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Box 11.1
Reader’s Guide

• This chapter relies heavily on the geometric view of Newtonian physics (including
vector and tensor analysis) laid out in the sections of Chap. 1 labeled “[N]”.

• Chapter 11 (Elastodynamics) is an extension of this chapter; to understand it, this
chapter must be mastered.

• The idea of the irreducible tensorial parts of a tensor, and its most important
example, decomposition of the strain tensor into expansion, rotation, and shear
(Sec. 11.2.2 and Box 11.2) will be encountered again in Part IV (Fluid Mechanics)
and Part V (Plasma Physics).

• Differentiation of vectors and tensors with the help of connection coefficients (Sec.
11.5), will be used occasionally in Part IV (Fluid Mechanics) and Part V (Plasma
Physics), and will be generalized to non-orthonormal bases in Part VI (General
Relativity) and used extensively there.

• No other portions of this chapter are important for subsequent Parts of this book.

11.1 Overview

In this chapter we consider static equilibria of elastic solids — for example, the equilibrium
shape and internal strains of a cantilevered balcony on a building, deformed by the weight
of people standing on it.

1
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From the point of view of continuum mechanics, a solid (e.g. a wooden board in the
balcony) is a substance that recovers its shape after the application and removal of any small
stress. In other words, after the stress is removed, the solid can be rotated and translated to
assume its original shape. Note the requirement that this be true for any stress. Many fluids
(e.g. water) satisfy our definition as long as the applied stress is isotropic; however, they will
deform permanently under a shear stress. Other materials (for example, the earth’s crust)
are only elastic for limited times, but undergo plastic flow when a stress is applied for a long
time.

We shall confine our attention in this chapter to elastic solids, which deform while the
stress is applied in such a way that the magnitude of the deformation (quantified by a
tensorial strain) is linearly proportional to the applied, tensorial stress. This linear, three-
dimensional stress-strain relationship, which we shall develop and explore in this chapter,
generalizes Hooke’s famous one-dimensional law (originally expressed in the concise Latin
phrase “Ut tensio, sic vis”). In English, Hooke’s law says that, if an elastic wire or rod is
stretched by an applied force F (Fig. 11.1a), its fractional change of length (its strain) is
proportional to the force, ∆!/! ∝ F . In the language of stresses and strains (introduced
below), Hooke’s law says that the longitudinal stress Tzz ≡ (longitudinal force F per unit
cross sectional area A of the rod) = F/A is proportional to the longitudinal strain Szz =
∆!/!, with a proportionality constant E called Young’s modulus that is a property of the
material from which the rod is made:

F

A
≡ Tzz = ESzz ≡ E

∆!

!
. (11.1)

z

F 

+

(a) (b)

Fig. 11.1: (a) Hooke’s one-dimensional law for a rod stretched by a force F : ∆!/! ∝ F . (b) The
3-dimensional displacement vector ξ(x) inside the stretched rod.

Hooke’s law will turn out to be one component of the three-dimensional stress-strain
relation, but in order to understand it deeply in that language, we must first develop a deep
understanding of the strain tensor and the stress tensor. Our approach to these tensors will
follow the geometric, frame-independent philosophy introduced in Chap. 1. Some readers



3

may wish to review that philosophy and associated mathematics by rereading the “[N]”
sections of Chap. 1.

We begin in Sec. 11.2 by introducing, in a frame-independent way, the vectorial dis-
placement field ξ(x) inside a stressed body and its gradient ∇ξ, which is the strain tensor
S = ∇ξ. We then express the strain tensor as the sum of its irreducible tensorial parts: an
expansion Θ, a rotation R, and a shear Σ.

In Sec. 11.3.1 we introduce the stress tensor for a deformed, isotropic, elastic material. In
Sec. 11.3.2, we discuss how such a material resists volume change (an expansion-type strain)
by developing an opposing isotropic stress, with a stress/strain ratio that is equal to the bulk
modulus K; and how the material also resists a shear-type strain by developing an opposing
shear stress with a stress/strain ratio equal to twice the shear modulus 2µ. We then compute
the elastic force density inside the material, as the divergence of the sum of these two elastic
stresses, and we formulate the law of elastostatic stress balance as the vanishing sum of the
material’s internal elastic force density and any other force densities that may act (usually a
gravitational force density due to the weight of the elastic material). We discuss the analogy
between this elastostatic stress-balance equation and Maxwell’s electrostatic or magneto-
static equations, and we describe how mathematical techniques common in electrostatics
(separation of variables and Green’s functions) can also be applied to solve the elastostatic
stress-balance equation, subject to boundary conditions that describe external forces (e.g.
the pressure of a person’s feet, standing on a balcony). In Sec. 11.3.3 we evaluate the energy
density stored in elastostatic strains, and in Sec. 11.3.4 we discuss the atomic-force origin
of the elastostatic stresses and use atomic considerations to estimate the magnitudes of the
bulk and shear moduli.

