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Chapter 9

Interference

Version 1009.1.K.pdf, 22 November 2008.
Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 9.1
Reader’s Guide

• This chapter depends substantially on

– Secs. 7.2, 7.3 and 7.5.5 of Chap. 7

– The Wiener-Khintchine theorem for random processes, Sec. 5.3.3 of Chap. 5.

• The concept of coherence length or coherence time, as developed in this chapter,
will be used in Chaps. 8, 14, 15 and 22 of this book.

• Interferometry as developed in this chapter, especially in Sec. 9.5, is a foundation
for the discussion of gravitational-wave detection in Chap. 26.

• Nothing else in this book relies substantially on this chapter.

9.1 Overview

In the last chapter, we considered superpositions of waves that pass through a (typically
large) aperture. The foundation for our analysis was the Helmholtz-Kirchoff expression for
the field at a chosen point P as a sum of contributions from all points on a closed surface
surrounding P. The spatially varying field pattern resulting from this superposition of many
different contributions was called diffraction.

In this chapter, we continue our study of superposition, but for the more special case
where only two or at most several discrete beams are being superposed. For this special
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case one uses the term interference rather than diffraction. Interference is important in a
wide variety of practical instruments designed to measure or utilize the spatial and temporal
structures of electromagnetic radiation. However interference is not just of practical impor-
tance. Attempting to understand it forces us to devise ways of describing the radiation field
that are independent of the field’s origin and independent of the means by which it is probed;
and such descriptions lead us naturally to the fundamental concept of coherence (Sec. 9.2).

The light from a distant, monochromatic point source is effectively a plane wave; we call
it “perfectly coherent” radiation. In fact, there are two different types of coherence present:
lateral or spatial coherence (coherence in the angular structure of the radiation field), and
temporal or longitudinal coherence (coherence in the field’s temporal structure, which clearly
must imply something also about its frequency structure). We shall see in Sec. 9.2 that for
both types of coherence there is a measurable quantity, called the degree of coherence, that
is the Fourier transform of either the angular intensity distribution or the spectrum of the
radiation.

Interspersed with our development of the theory of coherence are an application to the
stellar interferometer (Sec. 9.2.5), by which Michelson measured the diameters of Jupiter’s
moons and several bright stars using spatial coherence; and applications to a Michelson
interferometer and its practical implementation in a Fourier-transform spectrometer (Sec.
9.2.7), which use temporal coherence to measure electromagnetic spectra, e.g. the spectrum
of the cosmic microwave background radiation (CMB). After developing our full formalism
for coherence, we shall go on in Sec. 9.3 to apply it to the operation of radio telescopes, which
function by measuring the spatial coherence of the radiation field.

In Sec. 9.4 we shall turn to multiple beam interferometry, in which incident radiation is
split many times into several different paths and then recombined. A simple example is a
Fabry-Perot etalon made from two parallel, highly reflecting surfaces. A cavity resonator
(e.g. in a laser), which traps radiation for a large number of reflections, is essentially a large
scale etalon. These principles find exciting application in laser interferometer gravitational-
wave detectors, discussed in Sec. 9.5. In these devices, two very large etalons are used to
trap laser radiation for a few tens of milliseconds, and the light beams emerging from the
two etalons are then interfered with each other. Gravitational-wave-induced changes in the
lengths of the etalons are monitored by observing time variations in the interference.

Finally, in Sec. 9.6, we shall turn to the intensity interferometer, which although it has
not proved especially powerful in application, does illustrate some quite subtle issues of
physics and, in particular, highlights the relationship between the classical and quantum
theories of light.

9.2 Coherence

9.2.1 Young’s Slits

The most elementary example of interference is provided by Young’s slits. Suppose two
long, narrow, parallel slits are illuminated coherently by monochromatic light from a distant
source that lies on the perpendicular bisector of the line joining the slits (the optic axis),
so an incident wavefront reaches the slits simultaneously [Fig. 9.1(a)]. This situation can
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Fig. 9.1: (a) Young’s Slits. (b) Interference fringes observed in a transverse plane [Eq. (9.1b)]. (c)
The propagation direction of the incoming waves is rotated to make an angle α to the optic axis;
as a result, the angular positions of the interference fringes in drawing (b) are shifted by ∆θ = α
[Eq. (9.3); not shown]. (d) Interference fringes observed from an extended source [Eq. (9.8)].

be regarded as having only one lateral dimension. The waves from the slits (effectively,
two one-dimensional beams) fall onto a screen in the distant, Fraunhofer region, and there
they interfere. The Fraunhofer interference pattern observed at a point P, whose position
is specified using polar coordinates r, θ, is proportional to the spatial Fourier transform of
the transmission function [Eq. (7.11a)]. If the slits are very narrow, we can regard the
transmission function as two δ-functions, separated by the slit spacing a, and its Fourier
transform will be

ψP(θ) ∝ e−ikaθ/2 + eikaθ/2 ∝ cos

(
kaθ

2

)
, (9.1a)

where k = 2π/λ is the light’s wave number. (That we can sum the wave fields from the two
slits in this manner is a direct consequence of the linearity of the underlying wave equation.)
The energy flux (energy per unit time crossing a unit area) at P will be

FP(θ) ∝ |ψ|2c ∝ cos2(kaθ/2) ; (9.1b)

cf. Fig. 9.1(b). The alternating regions of dark and bright illumination in this flux distribu-
tion are known as interference fringes. Notice that the flux falls to zero between the bright
fringes. This will be very nearly so even if (as is always the case in practice) the field is very
slightly non-monochromatic, i.e. even if the field hitting the slits has the form ei[ωot+δϕ(t)],
where ωo = c/k and δϕ(t) is a phase that varies randomly on a timescale extremely long
compared to 1/ωo.1 Notice also that there are many fringes, symmetrically disposed with
respect to the optic axis. [If we were to take account of the finite width w " a of the two

1More precisely, if δϕ(t) wanders by ∼ π on a timescale τc $ 2π/ωo (the waves’ coherence time), then
the waves are contained in a bandwidth ∆ωo ∼ 2π/τc " ωo centered on ωo, k is in a band ∆k ∼ k∆ω/ωo,
and the resulting superposition of precisely monochromatic waves has fringe minima with fluxes Fmin that
are smaller than the maxima by Fmin/Fmax ∼ (π∆ω/ωo)2 " 1. (One can see this in order of magnitude by
superposing the flux (9.1b) with wave number k and the same flux with wave number k +∆k.) Throughout
this section, until Eq. (9.15) we presume that the waves have such a small bandwidth (such a long coherence
time) that this Fmin/Fmax is completely negligible; for example, 1 − Fmin/Fmax is far closer to unity than
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slits, then we would find, by contrast with Eq. (9.1b) that the actual number of fringes is
finite, in fact of order a/w; cf. Fig. 7.5 and associated discussion.] This type of interferometry
is sometimes known as interference by division of the wave front.

This Young’s slits experiment is, of course, familiar from quantum mechanics, where it
is often used as a striking example of the non-particulate behavior of electrons.2 Just as
for electrons, so also for photons, it is possible to produce interference fringes even if only
one photon is in the apparatus at any time, as was demonstrated in a famous experiment
performed by G. I. Taylor in 1909. However, our concerns in this chapter are with the classical
limit, where many photons are present simultaneously and their fields can be described
by Maxwell’s equations. In the next subsection we shall depart from the usual quantum
mechanical treatment by asking what happens to the fringes when the source of radiation is
spatially extended.

9.2.2 Interference with an Extended Source: van Cittert-Zernike
Theorem

We shall approach the topic of extended sources in steps. Our first step was taken in the last
subsection, where we dealt with an idealized, single, incident plane wave, such as might be
produced by an ideal, distant laser. We have called this type of radiation perfectly coherent,
which we have implicitly taken to mean that the field oscillates with a fixed frequency ωo and
a randomly but very slowly varying phase δϕ(t) (see footnote 1), and thus, for all practical
purposes, there is a time-independent phase difference between any two points within the
region under consideration.

As our second step, keep the incoming waves perfectly coherent and perfectly planar,
but change their incoming direction in Fig. 9.1 so it makes a small angle α to the optic axis
(and correspondingly its wave fronts make an angle α to the plane of the slits) as shown in
Fig. 9.1(c). Then the distribution of energy flux in the Fraunhofer diffraction pattern on the
screen will be modified to

FP(θ) ∝ |e−ika(θ−α)/2 + e+ika(θ−α)/2|2 ∝ cos2

(
ka(θ − α)

2

)

∝ {1 + cos[ka(θ − α)]} . (9.2)

Notice that, as the direction α of the incoming waves is varied, the locations of the bright
and dark fringes change by ∆θ = α, but the fringes remain fully sharp (their minima remain
essentially zero; cf. footnote 1). Thus, the positions of the fringes carry information about
the direction to the source.

Now, in our third and final step, we will deal with an extended source, i.e. one whose
radiation comes from a finite range of angles α, with (for simplicity) |α| " 1. We shall assume
that the source is monochromatic (and in practice we can make it very nearly monochromatic
by band-pass filtering the waves just before detection). However, in keeping with how all

any fringe visibility V [Eq. (9.8) below] that is of interest to us. This can be achieved in practice by either
controlling the waves’ source, or by band-pass filtering the measured signals just before detecting them.

2See, e.g., Chapter 1 of Volume III of Feynman, Leighton, and Sands (1965).
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realistic monochromatic sources (including band-pass filtered sources) behave, we shall give
it a randomly fluctuating phase δϕ(t) (and amplitude A), and shall require that the timescale
on which the phase wanders (the waves’ coherence time) be very long compared to the waves’
period 2π/ωo; cf. footnote 1.

We shall also assume that, as for almost all realistic sources, the fluctuating phases in the
waves from different directions are completely uncorrelated. To make this precise, we write
the field in the form3

Ψ(x, z, t) = ei(kz−ωot)

∫
ψ(α, t)eikαxdα , (9.3)

where ψ(α, t) = Ae−iδϕ is the slowly wandering complex amplitude of the waves from direc-
tion α. When we consider the total flux arriving at a given point (x, z) from two different
directions α1 and α2 and average it over times long compared to the waves’ coherence time,
then we lose all interference between the two contributions:

|ψ(α1, t) + ψ(α2, t)|2 = |ψ(α1, t)|2 + |ψ(α2, t)|2 . (9.4)

Such radiation is said to be incoherent in the incoming angle α, and we say that the contri-
butions from different directions superpose incoherently. This is just a fancy way of saying
that their intensities (averaged over time) add linearly.

The angularly incoherent light from our extended source is sent through two Young’s
slits and produces fringes on a screen in the distant Fraunhofer region. We assume that the
coherence time for the light from each source point is very long compared to the difference
in light travel time to the screen via the two different slits. Then the light from each source
point in the extended source forms the sharp interference fringes described by Eq. (9.2).
However, because contributions from different source directions add incoherently, the flux
distribution on the screen is a linear sum of the fluxes from all the source points:

FP(θ) ∝
∫

dαI(α){1 + cos[ka(θ − α)]} (9.5)

Here I(α)dα ∝ |ψ(α, t)|2dα is the flux incident on the plane of the slits from the infinitesimal
range dα of directions, i.e. I(α) is the radiation’s intensity4 (its energy per unit time falling
onto a unit area and coming from a unit angle). The remainder of the integrand, 1+cos[ka(θ−
α)], is the Fraunhofer diffraction pattern (9.2) for coherent radiation from direction α.

