap. 11 for elastodynamic waves

– Chap. 15 for waves in fluids

– Sec. 18.7, and Chaps. 20–22, for waves in plasmas

– Chap. 26 for gravitational waves.

7.1 Overview

Geometric optics, the study of “rays,” is the oldest approach to optics. It is an accurate
description of wave propagation whenever the wavelengths and periods of the waves are far
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smaller than the lengthscales and timescales on which the wave amplitude and the medium
supporting the waves vary.

After reviewing wave propagation in a homogeneous medium (Sec. 7.2), we shall begin our
study of geometric optics in Sec. 7.3. There we shall derive the geometric-optic propagation
equations with the aid of the eikonal approximation, and we shall elucidate the connection to
Hamilton-Jacobi theory, which we will assume that the reader has already encountered. This
connection will be made more explicit by demonstrating that a classical, geometric-optics
wave can be interpreted as a flux of quanta. In Sec. 7.4 we shall specialize the geometric
optics formalism to any situation where a bundle of nearly parallel rays is being guided and
manipulated by some sort of apparatus. This is called the paraxial approximation, and we
shall illustrate it using the problem of magnetically focusing a beam of charged particles and
shall show how matrix methods can be used to describe the particle (i.e. ray) trajectories.
In Sec. 7.5, we shall discuss the formation of images in geometric optics, illustrating our
treatment with gravitational lenses. We shall pay special attention to the behavior of images
at caustics, and its relationship to catastrophe theory. Finally, in Sec. 7.6, we shall turn
from scalar waves to the vector waves of electromagnetic radiation. We shall deduce the
geometric-optics propagation law for the waves’ polarization vector and shall explore the
classical version of the geometric phase.

7.2 Waves in a Homogeneous Medium

7.2.1 Monochromatic, Plane Waves

Consider a monochromatic plane wave propagating through a homogeneous medium. Inde-
pendently of the physical nature of the wave, it can be described mathematically by

ψ = Aei(k·x−ωt) ≡ Aeiϕ , (7.1)

where ψ is any oscillatory physical quantity associated with the wave, for example, the y-
component of the magnetic field associated with an electromagnetic wave. If, as is usually
the case, the physical quantity is real (not complex), then we must take the real part of
Eq. (7.1). In Eq. (7.1), A is the wave’s complex amplitude, ϕ = k · x − ωt is the wave’s it
phase, t and x are time and location in space, ω = 2πf is the wave’s angular frequency, and
k is its wave vector (with k ≡ |k| its wave number, λ = 2π/k its wavelength, λ̄ = λ/2π its
reduced wavelength and k̂ ≡ k/k its wave-vector direction). Surfaces of constant phase are
orthogonal to the propagation direction k̂ and move with the phase velocity

Vph ≡
(
∂x

∂t

)

ϕ

= − (∂ϕ/∂t)x
(∂ϕ/∂x)t

=
ω

k
k̂ ; (7.2a)

cf. Fig. 7.1. Lest there be confusion, Eq. (7.2a) is short-hand notation for the Cartesian-
component equation

Vph j ≡
(
∂xj

∂t

)

ϕ

= − (∂ϕ/∂t)x
(∂ϕ/∂xj)t

=
ω

k
k̂j . (7.2b)
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Fig. 7.1: A monochromatic plane wave in a homogeneous medium.

The frequency ω is determined by the wave vector k in a manner that depends on the wave’s
physical nature; the functional relationship

ω = Ω(k) (7.3)

is called the wave’s dispersion relation.
Some examples of plane waves that we shall study in this book are: (i) Electromagnetic

waves propagating through a dielectric medium with index of refraction n (this chapter),
for which ψ could be any Cartesian component of the electric or magnetic field or vector
potential and the dispersion relation is

ω = Ω(k) = Ck ≡ C|k| , (7.4)

with C = c/n the propagation speed and c the speed of light in vacuum. (ii) Sound waves
propagating through a solid (Sec. 11.2.3) or fluid (liquid or vapor; Sec. 15.5), for which ψ
could be the pressure or density perturbation produced by the sound wave, and the dispersion
relation is the same as for electromagnetic waves, Eq. (7.4), but with C now the sound speed.
(iii) Waves on the surface of a deep body of water (depth # λ̄; Sec. 15.2), for which ψ could
be the height of the water above equilibrium, and the dispersion relation is [Eq. (15.9)]:

ω = Ω(k) =
√

gk =
√

g|k| (7.5)

with g the acceleration of gravity. (iv) Flexural waves on a stiff beam or rod (Sec. 11.3.4),
for which ψ could be the transverse displacement of the beam from equilibrium and the
dispersion relation is

ω = Ω(k) =

√
D

Λ
k2 =

√
D

Λ
k · k . (7.6)

with Λ the rod’s mass per unit length and D its “flexural rigidity” [Eq. (10.77)]. (v) Alfvén
waves (bending oscillations of plasma-laden magnetic field lines in a magnetized, nonrela-
tivistic plasma; Sec. 18.7.2), for which ψ could be the transverse displacement of the field
and plasma and the dispersion relation is [Eq. (18.76)]

ω = Ω(k) = a · k, (7.7)

with a = B/
√

µoρ, [= B/
√

4πρ] 1 the Alfvén speed, B the (homogeneous) magnetic field, µo

the magnetic permitivity of the vacuum, and ρ the plasma mass density.

1Gaussian unit equivalents will be given with square brackets.
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In general, one can derive the dispersion relation ω = Ω(k) by inserting the plane-wave
ansatz (7.1) into the dynamical equations taht govern one’s physical system [e.g. Maxwell’s
equations, or the equations of elastodynamics (Chap. 11), or the equations for a magnetized
plasma (Part V) or ... . We shall do so time and again in this book.

7.2.2 Wave Packets

Waves in the real world are not precisely monochromatic and planar. Instead, they occupy
wave packets that are somewhat localized in space and time. Such wave packets can be
constructed as superpositions of plane waves:

ψ(x, t) =

∫
A(k)eiα(k)ei(k·x−ωt)d3k , (7.8a)

where A is the modulus and α the phase of the complex amplitude Aeiα, and the integration
element is d3k ≡ dkxdkydkz in terms of components of k along Cartesian axes x, y, z. Sup-
pose, as is often the case, that A(k) is sharply concentrated around some specific wave vector
ko [see Ex. 7.2 for an example]. Then in the integral (7.8a), the contributions from adjacent
k’s will tend to cancel each other except in that region of space and time where the oscilla-
tory phase factor changes little with changing k near k = ko. This is the spacetime region
in which the wave packet is concentrated, and its center is where ∇k(phasefactor) = 0:

(
∂α

∂kj
+

∂

∂kj
(k · x − ωt)

)

k=ko

= 0 . (7.8b)

Evaluating the derivative with the aid of the wave’s dispersion relation ω = Ω(k), we obtain
for the location of the wave packet’s center

xj −
(
∂Ω

∂kj

)

k=ko

t = −
(
∂α

∂kj

)

k=ko

= const . (7.8c)

This tells us that the wave packet moves with the group velocity

Vg = ∇kΩ , i.e. Vg j =

(
∂Ω

∂kj

)

k=ko

. (7.9)

When, as for electromagnetic waves in a dielectric medium or sound waves in a solid or
fluid, the dispersion relation has the simple form (7.4), ω = Ω(k) = Ck with k ≡ |k|, then
the group and phase velocities are the same

Vg = Vph = Ck̂ , (7.10)

and the waves are said to be dispersionless. If the dispersion relation has any other form,
then the group and phase velocities are different, and the wave is said to exhibit dispersion;
cf. Ex. 7.2. Examples are (see above): (iii) Waves on a deep body of water [dispersion
relation (7.5); Fig. 7.2(a)] for which

Vg =
1

2
Vph =

1

2

√
g

k
k̂ . (7.11)
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Fig. 7.2: (a) A wave packet of waves on a deep body of water. The packet is localized in the spatial
region bounded by the thin ellipse. The packet’s (ellipse’s) center moves with the group velocity
Vg, the ellipse may grow slowly in size due to wave-packet spreading (Ex. 7.2), and the surfaces of
constant phase (the wave’s oscillations) move twice as fast as the ellipse and in the same direction,
Vph = 2Vg [Eq. (7.11)]. This means that the wave’s oscillations arise at the back of the packet and
move forward through the packet, disappearing at the front. The wavelength of these oscillations
is λ = 2π/ko, where ko = |ko| is the wavenumber about which the wave packet is concentrated
[Eq. (7.8a) and associated discussion]. (b) An Alfvén wave packet. Its center moves with a group
velocity Vg that points along the direction of the background magnetic field [Eq. (7.13)], and its
surfaces of constant phase (the wave’s oscillations) move with a phase velocity Vph that can be in
any direction k̂. The phase speed is the projection of the group velocity onto the phase propagation
direction, |Vph| = Vg · k̂ [Eq. (7.13)], which implies that the wave’s oscillations remain fixed inside
the packet as the packet moves; their pattern inside the ellipse does not change.

(iv) Flexural waves on a rod or beam [dispersion relation (7.6)] for which

Vg = 2Vph = 2

√
D

Λ
kk̂ . (7.12)

(v) Alfvén waves in a magnetized plasma [dispersion relation (7.7); Fig. 7.2] for which

Vg = a , Vph = (a · k̂)k̂ . (7.13)

Notice that, depending on the dispersion relation, the group speed |Vg| can be less than
or greater than the phase speed, and if the homogeneous medium is anisotropic (e.g., for
a magnetized plasma), the group velocity can point in a different direction than the phase
velocity.

It should be obvious, physically, that the energy contained in a wave packet must remain
always with the packet and cannot move into the region outside the packet where the wave
amplitude vanishes. Correspondingly, the wave packet’s energy must propagate with the group
velocity Vg and not with the phase velocity Vph. Similarly, when one examines the wave
packet from a quantum mechanical viewpoint, its quanta must move with the group velocity
Vg. Since we have required that the wave packet have its wave vectors concentrated around
ko, the energy and momentum of each of the packet’s quanta are given by the standard
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quantum mechanical relations

E = !Ω(ko) and p = !ko . (7.14)

****************************

EXERCISES

Exercise 7.1 Practice: Group and Phase Velocities

Derive the group and phase velocities (7.10)–(7.13) from the dispersion relations (7.4)–
(7.7).

Exercise 7.2 Example: Gaussian Wave-Packet and its Spreading

Consider a one-dimensional wave packet, ψ(x, t) =
∫
A(k)eiα(k)ei(kx−ωt)dk with disper-

sion relation ω = Ω(k). For concreteness, let A(k) be a narrow Gaussian peaked around
ko: A ∝ exp[−κ2/2(∆k)2], where κ = k − ko.

(a) Expand α as α(k) = αo − xoκ with xo a constant, and assume for simplicity that
higher order terms are negligible. Similarly expand ω ≡ Ω(k) to quadratic order,
and explain why the coefficients are related to the group velocity Vg at k = ko by
Ω = ωo + Vgκ + (dVg/dk)κ2/2.

(b) Show that the wave packet is given by

ψ ∝ exp[i(αo +kox−ωot)]

∫ +∞

−∞
exp[iκ(x−xo−Vgt)] exp

[
−κ2

2

(
1

(∆k)2
+ i

dVg

dk
t

)]
dκ .

(7.15a)
The term in front of the integral describes the phase evolution of the waves inside the
packet; cf. Fig. 7.2.

(c) Evaluate the integral analytically (with the help of Mathematica or Maple, if you wish).
Show, from your answer, that the modulus of ψ is given by

|ψ| ∝ exp

[
−(x − xo − Vgt)2

2L2

]
, where L =

1

2∆k

√

1 +

(
dVg

dk
∆k t

)2

(7.15b)

is the packet’s half width.

(d) Discuss the relationship of this result, at time t = 0, to the uncertainty principle for
the localization of the packet’s quanta.

(e) Equation (7.15b) shows that the wave packet spreads due to its containing a range of
group velocities. How long does it take for the packet to enlarge by a factor 2? For
what initial widths can a water wave on the ocean spread by less than a factor 2 while
traveling from Hawaii to California?