In Sec. 11.4 we present a simple example of how to solve the three-dimensional equation of
elastostatic force balance subject to the appropriate boundary conditions on the surface of a
stressed body. Specficially, we use our three-dimensional formulas to deduce Hooke’s law for
the one-dimensional longitudinal stress and strain in a stretched wire, and we thereby relate
Young’s modulus E of Hooke’s law to the bulk modulus K that resists three-dimensional
volume changes, and the shear modulus µ that resists three-dimensional shears.

Because elasticity theory entails computing gradients of vectors and tensors, and practi-
cal calculations are often best performed in cylindrical or spherical coordinate systems, we
present a mathematical digression in Sec. 11.5 — an introduction to how one can perform
practical calculations of gradients of vectors and tensors in the orthonormal bases associ-
ated with curvilinear coordinate systems, using the concept of a connection coefficient (the
directional derivative of one basis vector field along another). In Sec. 11.5 we also use
these connection coefficients to derive some useful differentiation formulae in cylindrical and
spherical coordinate systems and bases.

As illustrative examples of both connection coefficients and elastostatic force balance,
in Sec 11.6 and various exercises, we give practical examples of solutions of the elastostatic
force-balance equation in cylindrical coordinates: for the stresses and strains in a pipe that
contains a fluid under pressure (Sec. 11.6.1 and Ex. 11.11) and in the wire of a torsion
pendulum (Ex. 11.12); and in a cylinder that is subjected to a Gaussian-shaped pressure on
one face (Sec. 11.6.2). As we shall see in Ex. 11.14, this cylinder-pressure problem is one
part of computing the spectral density of thermoelastic noise inside the test-mass mirrors of
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a gravitational-wave interferometer — an application of the fluctuation-dissipation theorem
that we introduced and discussed in Sec. 5.6 and Ex. 5.8 of Chap. 5 (Random Processes). We
shall sketch how to solve this cylinder-pressure problem using the two common techniques
of elastostatics and electrostatics: separation of variables (text of Sec. 11.6.2) and a Green’s
function (Ex. 11.15)

When the elastic body that one studies is very thin in two dimensions compared to the
third (e.g., a wire or rod), we can reduce the three-dimensional elastostatic equations to a set
of coupled one-dimensional equations by performing a two-lengthscale expansion. The key
to this dimensional reduction is taking moments of the elastostatic equations. We illustrate
this technique in Sec. 11.7, where we treat the bending of beams (e.g. for a cantilevered
balcony or bridge), and in exercises where we treat the bending of the support wire of a
Foucault pendulum, and the bending of a very long, thin wire to which forces are applied at
the ends (elastica).

Elasticity theory, as developed in this chapter, is an example of a common (some would
complain far too common) approach to physics problems, namely to linearize them. Lin-
earization may be acceptable when the distortions are small. However, when deformed by
sufficiently strong forces, elastic media may become neutrally stable to small displacements,
which can then grow to large amplitude. We shall study an example of this phenomenon in
Sec. 11.8, using our dimensionally reduced, one-dimensional theory. Our example will lead
us to a classic result, due originally to Euler: that when an elastic solid is compressed, there
comes a point where stable equilibria can disappear altogether. For an applied force in excess
of this maximum, the solid will buckle, a phenomenon that gives rise, in the earth’s crust,
to mountains (as we shall discuss). Buckling is associated with bifurcation of equilibria, a
phenomenon that is common to many physical systems, not just elastostatic ones. We illus-
trate bifurcation in Sec. 11.8 using a strut under a compressive load, and we will encounter
bifurcation again in Sec. 14.5, when we study the route to turbulence in fluids and the route
to chaos in other dynamical systems.

Finally, in Sec. 11.9 we discuss dimensional reduction by the method of moments for
bodies that are thin in only one dimension, not two; e.g. plates and thin mirrors. In
this case the three-dimensional elastostatic equations are reduced to two dimensions. We
illustrate our two-dimensional formalism by the stress polishing of telescope mirrors.

11.2 Displacement and Strain; Expansion, Rotation,
and Shear

We begin our study of elastostatics by introducing the elastic displacement vector, its gra-
dient (the strain tensor), and the irreducible tensorial parts of the strain.