We presume that the range of angles present in the waves, ∆α, is large compared to their
fractional bandwidth ∆α $ ∆ω/ωo; so, whereas the finite but tiny bandwidth produced
negligible smearing out of the interference fringes (footnote 1), the finite but small range
of directions may produce significant smearing, i.e. the minima of FP(θ) might not be very
sharp. We quantify the fringes’ non-sharpness and their locations by writing the slit-produced
flux distribution (9.5) in the form

FP(θ) = FS[1 + &{γ⊥(ka)e−ikaθ}] (9.6a)

3As in Chap. 7, we denote the full field by Ψ and reserve ψ to denote the portion of the field from which
a monochromatic part e−iωot or ei(kz−ωot) has been factored out.

4By contrast with Chap. 7, where we used “intensity” to mean energy flux, in this chapter we shall restrict
it to mean energy flux per unit angle or solid angle.
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where

FS ≡
∫

dαI(α) (9.6b)

(subscript S for “source”) is the total flux arriving at the slits from the source, and

γ⊥(ka) ≡
∫

dαI(α)eikaα

FS
(9.7a)

is known as the radiation’s degree of spatial (or lateral) coherence. The phase of γ⊥ deter-
mines the angular locations of the fringes; its modulus determines their depth (the amount
of their smearing due to the source’s finite angular size).

The nonzero value of γ⊥(ka) reflects the fact that there is some amount of relative coher-
ence between the waves arriving at the two slits, whose separation is a. The radiation can
have this finite spatial coherence, despite its complete lack of angular coherence, because
each angle contributes coherently to the field at the two slits. The lack of coherence for
different angles reduces the net spatial coherence (smears the fringes), but does not drive
the coherence all the way to zero (does not completely destroy the fringes).

Eq. (9.7a) says that the degree of spatial coherence of the radiation from an extended,
angularly incoherent source is the Fourier transform of the source’s angular intensity pattern.
Correspondingly, if one knows the degree of spatial coherence as a function of the (dimen-
sionless) distance ka, from it one can reconstruct the source’s angular intensity pattern by
Fourier inversion:

I(α) = FS

∫
d(ka)

2π
γ⊥(ka)e−ikaα . (9.7b)

The two Fourier relations (9.7a), (9.7b) are called the van Cittert-Zernike Theorem. In
Ex. 9.7, we shall see that this theorem is a complex-variable version of Chap. 5’s Wiener-
Khintchine Theorem for random processes.

Because of its relationship to the source’s angular intensity pattern, the degree of spatial
coherence is of great practical importance. For a given choice of ka (a given distance between
the slits), γ⊥ is a complex number that one can read off the interference fringes of Eq. (9.6a)
and Fig. 9.1(d) as follows: Its modulus is

|γ⊥| ≡ V =
Fmax − Fmin

Fmax + Fmin
(9.8)

where Fmax and Fmin are the maximum and minimum values of the flux FP on the screen; and
its phase arg(γ⊥) is ka times the displacement ∆θ of the centers of the bright fringes from
the optic axis. The modulus is called the fringe visibility, or simply the visibility, because of
its measuring the fractional contrast in the fringes [Eq. (9.8)], and this name is the reason
for the symbol V . Analogously, the complex quantity γ⊥ (or a close relative) is sometimes
known as the complex fringe visibility. Notice that V can lie anywhere in the range from
zero (no contrast; fringes completely undetectable) to unity (monochromatic plane wave;
contrast as large as possible). When the phase arg(γ⊥) of the complex visibility (degree of
coherence) is zero, there is a bright fringe precisely on the optic axis. This will be the case,
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e.g., for a source that is symmetric about the optic axis. If the symmetry point of such
a source is gradually moved off the optic axis by an angle δα, the fringe pattern will shift
correspondingly by δα = δθ, and this will show up as a corresponding shift in the argument
of the fringe visibility, arg(γ⊥) = kaδα.

The above analysis shows that Young’s slits are nicely suited to measuring both the
modulus and the phase of the complex fringe visibility (the degree of spatial coherence) of
the radiation from an extended source.

9.2.3 More General Formulation of Spatial Coherence; Lateral
Coherence Length

It is not necessary to project the light onto a screen to determine the contrast and angular
positions of the fringes. For example, if we had measured the field at the locations of the two
slits, we could have combined the signals electronically and cross correlated them numerically
to determine what the fringe pattern would be with slits. All we are doing with the Young’s
slits is sampling the wave field at two different points, which we now shall label 1 and 2.
Observing the fringes corresponds to adding a phase ϕ (= kaθ) to the field at one of the
points and then adding the fields and measuring the flux ∝ |ψ1 +ψ2eiϕ|2 averaged over many
periods. Now, since the source is far away, the rms value of the wave field will be the same
at the two slits, |ψ1|2 = |ψ2|2 ≡ |ψ|2. We can therefore express this time averaged flux in the
symmetric-looking form

FP(ϕ) ∝ (ψ1 + ψ2eiϕ)(ψ∗
1 + ψ∗

2e−iϕ)

∝ 1 + &
(
ψ1ψ∗

2

|ψ|2
e−iϕ

)
. (9.9)

Here a bar denotes an average over times long compared to the coherence times for ψ1 and
ψ2. Comparing with Eq. (9.6a) and using ϕ = kaθ, we identify

γ⊥12 =
ψ1ψ∗

2

|ψ|2
(9.10)

as the degree of spatial coherence in the radiation field between the two points 1, 2. Equa-
tion (9.10) is the general definition of degree of spatial coherence. Equation (9.6a) is the
special case for points separated by a lateral distance a.

If the radiation field is strongly correlated between the two points, we describe it as
having strong spatial or lateral coherence. Correspondingly, we shall define a field’s lateral
coherence length l⊥ as the linear size of a region over which the field is strongly correlated
(has V = |γ⊥| ∼ 1). If the angle subtended by the source is ∼ δα, then by virtue of the van
Cittert-Zernike theorem (9.7) and the usual reciprocal relation for Fourier transforms, the
radiation field’s lateral coherence length will be

l⊥ ∼ 2π

k δα
=

λ

δα
. (9.11)
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This relation has a simple physical interpretation. Consider two beams of radiation coming
from opposite sides of the brightest portion of the source. These beams will be separated
by the incoming angle δα. As one moves laterally in the plane of the Young’s slits, one will
see a varying relative phase delay between these two beams. The coherence length l⊥ is the
distance over which the variations in that relative phase delay are of order 2π, k δα l⊥ ∼ 2π.

9.2.4 Generalization to two dimensions

We have so far just considered a one-dimensional intensity distribution I(α) observed through
the familiar Young’s slits. However, most sources will be two dimensional, so in order to
investigate the full radiation pattern, we should allow the waves to come from 2-dimensional
angular directions α so

Ψ = ei(kz−ωot)

∫
ψ(α, t)eikα·xd2α ≡ ei(kz−ωot)ψ(x, t) (9.12a)

[where ψ(α, t) is slowly varying], and we should use several pairs of slits aligned along
different directions. Stated more generally, we should sample the wave field (9.12a) at
a variety of points separated by a variety of two-dimensional vectors a transverse to the
direction of wave propagation. The complex visibility (degree of spatial coherence) will then
be a function of ka,

γ⊥(ka) =
ψ(x, t)ψ∗(x + a, t)

|ψ|2
, (9.12b)

and the van Cittert-Zernike Theorem (9.7) [actually the Wiener-Khintchine theorem in
disguise; Ex. 9.7] will take the two-dimensional form

γ⊥(ka) =

∫
dΩαI(α)eika·α

FS
, (9.13a)

I(α) = FS

∫
d2(ka)

(2π)2
γ⊥(ka)e−ika·α. (9.13b)

Here I(α) ∝ |ψ(α, t)|2 is the source’s intensity (energy per unit time crossing a unit
area from a unit solid angle dΩα; FS =

∫
dΩαI(α) is the source’s total energy flux; and

d2(ka) = k2dΣa is a (dimensionless) surface area element in the lateral plane.

****************************

EXERCISES

Exercise 9.1 Problem: Single Mirror Interference

X-rays with wavelength 8.33Å (0.833 nm) coming from a point source can be reflected
at shallow angles of incidence from a plane mirror. The direct ray from a point source
to a detector 3m away interferes with the reflected ray to produce fringes with spacing
25µm. Calculate the distance of the X-ray source from the mirror plane.
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Fig. 9.2: Schematic Illustration of a Michelson Stellar Interferometer.

Exercise 9.2 Problem: Lateral Coherence of solar radiation

How closely separated must a pair of Young’s slits be to see strong fringes from the
sun (angular diameter ∼ 0.5◦) at visual wavelengths? Suppose that this condition is
just satisfied and the slits are 10µm in width. Roughly how many fringes would you
expect to see?

Exercise 9.3 Problem: Degree of Coherence for a Source with Gaussian Intensity Distribu-
tion

A circularly symmetric light source has an intensity distribution I(α) = I0 exp(−α2/2α2
0),

where α is the angular radius measured from the optic axis. Compute the degree of
spatial coherence. What is the lateral coherence length? What happens to the degree
of spatial coherence and the interference fringe pattern if the source is displaced from
the optic axis?

****************************

9.2.5 Michelson Stellar Interferometer

The classic implementation of Young’s slits for measuring spatial coherence is Michelson’s
stellar interferometer, which Albert A. Michelson used for measuring the angular diameters
of Jupiter’s moons and some bright stars in 1920 and a bit earlier. The light is sampled at
two small mirrors separated by a variable distance a and then reflected onto a telescope to
form interference fringes; cf. Fig. 9.2. (As we have emphasized, the way in which the fringes
are formed is unimportant; all that matters is the two locations where the light is sampled,
i.e. the first two mirrors in Fig. 9.2.) It is found that as the separation a between the mirrors
is increased, the fringe visibility V decreases. If we model a star (rather badly in fact) as a
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circular disk of uniform brightness, then the degree of spatial coherence of the light from it
is given, according to Eqs. (9.13a) and (7.18), as

γ⊥ = 2jinc(kaαr) (9.14)

where αr is the angular radius of the star and jinc(ξ) = J1(ξ)/ξ. Michelson found that
for the star Betelgeuse observed at wavelength λ = 570nm, the fringes disappeared when
a ∼ 3m. Associating this with the first zero of the function jinc(x), Michelson inferred
that the angular radius of Betelgeuse is ∼ 0.02arc seconds, which at Betelgeuse’s (parallax-
measured) distance of 200pc (600 lyr) corresponds to a physical radius ∼ 300 times larger
than that of the Sun, a reasonable value in light of the modern theory of stellar structure.
This technique only works for big, bright stars and is very difficult to use because fluctuations
in the atmosphere cause the fringes to keep moving about.