****************************
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7.3 Waves in an Inhomogeneous, Time-Varying Medium:
The Eikonal Approximation and Geometric Optics

Suppose that the medium in which the waves propagate is spatially inhomogeneous and
varies with time. If the lengthscale L and timescale T for substantial variations are long
compared to the waves’ reduced wavelength and period,

L # λ̄ = 1/k , T # 1/ω , (7.16)

then the waves can be regarded locally as planar and monochromatic. The medium’s inho-
mogeneities and time variations may produce variations in the wave vector k and frequency
ω, but those variations should be substantial only on scales ! L # 1/k and ! T # 1/ω.
This intuitively obvious fact can be proved rigorously using a two-lengthscale expansion, i.e.
an expansion of the wave equation in powers of λ̄/L = 1/kL and 1/ωT . Such an expansion,
in this context of wave propagation, is called the eikonal approximation 2 or geometric optics
approximation. When the waves are those of elementary quantum mechanics, it is called the
WKB approximation. The eikonal approximation converts the laws of wave propagation into
a remarkably simple form in which the waves’ amplitude is transported along trajectories
in spacetime called rays. In the language of quantum mechanics, these rays are the world
lines of the wave’s quanta (photons for light, phonons for sound, plasmons for Alfvén waves,
gravitons for gravitational waves), and the law by which the wave amplitude is transported
along the rays is one which conserves quanta. These ray-based propagation laws are called
the laws of geometric optics.

In this section we shall develop and study the eikonal approximation and its resulting
laws of geometric optics. We shall begin in Sec. 7.3.1 with a full development of the eikonal
approximation and its geometric-optics consequences for the special dispersion-free case of
light or sound waves in a weakly inhomogeneous and time varying medium, and in Sec.
7.3.3 we shall extend our analysis to cover all other types of waves. In Sec. 7.3.4 and a
number of exercises we shall explore examples of geometric-optics waves, and in Sec. 7.3.5
we shall discuss conditions under which the eikonal approximation breaks down, and some
non-geometric-optics phenomena that result from the breakdown. Finally, in Sec. 7.3.6 we
shall return to nondispersive light and sound waves, and deduce Fermat’s Principle and
explore some of its consequences.

7.3.1 Geometric Optics for Light and Sound Waves

Light in an inhomogeneous, time-varying dielectric medium, and sound waves in an inhomo-
geneous, time-varying fluid or isotropic solid, obey the scalar wave equation3

∂

∂t

(
W

∂ψ

∂t

)
− ∇ · (WC2∇ψ) = 0 . (7.17)

2After the Greek word εικων meaning image.
3As we shall see in Chap. 26 and in Eq. (6.67), this wave equation and its consequences, explored below,

also apply to gravitational waves propagating through a weak (Newtonian) gravitational field.
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Here ψ(x, t) is the wave field (e.g., for linearly polarized light, the nonzero component of
the vector potential, and for sound waves, the fluid displacement in the direction of wave
propagation) and W (x, t) and C(x, t) are functions that describe properties of the medium
through which the waves propagate. As we shall see, C is the waves’ propagation speed,
and W has no influence on the dispersion relation or on the geometric-optics rays, but
does influence the law of transport for the waves’ amplitude. Associated with the wave
equation (7.17) are an energy density U(x, t) and energy flux F(x, t) given by (up to some
multiplicative constant)

U = W

[
1

2
ψ̇2 +

1

2
C2(∇ψ)2

]
, F = −WC2ψ̇∇ψ . (7.18)

see Ex. 7.10. Here and below the dot denotes a time derivative, ψ̇ ≡ ψ,t ≡ ∂ψ/∂t. From
the standard expressions for energy density we deduce that, if ψ is the fluid displacement in
a sound wave, then W must be the mass density ρ; and if ψ is the vector potential for an
electromagnetic wave, then W must be the electrical permitivity ε (in SI units). We shall
call W the “weighting function” in the wave equation. It is straightforward to verify that
the scalar wave equation (7.17) guarantees that the u and F of Eq. (7.18) satisfy the law
of energy conservation

∂U

∂t
+ ∇ · F = 0 . (7.19)

This can also be deduced from the theory of adiabatic invariants; see Ex. 7.10.
We now specialize to a weakly inhomogeneous and slowly time-varying medium and to

nearly plane waves, and we seek a solution of the wave equation (7.17) that locally has
approximately the plane-wave form ψ ' Aeik·x−ωt. Motivated by this plane-wave form, (i)
we express the waves as the product of a real amplitude A(x, t) that varies slowly on the
length and time scales L and T , and the exponential of a complex phase ϕ(x, t) that varies
rapidly on the timescale 1/ω and lengthscale λ̄:

ψ(x, t) = A(x, t)eiϕ(x,t) ; (7.20)

and (ii) we define the wave vector (field) and angular frequency (field) by

k(x, t) ≡ ∇ϕ , ω(x, t) ≡ −∂ϕ/∂t . (7.21)

In addition to our two-lengthscale requirement L # 1/k and T # 1/ω, we also require
that A, k and ω vary slowly, i.e., vary on lengthscales R and timescales T ′ long compared
to λ̄ = 1/k and 1/ω. This requirement guarantees that the waves are locally planar (ϕ '
k · x − ωt + constant).

We now insert the Eikonal-approximated wave field (7.20) into the wave equation (7.17),
perform the differentiations with the aid of Eqs. (7.21), and collect terms in a manner dictated
by a two-lengthscale expansion (see Box 7.2):

0 =
∂

∂t

(
W

∂ψ

∂t

)
− ∇ · (WC2∇ψ)

=
(
−ω2 + C2k2

)
Wψ +

[
−2(ωȦ + C2kjA,j)W − (Wω),tA − (WC2kj),jA

]
ψ + . . . .(7.22)
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Box 7.2
Bookkeeping Parameter in Two-Lengthscale Expansions

When developing a two-lengthscale expansion, it is sometimes helpful to introduce a
“bookkeeping” parameter σ and rewrite the anszatz (7.20) in a fleshed-out form

ψ = (A + σB + . . .)eiϕ/σ .. (1)

The numerical value of σ is unity so it can be dropped when the analysis is finished. We
use σ to tell us how various terms scale when λ̄ is reduced at fixed L and R. A has no
attached σ and so scales as λ̄0, B is multiplied by σ and so scales proportional to λ̄, and
ϕ is multiplied by σ−1 and so scales as λ̄−1. When one uses these σ’s in the evaluation
of the wave equation, the first term on the second line of Eq. (7.22) gets multipled by
σ−2, the second term by σ−1, and the omitted terms by σ0. These factors of σ help us in
quickly grouping together all terms that scale in a similar manner, and identifying which
of the groupings is leading order, and which subleading, in the two-lengthscale expansion.
The omitted σ0 terms are the first ones in which B appears; the produce a propagation
law for B, which can be regarded as a post-geometric-optics correction.

The first term on the second line, (−ω2 +C2k2)Wψ scales as λ̄−2 when we make the reduced
wavelength λ̄ shorter and shorter while holding the macroscopic lengthscales L and R fixed;
the second term (in square brackets) scales as λ̄−1; and the omitted terms scale as λ̄0. This
is what we mean by “collecting terms in a manner dictated by a two-lengthscale expansion”.
Because of their different scaling, the first and second terms must vanish separately.

The vanishing of the first term in the eikonal-approximated wave equation (7.22) says
that the waves’ frequency field ω(x, t) ≡ −∂ϕ/∂t and wave-vector field k ≡ ∇ϕ satisfy the
dispersion relation

ω = Ω(k,x, t) ≡ C(x, t)k , (7.23)

where (as throughout this chapter) k ≡ |k|. Notice that this dispersion relation is identical
to that for a precisely plane wave in a homogeneous medium, Eq. (7.4), except that the
propagation speed C is now a slowly varying function of space and time.4 Notice also, as
promised, that the dispersion relation is independent of the weighting function W in the
wave equation.

The vanishing of the second term in the eikonal-approximated wave equation (7.22) says
that the waves’ real amplitude A is transported with the group velocity Vg = Ck̂ in the
following manner:

dA

dt
≡

(
∂

∂t
+ Vg · ∇

)
A = − 1

2Wω

[
∂(Wω)

∂t
+ ∇ · (WC2k)

]
A . (7.24)

4This will always be so. One can always deduce the geometric-optics dispersion relation by (i) considering
a precisely plane, monochromatic wave in a precisely homogeneous, time- independent medium, obtaining
ω = Ω(k) in a functional form that involves the medium’s properties (e.g. density); and then (ii) allowing
the properties to be slowly varying functions of x and t [in this case, C(x, t)]. The resulting dispersion
relation then acquires its x and t dependence from the properties of the medium. See Sec. 7.3.3.
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This propagation law, by contrast with the dispersion relation, does depend on the weighting
function W . We shall return to this propagation law shortly and shall understand more
deeply its dependence on W , but first we must investigate in detail the directions in spacetime
along which A is transported.

The time derivative d/dt appearing in the propagation law (7.24) is similar to the deriva-
tive with respect to proper time along a world line in special relativity, d/dτ = u0∂/∂t+u·∇
(with uα the world line’s 4-velocity). This analogy tells us that the waves’ amplitude A is be-
ing propagated along some sort of world lines. Those world lines (called the waves’ rays), in
fact, are governed by Hamilton’s equations of particle mechanics with the dispersion relation
Ω(x, t,k) playing the role of the Hamiltonian and k playing the role of momentum:

dxj

dt
=

(
∂Ω

∂kj

)

x,t

≡ Vg j , (7.25a)

dkj

dt
= −

(
∂Ω

∂xj

)

k,t

, (7.25b)

dω

dt
=

(
∂Ω

∂t

)

x,k

. (7.25c)

The first of these Hamilton equations is just our definition of the group velocity, with which
[according to Eq. (7.24)] the amplitude is transported. The second tells us how the wave
vector k changes along a ray, and together with our knowledge of C(x, t), it tells us how the
group velocity Vg = Ck̂ changes along a ray, and thence tells us the ray itself. The third
tells us how the waves’ frequency changes along a ray.

To deduce the second and third of these Hamilton equations, we begin by inserting the
definitions ω = −∂ϕ/∂t and k = ∇ϕ into the dispersion relation ω = Ω(x, t;k) for an
arbitrary wave, thereby obtaining

∂ϕ

∂t
+ Ω(x, t; ∇ϕ) = 0 . (7.26a)

This equation is known in optics as the eikonal equation. It is formally the same as the
Hamilton-Jacobi equation of classical mechanics5 if we identify Ω with the Hamiltonian and
ϕ with Hamilton’s principal function; cf. Ex. 7.9. This suggests that we follow the same
procedure as is used to derive Hamilton’s equations of motion. We take the gradient of
Eq. (7.26a) to obtain

∂2ϕ

∂t∂xj
+

∂Ω

∂kl

∂2ϕ

∂xl∂xj
+

∂Ω

∂xj
= 0 , (7.26b)

where the partial derivatives of Ω are with respect to its arguments (x, t;k); we then use
∂ϕ/∂xj = kj and ∂Ω/∂kl = Vg l to write this as dkj/dt = −∂Ω/∂xj . This is the second
of Hamilton’s equations (7.25b), and it tells us how the wave vector changes along a ray.

5See, for example, Goldstein (1980).



11

The third Hamilton equation, dω/dt = ∂Ω/∂t [Eq. (7.25c)] is obtained by taking the time
derivative of the eikonal equation (7.26a).