11.2.1 Displacement Vector and Strain Tensor

We label the position of a point (a tiny bit of solid) in an unstressed body, relative to some
convenient origin in the body, by its position vector x. Let a force be applied so the body
deforms and the point moves from x to x + ξ(x); we call ξ the point’s displacement vector.
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If ξ were constant (i.e., if its components in a Cartesian coordinate system were independent
of location in the body), then the body would simply be translated and would undergo no
deformation. To produce a deformation, we must make the displacement ξ change from one
location to another. The most simple, coordinate-independent way to quantify those changes
is by the gradient of ξ, ∇ξ. This gradient is a second-rank tensor field;1 we shall give it the
name strain tensor and shall denote it S:

S = ∇ξ . (11.2a)

This strain tensor is a geometric object, defined independent of any coordinate system in
the manner described in Sec. 1.9. In slot-naming index notation (Sec. 1.5), it is denoted

Sij = ξi;j , (11.2b)

where the index j after the semicolon is the name of the gradient slot.
In a Cartesian coordinate system the components of the gradient are always just partial

derivatives [Eq. (1.54c)], and therefore the Cartesian components of the strain tensor are

Sij =
∂ξi
∂xj

= ξi,j . (11.2c)

(Recall that indices following a comma represent partial derivatives.) In the next section
we shall learn how to compute the components of the strain in cylindrical and spherical
coordinates.

For the one-dimensional Hooke’s-Law situation of Fig. 11.1a, we have ξz = z(∆!/!)
and Szz = ξz;z = ∂ξz/∂z = ∆!/! [Eq. (11.1)]. If we look in greater detail at the interior
of the stretched rod, paying attention to its three-dimensional structure, we see that the
rod’s resistance to volume changes causes it to shrink in cross section as it stretches in
length. This shows up as an inward component of the displacement vector (Fig. 11.1b), so
Sxx = ∂ξx/∂x < 0, Syy = ∂ξy/∂y < 0, Szz = ∂ξz/∂z > 0.

In any small neighborhood of any point xo in a deformed body, we can reconstruct the
displacement vector ξ from the strain tensor, up to an additive constant. In Cartesian
coordinates, by virtue of a Taylor-series expansion, ξ is given by

ξi(x) = ξi(xo) + (xj − xo j)(∂ξi/∂xj) + . . .

= ξi(xo) + (xj − xo j)Sij + . . . . (11.3)

If we place our origin of Cartesian coordinates at xo and let the origin move with the point
there as the body deforms [so ξ(xo) = 0], then Eq. (11.3) becomes

ξi = Sijxj when |x| is sufficiently small . (11.4)

We have derived this as a relationship between components of ξ, x, and S in a Cartesian
coordinate system. However, the indices can also be thought of as the names of slots (Sec.
1.5) and correspondingly Eq. (11.4) can be regarded as a geometric, coordinate-independent
relationship between the vectors and tensor ξ, x, and S.

In Ex. 11.2 we shall use Eq. (11.4) to gain insight into the displacements associated with
various types of strain.

1In our treatment of elasticity theory, we shall make extensive use of the tensorial concepts introduced in
Chap. 1.
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Box 11.2
Irreducible Tensorial Parts of a Second-Rank Tensor

in 3-Dimensional Euclidean Space

In quantum mechanics an important role is played by the “rotation group,” i.e.,
the set of all rotation matrices viewed as a mathematical entity called a group; see,
e.g., chapter XIII of Messiah (1962) or chapter 16 of Mathews and Walker (1965). Each
tensor in 3-dimensional Euclidean space, when rotated, is said to generate a specific
“representation” of the rotation group. Tensors that are “big”, in a sense to be discussed
below, can be broken down into a sum of several tensors that are “as small as possible.”
These smallest tensors are said to generate “irreducible representations” of the rotation
group. All this mumbo-jumbo is really very simple, when one thinks about tensors as
geometric, frame-independent objects.

As an example, consider an arbitrary second-rank tensor Sij in three-dimensional,
Euclidean space. In the text Sij is the strain tensor. From this tensor we can construct
the following “smaller” tensors by linear operations that involve only Sij and the metric
gij. (As these smaller tensors are enumerated, the reader should think of the notation
used as basis-independent, frame-independent, slot-naming index notation.) The smaller
tensors are the “trace” of Sij,

Θ ≡ Sijgij = Sii ; (1)

the antisymmetric part of Sij

Rij ≡
1

2
(Sij − Sji) ; (2)

and the symmetric, trace-free part of Sij

Σij ≡
1

2
(Sij + Sji) −

1

3
gijSkk . (3)

It is straightforward to verify that the original tensor Sij can be reconstructed from these
three “smaller” tensors, plus the metric gij as follows:

Sij =
1

3
Θgij + Σij + Rij . (4)

One way to see the sense in which Θ, Rij , and Σij are “smaller” than Sij is by
counting the number of independent real numbers required to specify their components
in an arbitrary basis. (In this counting the reader is asked to think of the index notation
as components on the chosen basis.) The original tensor Sij has 3 × 3 = 9 components
(S11, S12, S13, S21 , . . .), all of which are independent. By contrast, the 9 components of
Σij are not independent; symmetry requires that Σij ≡ Σji, which reduces the number
of independent components from 9 to 6; trace-freeness, Σii = 0 reduces it further from 6
to 5. The antisymmetric tensor Rij has just three independent components, R12, R23,
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Box 11.2, Continued

and R31. The scalar Θ has just one. Therefore, (5 independent components in Σij) + (3
independent components in Rij) + (1 independent components in Θ) = 9 = (number of
independent components in Sij).