9.2.6 Temporal Coherence

In addition to the degree of spatial (or lateral) coherence, which measures the correlation
of the field transverse to the direction of wave propagation, we can also measure the degree
of temporal coherence, also called the degree of longitudinal coherence. This describes the
correlation at a given time at two points separated by a distance s along the direction of
propagation. Equivalently, it measures the field sampled at a fixed position at two times
differing by τ = s/c. When (as in our discussion of spatial coherence) the waves are nearly
monochromatic so the field arriving at the fixed position has the form Ψ = ψ(t)e−iωot, then
the degree of longitudinal coherence is complex and has a form completely analogous to the
transverse case:

γ‖(τ) =
ψ(t)ψ∗(t + τ)

|ψ|2
for nearly monochromatic radiation. (9.15)

Here the average is over sufficiently long times t for the averaged value to settle down to an
unchanging value.

When studying temporal coherence, one often wishes to deal with waves that contain
a wide range of frequencies — e.g., the nearly Planckian (black-body) cosmic microwave
radiation emerging from the very early universe (Ex. 9.5). In this case, one should not factor
any e−iωot out of the field Ψ, and one gains nothing by regarding Ψ(t) as complex, so the
longitudinal coherence

γ‖(τ) =
Ψ(t)Ψ(t + τ)

|Ψ|2
for real Ψ and broad-band radiation (9.16)

is also real. We shall use this real γ‖ throughout this subsection and the next.
For τ = 0 this degree of temporal coherence is unity. As τ is increased, γ‖ typically

remains near unity until some critical value τc is reached, and then begins to fall off toward
zero. The critical value τc, the longest time over which the field is strongly coherent, is the
coherence time, of which we have already spoken: If the wave is roughly monochromatic so
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Ψ(t) ∝ cos[ωot + δϕ(t)], with ωo fixed and the phase δϕ randomly varying in time, then it
should be clear that the mean time for δϕ to change by an amount of order unity is, indeed,
the coherence time τc at which γ‖ begins to fall significantly.

The uncertainty principle dictates that a field with coherence time τc, when Fourier ana-
lyzed in time, must contain significant power over a bandwidth ∆ω ∼ 1/τc. Correspondingly,
if we define the field’s longitudinal coherence length by

l‖ ≡ cτc , (9.17)

then lc for broad-band radiation will be only a few times the peak wavelength, but for a narrow
spectral line of width ∆λ, it will be λ2/∆λ.

These relations between the coherence time or longitudinal coherence length and the
field’s spectrum are order-of-magnitude consequences not only of the uncertainty relation,
but also of the temporal analog of the van Cittert-Zernike Theorem. In that analog (which
can be derived by the same methods as we used in the transverse spatial domain), the
degree of lateral coherence γ⊥ is replaced by the degree of temporal coherence γ‖, and the
angular intensity distribution I(α) (distribution of energy over angle) is replaced by the
field’s spectrum Fω(ω), the energy crossing a unit area per unit time and per unit angular
frequency ω.5 The theorem takes the explicit form

γ‖(τ) =

∫ ∞
−∞ dωFω(ω)eiωτ

FS
=

2
∫ ∞
0 dωFω(ω) cosωτ

Fs
for real Ψ(t), valid for broad-band radiation,

(9.18a)
and

Fω(ω) = FS

∫ ∞

−∞

dτ

2π
γ‖(τ)e

−iωτ = 2Fs

∫ ∞

0

dτ

2π
γ‖(τ) cosωτ . (9.18b)

[The normalization of our Fourier transform and the sign of its exponential are those conven-
tionally used in optics, and differ from those used in the theory of random processes (Chap.
5). Also, because we have chosen Ψ to be real, Fω(−ω) = Fω(+ω) and γ‖(−τ) = γ‖(+τ).]
One can measure γ‖ by combining the radiation from two points displaced longitudinally
to produce interference fringes just as we did in measuring spatial coherence. This type of
interference is sometimes called interference by division of the amplitude, in contrast with
“interference by division of the wave front” for a Young’s-slit-type measurement of lateral
spatial coherence (next to the last paragraph of Sec. 9.2.1).

9.2.7 Michelson Interferometer and Fourier-Transform Spectroscopy

The classic instrument for measuring the degree of longitudinal coherence is the Michelson
interferometer of Fig. 9.3 (not to be confused with the Michelson stellar interferometer).
In the simplest version, incident light (e.g. in the form of a Gaussian beam; Sec. 7.5.5) is
split by a beam splitter into two beams, which are reflected off different plane mirrors and

5Note that the spectrum is simply related to the spectral density of the field: If the field Ψ is so normalized
that the energy density is U = β Ψ,tΨ,t with β some constant, then Fω(ω) = βc/(2π)SΨ(f), with f = ω/2π.
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Fig. 9.3: Michelson Interferometer.

then recombined. The relative positions of the mirrors are adjustable so that the two light
paths can have slightly different lengths. (An early version of this instrument was used in
the famous Michelson-Morley experiment.) There are two ways to view the fringes. One
way is to tilt one of the reflecting mirrors slightly so there is a range of path lengths in one
of the arms. Light and dark interference bands (fringes) can then be seen across the circular
cross section of the recombined beam. The second method is conceptually more direct but
requires aligning the mirrors sufficiently accurately so the phase fronts of the two beams are
parallel after recombination and the recombined beam has no banded structure. The end
mirror in one arm of the interferometer is then slowly moved backward or forward, and as
it moves, the recombined light slowly changes from dark to light to dark and so on.

It is interesting to interpret this second method in terms of the Doppler shift. One beam
of light undergoes a Doppler shift on reflection off the moving mirror. There is then a beat
wave produced when it is recombined with the unshifted radiation of the other beam.

Whichever method is used (tilted mirror or longitudinal motion of mirror), the visibility
of the interference fringes measures the beam’s degree of longitudinal coherence, which is
related to the spectrum by Eqs. (9.18).

Let us give an example. Suppose we observe a spectral line with rest frequency ω0 that
is broadened by random thermal motions of the emitting atoms so the line profile is

Fω ∝ exp

(
−(ωo − ω)2

2(∆ω)2

)
. (9.19a)

The width of the line is given by the formula for the Doppler shift, ∆ω ∼ ω0(kBT/mc2)1/2,
where T is the temperature of the emitting atoms and m is their mass. (We ignore other
sources of line broadening, e.g. natural broadening and pressure broadening, which actually
dominate under normal conditions.) For example with Hydrogen at 103K, ∆ω ∼ 10−5ω0.

By Fourier transforming this line profile, using the well known result that the Fourier
transform of a Gaussian is another Gaussian, and invoking the fundamental relations (9.18)
between the spectrum and temporal coherence, we obtain

γ‖(τ) = exp

(
−τ 2(∆ω)2

2

)
cosωoτ . (9.19b)
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If we had used the nearly monochromatic formalism with the field written as Ψ = ψ(t)e−iωot,
then we would have obtained

γ‖(τ) = exp

(
−τ 2(∆ω)2

2

)
eiωoτ , (9.19c)

the real part of which is our broad-band formalism’s γ‖. In either case, γ‖ oscillates with
frequency ωo, and the amplitude of this oscillation is the fringe visibility V :

V = exp

(
−τ 2(∆ω)2

2

)
. (9.19d)

The variation V (τ) of this visibility with lag time τ is sometimes called an interferogram.
For time lags τ " (∆ω)−1, the line appears to be monochromatic and fringes with unit
visibility should be seen. However for lags τ ! (∆ω)−1, the fringe visibility will decrease
exponentially with τ 2. In our example, if the rest frequency is ω0 ∼ 3 × 1015rad s−1, then
the longitudinal coherence length will be l‖ = cτc ∼ 10mm and no fringes will be seen when
the radiation is combined from points separated by much more than this distance.

This procedure is an example of Fourier transform spectroscopy, in which, by measuring
the degree of temporal coherence γ‖(τ) and then Fourier tranforming it, one infers the shape
of the radiation’s spectrum, or in this case, the width of a specific spectral line.

When (as in Ex. 9.5) the waves are very broad band, the degree of longitudinal coherence
γ‖(τ) will not have the form of a sinusoidal oscillation (regular fringes) with slowly varying
amplitude (visibility). Nevertheless, the broad-band van Cittert-Zernike theorem (9.18) still
guarantees that the spectrum will be the Fourier transform of the coherence γ‖(τ), which
can be measured by a Michelson interferometer.

****************************

EXERCISES

Exercise 9.4 Problem: Longitudinal coherence of radio waves

An FM radio station has a carrier frequency of 91.3 MHz and transmits heavy metal
rock music. Estimate the coherence length of the radiation.

Exercise 9.5 Problem: COBE Measurement of the Cosmic Microwave Background Radia-
tion

An example of a Michelson interferometer is the Far Infrared Absolute Spectropho-
tometer (FIRAS) carried by the Cosmic Background Explorer Satellite (COBE). COBE
studied the spectrum and anisotropies of the cosmic microwave background radiation
(CMB) that emerged form the very early, hot phase of our universe’s expansion (Chap.
27). One of the goals of the COBE mission was to see if the CMB spectrum really had
the shape of 2.7K black body (Planckian) radiation, or if it was highly distorted as
some measurements made on rocket flights had suggested. COBE’s spectrophotometer



14

used Fourier transform spectroscopy to meet this goal: it compared accurately the de-
gree of longitudinal coherence γ‖ of the CMB radiation with that of a calibrated source
on board the spacecraft, which was known to be a black body at about 2.7K. The
comparison was made by alternately feeding radiation from the microwave background
and radiation from the calibrated source into the same Michelson interferometer and
comparing their fringe spacings. The result (Mather et. al. 1994) was that the back-
ground radiation has a spectrum that is Planckian with temperature 2.726 ± 0.010K
over the wavelength range 0.5–5 mm, in agreement with simple cosmological theory
that we shall explore in the last chapter of this book.

(a) Suppose that the CMB had had a Wien spectrum Fω ∝ |ω|3 exp(−!|ω|/kT ) where
T = 2.74K. Show that the visibility of the fringes would have been

V = |γ‖| ∝
|s4 − 6s2

0s
2 + s4

0|
(s2 + s2

0)
4

(9.20)

where s = cτ is longitudinal distance, and calculate a numerical value for s0.

(b) Compute the interferogram V (τ) for a Planck function either analytically (perhaps
with the help of a computer) or numerically using a Fast Fourier Transform. Compare
graphically the interferogram for the Wien and Planck spectra.

****************************

9.2.8 Degree of Coherence; Relation to Theory of Random Pro-
cesses

Having separately discussed spatial and temporal coherence, we now can easily perform a
final generalization and define the full degree of coherence of the radiation field between
two points separated both laterally by a vector a and longitudinally by a distance s, or
equivalently by a time τ = s/c. If we take the time-separation viewpoint, so x1 and x2

have a purely transverse spatial separation a = x2 − x1, and if we restrict ourselves to
nearly monochromatic waves and use the complex formalism so the waves are written as
Ψ = ei(kz−ωot)ψ(x, t) [Eq. (9.12a)], then

γ12(ka, τ) ≡ ψ(x1, t)ψ∗(x1 + a, t + τ)

[|ψ(x1, t)|2 |ψ(x1 + a, t)|2]1/2
=

ψ(x1, t)ψ∗(x1 + a, t + τ)

|ψ|2
. (9.21)

In the denominator of the second expression we have used the fact that, because the source
is far away, |ψ|2 is independent of the spatial location at which it is evaluated, in the region
of interest. Consistent with the definition (9.21), we can define a volume of coherence as
the product of the longitudinal coherence length l‖ = cτc and the square of the transverse
coherence length l2⊥.