Not only is the waves’ amplitude A propagated along the rays, so is the phase:

dϕ

dt
=

∂ϕ

∂t
+ Vg · ∇ϕ = −ω + Vg · k . (7.27)

Since our sound or light waves in an inhomogeneous medium have ω = Ck and Vg = Ck̂,
this vanishes, so for the special case of light and sound waves the phase is constant along
each ray

dϕ/dt = 0 (7.28)

7.3.2 Connection of Geometric Optics to Quantum Theory

Although the waves ψ = Aeiϕ are classical and our analysis is classical, their propagation laws
in the eikonal approximation can be described most nicely in quantum mechanical language.6

Quantum mechanics insists that associated with any wave, in the geometric optics regime,
there are quanta: the wave’s quantum mechanical particles. If the wave is electromagnetic,
the quanta are photons; if it is gravitational, they are gravitons; if it is sound, they are
phonons; if it is a plasma wave (e.g. Alfvén), they are plasmons. When we multiply the
wave’s k and ω by Planck’s constant, we obtain the particles’ momentum and energy,

p = !k , E = !ω . (7.29)

Although the originators of the 19th century theory of classical waves were unaware of
these quanta, once quantum mechanics had been formulated the quanta became a powerful
conceptual tool for thinking about classical waves:

In particular, we can regard the rays as the world lines of the quanta, and by multiplying
the dispersion relation by ! we can obtain the Hamiltonian for the quanta’s world lines

H(x, t;p) = !Ω(x, t;k = p/!) . (7.30)

Hamilton’s equations (7.25) for the rays then become, immediately, Hamilton’s equations
for the quanta, dxj/dt = ∂H/∂pj , dpj/dt = −∂H/∂xj , dE/dt = ∂H/∂t.

Return, now, to the propagation law (7.24) for the waves’ amplitude. It is enlightening
to explore the consequences of this propagation law for the waves’ energy. By inserting the
ansatz ψ = ((Aeiϕ) = A cos(ϕ) into Eqs. (7.18) for the energy density U and energy flux F,

and averaging over a wavelength and wave period so cos2 ϕ = sin2 ϕ = 1/2, we find that

U =
1

2
WC2k2A2 =

1

2
Wω2A2 , F = uCk̂ = uVg . (7.31)

Inserting these into the energy conservation expression and using the propagation law (7.24)
for A, we obtain

∂U

∂t
+ ∇ · F = U

∂ ln C

∂t
. (7.32)

6This is intimately related to the fact that quantum mechanics underlies classical mechanics; the classical
world is an approximation to the quantum world.
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Thus, as the propagation speed C slowly changes at fixed location in space due to a slow
change in the medium’s properties, the medium slowly pumps energy into the waves or re-
moves it from them.

This slow energy change can be understood more deeply using quantum concepts. The
number density and number flux of quanta are

n =
U

!ω , S =
F

!ω = nVg . (7.33a)

By combining these with the the energy (non)conservation equation (7.32), we obtain

∂n

∂t
+ ∇ · S = n

[
∂ lnC

∂t
− d lnω

dt

]
.

The third Hamilton equation tells us that dω/dt = ∂Ω/∂t = ∂(Ck)/∂t = k∂C/∂t, whence
d lnω/dt = ∂ ln C/∂t, which, when inserted into the above equation, implies that the quanta
are conserved:

∂n

∂t
+ ∇ · S = 0 . (7.33b)

Since F = nVg and d/dt = ∂/∂t + Vg · ∇, we can rewrite this conservation law as a
propagation law for the number density of quanta:

dn

dt
+ n∇ · Vg = 0 . (7.33c)

The propagation law for the waves’ amplitude, Eq. (7.24), can now be understood much
more deeply: The amplitude propagation law is nothing but the law of conservation of quanta
in a slowly varying medium, rewritten in terms of the amplitude. This is true quite generally,
for any kind of wave (Sec. 7.3.3); and the quickest route to the amplitude propagation law
is often to express the wave’s energy density U in terms of the amplitude and then invoke
conservation of quanta, Eqs. (7.33).

In Ex. 7.3 we shall show that the conservation law (7.33c) is equivalent to

d(nCA)

dt
= 0 , i.e., nCA is a constant along each ray. (7.34a)

Here A is the cross sectional area of a bundle of rays surrounding the ray along which the
wave is propagating. Equivalently, by virtue of Eqs. (7.33a) and (7.31) for the number
density of quanta in terms of the wave amplitude A,

d

dt
A
√

CWωA = 0 i.e., nCWωA is a constant along each ray. (7.34b)
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7.3.3 Geometric Optics for a General Wave

With the simple case of non-dispersive light and sound waves (previous two subsections) as
our model, we now study an arbitrary kind of wave in a weakly inhomogeneous and slowly
time varying medium — e.g. any of the examples in Sec. 7.2.1: deep water waves, flexural
waves on a stiff beam, or Alfv én waves. Whatever may be the wave, we seek a solution to
its wave equation using the eikonal approximation ψ = Aeiϕ with slowly varying amplitude
A and rapidly varying phase ϕ. Depending on the nature of the wave, ψ and A might be a
scalar, a vector, or a tensor.

When we insert the ansatz ψ = Aeiϕ into the wave equation and collect terms in the
manner dictated by our two lengthscale expansion [as in Eq. (7.22) and Box 7.2], the leading
order term will arise from letting every temporal or spatial derivative act on the eiϕ. This is
precisely where the derivatives would operate in the case of a plane wave in a homogeneous
medium, and here as there the result of each differentiation is ∂eiϕ/∂t = −ωeiϕ or ∂eiϕ/∂xj =
kjeiϕ. Correspondingly, the leading order terms in the wave equation here will be identical
to those in the homogeneous plane wave case: they will be the dispersion relation

[−ω2 + Ω2(x, t;k)] × (something)Aeiϕ = 0 , (7.35)

with the spatial and temporal dependence in Ω2 entering through the medium’s properties.
This guarantees that the dispersion relation can be obtained by analyzing a plane, monochro-
matic wave in a homogeneous, time-independent medium and then letting the medium’s prop-
erties, in the dispersion relation, vary slowly with x and t.

Each next-order (“subleading”) term in the wave equation will entail just one of the
wave operator’s derivatives acting on a slowly-varying quantity (A or a medium property or
ω or k), and all the other derivatives acting on eiϕ. The subleading terms that interest us,
for the moment, are those where the one derivative acts on A thereby propagating it. The
subleading terms, therefore, can be deduced from the leading-order terms (7.35) by replacing
just one ωAeiϕ = −A(eiϕ),t by −A,teiϕ, and replacing just one kjAeiϕ = A(eiϕ),j by A,jeiϕ.
A little thought then reveals that the equation for the vanishing of the subleading terms
must take the form [deducible from the leading terms (7.35)]

−2iω
∂A

∂t
− 2iΩ(k,x, t)

∂Ω(k,x, t)

∂kj

∂A

∂xj
= terms proportional to A . (7.36)

Using the dispersion relation ω = Ω(x, t;k) and the group velocity (first Hamilton equation)
∂Ω/∂kj = Vg j, we bring this into the “propagate A along a ray” form

dA

dt
≡ ∂A

∂t
+ Vg · ∇A = terms proportional to A . (7.37)

For our general wave, as for the dispersionless sound or light wave of the previous section,
the argument embodied in Eqs. (7.26) shows that the rays are determined by Hamilton’s
equations (7.25), but using the general wave’s dispersion relation Ω(k,x, t) rather than the
light-and-sound dispersion relation Ω = Ck. These Hamilton equations include propagation
laws for ω = −∂ϕ/∂t and kj = ∂ϕ/∂xj , from which we can deduce the propagation law
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(7.27) for ϕ along the rays. For most waves, by contrast with light and sound, ϕ will not be
constant along a ray.

For our general wave, as for light and sound, the Hamilton equations for the rays can
be reinterpreted as Hamilton’s equations for the world lines of the waves’ quanta [Eq. (7.30)
and associated discussion]. And for our general wave as for light and sound, the medium’s
slow variations are incapable of creating or destroying wave quanta. [This is a general fea-
ture of quantum theory; creation and destruction of quanta require imposed oscillations at
the high frequency and short wavelength of the waves themselves, or at some multiple or
submultiple of them (in the case of nonlinear creation and annihilation processes; Chap. 9).]
Correspondingly, if one knows the relationship between the waves’ energy density U and
their amplitude A, and thence the relationship between the waves’ quantum number density
n = U/!ω and A, then from the quantum conservation law ∂n/∂t + ∇ · (nVg) = 0 one can
deduce the propagation law for A — and the result must be the same propagation law as one
obtains from the subleading terms in the eikonal approximation.

7.3.4 Examples of Propagation Laws

Spherical scalar waves.
As a simple example of these geometric-optics propagation laws, consider a scalar wave

propagating radially outward from the origin at the speed of light in flat spacetime. Setting
the speed of light to unity, the dispersion relation is Eq. (7.4) with C = 1: Ω = k. It is
straightforward (Ex 7.4) to integrate Hamilton’s equations and learn that the rays have the
simple form {r = t + constant, θ = constant, φ = constant, k = ωer} in spherical polar
coordinates, with er the unit radial vector. Since the dispersion relation is the same as for
light and sound, we know that the waves’ phase ϕ must be conserved along a ray, i.e. it must
be a function of t − r, θ,φ. In order that the waves propagate radially, it is essential that
k = ∇ϕ point very nearly radially; this implies that ϕ must be a rapidly varying function
of t − r and a slowly varying function of (θ,φ). The law of conservation of quanta in this
case reduces to the propagation law d(rA)/dt = 0 (Ex. 7.4) so rA is also a constant along
the ray; we shall call it B. Putting this all together, we conclude that

ψ =
B(t − r, θ,φ)

r
eiϕ(t−r,θ,φ) , (7.38)

where the phase is rapidly varying in t−r and slowly varying in the angles, and the amplitude
is slowly varying in t − r and the angles.

Flexural waves.
As another example of the geometric-optics propagation laws, consider flexural waves on

a spacecraft’s tapering antenna. The dispersion relation is Ω = k2
√

D/Λ [Eq. (7.6)] with
D/Λ ∝ d2, where d is the antenna diameter (cf. Chaps. 10 and 11). Since Ω is independent
of t, as the waves propagate from the spacecraft to the antenna’s tip, their frequency ω is
conserved [Eq. (7.25c)], which implies by the dispersion relation that k = (D/Λ)−1/4ω1/2 ∝
d−1/2, whence the wavelength decreases as d1/2. The group velocity is Vg = 2(D/Λ)1/4ω1/2 ∝
d1/2. Since the energy per quantum !ω is constant, particle conservation implies that the
waves’ energy must be conserved, which in this one-dimensional problem, means that the
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Fig. 7.3: (a) The rays and the surfaces of constant phase ϕ at a fixed time for light passing through
a converging lens [dispersion relation Ω = ck/n(x)]. In this case the rays (which always point along
Vg) are parallel to the wave vector k = ∇ϕ and thus also parallel to the phase velocity Vph, and the
waves propagate along the rays with a speed Vg = Vph = c/n that is independent of wavelength.
(b) The rays and surfaces of constant phase for Alfvén waves in the magnetosphere of a planet
[dispersion relation Ω = a(x) · k]. In this case because Vg = a ≡ B/

√
4πρ, the rays are parallel

to the magnetic field lines and not parallel to the wave vector, and the waves propagate along the
field lines with speeds Vg = B/

√
4πρ that are independent of wavelength; cf. Fig. 7.2 (b). As a

consequence, if some electric discharge excites Alfvén waves on the planetary surface, then they will
be observable by a spacecraft when it passes magnetic field lines on which the discharge occurred. As
the waves propagate, because B and ρ are time independent and thence ∂Ω/∂t = 0, the frequency
and energy of each quantum is conserved, and conservation of quanta implies conservation of wave
energy. Because the Alfvén speed generally diminishes with distance from the planet, conservation
of wave energy typically requires the waves’ energy density and amplitude to increase as they climb
upward.

energy flux must be constant along the antenna. On physical grounds the constant energy
flux must be proportional to A2Vg, which means that the amplitude A must increase ∝ d−1/4

as the flexural waves approach the antenna’s end. A qualitatively similar phenomenon is
seen in the “cracking” of a bullwhip.

Light through lens, and Alfvén waves
Fig. 7.3 sketches two other examples: light propagating through a lens, and Alfvén waves

propagating in the magnetosphere of a planet. In Sec. 7.3.6 and the exercises we shall
explore a variety of other applications, but first we shall describe how the geometric-optics
propagation laws can fail (Sec. 7.3.5).
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7.3.5 Relation to Wave Packets; Breakdown of the Eikonal Ap-
proximation and Geometric Optics

The form ψ = Aeiϕ of the waves in the eikonal approximation is remarkably general. At
some initial moment of time, A and ϕ can have any form whatsoever, so long as the two-
lengthscale constraints are satisfied [A, ω ≡ −∂ϕ/∂t, k ≡ ∇ϕ, and dispersion relation
Ω(k;x, t) all vary on lengthscales long compared to λ̄ = 1/k and timescales long compared
to 1/ω]. For example, ψ could be as nearly planar as is allowed by the inhomogeneities of
the dispersion relation. At the other extreme, ψ could be a moderately narrow wave packet,
confined initially to a small region of space (though not too small; its size must be large
compared to its mean reduced wavelength). In either case, the evolution will be governed
by the above propagation laws.