The number of independent components (one for Θ, 3 for Rij , 5 for Σij) is a geomet-
ric, basis-independent concept: It is the same, regardless of the basis used to count the
components; and for each of the “smaller” tensors that make up Sij , it is easily deduced
without introducing a basis at all: (Here the reader is asked to think in slot-naming index
notation.) The scalar Θ is clearly specified by just one real number. The antisymmetric
tensor Rij contains precisely the same amount of information as the vector

φi ≡ −1

2
εijkRjk , (5)

as one can see from the fact that Eq. (5) can be inverted to give

Rij = −εijkφk ; (6)

and the vector φi can be characterized by its direction in space (two numbers) plus its
length (a third). The symmetric, trace-free tensor Σij can be characterized geometrically
by the ellipsoid (gij +εΣij)ζiζj = 1, where ε is an arbitrary number % 1 and ζi is a vector
whose tail sits at the center of the ellipsoid and head moves around on the ellipsoid’s
surface. Because Σij is trace-free, this ellipsoid has unit volume. It therefore is specified
fully by the direction of its longest principal axis (two numbers) plus the direction of a
second principle axis (a third number) plus the ratio of the length of the second axis to
the first (a fourth number) plus the ratio of the length of the third axis to the first (a
fifth number).

Each of the tensors Θ, Rij (or equivalently φi), and Σij is “irreducible” in the sense
that one cannot construct any “smaller” tensors from it, by any linear operation that in-
volves only it, the metric, and the Levi-Civita tensor. Irreducible tensors in 3-dimensional
Euclidean space always have an odd number of components. It is conventional to denote
this number by 2l + 1 where the integer l is called the “order of the irreducible repre-
sentation of the rotation group” that the tensor genenerates. For Θ, Rij (or equivalently
φi), and Σjk, l is 0, 1, and 2 respectively. These three tensors can be mapped into the
spherical harmonics of order l = 0, 1, 2; and their 2l + 1 components correspond to the
2l + 1 values of the quantum number m = −l, −l + 1 . . . , l − 1, l. For details see, e.g.,
section II.C of Thorne (1980).

In physics, when one encounters a new, unfamiliar tensor, it is often useful to identify
the tensor’s irreducible parts. They almost always play important, independent roles in
the physical situation one is studying. We meet one example in this chapter (the strain
tensor), and shall meet another when we study fluid mechanics (Chap. 12).
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11.2.2 Expansion, Rotation and Shear

In Box 11.2 we introduce the concept of the irreducible tensorial parts of a tensor, and we
state that in physics, when one encounters a new, unfamiliar tensor, it is often useful to
identify the tensor’s irreducible parts. The strain tensor S is an important example. It is a
general, second-rank tensor. Therefore, as we discuss in Box 11.2, its irreducible tensorial
parts are its trace Θ ≡ Tr(S) = Sii = ∇·ξ, which is called the deformed body’s expansion for
reasons we shall explore below; its symmetric, trace-free part Σ, which is called the body’s
shear ; and its antisymmetric part R, which is called the body’s rotation:

Θ = Sii = ∇ · ξ , (11.5a)

Σij =
1

2
(Sij + Sji) −

1

3
Θgij =

1

2
(ξi;j + ξj;i) −

1

3
Θgij , (11.5b)

Rij =
1

2
(Sij − Sji) . (11.5c)

Here gij is the metric, which has components gij = δij (Kronecker delta) in Cartesian
coordinates.