The three-dimensional version of the van Cittert-Zernike theorem relates the complex
degree of coherence (9.21) to the radiation’s specific intensity, Iω(α,ω), i.e. to the energy
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crossing a unit area per unit time per unit solid angle and per unit angular frequency (energy
“per unit everything”). (Since the frequency ν and the angular frequency ω are related by
ω = 2πν, the specific intensity Iω of this chapter and that Iν of Chap. 2 are related by
Iν = 2πIω.) The three-dimensional van Cittert-Zernike theorem states that

γ12(ka, τ) =

∫
dΩαdωIω(α,ω)ei(ka·α+ωτ)

FS
, (9.22a)

and

Iω(α,ω) = FS

∫
dτd2ka

(2π)3
γ12(ka, τ)e−i(ka·α+ωτ) . (9.22b)

There obviously must be an intimate relationship between the theory of random processes,
as developed in Chap. 5, and the theory of a wave’s coherence, as we have developed it in
this section, Sec. 9.2. That relationship is explained in Ex. 9.7. Most especially, it is shown
that the van Cittert-Zernike theorem is nothing but the wave’s Wiener-Khintchine theorem
in disguise.

****************************

EXERCISES

Exercise 9.6 Problem: Reduction of Degree of Coherence

We have defined the degree of coherence γ12(a, τ) for two points in the radiation field
separated laterally by a distance a and longitudinally by a time τ . Under what condi-
tions will this be given by the product of the spatial and temporal degrees of coherence?

γ12(a, τ) = γ⊥(a)γ‖(τ) (9.23)

Exercise 9.7 *** Example: Complex Random Processes and the van Cittert-Zernike The-
orem

In Chap. 5 we developed the theory of real-valued random processes that vary randomly
with time t, i.e. that are defined on a one-dimensional space in which t is a coordinate.
Here we shall generalize a few elements of that theory to a complex-valued random
process Φ(x) defined on a (Euclidean) space with n dimensions. We assume the process
to be stationary and to have vanishing mean (cf. Chap. 5 for definitions). For Φ(x)we
define a complex-valued correlation function by

CΦ(ξ) ≡ Φ(x)Φ∗(x + ξ) (9.24a)

(where the ∗ denotes complex conjugation) and a real-valued spectral density by

SΦ(k) = lim
L→∞

1

Ln
|Φ̃L(k)|2 . (9.24b)
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Here ΦL is Φ confined to a box of side L (i.e. set to zero outside that box), and the
tilde denotes a Fourier transform defined using the conventions of Chap. 5:

Φ̃L(k) =

∫
ΦL(x)e−ik·xdnx , ΦL(x) =

∫
Φ̃L(k)e+ik·x dnk

(2π)n
. (9.25)

Because Φ is complex rather than real, CΦ(ξ) is complex; and as we shall see below, its
complexity implies that [although SΦ(k) is real], SΦ(−k) *= SΦ(k). This fact prevents
us from folding negative k into positive k and thereby making SΦ(k) into a “single-
sided” spectral density as we did for real random processes in Chap. 5. In this complex
case we must distinguish −k from +k and similarly −ξ from +ξ.

(a) The complex Wiener-Khintchine theorem [analog of Eq.(5.25a)] says that

SΦ(k) =

∫
CΦ(ξ)e+ik·ξdnξ , (9.26a)

CΦ(ξ) =

∫
SΦ(k)e−ik·ξ dnk

(2π)n
. (9.26b)

Derive these relations. [Hint: use Parseval’s theorem in the form
∫

A(x)B∗(x)dnx =∫
Ã(k)B̃∗(k)dnk/(2π)n with A(x) = Φ(x) and B(x) = Φ(x + ξ), and then take the

limit as L → ∞.] Because SΦ(k) is real, this Wiener-Khintchine theorem implies that
CΦ(−ξ) = C∗

Φ(ξ). Show that this is so directly from the definition (9.24a) of CΦ(ξ). Be-
cause CΦ(ξ) is complex, the Wiener-Khintchine theorem implies that SΦ(k) *= SΦ(−k).

(b) Let ψ(x, t) be the complex-valued wave field defined in Eq. (9.12a), and restrict x to
vary only over the two transverse dimensions so ψ is defined on a 3-dimensional space.
Define Φ(x, t) ≡ ψ(x, t)/[|ψ(x, t)|2]1/2. Show that

CΦ(a, τ) = γ12(ka, τ) , SΦ(−αk,−ω) = const × Iω(α,ω)

FS
, (9.27)

and the complex Wiener-Khintchine theorem (9.26) is the van Cittert-Zernike theorem
(9.22). (Note: the minus signs in SΦ result from the difference in Fourier transform
conventions between the theory of random processes [Eq. (9.25) above and Chap. 5]
and the theory of optical coherence [this chapter]. Evaluate the constant in Eq. (9.27).

****************************

9.3 Radio Telescopes

The technique pioneered by Michelson for measuring the angular sizes of stars at visual
wavelengths has been applied with great effect in radio astronomy. A modern radio telescope
is a large, steerable surface that reflects radio waves onto a “feed” where the fluctuating
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Fig. 9.4: Two Element Radio Interferometer.

electric field in the radio wave creates a very small electric voltage that can subsequently
be amplified and measured electronically. A large telescope has a diameter D ∼ 100m
and a typical observing wavelength might be λ ∼ 6cm. This implies an angular resolution
θA ∼ λ/D ∼ 2 arc minutes [Eq. (7.18) and subsequent discussion]. However, many of the
most interesting cosmic sources are much smaller than this. In order to achieve much better
angular resolution, the technique of radio interferometry was developed in the 1960s and 70s;
and the analogous optical interferometry is currently (2000s) under rapid development.

9.3.1 Two-Element Radio Interferometer

If we have two radio telescopes then we can think of them as two Young’s slits and we
can link them using a combination of waveguides and electric cables as shown in Fig. 9.4.
When they are both pointed at a source, they both measure the electric field in waves from
that source. We combine their signals by narrow-band filtering their voltages to make them
nearly monochromatic and then either add the filtered voltages and measure the power as
above, or multiply the two voltages directly. In either case a measurement of the degree
of coherence, Eq. (9.10) can be achieved. (If the source is not vertically above the two
telescopes, one obtains some non-lateral component of the full degree of coherence γ12(a, τ).
However, by introducing a time delay into one of the signals we can measure the degree of
lateral coherence γ⊥(a), which is what the astronomer usually needs.)

The objective is usually to produce an image of the radio waves’ source. This is achieved
by Fourier inverting the lateral degree of coherence γ⊥(a) [Eq. (9.13b)], which must therefore
be measured for a variety of values of the relative separation vector a of the telescopes
perpendicular to the direction of the source. As the earth rotates, the separation vector will
trace out half an ellipse in the two-dimensional a plane every twelve hours. (The source
intensity is a real quantity and so we can use Eq. (9.13b) to deduce that γ⊥(−a) = γ∗

⊥(a).)
By changing the spacing between the two telescopes twice a day and collecting data for a
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Fig. 9.5: Closure phase measurement using a triangle of telescopes.

number of days, the degree of coherence can be well sampled. This technique is known as
Earth-Rotation Aperture Synthesis because the telescopes are being made to behave like a
giant telescope, as big as their maximum separation, with the aid of the earth’s rotation.

9.3.2 Multiple Element Radio Interferometer

In practice, a modern interferometer has many more than two telescopes. The Very Large
Array (VLA) in New Mexico has 27 individual telescopes arranged in a Y pattern and
operating simultaneosly. The degree of coherence can thus be measured simultaneously over
27 × 26/2 = 351 different relative separations. The results of these measurements can then
be interpolated to give values of γ⊥(a) on a regular grid of points (usually 2N × 2N for some
integer N). This is then suitable for applying the Fast Fourier Transform algorithm to infer
the source structure I(α).

9.3.3 Closure Phase

Among the many technical complications of interferometry is one which brings out an inter-
esting point about Fourier methods. It is usually much easier to measure the modulus than
the phase of the complex degree of coherence. This is partly because it is hard to introduce
the necessary delays in the electronics accurately enough to know where the zero of the
fringe pattern should be located and partly because unknown, fluctuating phase delays are
introduced into the phase of the field as the wave propagates through the upper atmosphere
and ionosphere. (This is a radio variant of the problem of “seeing” for optical telescopes,
cf. Ex. 7.10, and it also plagues the Michelson stellar interferometer.) It might therefore be
thought that we would have to make do with just the modulus of the degree of coherence,
i.e. the fringe visibility, to perform the Fourier inversion for the source structure. This is
not so.

Consider a three element interferometer measuring fields ψ1,ψ2,ψ3 and suppose that at
each telescope there are unknown phase errors, δϕ1, δϕ2, δϕ3; cf. Fig. 9.5. For baseline a12,
we measure the degree of coherence γ⊥12 ∝ ψ1ψ∗

2 , a complex number with phase Φ12 =
ϕ12 + δϕ1 − δϕ2, where ϕ12 is the phase of γ⊥12 in the absence of phase errors. If we also
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measure the degrees of coherence for the other two pairs of telescopes in the triangle and
derive their phases Φ23,Φ31, we can then calculate the quantity

C123 = Φ12 + Φ23 + Φ31

= ϕ12 + ϕ23 + ϕ31 , (9.28)

from which the phase errors cancel out.
The quantity C123, known as the closure phase, can be measured with high accuracy. In

the VLA, there are 27×26×25/6 = 2925 such closure phases, and they can all be measured
with considerable redundancy. Although absolute phase information cannot be recovered,
93 per cent of the relative phases can be inferred in this manner and used to construct an
image far superior to what one would get without any phase information.

9.3.4 Angular Resolution

When the telescope spacings are well sampled and the source is bright enough to carry out
these image processing techniques, an interferometer can have an angular resolving power
approaching that of an equivalent filled aperture as large as the maximum telescope spacing.
For the VLA this is 35km, giving an angular resolution of a fraction of a second of arc at
6cm wavelength, which is 350 times better than the resolution of a single 100m telescope.

Even greater angular resolution is achieved in a technique known as Very Long Baseline
Interferometry (VLBI). Here the telescopes can be located on different continents and instead
of linking them directly, the oscillating field amplitudes ψ(t) are stored on magnetic tape
and then combined digitally long after the observation, to compute the complex degree of
coherence and thence the source structure I(α). In this way angular resolutions over 300
times better than those achievable by the VLA can be obtained. Structure smaller than a
milliarcsecond corresponding to a few light years at cosmological distances can be measured
in this manner.

****************************

EXERCISES

Exercise 9.8 Example: Interferometry from Space

The longest radio-telescope separation currently available is that between telescopes
on the earth’s surface and an 8-m diameter radio telescope in the Japanese HALCA
satellite, which orbits the earth at 6 earth radii. Radio Astronomers conventionally
describe the specific intensity Iω(α,ω) of a source in terms of its brightness temper-
ature. This is the temperature Tb(ω) that a black body would have to have in order
to emit, in the Rayleigh-Jeans (low-frequency) end of its spectrum, the same specific
intensity as the source.