Of course, the eikonal approximation is an approximation. Its propagation laws make
errors, though when the two-lengthscale constraints are well satisfied, the errors will be
small for sufficiently short propagation times. Wave packets provide an important example.
Dispersion (different group velocities for different wave vectors) causes wave packets to spread
(widen) as they propagate; see Ex. 7.2. This spreading is not included in the geometric optics
propagation laws; it is a fundamentally wave-based phenomenon and is lost when one goes to
the particle-motion regime. In the limit that the wave packet becomes very large compared
to its wavelength or that the packet propagates for only a short time, the spreading is small
(Ex. 7.2). This is the geometric-optics regime, and geometric optics ignores the spreading.

Many other wave phenomena are missed by geometric optics. Examples are diffraction
(Chap. 7), nonlinear wave-wave coupling (Chaps. 9, 15 and 22), and parametric amplification
of waves by rapid time variations of the medium (Chap. 9)—which shows up in quantum
mechanics as particle production (i.e., a breakdown of the law of conservation of quanta). In
Chap. 27, we shall study such particle production in inflationary models of the early universe.

7.3.6 Fermat’s Principle

The Hamilton equations of optics allow us to solve for the paths of rays in media that vary
both spatially and temporally. When the medium is time independent, the rays x(t) can be
computed from a variational principle named after Fermat. This Fermat’s principle is the
optical analogue of Maupertuis’ principle of least action in classical mechanics.7 In classical
mechanics, this principle states that, when a particle moves from one point to another
through a time-independent potential (so its energy, the Hamiltonian, is conserved), then
the path q(t) that it follows is one that extremizes the action

J =

∫
p · dq , (7.39)

(where q, p are the particle’s generalized coordinates and momentum), subject to the con-
straint that the paths have a fixed starting point, a fixed endpoint, and constant energy.
The proof, which can be found in any text on analytical dynamics, carries over directly to

7Goldstein (1980).
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optics when we replace the Hamiltonian by Ω, q by x, and p by k. The resulting Fermat
principle, stated with some care, has the following form:

Consider waves whose Hamiltonian Ω(k,x) is independent of time. Choose an initial
location xinitial and a final location xfinal in space, and ask what are the rays x(t) that connect
these two points. The rays (usually only one) are those paths that satisfy the variational
principle

δ

∫
k · dx = 0 . (7.40)

In this variational principle, k must be expressed in terms of the trial path x(t) using Hamil-
ton’s equation dxj/dt = −∂Ω/∂kj ; the rate that the trial path is traversed (i.e., the magnitude
of the group velocity) must be adjusted so as to keep Ω constant along the trial path (which
means that the total time taken to go from xinitial to xfinal can differ from one trial path to
another); and, of course, the trial paths must all begin at xinitial and end at xfinal.

Notice that, once a ray has been identified via this action principle, it has k = ∇ϕ, and
therefore the extremal value of the action

∫
k · dx along the ray is equal to the waves’ phase

difference ∆ϕ between xinitial and xfinal. Correspondingly, for any trial path we can think
of the action as a phase difference along that path and we can think of the action principle
as one of extremal phase difference ∆ϕ. This can be reexpressed in a form closely related
to Feynman’s path-integral formulation of quantum mechanics: We can regard all the trial
paths as being followed with equal probability; for each path we are to construct a probability
amplitude ei∆ϕ; and we must then add together these amplitudes. The contributions from
almost all neighboring paths will interfere destructively. The only exceptions are those paths
whose neighbors have the same values of ∆ϕ, to first order in the path difference. These are
the paths that extremize the action (7.40); i.e., they are the wave’s rays.

Specialization to Ω = C(x)k
Fermat’s principle takes on an especially simple form when not only is the Hamilto-

nian Ω(k,x) time independent, but it also has the simple dispersion-free form Ω = C(x)k
— a form valid for propagation of light through a time-independent dielectric, and sound
waves through a time-independent, inhomogeneous fluid, and electromagnetic or gravita-
tional waves through a time-independent, Newtonian gravitational field. In this case, the
Hamiltonian dictates that for each trial path, k is parallel to dx, and therefore k · dx = kds,
where s is distance along the path. Using the dispersion relation k = Ω/C and noting that
Hamilton’s equation dxj/dt = ∂Ω/∂kj implies ds/dt = C for the rate of traversal of the
trial path, we see that k · dx = kds = Ωdt. Since the trial paths are constrained to have Ω
constant, Fermat’s principle (7.40) becomes a principle of extremal time: The rays between
xinitial and xfinal are those paths along which

∫
dt =

∫
ds

C(x)
=

∫
n(x)

c
ds (7.41)

is extremal. In the last expression we have adopted the convention used for light in a dielectric
medium, that C(x) = c/n(x), where c is the speed of light in vacuum and n is the medium’s
index of refraction. Since c is constant, the rays are paths of extremal optical path length∫

n(x)ds.
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Fig. 7.4: Illustration of Snell’s law of refraction at the interface between two media where the
refractive indices are n1, n2. As the wavefronts must be continuous across the interface, and the
wavelengths are inversely proportional to the refractive index, we have from simple trigonometry
that n1 sin θ1 = n2 sin θ2.

We can use Fermat’s principle to demonstrate that, if the medium contains no opaque
objects, then there will always be at least one ray connecting any two points. This is because
there is a lower bound on the optical path between any two points given by nminL, where
nmin is the lowest value of the refractive index anywhere in the medium and L is the distance
between the two points. This means that for some path the optical path length must be a
minimum, and that path is then a ray connecting the two points.

From the principle of extremal time, we can derive the Euler-Lagrange differential equa-
tion for the ray. For ease of derivation, we write the action principle in the form

δ

∫
n(x)

√
dx

ds
· dx

ds
ds, (7.42)

where the quantity in the square root is identically one. Performing a variation in the usual
manner then gives

d

ds

(
n
dx

ds

)
= ∇n , i.e.

d

ds

(
1

C

dx

ds

)
= ∇

(
1

C

)
. (7.43)

This is equivalent to Hamilton’s equations for the ray, as one can readily verify using the
Hamiltonian Ω = kn/c (Ex. 7.6).

Equation (7.43) is a second-order differential equation requiring two boundary conditions
to define a solution. We can either choose these to be the location of the start of the ray and
its starting direction, or the start and end of the ray. A simple case arises when the medium is
stratified, i.e. when n = n(z), where (x, y, z) are Cartesian coordinates. Projecting Eq. (7.43)
perpendicular to ez, we discover that ndy/ds and ndx/ds are constant, which implies

n sin θ = constant (7.44)
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where θ is the angle between the ray and ez. This is Snell’s law of refraction. Snell’s law is
just a mathematical statement that the rays are normal to surfaces (wavefronts) on which
the eikonal ϕ is constant (cf. Fig. 7.4).

****************************

EXERCISES

Exercise 7.3 ** Derivation and Example: Amplitude Propagation for Dispersionless Waves
Expressed as Constancy of Something Along a Ray

(a) In connection with Eq. (7.33c), explain why ∇ · Vg = d lnV/dt, where V is the tiny
volume occupied by a collection of the wave’s quanta.

(b) Choose for the collection of quanta those that occupy a cross sectional area A orthog-
onal to a chosen ray, and a longitudinal length ∆s along the ray, so V = A∆s. Show
that d ln∆s/dt = d lnC/dt and correspondingly, d lnV/dt = d ln(CA)/dt.

(c) Thence, show that the conservation law (7.33c) is equivalent to the constancy of nCA
along a ray, Eq. (7.34a).

(d) From this, derive the constancy of A
√

CWωA along a ray (where A is the wave’s
amplitude), Eq. (7.34b).

Exercise 7.4 Derivation and Practice: Quasi-Spherical Solution to Vacuum Scalar Wave
Equation

Derive the quasi-spherical solution (7.38) of the vacuum scalar wave equation −∂2ψ/∂t2+
∇2ψ = 0 from the geometric optics laws by the procedure sketched in the text.

Exercise 7.5 Problem: Gravitational Waves From a Spinning, Deformed Neutron Star
(Pulsar)

Gravitational waves propagating through the external, nearly Newtonian gravitational
field Φ = −GM/r of their source, obey the wave equation (7.17) with W = n and
C = c/n, where c is the speed of light in vacuum and n = 1− 2Φ/c2 = 1 +2GM/c2r is
an effective index of refraction; see Eq. (7.68) below. Here M is the source’s mass, and
this weak-gravity, index-of-refraction description is valid only for radii r # GM/c2 and
only to first order in GM/c2r. The wave field ψ is a dimensionless “strain (distortion)
of space” h+(x, t) which we shall study in Chap. 26.

For a spinning, deformed neutron star (a pulsar) residing at the origin of spherical
polar coordinates (r, θ,φ) with its spin along the polar axis, a particular geometric-
optics solution of this wave equation has amplitude and phase with the following forms:

A =
Iω2

oτo(1 + cos2 θ)

r(t− r∗)
, ϕ = −2ωo

√
τo(t − r∗) , where r∗ ≡ r+2M ln

( r

2M
− 1

)
.

(7.45)
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Here and throughout this problem, for simplicity of notation, we adopt units in which
G = c = 1 [cf. Eq. (24.85) and Table 24.1)]. The quantity I is a component of the
star’s mass quadrupole moment that describes the deformation of the star away from
symmetry around its spin axis, ωo is a constant angular frequency in the range 10 to
104s−1, and τo is the star’s age (thousands to millions of years for observed pulsars).
We restrict attention to times near our present era, t ∼ τo.

(a) What are ω(x, t) and k(x, t) for these gravitational waves? Show that at the star’s
location, r ' r∗ = 0, ω = ωo (so ωo is the waves’ angular frequency today). It turns
out that this is twice the angular velocity of rotation of the star, and ω dies out as√
τo/t due to loss of spin energy to electromagnetic and gravitational waves.

(b) Verify that these ω and k satisfy the dispersion relation (7.4).

(c) For this simple dispersion relation, there is no dispersion; the group and phase velocities
are the same. Explain why this means that the phase must be constant along the rays,
dϕ/dt = 0. From this fact, deduce that the rays are given by {t− r∗, θ,φ} = constant.
Explain why this means means that t − r∗ can be regarded as the retarded time for
these waves. Note that the waves’ amplitude A dies out as τo/(t− r∗). This is because
the amplitude is proportional to the second time derivative of the quadrupole moment
of the spinning star, which means proportional to ω2; see Eq. (26.111).

(d) Verify that the waves’ amplitude A satisfies the geometric optics propagation law for
amplitude.

Exercise 7.6 Derivation: Hamilton’s Equations for Dispersionless Waves

Show that Hamilton’s equations for the standard dispersionless dispersion relation (7.4)
imply the same ray equation (7.43) as we derived using Fermat’s principle.

Exercise 7.7 Problem: Propagation of Sound Waves in a Wind

Consider sound waves propagating in an isothermal atmosphere with constant sound
speed c in which there is a horizontal wind shear. Let the (horizontal) wind velocity
u = uxex increase linearly with height z above the ground according to ux = Sz, where
S is the constant shearing rate. Just consider rays in the x − z plane.

(a) Give an expression for the dispersion relation ω = Ω(x, t;k). [Hint: in the local rest
frame of the air, Ω should have its standard sound-wave form.]

(b) Show that kx is constant along a ray path and then demonstrate that sound waves will
not propagate when ∣∣∣∣

ω

kx
− ux(z)

∣∣∣∣ < c . (7.46)
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(c) Consider sound rays generated on the ground which make an angle θ to the horizontal
initially. Derive the equations describing the rays and use them to sketch the rays
distinguishing values of θ both less than and greater than π/2. (You might like to
perform this exercise numerically.)