The strain tensor can be reconstructed from these irreducible tensorial parts in the fol-
lowing manner [Eq. (4) of Box 11.2, rewritten in abstract notation]:

∇ξ = S =
1

3
Θg + Σ + R. (11.6)

Let us consider the physical effects of the three separate parts of S in turn. To understand
expansion, consider a small 3-dimensional piece V of a deformed body (a “volume element”).
An element of area2 dΣ on the surface ∂V of V gets displaced through a vectorial distance ξ
and in the process sweeps out a volume ξ ·dΣ. Therefore, the change in the volume element’s
volume, produced by an arbitrary (small) displacement field ξ is

δV =

∫

∂V
dΣ · ξ =

∫

V
dV ∇ · ξ = ∇ · ξ

∫

V
dV = (∇ · ξ)V . (11.7)

Here we have invoked Gauss’ theorem in the second equality, and in the third we have used
the smallness of V to infer that ∇ · ξ is essentially constant throughout V and so can be
pulled out of the integral. Therefore, the fractional change in volume is equal to the trace
of the stress tensor, i.e. the expansion:

δV

V
= ∇ · ξ = Θ . (11.8)

See Figure 11.2 for a simple example.
The shear tensor Σ produces the shearing displacements illustrated in Figures 11.2 and

11.3. As it has zero trace, there is no volume change when a body undergoes a pure shear

2Note that we use Σ for a vectorial area and Σ for a strain tensor. There should be no confusion.
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RgS

= + +

Fig. 11.2: A simple example of the decomposition of a two dimensional distortion of a square
body into an expansion (Θ), a shear (Σ), and a rotation (R).

x2

x1

Fig. 11.3: Shear in two dimensions. The displacement of points in a solid undergoing pure shear
is the vector field ξ(x) given by Eq. (11.4) with Sji replaced by Σji: ξj = Σjixi = Σj1x1 + Σj2x2 .
The integral curves of this vector field are plotted in this figure. The figure is drawn using principal
axes, which are Cartesian, so Σ12 = Σ21 = 0, Σ11 = −Σ22, which means that ξ1 = Σ11x1, and
ξ2 = −Σ11x2. The integral curves of this simple vector field are the hyperbolae shown in the figure.
Note that the displacement increases linearly with distance from the origin.

deformation. The shear tensor has five independent components (Box 11.2). However, by
rotating our Cartesian coordinates appropriately, we can transform away all the off diagonal
elements, leaving the three diagonal elements, which must sum to zero. This is known as a
principal axis transformation. The components of the shear tensor in a cartesian coordinate
system can be written down immediately from Eq. (11.5b) by substituting the Kronecker
delta δij for the components of the metric tensor gij and treating all derivatives as partial
derivatives:

Σxx =
2

3

∂ξx
∂x

− 1

3

(
∂ξy
∂y

+
∂ξz
∂z

)
, Σxy =

1

2

(
∂ξx
∂y

+
∂ξy
∂x

)
, (11.9)

and similarly for the other components. The analogous equations in spherical and cylindrical
coordinates will be described in the next section.

The third term in Eq. (11.6) describes a pure rotation which does not deform the solid.
To verify this, write ξ = φ × x where φ is a small rotation of magnitude φ about an axis
parallel to the direction of φ. Using cartesian coordinates in three dimensional Euclidean
space, we can demonstrate by direct calculation that the symmetric part of S vanishes, i.e.,



10

Θ = Σ = 0 and that

Rij = −εijkφk , φi = −1

2
εijkRjk . (11.10a)

Therefore the elements of the tensor R in a cartesian coordinate system just involve the angle
φ. Note that expression (11.10a) for φ and expression (11.5c) for Rij imply that φ is half
the curl of the displacement vector,

φ =
1

2
∇ × ξ . (11.10b)

A simple example of rotation is shown in the last picture in Figure 11.2.
Let us consider some examples of strains that can arise in physical systems.

(i) Understanding how materials deform under various loads is central to mechanical,
civil and structural engineering. As we have already remarked, in an elastic solid,
the deformation (i.e. strain) is proportional to the applied stress. If, for example, we
have some structure of negligible weight and it supports a load, then the amount of
strain will increase everywhere in proportion to this load. However this law will only
be obeyed as long as the strain is sufficiently small that the material out of which the
structure is constructed behaves elastically. At a large enough strain, plastic flow will
set in and the solid will not return to its original shape after the stress is removed. The
point where this happens is known as the elastic limit. For a ductile substance like
polycrystalline copper with a relatively low elastic limit, this occurs at strains ∼ 10−4.
[However, failure (cracking or breaking of the material) will not occur until the yield
point which occurs at a strain ∼ 10−3.] For a more resilient material like cemented
tungsten carbide, strains can be elastic up to ∼ 3×10−3, and for rubber, a non-Hookean
material, recoverable strains of three or four are possible. What is significant is that
all these strains (with the exception of that in rubber) are small, % 1. So, usually,
when a material behaves elastically, the strains are small and the linear approximation
is consequently pretty good.

(ii) Continental drift can be measured on the surface of the earth using Very Long Base-
line Interferometry, a technique in which two or more radio telescopes are used to
detect interferometric fringes using radio waves from a distant point source. (A similar
technique uses the Global Positioning System to achieve comparable accuracy.) By
observing the fringes, it is possible to detect changes in the spacing between the tele-
scopes as small as a fraction of a wavelength (∼ 1 cm). As the telescopes are typically
1000km apart, this means that dimensionless strains ∼ 10−8 can be measured. Now,
the continents drift apart on a timescale ! 108yr., so it takes roughly a year for these
changes to grow large enough to be measured. Such techniques are becoming useful
for monitoring earthquake faults.