(a) Show that for a single (linear or circular) polarization, if the solid angle subtended by
a source is ∆Ω and the specific flux (also called spectral flux ) measured from the source
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is Fω ≡
∫

IωdΩ = Iω∆Ω, then the brightness temperature is

Tb =
2(2π)3c2Iω

kBω2
=

2(2π)3c2Fω

kBω2∆Ω
, (9.29)

where kB is Boltzmann’s constant.

(b) The brightest quasars emit radio spectral fluxes of about Fω = 10−25W m−2Hz−1,
independent of frequency. The smaller is such a quasar, the larger will be its brightness
temperature. Thus, one can characterize the smallest sources that a radio telescope
system can resolve by the highest brightness temperatures it can measure. Show that
the maximum brightness temperature measurable by the earth-to-orbit interferometer
is independent of the frequency at which the observation is made, and estimate its
numerical value.

****************************

9.4 Etalons and Fabry-Perot Interferometers

We have shown how a Michelson interferometer can be used as a Fourier-transform spec-
trometer: one measures the complex fringe visibility as a function of the two arms’ optical
path difference and then takes the visibility’s Fourier transform to obtain the spectrum of
the radiation. The inverse process is also powerful: One can drive a Michelson interferometer
with radiation with a known, steady spectrum, and look for time variations of the positions
of its fringes caused by changes in the relative optical path lengths of the interferometer’s
two arms. This was the philosophy of the famous Michelson-Morley experiment to search for
ether drift, and it is also the underlying principle of a laser interferometer (“interferometric”)
gravitational-wave detector.

To reach the sensitivity required for gravitational-wave detection one must modify the
Michelson interferometer by making the light travel back and forth in each arm many times.
This is achieved by converting each arm into a Fabry-Perot interferometer. In this section
we shall study Fabry-Perot interferometers and some of their other applications, and in the
next section we shall explore their use in gravitational-wave detection.

9.4.1 Multiple Beam Interferometry; Etalons

Fabry-Perot interferometry is based on trapping monochromatic light between two highly
reflecting surfaces. To understand such trapping, let us consider the concrete situation
where the reflecting surfaces are flat and parallel to each other, and the transparent medium
between the surfaces has one index of refraction n, while the medium outside the surfaces
has another index n′ (Fig. 9.6). Such a device is sometimes called an etalon. One example
is a glass slab in air (n - 1.5, n′ - 1); another is a vacuum maintained between two glass
mirrors (n = 1, n′ - 1.5). Suppose that a plane wave (i.e. parallel rays) with frequency
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Fig. 9.6: Multiple beam interferometry using a type of Fabry-Perot Etalon.

ω is incident on one of the reflecting surfaces, where it is partially reflected and partially
transmitted with refraction. The transmitted wave will propagate through to the second
surface where it will be partially reflected and partially transmitted. The reflected portion
will return to the first surface where it too will be split, and so on [Fig. 9.6(a)]. The resulting
total fields in and outside the slab could be computed by summing the series of sequential
reflections and transmissions (Ex. 9.9). Alternatively, they can be computed as follows:

We shall assume, for pedagogical simplicity, that there is translational invariance along
the slab (i.e. the slab and incoming wave are perflectly planar). Then the series, if summed,
would lead to the five waves shown in Fig. 9.6(b): an incident wave (ψi), a reflected wave
(ψr), a transmitted wave (ψt), and two internal waves with fields (ψa,ψb).

We introduce amplitude reflection and transmission coefficients, denoted r and t, for
waves incident upon the slab surface from outside. Likewise, we introduce coefficients r′, t′

for waves incident upon the slab from inside. These coefficients are functions of the angles
of incidence and the polarization. They can be computed using electromagnetic theory (e.g.
Sec. 4.6.2 of Hecht 1990), but this will not concern us here.

Armed with these definitions, we can express the reflected and transmitted waves at the
first surface (location A in Fig. 9.7) in the form

ψr = rψi + t′ψb,

ψa = tψi + r′ψb, (9.30a)

where ψi, ψa, ψb, and ψr are the values of ψ at A for waves impinging on or leaving the
surface along the paths i, a, b, and r depicted in Fig. 9.7. Simple geometry shows that the
waves at the second surface are as depicted in Fig. 9.7; and correspondingly, the relationships
between the ingoing and outgoing waves there are

ψbe
−iks1 = r′ψae

ik(s1−s2) ,

ψt = t′ψae
iks1, (9.30b)

where k = nω/c is the wave number in the slab and (as is shown in the figure)

s1 = dsecθ , s2 = 2d tan θ sin θ , (9.30c)
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Fig. 9.7: Construction for calculating the phase differences across the slab for the two internal
waves in an etalon.

with d the thickness of the slab and θ the angle that the wave fronts inside the slab make
to the slab’s faces.

In solving Eqs. (9.30) for the net transmitted and reflected waves ψt and ψr in terms of the
incident wave ψi, we shall need reciprocity relations between the reflection and transmission
coefficients r, t for waves that hit the reflecting surfaces from one side, and those r′, t′ for
waves from the other side. These coefficients are connected by certain reciprocity relations
that are analyzed quite generally in Ex. 9.10. To derive the reciprocity relations in our
case of sharp boundaries between homogeneous media, consider the limit in which the slab
thickness d → 0. This is allowed because the wave equation is linear and the solution for
one surface can be superposed on that for the other surface. In this limit s1 = s2 = 0 and
the slab must become transparent so

ψr = 0, ψt = ψi . (9.31)

Eq. (9.30a), (9.30b), and (9.31) are then six homogeneous equations in the five wave ampli-
tudes ψi,ψr,ψt,ψa,ψb, from which we can extract the two desired reciprocity relations:

r′ = −r , tt′ − rr′ = 1 . (9.32)

Since there is no mechanism to produce a phase shift as the waves propagate across a perfectly
sharp boundary, it is reasonable to expect r, r′, t and t′ all to be real, as indeed they are (Ex.
9.10). (If the interface has a finite thickness, it is possible to adjust the spatial origins on
the two sides of the inteface so as to make r, r′, t and t′ all be real, leading to the reciprocity
relations (9.32), but a price will be paid; see Ex. 9.10.)

Return, now, to the case of finite slab thickness. By solving Eqs. (9.30) for the reflected
and transmitted fields and invoking the reciprocity relations (9.32), we obtain

ψr =
r(1 − eiϕ)

1 − r2eiϕ
ψi , ψt =

(1 − r2)eiϕ/(2 cos2 θ)

1 − r2eiϕ
ψi . (9.33a)
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Here ϕ = k(2s1 − s2), which reduces to

ϕ = 2nωd cos θ/c , (9.33b)

is the light’s round-trip phase shift (along path a then b) inside the etalon, relative to the
phase of the incoming light that it meets at location A. If ϕ is a multiple of 2π, the round-trip
light will superpose coherently on the new, incoming light.

We are particularly interested in the total reflection and transmission coefficients for the
flux, i.e. the coefficients that tell us what fraction of the total flux incident on the two-faced
slab (etalon) is reflected by it, and what fraction emerges from its other side:

R =
|ψr|2
|ψi|2

=
2r2(1 − cosϕ)

1 − 2r2 cosϕ+ r4
,

T =
|ψt|2

|ψi|2
=

(1 − r2)2

1 − 2r2 cosϕ+ r4
. (9.33c)

From these expressions, we see that

R + T = 1 , (9.34a)

which says that the energy flux reflected from the slab plus that transmitted is equal to that
impinging on the slab (energy conservation). It is actually the reciprocity relations (9.32)
for the amplitude reflection and transmission coefficients that have enforced this energy
conservation. If they had contained a provision for absorption or scattering of light in the
interfaces, R + T would have been less than one.

The above expression for the flux reflection coefficient can be appreciated more clearly if
we introduce the finesse

F ≡ πr/(1 − r2) , (9.34b)

in terms of which

T =
1

1 + (2F/π)2 sin2 1
2ϕ

. (9.34c)

Suppose that the etalon’s surfaces are highly reflecting (as can be achieved with dielectric
coatings; first paragraph of Ex. 9.9), so r - 1. Then F is very large and the transmissivity T
exhibits resonances (Fig. 9.8). Unless sin 1

2ϕ is small, almost all the incident light is reflected
by the etalon (just as one might naively expect). The (perhaps surprising) exception arises
when sin 1

2ϕ is small. Then the total transmission can be large, reaching unity in the limit
sin 1

2ϕ → 0 (i.e., on resonance, when the round-trip phase shift ϕ inside the etalon is a
multiple of 2π). Notice that for large finesse, the half width of the resonance (the value
of δϕ ≡ ϕ − ϕresonance at which T falls to 1/2) is δϕ1/2 = π/F . The separation between
resonances (sometimes called the free spectral range) is δϕ = π; so the finesse is the ratio
of the free spectral range to the resonance half width.

The large transmissivity at resonance can be understood by considering what happens
when one first turns on the incident wave. If, as we shall assume, the reflectivity of the faces is
near unity, then the incoming wave has a large amplitude for reflection, and correspondingly



24

2 3 4 5

0.2

0.4

0.6

0.8

1

0
0 π π π ππ

ϕ

T

r=0.2

r=0.4

r=0.9

Fig. 9.8: Flux Transmission coefficient for an etalon as a function of the round-trip phase shift ϕ
(relative to the incoming light) inside an etalon.

only a tiny amplitude for transmission into the slab. The tiny bit that gets transmitted
travels through the slab, gets strongly reflected from the second face, and returns to the first
precisely in phase with the incoming wave (ϕ an integer multiple of 2π). Correspondingly,
it superposes coherently on the tiny field being transmitted by the incoming wave, and so
the net wave inside the slab is doubled. After one more round trip inside the slab, this wave
returns to the first face again in phase with the tiny field being transmitted by the incoming
wave; again they superpose coherently; and the internal wave now has a three times larger
amplitude than it began with. This process continues until a very strong field has built up
inside the slab (Ex. 9.9). As it builds up, that field begins to leak out of the slab’s first face
with just such a phase as to destructively interfere with the wave being reflected there. The
net reflected wave is thereby driven close to zero. The field leaking out the second face has
no other wave to interfere with. It remains strong, so the etalon settles down into a steady
state with strong net transmission. Heuristically, one can say that, because the wave inside
the slab is continually constructively superposing on itself, the slab “sucks” almost all the
incoming wave into itself, and then ejects it on out the other side. (Quantum mechanically,
this sucking is due to the photons’ Bose-Einstein statistics: the photons “want” to be in the
same quantum state. We shall study this phenomenon, in the context of plasmons that obey
Bose-Einstein statistics, in Chap. 22 [passage following Eq. (22.38)].