Exercise 7.8 Example: Self-Focusing Optical Fibers

Optical fibers in which the refractive index varies with radius are commonly used to
transport optical signals. Provided that the diameter of the fiber is many wavelengths,
we can use geometric optics. Let the refractive index be

n = n0(1 − α2r2)1/2 (7.47a)

where n0 and α are constants and r is radial distance from the fiber’s axis.

(a) Consider a ray that leaves the axis of the fiber along a direction that makes a small
angle θ to the axis. Solve the ray transport equation (7.43) to show that the radius of
the ray is given by

r =
sin θ

α

∣∣∣sin
( αz

cos θ

)∣∣∣ (7.47b)

where z measures distance along the fiber.

(b) Next consider the propagation time T for a light pulse propagating along a long length
L of fiber. Show that

T =
n0L

c
[1 + O(θ4)] (7.47c)

and comment on the implications of this result for the use of fiber optics for commu-
nication.

Exercise 7.9 *** Example: Geometric Optics for the Schrödinger Equation
Consider the non-relativistic Schrödinger equation for a particle moving in a time-dependent,
3-dimensional potential well.

−!
i

∂ψ

∂t
=

[
1

2m

(
!
i
∇

)2

+ V (x, t)

]
ψ . (7.48)

(a) Seek a geometric optics solution to this equation with the form ψ = AeiS/!, where
A and V are assumed to vary on a lengthscale L and timescale T long compared to
those, 1/k and 1/ω, on which S varies. Show that the leading order terms in the two-
lengthscale expansion of the Schrödinger equation give the Hamilton-Jacobi equation

∂S

∂t
+

1

2m
(∇S)2 + V = 0 . (7.49a)

Our notation ϕ ≡ S/! for the phase ϕ of the wave function ψ is motivated by the fact
that the geometric-optics limit of quantum mechanics is classical mechanics, and the
function S = !ϕ becomes, in that limit, “Hamilton’s principal function,” which obeys
the Hamilton-Jacobi equation.8

8See, e.g., Chap. 10 of Goldstein (1980).
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(b) From this equation derive the equation of motion for the rays (which of course is
identical to the equation of motion for a wave packet and therefore is also the equation
of motion for a classical particle):

dx

dt
=

p

m
,

dp

dt
= −∇V , (7.49b)

where p = ∇S.

(c) Derive the propagation equation for the wave amplitude A and show that it implies

d|A|2

dt
+ |A|2∇ · p

m
= 0 (7.49c)

Interpret this equation quantum mechanically.

Exercise 7.10 *** Example: Energy Density and Flux, and Adiabatic Invariant, for a Dis-
persionless Wave

(a) Show that the standard dispersionless scalar wave equation (7.17) follows from the
variational principle

δ

∫
Ldtd3x = 0 , (7.50a)

where L is the Lagrangian density

L = W

[
1

2

(
∂ψ

∂t

)2

− 1

2
C2 (∇ψ)2

]

. (7.50b)

(not to be confused with the lengthscale L of inhomogeneities in the medium).

(b) For any scalar-field Lagrangian L(ψ̇, ∇ψ,x, t), there is a canonical, relativistic proce-
dure for constructing a stress-energy tensor:

Tµ
ν = − ∂L

∂ψ,ν
ψ,µ + δµ

νL . (7.50c)

Show that, if L has no explicit time dependence (e.g., for the Lagrangian (7.50b)
if C = C(x) and W = W (x) do not depend on time t), then the field’s energy is
conserved, T 0ν

,ν = 0. A similar calculation shows that if the Lagrangian has no
explicit space dependence (e.g., if C and W are independent of x), then the field’s
momentum is conserved, T jν

,ν = 0. Here and throughout this chapter we use Cartesian
spatial coordinates, so spatial partial derivatives (denoted by commas) are the same
as covariant derivatives.

(c) Show that expression (7.50c) for the field’s energy density U = T 00 = −T0
0 and its

energy flux Fi = T 0i = −T0
0 agree with Eqs. (7.18).
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(d) Now, regard the wave amplitude ψ as a generalized coordinate. Use the Lagrangian
L =

∫
Ld3x to define a momentum Π conjugate to this ψ, and then compute a wave

action

J ≡
∫ 2π/ω

0

∫
Π(∂ψ/∂t)d3x dt , (7.50d)

which is the continuum analog of Eq. (7.39). Note that the temporal integral is over
one wave period. Show that this J is proportional to the wave energy divided by the
frequency and thence to the number of quanta in the wave. [Comment: It is shown
in standard texts on classical mechanics that, for approximately periodic oscillations,
the particle action (7.39), with the integral limited to one period of oscillation of q,
is an adiabatic invariant. By the extension of that proof to continuum physics, the
wave action (7.50d) is also an adiabatic invariant. This means that the wave action
(and thence also the number of quanta in the waves) is conserved when the medium
[in our case the index of refraction n(x)] changes very slowly in time—a result asserted
in the text, and a result that also follows from quantum mechanics. We shall study
the particle version of this adiabatic invariant, Eq. (7.39) in detail when we analyze
charged particle motion in a magnetic field in Chap. 19.]

****************************

7.4 Paraxial Optics

It is quite common in optics to be concerned with a bundle of rays that are almost parallel.
This implies that the angle that the rays make with some reference ray can be treated as
small—an approximation that underlies the first order theory of simple optical instruments
like the telescope and the microscope. This approximation is called paraxial optics, and it
permits one to linearize the geometric optics equations and use matrix methods to trace
their rays.

We shall develop the paraxial optics formalism for waves whose dispersion relation has
the simple, time-independent, nondispersive form Ω = kc/n(x). Recall that this applies
to light in a dielectric medium — the usual application. As we shall see below, it also
applies to charged particles in a storage ring (Sec. 7.4.2) and to light being lensed by a weak
gravitational field (Sec. 7.5).

We start by linearizing the ray propagation equation (7.43). Let z measure distance along
a reference ray. Let the two dimensional vector x(z) be the transverse displacement of some
other ray from this reference ray, and denote by (x, y) = (x1, x2) the Cartesian components
of x, with the transverse Cartesian basis vectors ex and ey transported parallely along the
reference ray. Under paraxial conditions, |x| is small compared to the z-lengthscales of the
propagation. Now, let us Taylor expand the refractive index, n(x, z).

n(x, z) = n(0, z) + xin,i(0, z) +
1

2
xixjn,ij(0, z) + . . . , (7.51a)



24

where the subscript commas denote partial derivatives with respect to the transverse coor-
dinates, n,i ≡ ∂n/∂xi. The linearized form of Eq. (7.43) is then given by

d

dz

(
n(0, z)

dxi

dz

)
= n,i(0, z) + xjn,ij(0, z) . (7.51b)

It is helpful to regard z as “time” and think of Eq. (7.51b) as an equation for the two
dimensional simple harmonic motion of a particle (the ray) in a quadratic potential well.

We are usually concerned with aligned optical systems in which there is a particular choice
of reference ray called the optic axis, for which the term n,i(0, z) on the right hand side of
Eq. (7.51b) vanishes. If we choose the reference ray to be the optic axis, then Eq. (7.51b) is
a linear, homogeneous, second-order equation for x(z),

(d/dz)(ndxi/dz) = xjn,ij (7.51c)

which we can solve given starting values x(z′), ẋ(z′) where the dot denotes differentiation
with respect to z, and z′ is the starting location. The solution at some point z is linearly
related to the starting values. We can capitalize on this linearity by treating {x(z), ẋ(z)} as
a 4 dimensional vector Vi(z), with

V1 = x, V2 = ẋ, V3 = y, V4 = ẏ, (7.52)

and embodying the linear transformation from location z′ to location z in a transfer matrix
Jab(z, z′):

Va(z) = Jab(z, z
′) · Vb(z

′). (7.53)

The transfer matrix contains full information about the change of position and direction of
all rays that propagate from z′ to z. As is always the case for linear systems, the transfer
matrix for propagation over a large interval, from z′ to z, can be written as the product of
the matrices for two subintervals, from z′ to z′′ and from z′′ to z:

Jac(z, z
′) = Jab(z, z

′′)Jbc(z
′′, z′). (7.54)

7.4.1 Axisymmetric, Paraxial Systems

If the index of refraction is everywhere axisymmetric, so n = n(
√

x2 + y2, z), then there is
no coupling between the motions of rays along the x and y directions, and the equations of
motion along x are identical to those along y. In other words, J11 = J33, J12 = J34, J21 = J43,
and J22 = J44 are the only nonzero components of the transfer matrix. This reduces the
dimensionality of the propagation problem from 4 dimensions to 2: Va can be regarded as
either {x(z), ẋ(z)} or {y(z), ẏ(z)}, and in both cases the 2 × 2 transfer matrix Jab is the
same.

Let us illustrate the paraxial formalism by deriving the transfer matrices of a few simple,
axisymmetric optical elements. In our derivations it is helpful conceptually to focus on rays
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u v

Lens

Source

Fig. 7.5: Simple converging lens used to illustrate the use of transfer matrices.The total transfer
matrix is formed by taking the product of the straight section transfer matrix with the lens matrix
and another straight section matrix.

that move in the x-z plane, i.e. that have y = ẏ = 0. We shall write the 2-dimensional Vi as
a column vector

Va =

(
x
ẋ

)
(7.55)

The simplest case is a straight section of length d extending from z′ to z = z′ + d. The
components of V will change according to

x = x′ + ẋ′d

ẋ = ẋ′ (7.56)

so

Jab =

(
1 d
0 1

)
for straight section of length d, (7.57)

where x′ = x(z′) etc. Next, consider a thin lens with focal length f . The usual convention
in optics is to give f a positive sign when the lens is converging and a negative sign when
diverging. A thin lens gives a deflection to the ray that is linearly proportional to its dis-
placement from the optic axis, but does not change its transverse location. Correspondingly,
the transfer matrix in crossing the lens (ignoring its thickness) is:

Jab =

(
1 0

−f−1 1

)
for thin lens with focal length f. (7.58)

Similarly, a spherical mirror with radius of curvature R (again adopting a positive sign for a
converging mirror and a negative sign for a diverging mirror) has a transfer matrix

Jab =

(
1 0

2R−1 1

)
for spherical mirror with radius of curvature R. (7.59)

As a simple illustration let us consider rays that leave a point source which is located a
distance u in front of a converging lens of focal length f and solve for the ray positions a



26

distance v behind the lens (Fig. 7.5). The total transfer matrix is the product of the transfer
matrix for a straight section, Eq. (7.57) with the product of the lens transfer matrix and a
second straight-section transfer matrix:

Jab =

(
1 v
0 1

) (
1 0

−f−1 1

) (
1 u
0 1

)
=

(
1 − vf−1 u + v − uvf−1

−f−1 1 − uf−1

)
(7.60)

When the 1-2 element (upper right entry) of this transfer matrix vanishes, the position
of the ray after traversing the optical system is independent of the starting direction. In
other words, rays from the point source form a point image; when this happens, the planes
containing the source and the image are said be conjugate. The condition for this to occur is

1

u
+

1

v
=

1

f
. (7.61)

This is the standard thin lens equation. The linear magnification of the image is given by
M = J11 = 1 − v/f , i.e.

M = −v

u
, (7.62)

where the negative sign indicates that the image is inverted. Note that the system does not
change with time, so we could have interchanged the source and the image planes.

7.4.2 Converging Magnetic Lens

Since geometric optics is the same as particle dynamics, these matrix equations can be
used for paraxial motions of electrons and ions in a storage ring. (Note, however, that the
Hamiltonian for such particles is dispersive, since the Hamiltonian does not depend linearly
on the particle momentum, and so for our simple matrix formalism to be valid, we must
confine attention to a mono-energetic beam.) Quadrupolar magnetic fields are used to guide
the particles around the storage ring. Since these magnetic fields are not axisymmetric, to
analyze them we must deal with a four-dimensional vector V.