(iii) The smallest time-varying strains that have been measured so far involve laser inter-
ferometer gravitational wave detectors such as LIGO. In each arm of a LIGO inter-
ferometer, two mirrors hang freely, separated by 4 km. In 2005 their separations are
monitored, at frequencies ∼ 100 Hz, to ∼ 10−18 m, a thousandth the radius of a nu-
cleon! The associated strain is 3×10−22. Although these strains are not associated with
an elastic solid, they do indicate the high accuracy of optical measurement techniques.
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****************************

EXERCISES

Exercise 11.1 Derivation and Practice: Reconstruction of a Tensor from its Irreducible
Tensorial Parts.
Using Eqs. (1), (2), and (3) of Box 11.2, show that 1

3Θgij + Σij + Rij is equal to Sij.

Exercise 11.2 Example: The Displacement Vectors Associated with Expansion, Rotation
and Shear

(a) Consider a strain that is pure expansion, Sij = 1
3Θgij. Using Eq. (11.4) show that,

in the vicinity of a chosen point, the displacement vector is ξi = 1
3Θxi. Draw this

displacement vector field.

(b) Similarly, draw ξ(x) for a strain that is pure rotation. [Hint: express ξ in terms of the
vectorial angle φ with the aid of Eq. (11.10a).]

(c) Draw ξ(x) for a strain that is pure shear. To simplify the drawing, assume that the
shear is confined to the x-y plane, and make your drawing for a shear whose only
nonzero components are Σxy = Σyx. Compare your drawing with Fig. 11.3, where the
nonzero components are Σxx = −Σyy .

****************************

11.3 Stress and Elastic Moduli

11.3.1 Stress Tensor

The forces acting within an elastic solid are measured by a second rank tensor, the stress
tensor introduced in Sec. 1.12.1 (which is also the spatial part of the stress-energy tensor of
Sec. 1.12.2). Let us recall the definition of this stress tensor:

Consider two small, contiguous regions in a solid. If we take a small element of area dΣ
in the contact surface with its positive sense3 (same as direction of dΣ viewed as a vector)
pointing from the first region toward the second, then the first region exerts a force dF (not
necessarily normal to the surface) on the second through this area. The force the second
region exerts on the first (through the area −dΣ) will, by Newton’s third law, be equal and
opposite to that force. The force and the area of contact are both vectors and there is a
linear relationship between them. (If we double the area, we double the force.) The two
vectors therefore will be related by a second rank tensor, the stress tensor T:

dF = T · dΣ = T(. . . , dΣ) ; i.e., dFi = TijdΣj . (11.11)

3For a discussion of area elements including their positive sense, see Sec. 1.11.
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Thus, the tensor T is the net (vectorial) force per unit (vectorial) area that a body exerts
upon its surroundings. Be aware that many books on elasticity (e.g. Landau and Lifshitz
1986) define the stress tensor with the opposite sign to (11.11). Also be careful not to confuse
the shear tensor Σjk with the vectorial infinitesimal surface area dΣj .

We often need to compute the total elastic force acting on some finite volume V. Let us
now make an important assumption, which we discuss in Sec. 11.3.4, namely that the stress
is determined by local conditions and can be computed from the local arrangement of atoms.
If this assumption is valid, then (as we shall see in Sec. 11.3.4), we can compute the total
force acting on the volume element by integrating the stress over its surface ∂V:

F = −
∫

∂V
T · dΣ = −

∫

V
∇ · TdV , (11.12)

where we have invoked Gauss’ theorem, and the minus sign is because, for a closed surface
∂V (by convention), dΣ points out of V instead of into it.

Equation (11.12) must be true for arbitrary volumes and so we can identify the elastic
force density f acting on an elastic solid as

f = −∇ ·T . (11.13)

In elastostatic equilibrium, this force density must balance all other volume forces acting on
the material, most commonly the gravitational force density so that

f + ρg = 0 (11.14)

where g is the gravitational acceleration. (Again, there should be no confusion between the
vector g and the metric tensor g.) There are other possible external forces, some of which
we shall encounter later in a fluid context, e.g. an electromagnetic force density. These can
be added to Eq. (11.14).