In addition to its resonant transmission when | sin 1
2ϕ| " 1, the etalon exhibits two other

important features. One is the slowness of its response to a changing input flux when it
is operating near resonance, which the above discussion makes clear. The other is a rapid
change of the phase of the transmitted light ψt as ϕ is gradually changed through resonance:
Eq. (9.33a) for ψt shows a phase

arg(ψt) - arg(ψi) − tan−1 δϕ

(1 − r2)
- arg(ψi) −

F
π
δϕ (9.34d)

near resonance. Here δϕ is the amount by which ϕ = 2nωd cos θ/c differs from its resonant
value (some multiple of 2π). This rapid phase shift of the transmitted light near resonance is
a general feature of high-quality oscillators and resonators, and (as we shall see in the next
section), it is crucial for interferometric gravitational-wave detectors.
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9.4.2 Fabry-Perot Interferometer

When the etalon’s two faces are highly reflecting (r near unity; F $ 1), we can think of them
as mirrors, between which the light resonates. The higher the mirror reflectivity, the sharper
the resonance (Fig. 9.8), the more rapid the change of phase near resonance [Eq. (9.34d)],
and the more sluggish the response to changes of input flux near resonance. Such a high-
reflectivity etalon is a special case of a Fabry-Perot interferometer. The general case is any
device in which light resonates between two high-reflectivity mirrors. The mirrors need not be
planar and need not have the same reflectivities, and the resonating light need not be plane
fronted. For example, in an interferometric gravitational-wave detector (Fig. 9.11 below)
each detector arm is a Fabry-Perot cavity with spherical mirrors at its ends, the mirrors
have very different but high reflectivities, and the resonating light has a Gaussian-beam
profile.

In the case of a Fabry-Perot etalon (parallel mirrors, plane-parallel light beam), the
resonant transmission enables the etalon to be used as a spectrometer. The round-trip
phase change ϕ = 2nωd cos θ/c inside the etalon varies linearly with the wave’s frequency
ω, but only waves with phases ϕ near integer multiples of 2π will be transmitted efficiently.
The etalon can be tuned to a particular frequency by varying either the slab width d or
the angle of incidence of the radiation (and thence the angle θ inside the etalon). Either
way, impressively good chromatic resolving power can be achieved. We say that waves with
two nearby frequencies can just be resolved by an etalon when the half power point of the
transmission coefficient of one wave coincides with the half power point of the transmission
coefficient of the other. Using Eq. (9.33c) we find that the phases for the two frequencies
must differ by δϕ ∼ 2π/F ; and correspondingly, since ϕ = 2nωd cos θ/c, the chromatic
resolving power is

R =
λ

δλ
=

2πnd

λvacδϕ
=

2ndF
λvac

. (9.35)

Here λvac is the wavelength in vacuum — i.e. outside the etalon.
If we regard the etalon as a resonant cavity, then the finesse F can be regarded as the

effective quality factor Q for the resonator. It is roughly the number of times a typical photon
traverses the etalon before escaping. Correspondingly, the response time of the etalon on
resonance, when one changes the incoming flux, is roughly the round-trip travel time for light
inside the etalon, multiplied by the finesse. Note, moreover, that as one slowly changes the
round-trip phase ϕ, the rate of change of the phase of the transmitted wave, d arg(ψt)/dϕ, is
π−1 times the finesse [Eq. (9.34d)].

9.4.3 Lasers

Fabry-Perot interferometers are exploited in the construction of many types of lasers. For
example, in a gas phase laser, the atoms are excited to emit a spectral line. This radiation
is spontaneously emitted isotropically over a wide range of frequencies. Placing the gas
between the mirrors of a Fabry-Perot interferometer allows one or more highly collimated
and narrow-band modes to be trapped and, while trapped, to be amplified by stimulated
emission.
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****************************

EXERCISES

Exercise 9.9 *** Example: Etalon’s Light Fields Computed by Summing the Contributions
from a Sequence of Round Trips

Study the step-by-step build up of the field inside an etalon and the etalon’s transmitted
field, when the input field is suddenly turned on. More specifically:

(a) When the wave first turns on, the transmitted field inside the etalon, at point A of Fig.
9.7, is ψa = tψi, which is very small if the reflectivity is high so |t| " 1. Show (with
the aid of Fig. 9.7) that, after one round-trip-travel time in the etalon, the transmitted
field at A is ψa = tψi +(r′)2eiϕtψi. Show that for high reflectivity and on resonance, the
tiny transmitted field has doubled in amplitude and its energy flux has quadrupled.

(b) Compute the transmitted field ψa at A after more and more round trips, and watch it
build up. Sum the series to obtain the stead-state field ψa. Explain the final, steady
state amplitude: why is it not infinite, and why, physically, does it have the value you
have derived.

(c) Show that, at any time during this buildup, the field transmitted out the far side of
the etalon is ψt = t′ψaeiks1 [Eq. (9.30b)]. What is the final, steady-state transmitted
field? Your answer should be Eq. (9.33a).

Exercise 9.10 *** Example: Reciprocity Relations for a Locally Planar Optical Device

Modern mirrors, etalons, beam splitters, and other optical devices are generally made
of glass or fused silica (quartz), with dielectric coatings on their surfaces. The coatings
consist of alternating layers of materials with different dielectric constants, so the index
of refraction n varies periodically. If, for example, the period of n’s variations is half
a wavelength of the radiation, then waves reflected from successive dielectric layers
build up coherently, producing a large net reflection coefficient; the result is a highly
reflecting mirror.

In this exercise we shall use a method due to Stokes to derive the reciprocity relations for
locally plane-fronted, monochromatic waves impinging on an arbitrary, locally planar,
lossless optical device. [By “locally” plane-fronted and planar, we mean that transverse
variations are on scales sufficiently long compared to the wavelength of light that we
can use the plane-wave analysis sketched below; for example, the spherical mirrors and
Gaussian beams of an interferometric gravitational-wave detector (Fig. 9.11) easily
satisfy this requirement. By lossless we mean that there is no absorption or scattering
of the light.] The device could be a mirror, a surface with an antireflection coating
(Ex. 9.12 below), an etalon, or any sequence of such objects with parallel surfaces.

Let a plane, monochromatic wave ψieiki·xe−iωt impinge on the optical device from
above, and orient the device so its normal is in the z direction and it is translation
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Fig. 9.9: Construction for deriving reciprocity relations for amplitude transmission and
reflection coefficients.

invariant in the x and y directions; see Fig. 9.9(a). Then the reflected and transmitted
waves are as shown in the figure. Because the medium below the device can have a
different index of refraction from that above, the waves’ propagation direction below
may be different from that above, as shown. For reasons explained in part (e) below,
we denote position below the device by x′ and position above the device by x.

(a) Consider a thought experiment in which the waves of Fig. 9.9(a) are time-reversed, so
they impinge on the device from the original reflection and transmission directions and
emerge toward the original input direction, as shown in Fig. 9.9(b). If the device had
been lossy, the time-reversed waves would not satisfy the field’s wave equation; the
absence of losses guarantees they do. Show that, mathematically, the time reversal can
be achieved by complex conjugating the spatial part of the waves, while leaving the
temporal part e−iωt unchanged. (Such phase conjugation can be achieved in practice
using techniques of nonlinear optics, as we shall see in the next chapter.) Show,
correspondingly, that the spatial part of the waves is described by the formulas shown
in Fig. 9.9(b).

(b) Use the reflection and transmission coefficients to compute the waves produced by
the inputs of Fig. 9.9(b). From the requirement that the wave emerging from the
device’s upward side have the form shown in the figure, conclude that ψ∗

i e
−iki·x =

t′(t∗ψ∗
i e

−iki·x) + r(r∗ψ∗
i e

−iki·x), so that

1 = rr∗ + t′t∗. (9.36a)

Similarly, from the requirement that no wave emerge from the device’s downward side,
conclude that

0 = tr∗ + t∗r′ . (9.36b)

Eqs. (9.36) are the most general form of the reciprocity relations for lossless, planar
devices.



28

(c) For a sharp interface between two homogeneous media, combine these general reci-
procity relations with the ones derived in the text, Eq. (9.32), to show that t, t′, r and
r′ are all real (as was asserted in the text).

(d) For the etalon of Figs. 9.6 and 9.7, what are the four complex reflection and transmis-
sion coefficients implied by Eq. (9.33a)?

(e) Show that for a general optical device, the reflection and transmission coefficients can
all be made real by appropriate, independent adjustments of the origins of the vertical
coordinates z (for points above the device) and z′ (for points below the device). More
specifically, show that by setting znew = zold + δz and z′new = z′old + δz′ and choosing
δz and δz′ appropriately, one can make t and r real. Show further that the reciprocity
relations (9.36a), (9.36b) then imply that t′ and r′ are also real. Finally, show that this
adjustment of origins brings the real reciprocity relations into the same form (9.32) as
for a sharp interface between two homogeneous media.

As attractive as it may be to have these coefficients real, one must keep in mind some
disadvantages: (i) the displaced origins for z and z′ in general will depend on fre-
quency, and correspondingly (ii) frequency-dependent information (most importantly,
frequency-dependent phase shifts of the light) are lost by making the coefficients real.
If the phase shifts depend only weakly on frequency over the band of interest (as is
typically the case for the dielectric coating of a mirror face), then these disadvantages
are unimportant and it is conventional to choose the coefficients real. If the phase
shifts depend strongly on frequency over the band of interest (e.g., for a Fabry-Perot
interferometer near resonance), the disadvantages are severe, and one generally leaves
the origins frequency independent, and correspondingly leaves r, r′, t and t′ complex.

Exercise 9.11 Example: Transmission and Reflection Coefficients for an Interface Between
Dielectric Media

Consider monochromatic electromagnetic waves that propagate from a medium with
index of refraction n1 into a medium with index of refraction n2. Let z be a cartesian
coordinate perpendicular to the planar interface between the medium.

(a) From the wave equation [−ω2 + (c2/n2)∇2]ψ = 0, show that both ψ and ψ,z must be
continuous across the interface.

(b) Using these continuity requirements, show that for light that propagates orthogonal to
the interface (z direction), the reflection and transmission coefficients, in going from
medium 1 to medium 2, are

r =
n1 − n2

n1 + n2
, t =

2n2

n1 + n2
. (9.37)

Notice that these r and t are both real.

(c) Use the reciprocity relations (9.36a) to deduce the reflection and transmission coeffi-
cients r′ and t′ for a wave propagating in the opposite direction, from medium 2 to
medium 1.
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Fig. 9.10: Sagnac interferometer used as a type of laser gyro.

Exercise 9.12 *** Example: Anti-reflection Coating

A common technique used to reduce the reflection at the surface of a lens is to coat
it with a quarter wavelength of material with refactive index equal to the geometric
mean of the refractive indices of air and glass.

(a) Show that this does indeed lead to perfect transmission of normally incident light.

(b) Roughly how thick must the layer be to avoid reflection of blue light? Estimate the
flux reflection coefficient for red light in this case.

Note: The amplitude reflection coefficient at an interface is given by Eq. (9.37).

Exercise 9.13 *** Problem: Sagnac Interferometer

A Sagnac interferometer is a rudimentary version of a laser gyroscope for measur-
ing rotation with respect to an inertial frame. The optical configuration is shown in
Fig. 9.10. Light from a laser L is split by a beam splitter B and travels both clockwise
and counter-clockwise around the optical circuit, reflecting off three plane mirrors. The
light is then recombined at B and interference fringes are viewed through the telescope
T . The whole assembly rotates with angular velocity Ω.