The simplest, practical magnetic lens is quadrupolar. If we orient our axes appropriately,
the magnetic field can be expressed in the form

B =
B0

r0
(yex + xey) . (7.63)

Particles traversing this magnetic field will be subjected to a Lorentz force which will curve
their trajectories. In the paraxial approximation, a particle’s coordinates will satisfy the two
differential equations

ẍ = − x

λ2
, ÿ =

y

λ2
, (7.64a)

where the dots (as above) mean d/dz = v−1d/dt and

λ =

(
pr0

qB0

)1/2

(7.64b)
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ex

Fig. 7.6: Quadrupolar Magnetic Lens. The magnetic field lines lie in a plane perpendicular to the
optic axis. Positively charged particles moving along ez are converged when y = 0 and diverged
when x = 0.

with q the particle’s charge (assumed positive) and p its momentum. The motions in the x
and y directions are decoupled. It is convenient in this case to work with two 2-dimensional
vectors, {Vx1, Vx2} ≡ {x, ẋ} and {Vy1, Vy2} = {y, ẏ}. From the elementary solutions to the
equations of motion (7.64a), we infer that the transfer matrices from the magnet’s entrance
to its exit are Jx ab, Jy ab, where

Jx ab =

(
cos φ λ sinφ

−λ−1 sinφ cosφ

)
(7.65a)

Jy ab =

(
coshφ λsinhφ

λ−1sinhφ coshφ

)
(7.65b)

and
φ = L/λ (7.65c)

with L the distance from entrance to exit.
The matrices Jx ab, Jy ab can be decomposed as follows

Jx ab =

(
1 λ tanφ/2
0 1

) (
1 0

− sin φ/λ 1

) (
1 λ tanφ/2
0 1

)
(7.65d)

Jy ab =

(
1 λtanhφ/2
0 1

) (
1 0

sinhφ/λ 1

) (
1 λtanhφ/2
0 1

)
(7.65e)

Comparing with Eqs. (7.57), (7.58), we see that the action of a single magnet is equivalent
to the action of a straight section, followed by a thin lens, followed by another straight
section. Unfortunately, if the lens is focusing in the x direction, it must be de-focusing
in the y direction and vice versa. However, we can construct a lens that is focusing along
both directions by combining two magnets that have opposite polarity but the same focusing
strength φ = L/λ:
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Consider the motion in the x direction first. Let f+ = λ/ sinφ be the equivalent focal
length of the first converging lens and f− = −λ/sinhφ that of the second diverging lens. If
we separate the magnets by a distance s, this must be added to the two effective lengths of
the two magnets to give an equivalent separation, d = λ tan(φ/2) + s + λtanh(φ/2) for the
two equivalent thin lenses. The combined transfer matrix for the two thin lenses separated
by this distance d is then

(
1 0

−f−1
− 1

) (
1 d
0 1

) (
1 0

−f−1
+ 1

)
=

(
1 − df−1

+ d
−f−1

∗ 1 − df−1
−

)
(7.66a)

where

1

f∗
=

1

f−
+

1

f+
− d

f−f+

=
sin φ

λ
− sinhφ

λ
+

d sinφ sinhφ

λ2
. (7.66b)

Now if we assume that φ + 1 and s + L, then we can expand as a Taylor series in φ to
obtain

f∗ '
3λ

2φ3
=

3λ4

2L3
. (7.67)

The effective focal length of the combined magnets, f∗ is positive and so the lens has a
net focussing effect. From the symmetry of Eq. (7.66b) under interchange of f+ and f−, it
should be clear that f∗ is independent of the order in which the magnets are encountered.
Therefore, if we were to repeat the calculation for the motion in the y direction we would
get the same focusing effect. (The diagonal elements of the transfer matrix are interchanged
but as they are both close to unity, this is a fairly small difference.)

The combination of two quadrupole lenses of opposite polarity can therefore imitate the
action of a converging lens. Combinations of magnets like this are used to collimate particle
beams in storage rings and particle accelerators.

****************************

EXERCISES

Exercise 7.11 Problem: Matrix Optics for a Simple Refracting Telescope

Consider a simple refracting telescope that comprises two thin converging lenses and
that takes parallel rays of light from distant stars which make an angle θ with the optic
axis and converts them into parallel rays making an angle −Mθ where M # 1 is the
magnification (Fig. 7.7).

(a) Use matrix methods to investigate how the output rays depend on the separation of
the two lenses and hence find the condition that the output rays are parallel when the
input rays are parallel.

(b) How does the magnification M depend on the ratio of the focal lengths of the two
lenses?
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Moptic  axis

ray
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ray

Fig. 7.7: Simple refracting telescope.

x2

x1

x3

Fig. 7.8: An optical cavity formed by two mirrors, and a light beam bouncing back and
forth inside it.

Exercise 7.12 Example: Rays bouncing between two mirrors

Consider two spherical mirrors each with radius of curvature R, separated by distance d
so as to form an “optical cavity,” as shown in Fig. 7.8. A laser beam bounces back and
forth between the two mirrors. The center of the beam travels along a geometric-optics
ray.

(a) Show, using matrix methods, that the central ray hits one of the mirrors (either one)
at successive locations x1,x2,x3 . . . (where x ≡ (x, y) is a 2 dimensional vector in the
plane perpendicular to the optic axis), which satisfy the difference equation

xk+2 − 2bxk+1 + xk = 0

where

b = 1 − 4d

R
+

2d2

R2
.

Explain why this is a difference-equation analogue of the simple-harmonic-oscillator
equation.

(b) Show that this difference equation has the general solution

xk = A cos(k cos−1 b) + B sin(k cos−1 b) .

Obviously, A is the transverse position x0 of the ray at its 0’th bounce. The ray’s 0’th
position x0 and its 0’th direction of motion ẋ0 together determine B.

(c) Show that if 0 ≤ d ≤ 2R, the mirror system is “stable”. In other words, all rays
oscillate about the optic axis. Similarly, show that if d > 2R, the mirror system is
unstable and the rays diverge from the optic axis.
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(d) For an appropriate choice of initial conditions x0 and ẋ0, the laser beam’s successive
spots on the mirror lie on a circle centered on the optic axis. When operated in this
manner, the cavity is called a Harriet delay line. How must d/R be chosen so that the
spots have an angular step size θ? (There are two possible choices.)

****************************

7.5 T2 Caustics and Catastrophes—Gravitational Lenses

Albert Einstein’s general relativity theory (Part VI of this book) predicts that light rays
should be deflected by the gravitational field of the Sun. Newton’s law of gravity combined
with his corpuscular theory of light also predict such a deflection, but through an angle half
as great as relativity predicts. A famous measurement, during a 1919 solar eclipse, confirmed
the relativistic prediction, thereby making Einstein world famous.

The deflection of light by gravitational fields allows a cosmologically distant galaxy to
behave like a crude lense and, in particular, to produce multiple images of a more distant
quasar. Many examples of this phenomenon have been observed. The optics of these gravi-
tational lenses provides an excellent illustration of the use of Fermat’s principle and also the
properties of caustics.9

7.5.1 T2 Formation of Multiple Images

The action of a gravitational lens can only be understood properly using general relativity.
However, when the gravitational field is weak, there exists an equivalent Newtonian model
which is adequate for our purposes. In this model, curved spacetime behaves as if it were
spatially flat and endowed with a refractive index given by

n = 1 − 2Φ

c2
(7.68)

where Φ is the Newtonian gravitational potential, normalized to vanish far from the source
of the gravitational field and chosen to have a negative sign (so, e.g., the field at a distance
r from a point mass M is Φ = −GM/r). Time is treated in the Newtonian manner in this
model. We will justify this index-of-refraction model in Part VI.

Consider, first, a ray which passes by a point mass M with an impact parameter b. The
ray trajectory is determined by solving the paraxial ray equation (7.51c), d/dz(ndx/dz) =
(x ·∇)(∇n), where x(z) is the ray’s transverse position relative to an optic axis that passes
through the point mass, and z is distance along the optic axis.

The ray will be bent through a deflection angle α, cf. Fig. 7.9. An equivalent way of ex-
pressing the motion is to say that the photons moving with speed c are subject to a Newtonian
gravitational force and are accelerated kinematically with twice the Newtonian acceleration.

9Schneider, Ehlers & Falco (1999).
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GQ
u v

(v/u)

Fig. 7.9: Geometry for a gravitational lens. Light from a distant quasar, Q treated as a point
source, passes by a galaxy G and is deflected through an angle α on its way to earth ⊕. The galaxy
is a distance u from the quasar and v from earth.

The problem is therefore just that of computing the deflection of a charged particle passing
by an oppositely charged particle. The deflection, under the impulse approximation, is given
by

α =
4GM

bc2
=

−4Φ(r = b)

c2
, (7.69)

where b is the ray’s impact parameter. For a ray from a distant star, passing close to the
limb of the sun, this deflection is α = 1.75 arc seconds.

Now, let us replace the sun with a cosmologically distant galaxy and the star with a more
distant quasar. Let the distance from the galaxy to Earth be v and from the galaxy to the
quasar be u (Fig. 7.9).10

It is instructive to make an order of magnitude estimate of Φ ∼ −GM/b, where M is
the mass interior to the impact parameter, b. It is convenient to relate the deflection to
the mean square velocity σ2 of the constituent stars (measured in one dimension). (This
quantity can be measured spectroscopically.) We find that Φ ∼ −3σ2/2. Therefore, an order
of magnitude estimate of the angle of deflection is α ∼ 6σ2/c2. If we do a more careful
calculation for a simple model of a galaxy in which the mass density varies inversely with
the square of the radius, then we obtain

α ∼ 4πσ2

c2
(7.70)

For typical galaxies, σ ∼ 300 km s−1 and α ∼ 1 − 2 arc sec. The paraxial approximation
therefore is fully justified. Now, the distances u, v are roughly ten billion light years ∼ 1026m
and so the tranverse displacement of the ray due to the galaxy is ∼ vα/2 ∼ 3×1020m, which
is well within the galaxy. This means that light from a quasar lying behind the galaxy can
pass by either side of the galaxy. We should then see at least two distinct images of the
quasar separated by an angular distance ∼ α/2.

The imaging is illustrated in Fig. 7.9. First trace a ray backward from the observer, in
the absence of the intervening galaxy, to the quasar. We call this the reference ray. Next,

10There is a complication in the fact that the universe is expanding and that it contains large scale
gravitational fields. However, as we discuss Chap. 27, the universe is spatially flat and so the relation between
angles and lengths is the same as in the solar system. We can also imagine performing this observation after
the universe has expanded to its present age everywhere and stopping the expansion so as to measure the
distances u, v. If we use this definition of distance, we can ignore cosmological effects in understanding the
optics.
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reinstate the galaxy and consider a virtual ray that propagates at an angle θ (a 2-dimensional
vector on the sky) to the reference ray in a straight line from the earth to the galaxy where
it is deflected toward the quasar. (A virtual ray is a path that will become a real ray if it
satisfies Fermat’s principle.) The optical phase for light propagating along this virtual ray
will exceed that along the reference ray by an amount ∆ϕ called the phase delay. There
are two contributions to ∆ϕ: First, the geometrical length of the path is longer than the
reference ray by an amount (u + v)vθ2/2u (cf. Fig. 7.9), and thus the travel time is longer
by an amount (u+ v)vθ2/2uc. Second, the light is delayed as it passes through the potential
well by a time

∫
(n−1)ds/c = −2

∫
Φds/c3, where ds is an element of length along the path.