Just as for the strain, the stress-tensor T can be decomposed into its irreducible tensorial
parts, a pure trace (the pressure P ) and a symmetric trace-free part (the shear stress):

T = Pg + Tshear ; P =
1

3
Tr(T) =

1

3
Tii . (11.15)

(There is no antisymmetric part because the stress tensor is symmetric, as we saw in Sec.
1.12.) Fluids at rest exert isotropic stresses, i.e. T = Pg. They cannot exert shear stress
when at rest, though when moving and shearing they can exert a viscous shear stress, as we
shall discuss extensively in Part IV (especially Sec. 12.6).

In SI units, stress is measured in units of Pascals, denoted Pa

1Pa = 1N/m2 = 1
kg m/s2

m2
, (11.16)

or sometimes in GPa = 109 Pa. In cgs units, stress is measured in dyne/cm2. Note that 1
Pa = 10 dyne/cm2.

Now let us consider some examples of stresses:
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(i) Atmospheric pressure is equal to the weight of the air in a column of unit area extending
above the earth, and thus is roughly P ∼ ρgH ∼ 105Pa, where ρ ' 1 kg m−3 is the
density of air, g ' 10m s−2 is the acceleration of gravity at the earth’s surface, and
H ' 10km is the atmospheric scale height. Thus 1 atmosphere is ∼ 105 Pa (or, more
precisely, 1.01325 × 105 Pa). The stress tensor is isotropic.

(ii) Suppose we hammer a nail into a block of wood. The hammer might weigh m ∼ 0.3kg
and be brought to rest from a speed of v ∼ 10m s−1 in a distance of, say, d ∼ 3mm.
Then the average force exerted on the wood by the nail is F ∼ mv2/d ∼ 104N. If this
is applied over an effective area A ∼ 1mm2, then the magnitude of the typical stress
in the wood is ∼ F/A ∼ 1010Pa ∼ 105atmosphere. There is a large shear component
to the stress tensor, which is responsible for separating the fibers in the wood as the
nail is hammered.

(iii) Neutron stars are as massive as the sun, M ∼ 2 × 1030 kg, but have far smaller radii,
R ∼ 10km. Their surface gravities are therefore g ∼ GM/R2 ∼ 1012m s−2, a billion
times that encountered on earth. They have solid crusts of density ρ ∼ 1017kg m−3

that are about 1km thick. The magnitude of the stress at the base of a neutron-star
crust will then be P ∼ ρgH ∼ 1031Pa! This stress will be mainly hydrostatic, though
as the material is solid, a modest portion will be in the form of a shear stress.

(iv) As we shall discuss in Chap. 27, a popular cosmological theory called inflation pos-
tulates that the universe underwent a period of rapid, exponential expansion during
its earliest epochs. This expansion was driven by the stress associated with a false
vacuum. The action of this stress on the universe can be described quite adequately
using a classical stress tensor. If the interaction energy is E ∼ 1015GeV, the sup-
posed scale of grand unification, and the associated length scale is the Compton wave-
length associated with that energy l ∼ !c/E, then the magnitude of the stress is
∼ E/l3 ∼ 1097(E/1015GeV)4 Pa.

(v) Elementary particles interact through forces. Although it makes no sense to describe
this interaction using classical elasticity, it does make sense to make order of magnitude
estimates of the associated stress. One promising model of these interactions involves
fundamental strings with mass per unit length µ = g2

sc
2/8πG ∼ 0.1 Megaton/Fermi

(where Megaton is not the TNT equivalent!), and cross section of order the Planck
length squared, LP

2 = !G/c3 ∼ 10−70 m2, and tension (negative pressure) Tzz ∼
µc2/LP

2 ∼ 10110 Pa. Here !, G and c are Planck’s (reduced) constant, Newton’s
gravitation constant, and the speed of light, and g2

s ∼ 0.025 is the string coupling
constant.

(vi) The highest possible stress is presumably found associated with singularities, for ex-
ample at the creation of the universe or inside a black hole. Here the characteristic
energy is the Planck energy EP = (!c5/G)1/2 ∼ 1019 GeV, the lengthscale is the Planck
length LP = (!G/c3)1/2 ∼ 10−35 m, and the associated ultimate stress is ∼ 10114 Pa.
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11.3.2 Elastic Moduli and Elastostatic Stress Balance

Having introduced the stress and the strain tensors, we are now in a position to generalize
Hooke’s law by postulating a linear relationship between them. The most general linear
equation relating two second rank tensors will involve a fourth rank tensor known as the
elastic modulus tensor, Y. In slot-naming index notation,

Tij = −YijklSkl (11.17)

Now, a general fourth rank tensor in three dimensions has 34 = 81 independent compo-
nents. Elasticity can get complicated! However, the situation need not be so dire. There are
several symmetries that we can exploit. Let us look first at the general case. As the stress
tensor is symmetric, and only the symmetric part of the strain tensor creates stress (i.e., a
solid-body rotation through some vectorial angle φ produces no stress), Y is symmetric in
its first pair of slots and also in its second pair: Yijkl = Yjikl = Yijlk. There are therefore 6
independent components Yijkl for variable i, j and fixed k, l, and vice versa. In addition, as
we show below, Y is symmetric under an interchange of its first and second pairs of slots:
Yijkl = Yklij. There are therefore (6 × 7)/2 = 21 independent components in Y. This is an
improvement over 81. Many substances, notably crystals, exhibit additional symmetries and
this can reduce the number of independent components considerably.