Calculate the difference in the time it takes light to traverse the circuit in the two
directions and show that the consequent fringe shift (total number of fringes passing
some cross hairs in T ), can be expressed as ∆N = 4AΩ/cλ, where λ is the wavelength
and A is the area bounded by the beams.

****************************

9.5 T2 Laser Interferometer Gravitational Wave De-
tectors

As we shall discuss in Chap. 26, gravitational waves are predicted to exist by general relativ-
ity theory, and their emission by a binary neutron-star system has already been monitored,
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Fig. 9.11: Laser Interferometer Gravitational Wave Detector.

via their back-action on the binary’s orbital motion. As orbital energy is lost to gravitational
waves, the binary gradually spirals inward, so its orbital angular velocity gradually increases.
The measured rate of increase agrees with general relativity’s predictions to within the ex-
perimental accuracy of a fraction of a percent (for which Russel Hulse and Joseph Taylor
received the 1993 Nobel Prize). However, the gravitational analog of Hertz’s famous lab-
oratory emission and detection of electromagnetic waves has not yet been performed, and
probably cannot be in the authors’ lifetime because of the waves’ extreme weakness. For
waves strong enough to be detectable, one must turn to violent astrophysical events, such
as the collision and coalescence of two neutron stars or black holes.

When they reach earth and pass through a laboratory, the gravitational waves should
produce tiny relative accelerations of free test masses. The tiny, oscillatory variation of the
spacing between two such masses can be measured optically using a Michelson interferometer,
in which (to increase the signal strength) each of the two arms is operated as a Fabry-Perot
cavity.

The two cavities are aligned along perpendicular directions as shown in Fig. 9.11. A
Gaussian beam of light from a laser passes through a beam splitter, creating two beams with
correlated phases. The beams excite the two cavities near resonance. Each cavity has an end
mirror with extremely high reflectivity, 1− r2

e < 10−4, and a corner mirror (“input mirror”)
with a lower reflectivity, 1 − r2

i ∼ 0.01. Because of this lower reflectivity, by contrast with
the etalons discussed above, the resonant light leaks out through the input mirror instead of
through the end mirror. The reflectivity of the input mirror is so adjusted that the typical
photon is stored in the cavity for roughly half the period of the expected gravitational waves
(a few milliseconds), which means that the input mirror’s reflectivity r2

i , the arm length d,
and the gravitational-wave frequency ωgw are related by

d

c(1 − r2
i )

∼ 1

ωgw
(9.38)

The light emerging from the cavity, like that transmitted by an etalon, has a phase that



31

is highly sensitive to the separation between the mirrors: a tiny change δd in their separation
produces a change in the outcoming phase

δϕo -
8ωδd

c

1

(1 − r2
i )

∼ ω

ωgw

δd

d
(9.39)

in the limit 1 − ri " 1; see Ex. 9.14. The outcoming light beams from the two cavities
return to the beam splitter and there are recombined. The relative distances from the beam
splitter to the cavities are adjusted so that, in the absence of any perturbations of the cavity
lengths, almost all the interfered light goes back toward the laser, and only a tiny (but
nonzero) amount goes toward the photodetector of Fig. 9.11, which monitors the output.
Perturbations δd1 and δd2 in the cavity lengths then produce a change

δϕo1 − δϕo2 ∼
ω

ωgw

(δd1 − δd2)

d
(9.40)

in the relative phases at the beam splitter, and this in turn produces a change of the light
intensity into the photodetector. By using two cavities in this way, and keeping their light
storage times (and hence response times) the same, one makes the intensity of the light
entering the photodiode be insensitive to fluctuations in the laser frequency; this is crucial
for obtaining the high sensitivities that gravitational-wave detection requires.

The mirrors at the ends of each cavity are suspended as pendula, and when a gravitational
wave with dimensionless amplitude h (to be discussed in Chap. 26) passes, it moves the
mirrors back and forth, producing changes

δd1 − δd2 ∼ hd (9.41)

in the arm length difference. The resulting change in the relative phases of the two beams
returning to the beam splitter,

δϕo1 − δϕo2 ∼
ω

ωgw
h, (9.42)

is monitored via the changes in intensity that it produces for the light going into the photode-
tector. If one builds the entire detector optimally and uses the best possible photodetector,
these phase changes can be measured with a photon shot-noise-limited precision of ∼ 1/

√
N ,

where N ∼ (IL/!ω)(1/ωgw) is the number of photons put into the detector by the laser dur-
ing half a gravitational-wave period.6 By combining this with Eq. (9.42) we see that the
weakest wave that can be detected is

h ∼
(!ω3

gw

ωIL

)1/2

. (9.43)

For a laser power IL ∼ 5 Watts, and ωgw ∼ 103s−1, ω ∼ 3 × 1015s−1, this gravitational-wave
sensitivity is h ∼ 3 × 10−21.

6This measurement accuracy is related to the Poisson distribution of the photons entering the interfer-
ometer’s two arms: if N is the mean number of photons during a half gravitational-wave period, then the
variance is

√
N , and the fractional fluctuation is 1/

√
N . The interferometer’s shot noise is actually caused

by a beating of quantum electrodynamical vacuum fluctuations against the laser’s light; for details see Caves
(1980).
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When operated in this manner, about 99 per cent of the light returns toward the laser from
the beam splitter and the other 1 per cent goes out the end mirror or into the photodetector
or gets absorbed or scattered due to imperfections in the optics. The 99 per cent returning
toward the laser can be recycled back into the interferometer, in phase with new laser light,
by placing a mirror between the laser and the beam splitter. This “recycling mirror” (shown
dashed in Fig. 9.11) makes the entire optical system into a big optical resonator with two sub-
resonators (the arms’ Fabry-Perot cavities), and the practical result is a 30-fold increase in
the input light power, from 5 Watts to 150 W—and an optical power in each arm of 100 kW.
[KIP: CHECK AND FIX NUMBERS!!] When operated in this manner, the interferometer
can achieve a sensitivity h ∼ 3 × 10−22, which is in the range expected for the waves from
colliding neutron stars, black holes, and other astrophysical sources; see Chap. 26. For a
more accurate analysis of the sensitivity, see Exs. 9.14 and 9.15.

This estimate of sensitivity is actually the rms noise in a bandwidth equal to frequency
at the minimum of LIGO’s noise curve. Figure 5.4 in Chap. 5 shows the noise curve as the
square root of the spectral density of the measured arm-length separations

√
Sx(f), or in the

notation of this chapter,
√

Sd(f). Since the waves produce a change of d given by δd ∼ hd,
the corresponding noise-induced fluctuations in the measured h have Sh ∼ Sd/d2, and the
rms noise fluctuations in a bandwidth equal to frequency f are hrms ∼

√
Shf ∼ (1/d)

√
Sdf .

Inserting
√

Sh - 10−19 m Hz−1/2 and f - 100 Hz from Fig. 5.4, and d = 4 km for the LIGO
arm length, we obtain hrms ∼ 3 × 10−22, in accord with the above estimate.

There are enormous obstacles to achieving such high sensitivity. To name just a few:
Imperfections in the optics will absorb some of the high light power, heating the mirrors and
beam splitter and causing them to deform. Even without such heating, the mirrors and beam
splitter must be exceedingly smooth and near perfectly shaped to minimize the scattering
of light from them. Thermal noise in the mirrors and their suspensions (described by the
fluctuation dissipation theorem) will cause the mirrors to move in manners that simulate
the effects of a gravitational wave, as will seismic- and acoustic-induced vibrations of the
mirror suspensions. LIGO’s arms must be long (4 km) in order to minimize the effects of
these noises. While photon shot noise dominates near and above the noise curve’s minimum,
f ! 100 Hz, these and other noises dominate at lower frequencies.

The initial LIGO interferometers operated at their design sensitivity from autumn 2005
to autumn 2007, carrying out a 2-year-long gravitational-wave search, much of the time in
collaboration with international partners (the French-Italian VIRGO and British/German
GEO600 interferomters). LIGO’s interferometers are being upgraded by a factor ∼ 15 in
amplitude sensitivity (“advanced LIGO”), with searches near the new design sensitivity likely
to begin around 2014.

The initial LIGO design sensitivity is at a level ∼ 10−21 where detection is plausible but
not highly likely; advanced-LIGO will be at a level h ∼ 10−22 where it will be surprising if
a number of gravitational-wave sources are not detected.

****************************

EXERCISES

Exercise 9.14 Derivation and Problem: Phase Shift in LIGO Arm Cavity
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(a) For the inteferometric gravitational wave detector depicted in Fig. 9.11 (with the arms’
input mirrors having amplitude reflectivities ri close to unity and the end mirrors
perfectly reflecting), analyze the light propagation in cavity 1 by the same techniques
as were used for an etalon in Sec. 9.11. Show that, if ψi1 is the light field impinging on
the input mirror, then the total reflected light field ψr1 is

ψr1 = eiϕ1
1 − rie−iϕ1

1 − rieiϕ1
ψi1 , where ϕ1 = 2kd1 . (9.44a)

(b) From this, infer that the reflected flux |ψr1|2 is identical to the cavity’s input flux |ψi1|2,
as it must be since no light can emerge through the perfectly reflecting end mirror.

(c) The arm cavity is operated on resonance, so ϕ1 is an integer multiple of 2π. From Eq.
(9.44a) infer that (up to fractional errors of order 1− ri) a change δd1 in the length of
cavity 1 produces a change

δϕr1 =
8k δd1

1 − r2
i

. (9.44b)

With slightly different notation, this is Eq. (9.39), which we used in the text’s order of
magnitude analysis of LIGO’s sensitivity. In this exercise and the next, we will carry
out a more precise analysis.

Exercise 9.15 Example: Photon Shot Noise in LIGO

(a) Continuing the preceeding exercise: Denote by ψL the light field from the laser that
impinges on the beam splitter and gets split in two, with half going into each arm.
Using the above equations, infer that the light field returning to be beam splitter from
arm 1 is ψs1 = 1√

2
ψLeiϕ1(1 + iδϕr1), where ϕ1 is some net accumulated phase that

depends on the separation between the beam splitter and the input mirror of arm 1.

(b) Using the same formula for the field ψs2 from arm 2, and assuming that the phase
changes between beam splitter and input mirror are almost the same in the two arms,
so ϕo ≡ ϕ1 − ϕ2 is small compared to unity (mod 2π), show that the light field that
emerges from the beam splitter, traveling toward the photodetector, is

ψpd =
1√
2
(ψs1 − ψs2) =

i

2
(ϕo + δϕr1 − δϕr2)ψL (9.45a)

to first order in the small phases. Show that the condition |ϕo| " 1 corresponds to the
experimenters’ having adjusted the positions of the input mirrors in such a way that
almost all of the light returns toward the laser and only a small fraction goes toward
the photodetector.

(c) For simplicity, let the gravitational wave travel through the interferometer from directly
overhead and have an optimally oriented polarization. Then, as we shall see in Chap.
26, the dimensionless gravitational-wave field h(t) produces the arm-length changes
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δd1 = −δd2 = h(t)d, where d is the unperturbed arm length. Show, then, that the
field traveing toward the photodetector is

ψpd =
i

2
(ϕo + δϕgw) , where δϕgw =

8kd

1 − r2
i

h(t) =
16πd/λ

1 − r2
i

h(t) . (9.45b)

The experimenter adjusts ϕo so it is large compared to the tiny δϕgw.