We can express this second delay as 2Φ2/c3. Here

Φ2 =

∫
Φds (7.71)

is the two-dimensional (2D) Newtonian potential and can be computed from the 2D Poisson
equation

∇2Φ2 = 4πGΣ , where Σ =

∫
ρds (7.72a)

is the surface density of mass in the galaxy integrated along the line of sight.
Therefore, the phase delay ∆ϕ is given by

∆ϕ = ω

(
(u + v)v

2uc
θ2 − 2Φ2(θ)

c3

)
. (7.72b)

We can now invoke Fermat’s principle. Of all possible virtual rays, parametrized by the
angular coordinate θ, the only ones that correspond to real rays are those for which the
phase difference is stationary, i.e. those for which

∂∆ϕ

∂θj
= 0 , (7.72c)

where θj (with j = x, y) are the Cartesian components of θ. Differentiating Eq. (7.72b) we
obtain a 2D vector equation for the angular location of the images as viewed from Earth:

θj =
2u

(u + v)vc2

∂Φ2

∂θj
. (7.72d)

Note that ∂Φ2/∂θj is a function of θj , so if Φ2(θj) is known, this becomes a (usually) nonlinear
equation to be solved for the vector θj . Referring to Fig. 7.9, and using simple geometry, we
can identify the deflection angle for the image’s ray:

αj =
2

vc2

∂Φ2

∂θj
(7.72e)

We can understand quite a lot about the properties of the images by inspecting a contour
plot of the phase delay function ∆ϕ(θ) (Fig. 7.10). When the galaxy is very light or quite
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Fig. 7.10: Contour plots of the phase delay ∆ϕ(θ) for four different gravitational lenses. a) In
the absence of a lens Φ2 = 0, the phase delay (7.72b) has a single minimum corresponding to a
single undeflected image. b) When a small galaxy with a shallow potential Φ2 is interposed, it
pushes the phase delay ∆ϕ up in its vicinity [Eq. (7.72b) with negative Φ2], so the minimum and
hence the image are deflected slightly away from the galaxy’s center. c) When a galaxy with a
deeper potential well is present, the delay surface will be raised so much near the galaxy’s center
that additional stationary points will be created and two more images will be produced. d) If the
potential well deepens even more, five images can be produced. In all four plots the local extrema
of ∆ϕ are denoted L for a low point (local minimum), H for a high point (local maximum) and S
for saddle point.

distant from the line of sight, then there is a single minimum in the phase delay. However,
a massive galaxy along the line of sight to the quasar can create two or even four additional
stationary points and therefore three or five images. Note that with a transparent galaxy,
the additional images are created in pairs. Note, in addition, that the stationary points are
not necessarily minima. They can be minima labeled by L in the figure, maxima labeled
by H , or saddle points labeled by S. This is inconsistent with Fermat’s original statement
of his principle (“minimum phase delay”), but there are images at all the stationary points
nevertheless.

Now suppose that the quasar is displaced by a small angle δθ′ as seen from Earth in the
absence of the lens. This is equivalent to moving the lens by a small angle −δθ′ as seen from
Earth. Equation (7.72d) says that the image will be displaced by a small angle δθ satisfying
the equation

δθi − δθ′i =
2u

(u + v)vc2

∂2Φ2

∂θi∂θj
δθj . (7.73a)

By combining with Eq. (7.72b), we can rewrite this as

δθ′i = Hijδθj , (7.73b)
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where the matrix [Hij] is

Hij =

(
uc/ω

(u + v)v

)
∂2∆ϕ

∂θi∂θj
= δij −

2u

(u + v)vc2
Φ2,ij . (7.73c)

Now consider a small solid angle of source dΩ′ = dθ′1dθ
′
2. Its image in the presence of

the lens will have solid angle dΩ = dθ1dθ2. Because the specific intensity of the light,
Iν = dE/dtdAdΩdν is conserved along a ray (unaffected by the lensing), the flux of light
received from the source is IνdΩ′ in the absence of the lens and IνdΩ in its presence. The
ratio of these fluxes is the magnification M = dΩ/dΩ′. From Eq. (7.73b) we see that the
magnification is just the determinant of the inverse of the matrix Hij :

M =
dΩ

dΩ′ =
1

det [Hij]
. (7.74)

The curvature of the phase delay surface [embodied in det [∂2∆ϕ/∂θi∂θj ] which appears in
Eq.7.73c)] is therefore a quantitative measure of the magnification. Small curvature implies
large magnification of the images and vice versa. Furthermore images associated with saddle
points in the phase delay surface have opposite parity to the source. Those associated with
maxima and minima have the same parity as the source, although the maxima are rotated
on the sky by 180◦. These effects have been seen in observed gravitational lenses.

There is an additional, immediate contact to the observations and this is that the phase
delay function at the stationary points is equal to ω times the extra time it takes a signal to
arrive along that ray. In order of magnitude, the time delay difference will be ∼ vα2/8c ∼
1 month. Now, many quasars are intrinsically variable, and if we monitor the variation in
two or more images, then we should be able to measure the time delay between the two
images. This, in turn, allows us to measure the distance to the quasar and, consequently,
provides a measurement of the size of the universe.

7.5.2 T2 Catastrophe Optics — Formation of Caustics

Many simple optical instruments are carefully made so as to form point images from point
sources. However, naturally occuring optical systems, and indeed precision optical instru-
ments, when examined in detail, bring light to a focus on a 2D surface in 3D space, called
a caustic.11 Caustics are quite familiar and can be formed when sunlight is refracted or
reflected by the choppy water on the surface of a swimming pool. The bright lines one sees
on the pool’s bottom are intersections of 2D caustics with the pool’s 2D surface Another
good example is the cusped curve (called a nephroid) formed by light from a distant source
reflected off the cylindrical walls of a mug of coffee onto the surface of the coffee. What
is surprising is that caustics formed under quite general conditions can be classified into a
rather small number of types.

As a simple, concrete example that illustrates the theory of caustics, let us consider
the problem of the refraction of light by an axisymmetric, converging lens, for example a

11See, for example, Berry & Upstill (1980).
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Fig. 7.11: The formation of caustics by a phase changing screen which is constrained to be
circularly symmetric. Light from a distant source is refracted at the screen. The envelope of
the refracted rays forms a caustic surface C. An observer at a point A, outside C, will see a
single image of the distant source, whereas one at point B, inside C, will see three images. If
the observer at B moves toward the caustic, then she will see two of the images approach each
other, merge and then vanish. If the source has a finite angular size, the observed angular size of
the two merging images will increase prior to their vanishing, and the energy flux from the two
images will also increase. In this example, the caustic terminates in a cusp point which becomes
structurally unstable if we remove the constraint that the phase screen be axisymmetric. THIS
DIAGRAM MUST BE REDRAWN. IT COULD BE IMPROVED IF WE SHOW THAT THERE
ARE THREE RAYS PASSING THROUGH OFF AXIS POINTS WITH C AND MOVE B TO
ONE OF THEM. HOWEVER IT GOT RATHER COMPLICATED.

gravitational lens (cf. Fig. 7.11). Consider a set of rays from a distant source with impact
parameter s at the lens. Let these rays pass through a point of observation a distance d
from the lens with radial coordinate x = s − θd << d. As we have just shown the true rays
will be those for which the total phase ϕ(s, x) is stationary with respect to variations of s.
Now, if x is small enough and d is large enough, then there will typically be three rays that
pass through any point of observation. In the case of a gravitational lens, the astronomer
would see three images of the source. However, when x is large and the astronomer is well
away from the optic axis, there will only be one ray and one image. There is therefore
an axisymmetric surface, called a caustic where the number of images changes from one to
three.

Now let us consider the behavior of the phase ϕ as we cross this caustic. From Fig. 7.11,
it is clear that the two disappearing images approach one another and then vanish. Alge-
braically, this means that, by changing the parameter (often called a control variable) x,
the variation of ϕ(s, x) with s (often called a state variable) changes locally through a set of
curves like those in Fig. 7.12, where a maximum and a minimum smoothly merge through
a point of inflexion and then vanish. It is clear that close enough to the caustic, ϕ(s, x),
for given s, has the form of a cubic. By changing the origins of s and x, this cubic can be
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Fig. 7.12: Optical phase ϕ for three different observer locations measured by a one dimensional
coordinate x. (The second coordinate is suppressed.) The true rays are refracted at the values
of s corresponding to the maxima and minima of the phase. There are two such rays, when the
observer lies inside the caustic surface, (x > 0) and now rays when she lies outside (x < 0).

written in the form of a Taylor series for which the leading terms are:

ϕ(s; d, x) =
1

3
as3 − bxs + . . . (7.75)

where the factor 1/3 is just a convention and we have dropped a constant. Note that, by
changing coordinates, we have removed the quadratic terms. Now, for any given lens we
can compute the coefficients a, b accurately through a careful Taylor expansion about the
caustic. However, their precise form does not interest us here as we are only concerned with
scaling laws.

Now, invoking Fermat’s Principle and differentiating Eq. (7.75) with respect to s, we see
that there are two true rays and two images for x > 0, (passing through s = ±(bx/a)1/2),
and no images for x < 0. x = 0 marks the location of the caustic at this distance behind
the lens. We can now compute the magnification of the images as the caustic is approached.
This is given by

M ∝ ds

dx
=

1

2

(
b

ax

)1/2

. (7.76)

Notice that the magnification, and thus also the total flux in each image, scales inversely
with the square root of the distance from the caustic. This does not depend on the optical
details (i.e. on the coefficients in our power series expansions). It therefore is equally true
for reflection at a spherical mirror, or refraction by a gravitational lens, or refraction by the
rippled surface of the water in a swimming pool. This is just one example of several scaling
laws which apply to caustics.

The theory of optical caustics is a special case of a more general formalism called catas-
trophe theory, and caustics are examples of catastrophes. In this theory, it is shown that
there are only a few types of catastrophe and they have many generic properties. The key
mathematical requirement is that the behavior of the solution should be structurally stable.
That is to say, if we make small changes in the physical conditions, the scaling laws etc. are
robust.

The catastrophe that we have just considered is the most elementary example and is
called the fold. A gravitational lens example is shown in shown in Fig. 7.13. The next
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Fig. 7.13: Gravitational lens in which a distant quasar, Q1115+080, is quadruply imaged by an
intervening galaxy. (There is also a fifth, unseen image.) Two of the images are observed to be much
brighter and closer than the other two because the quasar is located quite close to a fold caustic
surface. The images are observed to vary in the order predicted by modeling the gravitational
potential of the galaxy and this variation can be used to estimate the size of the universe.

simplest catastrophe, known as the cusp, is the curve where two fold surfaces meet. (The
point cusp displayed in Fig. 7.12, is actually structurally unstable as a consequence of the
assumed strict axisymmetry. However if we regard s, x as just 1D Cartesian coordinates,
then Fig. 7.12 provides a true representation of the geometry.) In total there are seven
elementary catastrophes. Catastrophe theory has many interesting applications in optics,
dynamics, and other branches of physics.

Let us conclude with an important remark. If we have a point source, the magnification
will diverge to infinity as the caustic is approached, according to Eq. 7.76. Two factors
prevent the magnification from becoming truly infinite. The first is that a point source is
only an idealization, and if we allow the source to have finite size, different parts will produce
caustics at slightly different locations. The second is that geometric optics, on which our
analysis was based, pretends that the wavelength of light is vanishingly small. In actuality,
the wavelength is always nonzero, and near a caustic its finiteness leads to diffraction effects,
which limit the magnification to a finite value. Diffraction is the subject of the next chapter.

****************************
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EXERCISES

Exercise 7.13 Example: Stellar gravitational lens

Consider a star M that is located a distance v from us and acts as a gravitational lens
to produce multiple images of a second star that is a further distance u behind the
lens.

(a) Verify Eq. (7.69) under the assumption that the deflection angle is small.

(b) Use this equation to show that when the second star lies on the continuation of the
Earth-lens line, it will produce a thin-ring image at the observer of angular radius given
by

θE =

(
4GM

Dc2

)1/2

, (7.77)

and evaluate the distance D in terms of the distances u, v. (This ring is known as the
Einstein ring and the radius as the Einstein radius.)

(c) Show that when the source is displaced from this line, there will be just two images,
one lying within the Einstein ring, the other lying outside. Find their locations.

(d) Denote the ratio of the fluxes in these two images by R. Show that the angular radii
of the two images can be expressed in the form θ± = ±θER±1/4 and explain how to
measure the Einstein radius observationally.

Incidentally, Einstein effectively performed this calculation, in one of his unpublished
notebooks, prior to understanding general relativity.

Exercise 7.14 Challenge: Catastrophe Optics of an Elliptical Lens

Consider an elliptical gravitational lens where the potential at the lens plane varies as

Φ2(θ) = (1 + Aθ2
1 + 2Bθ1θ2 + Cθ2

2)
q; 0 < q < 1/2.

Determine the generic form of the caustic surfaces and the types of catastrophe en-
countered. Note that it is in the spirit of catastrophe theory not to compute exact
expressions but to determine scaling laws and to understand the qualitative behavior
of the images.