(d) Actually, this equation has been derived assuming, when analyzing the arm cavities
[Eq. (9.44a)], that the arm lengths are static. Explain why it should still be nearly valid
when the gravitational waves are moving the mirrors, so long as the gravitational-wave
half period 1/2f = π/ωgw is somewhat longer than the mean time that a photon is
stored inside an arm cavity, i.e. so long as f $ fo, where

fo ≡
1 − r2

i

4π

c

2d
. (9.46)

Assume that this is so.

(e) Show that, if IL is the laser power impinging on the beam splitter (proportional
to |ψL|2 then the steady-state light power going toward the photodetector is Ipd =
(ϕo/2)2IL and the time-variation in that light power due to the gravitational wave (the
gravitational-wave signal) is

Igw(t) =
√

ILIpd
16πd/λ

1 − r2
i

h(t) . (9.47a)

The photodetector monitors these changes Igw(t) in the light power Ipd and from
them infers the gravitational-wave field h(t). This is called a “DC” or “homodyne”
readout system; it works by beating the gravitational-wave signal field (∝ δϕGW)
against the steady light field (“local oscillator”, ∝ ϕo) to produce the signal light
power Igw(t) ∝ h(t).

(f) Shot noise in the interferometer’s output light power Ipd gives rise to noise in the
measured gravitational-wave field h(t). From Eq. (9.47a) show that the spectral density
of the noise in the measured h(t) is

Sh(f) =

(
(1 − r2

i )λ

16πd

)2 SIpd

ILIpd
(9.47b)

(g) The light power Ipd impinging on the photodiode is carried by individual photons,
each of which has an energy !ω; the average arrival rate of photons is R = Ipd/!ω.
Explain why photon j brings a power Ij(t) = !ωJj(t − tj) where Jj(τ) is the shape of
the photon’s wave packet and its time integral is unity. From the analysis of shot noise
in Sec. 5.5.3, and assuming (as is surely true) that the durations of the photon wave
packets are very short compared to 1/f ∼ 0.01 s, show that the randomness in the
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arrival times of the photons produces fluctations in Ipd with the white-noise spectral
density

SIpd
(f) = 2R(!ω)2 = 2Ipd!ω . (9.48)

Combining with Eq. (9.47b), infer your final formula for the spectral density of the
noise in the inferred gravitational-wave signal

Sh(f) =

(
(1 − r2

i )λ

16πd

)2 2

IL/!ω ; (9.49a)

and from this infer the rms noise in a bandwidth equal to frequency

hrms =
√

fSh =

(
(1 − r2

i )λ

16πd
√

N

)
. where N =

IL

!ω
1

2f
(9.49b)

is the number of photons that impinge on the beam splitter, from the laser, in half a
gravitational-wave period.

(h) In the next exercise we shall derive (as a challenge) the modification to the spectral
density that arises at frequencies f ! fo. The signal strength that gets through the
interferometer is reduced because the arm length is increasing, then decreasing, then
increasing again, ... while the typical photon is in an arm cavity. The result of the
analysis is an increase of Sh(f) by 1(f/fo)2, so

Sh(f) =

(
(1 − r2

i )λ

16πd

)2 2

IL/!ω

(
1 +

f 2

f 2
o

)
. (9.50)

Compare this with the measured noise, at frequencies above fo = 100 Hz in the initial-
LIGO detectors (Fig. 5.4 with x = hd), using the initial-LIGO parameters, λ = 1.06µm,
ω = 2πc/λ - 2 × 1015 s−1, d = 4 km, IL = 150 W, 1 − r2

i = 1/30. It should agree
rather well with the measured noise.

Exercise 9.16 Challenge: LIGO Shot Noise at f ! fo

Derive the factor 1+(f/fo)2 by which the spectral density of the shot noise is increased
at frequencies f ! fo. [Hint: Redo the analysis of the arm cavity fields, part (a) of Ex.
9.15 using an arm length that varies sinusoidally at frequency f due to a sinusoidal
gravitational wave, and then use the techniques of Sec. 5.5.1 to deduce Sh(f).]

****************************
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Photodetector

CorrelatorHg line Intensity
Fringes

Photodetector
Current     I

Current     I

Fig. 9.12: Hanbury-Brown and Twiss Intensity Interferometer.

9.6 T2 Intensity Correlation and Photon Statistics.

A type of interferometer that is rather different from those studied above was proposed and
constructed by Hanbury-Brown and Twiss. In this interferometer, the intensities rather
than the amplitudes of the radiation are combined to measure the degree of coherence of the
radiation field. In their original experiment, Hanbury-Brown and Twiss divided light from
an incandescent mercury lamp and sent it along two paths of different length before detecting
photons in each beam separately using a photodetector; see Fig. 9.12. The electrical output
from each photodetector measures the rate of arrival of photons from its beam, I(t), which
we can write as K|Ψ|2 where K is a constant. I exhibits fluctuations δI about its mean
value I, and it was found that the fluctuations in the two beams were correlated. How can
this be?

The light that was detected originated from many random and independent emitters and
therefore obeys Gaussian statistics, according to the central limit theorem (Chap. 5). This
turns out to mean that the fourth-order correlations of the wave field ψ with itself can be
expressed in terms of the second-order correlations—which means in terms of the degree of
coherence. More specifically:

Continuing to treat the wave field Ψ as a scalar, we can write the intensity (&Ψ)2 as the
sum over a set of Fourier components Ψj with precise frequencies ωj and slowly wandering,
complex amplitudes. By (i) writing I(t) = (

∑
j &Ψj)2, (ii) forming the product I(t)I(t + τ),

(iii) keeping only terms that will have nonzero averages by virtue of containing products
of the form e+iωjte−iωjte+iωkte−iωkt (where j and k are generally not the same), and then
averaging over time, we obtain

I(t)I(t + τ) = K2Ψ(t)Ψ∗(t) ×Ψ(t + τ)Ψ∗(t + τ) + K2Ψ(t)Ψ∗(t + τ) ×Ψ∗(t)Ψ(t + τ)

= I
2
[1 + |γ‖(τ)|2] (9.51)

If we now measure the relative fluctuations, we find that

δI(t)δI(t + τ)

I(t)
2 =

I(t)I(t + τ) − I(t)
2

I(t)
2

= |γ‖(τ)|2 (9.52)

[Note: This analysis is only correct if the radiation comes from many uncorrelated sources—
the many independently emitting Mercury atoms in Fig. 9.12—and therefore has Gaussian
statistics.]
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Equation (9.52) tells us that the fluxes as well as the amplitudes of coherent radiation
should exhibit positive longitudinal correlation; and the degree of coherence for the fluxes is
equal to the squared modulus of the degree of coherence for the amplitudes. Although this
result was rather controversial at the time the experiments were first performed, it is easy to
interpret qualitatively if we think in terms of photons rather than classical waves. Photons
are bosons and are therefore positively correlated even in thermal equilibrium; cf. Chaps. 2
and 3. When they arrive at the beam splitter, they clump more than would be expected for
a random distribution of classical particles. In fact treating the problem from the point of
view of photon statistics gives an answer equivalent to Eq. (9.52).

Some practical considerations should be mentioned. The first is that our result, Eq. (9.52)
derived for a scalar wave, is really only valid for completely polarised radiation. If the incident
radiation is unpolarized, then the intensity fluctuations are reduced by a factor two. The
second point is that the photon counts are actually averaged over longer times than the
correlation time of the incident radiation. This reduces the magnitude of the measured
effect further.

Nevertheless, after successfully measuring temporal intensity correlations, Hanbury-Brown
and Twiss constructed a Stellar Interferometer with which they were able to measure the
angular diameters of bright stars. This method had the advantage that, it did not depend
upon the phase of the incident radiation, so the results were insensitive to atmospheric fluc-
tuations, one of the drawbacks of the Michelson Stellar Interferometer. Indeed it is not even
necessary to use accurately ground mirrors to measure the effect. The method has the dis-
advantage that it can only measure the modulus of the degree of coherence; the phase is lost.

****************************

EXERCISES

Exercise 9.17 Derivation: Intensity Correlations

By expressing the field as either a Fourier sum or a Fourier integral complete the
argument outlined in Eq. (9.51).

Exercise 9.18 Problem: Electron Intensity Interferometry.

Is it possible to construct an intensity interferometer to measure the coherence prop-
erties of an electron source? What qualitative differences do you expect there to be
from a photon intensity interferometer?

****************************

Bibliographic Note

For pedagogical introductions to interference and coherence with greater detail than this
chapter, see Hecht (1998), and Klein & Furtak (1986). For more advanced treatments, see
Francon (1966) and Goodman (1968). [KIP: CHECK THESE]
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Box 9.2
Important Concepts in Chapter 8

• Interference Fringes – Sec. 9.2.1 and Fig. 9.1
• Incoherent radiation – Eqs. (9.4) and (9.5)
• Degrees of Coherence and Fringe Visibility

– Degree of lateral coherence (complex fringe visibility) for nearly monochromatic
radiation, γ⊥ – Eqs. (9.6a), (9.10) and (9.12); and discussion after Eq. (9.8)

– Visibility for lateral coherence: V = |γ⊥| – Eq. (9.8)
– Degree of temporal (or longitudinal) coherence for nearly monochromatic radiation

– Eq. (9.15)
– Degree of temporal coherence for broad-band radiation – Eq. (9.16)
– Three-dimensional degree of coherence – Sec. 9.2.8

• Coherence lengths and times – Eqs. (9.11), (9.17) and associated discussions, and passage
following Eq. (9.21)

• van Cittert-Zernike Theorem relating degree of coherence to angular distribution and/or
spectrum of the source

– For lateral coherence, Eqs. (9.7) and (9.13)
– For temporal coherence of broad-band radiation – Eqs. (9.18)
– Three dimensional (lateral and longitudinal together) – Eqs. (9.22)
– Relationship to Wiener-Khintchine theorem – Ex. (9.7b)

• Michelson interferometer and Fourier-transform spectroscopy — Fig. 9.3, Sec. 9.2.7
• Complex random processes – Ex. 9.7
• Radio Telescope: How one constructs images of the source, and what determines its

angular resolution – Sec. 9.3
• Amplitude reflection and transmission coefficients – Eq. (9.30a)
• Reciprocity relations for reflection and transmission coefficients– Eqs. (9.32), Ex. 9.10
• Etalon and Fabry-Perot interferometer – Secs. 9.4.1 and 9.4.2

– Finesse and its influence on half-width of resonance and phase shift across resonance
– Eqs. (9.34) and associated discussion

– Free spectral range – passage following Eq. (9.34c)
– Spectrometer based on a Fabry-Perot interferometer; its resolving power – Sec. 9.4.2

• High reflectivity coatings and anti-reflection coatings constructed from alternating dielec-
tric layers – Exs. 9.10 (first paragraph) and 9.12

• Sagnac interferometer – Ex. 9.13
• Laser interferometer gravitational-wave detector, and how it works – Sec. 9.5
• Intensity correlations, Sec. 9.6
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