****************************
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7.6 Polarization

In our geometric optics analyses thus far, we have either dealt with a scalar wave (e.g., a
sound wave) or simply supposed that individual components of vector or tensor waves can be
treated as scalars. For most purposes, this is indeed the case and we shall continue to use this
simplification in the following chapters. However, there are some important wave properties
that are unique to vector (or tensor) waves. Most of these come under the heading of
polarization effects. In Part VI we shall study polarization effects for (tensorial) gravitational
waves. Here and in several other chapters we shall examine them for electromagnetic waves.

7.6.1 Polarization Vector and its Geometric-Optics Propagation
Law

An electromagnetic wave in vacuo has its electric and magnetic fields E and B perpendicular
to its propagation direction k̂ and perpendicular to each other. In a medium, E and B may
or may not remain perpendicular to k̂, depending on the medium’s properties. For example,
an Alfvén wave has its vibrating magnetic field perpendicular to the background magnetic
field, which can make an arbitrary angle with respect to k̂. By contrast, in the simplest case
of an isotropic dielectric medium, where the dispersion relation has our standard dispersion-
free form Ω = (c/n)k, the group and phase velocities are parallel to k̂, and E and B turn out
to be perpendicular to k̂ and to each other—as in vacuum. In this section, we shall confine
attention to this simple situation, and to linearly polarized waves, for which E oscillates
linearly back and forth along a polarization direction f̂ that is perpendicular to k̂:

E = Aeiϕ f̂ , f̂ · k̂ ≡ f̂ · ∇ϕ = 0 . (7.78)

In the eikonal approximation, Aeiϕ ≡ ψ satisfies the geometric-optics propagation laws
of Sec. 7.3, and the polarization vector f̂ , like the amplitude A, will propagate along the
rays. The propagation law for f̂ can be derived by applying the eikonal approximation to
Maxwell’s equations, but it is easier to infer that law by simple physical reasoning: (i) If
the ray is straight, then the medium, being isotropic, is unable to distinguish a slow right-
handed rotation of f̂ from a slow left-handed rotation, so there will be no rotation at all: f̂
will continue always to point in the same direction, i.e. f̂ will be kept parallel to itself during
transport along the ray. (ii) If the ray bends, so dk̂/ds .= 0 (where s is distance along the
ray), then f̂ will have to change as well, so as always to remain perpendicular to k̂. The
direction of f̂ ’s change must be k̂, since the medium, being isotropic, cannot provide any
other preferred direction for the change. The magnitude of the change is determined by the
requirement that f̂ · k̂ remain zero all along the ray and that k̂ · k̂ = 1. This immediately
implies that the propagation law for f̂ is

df̂

ds
= −k̂

(
f̂ · dk̂

ds

)
. (7.79)

We say that the vector f̂ is parallel-transported along k̂. Here “parallel transport” means:
(i) Carry f̂ a short distance along the trajectory keeping it parallel to itself in 3-dimensional
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Fig. 7.14: (a) The ray along the optic axis of a circular loop of optical fiber, and the polarization
vector f̂ that is transported along the ray by the geometric-optics transport law df̂/ds = −k̂(f̂ ·
dk̂/ds). (b) The polarization vector f̂ drawn on the unit sphere. The vector from the center of the
sphere to each of the points A, B, ..., is the ray’s propagation direction k̂, and the polarization
vector (which is orthogonal to k̂ and thus tangent to the sphere) is identical to that in the physical
space of the ray [drawing (a)].

space. This will cause f̂ to no longer be perpendicular to k̂. (ii) Project f̂ perpendicular to
k̂ by adding onto it the appropriate multiple of k̂. (The techniques of differential geometry
for curved surfaces, which we shall develop in Part VI when studying general relativity, give
powerful mathematical tools for analyzing this parallel transport.)

7.6.2 T2 Geometric Phase

We shall use the polarization propagation law (7.79) to illustrate a quite general phenomenon
known as the Geometric phase.12

Consider linearly polarized, monochromatic light beam that propagates in an optical
fiber. The fiber’s optic axis is the principal ray along which the light propagates. We can
imagine bending the fiber into any desired shape, and thereby controlling the shape of the
ray. The ray’s shape in turn will control the propagation of the polarization via Eq. (7.79).

If the fiber and ray are straight, then the propagation law (7.79) keeps f̂ constant. If the
fiber and ray are circular, then the propagation law (7.79) causes f̂ to rotate in such a way
as to always point along the generator of a cone as shown in Fig. 7.14 (a). This polarization
behavior, and that for any other ray shape, can be deduced with the aid of a unit sphere
on which we plot the ray direction k̂ [Fig. 7.14 (b)]. For example, the ray directions at ray
locations C and H [drawing (a)] are as shown in drawing (b). Notice, that the trajectory
of k̂ around the unit sphere is a great circle. This is because the ray in physical space is
a closed circle. If, instead, the fiber and ray were bent into a helix (Fig. 7.15), then the
trajectory on the unit sphere would be a smaller circle.

On the unit sphere we also plot the polarization vector f̂ — one vector at each point
corresponding to a ray direction. Because f̂ · k̂ = 0, the polarization vectors are always

12Berry (1990).
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Fig. 7.15: (a) The ray along the optic axis of a helical loop of optical fiber, and the polarization
vector f̂ that is transported along the ray by the geometric-optics transport law df̂/ds = −k̂(f̂ ·
dk̂/ds). The ray’s propagation direction k̂ makes an angle θ = 73o to the vertical direction. (b) The
trajectory of k̂ on the unit sphere (a circle with polar angle θ = 73o), and the polarization vector
f̂ that is parallel transported along that trajectory. The polarization vectors in drawing (a) are
deduced from the parallel transport law of drawing (b). The lag angle αlag = 2π(1− cos θ) = 1.42π
is equal to the solid angle contained inside the trajectory of k̂ (the θ = 73o circle).

tangent to the unit sphere. Notice that each f̂ on the unit sphere is identical in length and
direction to the corresponding one in the physical space of drawing (a).

For the circular, closed ray of Fig. 7.14 (a), the parallel transport law keeps constant the
angle α between f̂ and the trajectory of f̂ [drawing (b)]. Translated back to drawing (a),
this constancy of α implies that the polarization vector points always along the generators
of the cone whose opening angle is π/2 − α, as shown.

For the helical ray of Fig. 7.15 (a), the propagation direction k̂ rotates, always maintaining
the same angle θ to the vertical direction, and correspondingly its trajectory on the unit
sphere of Fig. 7.15 (b) is a circle of constant polar angle θ. In this case (as one can see, e.g.,
with the aid of a large globe of the Earth and a pencil that one transports around a circle
of latitude 90o − θ), the parallel transport law dictates that the angle α between f̂ and the
circle not remain constant, but instead rotate at the rate

dα/dφ = cos θ . (7.80)

Here φ is the angle (longitude on the globe) around the circle. (This is the same propagation
law as for the direction of swing of a Foucault Pendulum as the earth turns, and for the same
reason: the gyroscopic action of the Foucault Pendulum is described by parallel transport
of its plane along the earth’s spherical surface.)

In the case θ ' 0 (a nearly straight ray), the transport equation (7.80) predicts dα/dφ =
1: although f̂ remains constant, the trajectory of k̂ turns rapidly around a tiny circle about
the pole of the unit sphere, so α changes rapidly—by a total amount ∆α = 2π after one



42

trip around the pole. For an arbitrary helical pitch angle θ, the propagation equation (7.80)
predicts that during one round trip α will change by an amount 2π cosα that lags behind
its change for a tiny circle (nearly straight ray) by the lag angle αLag = 2π(1− cos θ), which
is also the solid angle ∆Ω enclosed by the path of k̂ on the unit sphere:

αLag = ∆Ω . (7.81)

For the circular ray of Fig. 7.14, the enclosed solid angle is ∆Ω = 2π steradians, so the lag
angle is 2π radians, which means that f̂ returns to its original value after one trip around
the optical fiber, in accord with the drawings in the figure.

By itself, the relationship αLag = ∆Ω is merely a cute phenomenon. However, it turns out
to be just one example of a very general property of both classical and quantum mechanical
systems when they are forced to make slow adiabatic changes described by circuits in the
space of parameters that characterize them. In the more general case one focuses on a phase
lag, rather than a direction-angle lag. We can easily translate our example into such a phase
lag:

The apparent rotation of f̂ by the lag angle αLag = ∆Ω can be regarded as an advance of
the phase of one circularly polarized component of the wave by ∆Ω and a phase retardation
of the other circular polarization by the same amount. This implies that the phase of a
circularly polarized wave will change, after one circuit around the fiber’s helix, by an amount
equal to the usual phase advance ∆ϕ =

∫
k · dx (where dx is displacement along the fiber)

plus an extra geometric phase change ±∆Ω, where the sign is given by the sense of circular
polarization. This type of geometric phase change is found quite generally when classical
vector or tensor waves propagate through backgrounds that change slowly, either temporally
or spatially; and the phases of the wave functions of quantum mechanical particles with spin
behave similarly.

****************************

EXERCISES

Exercise 7.15 Derivation: Parallel-Transport

Use the parallel-transport law 7.79 to derive the relation 7.80.

Exercise 7.16 Example: Martian Rover

A Martian Rover is equipped with a single gyroscope that is free to pivot about the
direction perpendicular to the plane containing its wheels. In order to climb a steep
hill on Mars without straining its motor, it must circle the summit in a decreasing
spiral trajectory. Explain why there will be an error in its measurement of North after
it has reached the summit. Could it be programmed to navigate correctly? Will a
stochastic error build up as it traverses a rocky terrain?

****************************
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Box 7.3
Important Concepts in Chapter 6

• General Concepts

– Dispersion relation – Sec. 7.2.1, Ex. 7.2, Eq. (7.35)
– Phase velocity and group velocity – Eqs. (7.2)
– Wave Packet, its motion and spreading, and its internal waves – Sec. 7.2.2
– Quanta associated with geometric-optics waves – Secs. 7.2.2 and 7.3.2

• General formulation of geometric optics: Sec. 7.3.3 and the following:

– Eikonal (geometric optics) approximation – beginning of Sec. 7.3
– Bookkeeping parameter for eikonal approximation – Box 7.2
– Hamilton’s equations for rays – Eqs. (7.25)
– Connection to quantum theory – Sec. 7.3.2
– Connection to Hamilton-Jacobi theory – Ex. 7.9, Eq. (7.26a)
– Propagation law for amplitude (conservation of quanta) – Eqs. (7.33)
– Fermat’s principle, Eq. (7.40)
– Breakdown of geometric optics – Sec. 7.3.5

• EM waves in dielectric medium, sound waves in fluid or isotropic solid, and gravitational
waves in a weak, Newtonian gravitational field

– Lagrangian, wave equation, energy density and energy flux – Ex. 7.10, Eqs. (7.17)–
(7.19)

– Dispersion relation Ω = C(x, t)k – Eq. (7.23)
– Ray equation in second–order form – Eq. (7.43)
– Fermat’s principle for rays – Eqs. (7.41),
– Snell’s law for rays in a stratified medium – Eq. (7.44)
– Conservation of phase along a ray – Eq. (7.28)
– Propagation law for amplitude – Eq. (7.24)

∗ Geometric phase – Sec. 7.6.2

– Parallel propagation law for polarization vector – Eq. (7.79)
– Paraxial optics – Sec. 7.4

∗ Matrix formalism for rays – Secs. 7.4, 7.4.1
∗ Application to charged particles in storage ring – Sec. 7.4.2

– Multiple images, crossing of rays, coalescence of images and caustics – Sec. 7.5.1
– Magnification at a caustic – Eq. (7.76)

Bibliographic Note

Most texts on optics are traditional in outlook, which is entirely appropriate for a subject
with an extensive history that underlies its contemporary technological applications. The
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most comprehensive of these traditional texts with on extensive discussion of geometric
optics is Born & Wolf (1970). A standard text written from a more modern perspective
is Hecht (1987). A clear, brief contemporary monograph is Welford (1990). An excellent
summary of catastrophe optics, covering both the geometric limit and diffractive effects is
Berry (1982).
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