The simplest, and in fact most common, case arises when the medium is isotropic. In
other words, there are no preferred directions in the material. This occurs when the solid is
polycrystalline or amorphous and completely disordered on a scale large compared with the
atomic spacing, but small compared with the solid’s inhomogeneity scale.

If a body is isotropic, then its elastic properties must be describable by scalars. Now,
the stress tensor T, being symmetric, must have just two irreducible tensorial parts, T =(a
scalar P )g+(a trace-free symmetric part Tshear); and the parts of the strain that can produce
this {P,Tshear} are the scalar expansion Θ and the trace-free, symmetric shear Σ, but not
the rotation. The only linear, coordinate-independent relationship between these {P,Tshear}
and {Θ,Σ} involving solely scalars is P = −KΘ, T shear = −2µΣ, corresponding to a total
stress tensor

T = −KΘg − 2µΣ . (11.18)

Here K is called the bulk modulus and µ the shear modulus, and the factor 2 is included
for purely historical reasons. In Sec. 11.4 we will deduce the relationship of these elastic
moduli to Young’s modulus E (which appears in Hooke’s law for the stress in a stretched
rod or fiber [Eq. (11.1) and Fig. 11.1]). In some treatments and applications of elasticity, µ
is called the first Lame coefficient, and a second Lame coefficient λ ≡ K − 2

3µ is introduced
and used in place of K.

It is commonly the case that the elastic moduli K and µ are constant, i.e. are independent
of location in the medium, even though the medium is stressed in an inhomogeneous way.
(This is because the strains are small and thus perturb the material properties by only small
amounts.) If so, we can deduce (Ex. 11.3) an expression for the elastic force density inside
the body [Eq. (11.13)]:

f = −∇ · T = K∇Θ + 2µ∇ · Σ =

(
K +

1

3
µ

)
∇(∇ · ξ) + µ∇2ξ . (11.19)
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n

boundary pill box

Fig. 11.4: Pill box used to derive boundary conditions in electrostatics and elastostatics.

Here ∇ · Σ in index notation is Σij;j = Σji;j. Extra terms must be added if we are dealing
with less symmetric materials. However, in this book Eq. (11.19) will be sufficient for our
needs.

If no other countervailing forces act in the interior of the material (e.g., if there is no
gravitational force), and if, as in this chapter, the material is in a static, equilibrium state
rather than vibrating dynamically, then this force density will have to vanish throughout
the material’s interior. This vanishing of f ≡ −∇ · T is just a fancy version of Newton’s
law for static situations, F = ma = 0. If the material has density ρ and is pulled on by
a gravitational acceleration g, then the sum of the elastostatic force per unit volume and
gravitational force per unit volume must vanish, f + ρg = 0.

When external forces are applied to the surface of an elastic body (for example, when
one pushes on the face of a cylinder) and gravity acts on the interior, the distribution of the
strain ξ(x) inside the body can be computed by solving the zero-internal-force equation

f + ρg =

(
K +

1

3
µ

)
∇(∇ · ξ) + µ∇2ξ + ρg = 0 (11.20)

subject to boundary conditions provided by the applied forces.
Solving this equation for ξ(x), subject to specified boundary conditions, is a problem in

elastostatics analogous to solving Maxwell’s equations for an electric field subject to bound-
ary conditions in electrostatics, or for a magnetic field subject to boundary conditions in
magnetostatics, and the types of solution techniques used in electrostatics and magnetostat-
ics can also be used here — e.g. separation of variables and Green’s functions. We shall
explore examples in Sec. 11.6.2 and Exs. 11.14 and 11.15 below.

In electrostatics one can derive boundary conditions by integrating Maxwell’s equations
over the interior of a thin box (a “pill box”) with parallel faces that snuggle up to the
boundary (Fig. 11.4). For example, by integrating ∇ · E = ρe/εo over the interior of the
pill box, then applying Gauss’s law to convert the left side to a surface integral, we obtain
the junction condition that the discontinuity in the normal component of the electric field
is equal 1/εo times the surface charge density. Similarly, in elastostatics one can derive
boundary conditions by integrating the elastostatic equation ∇ · T = 0 over the pill box of
Fig. 11.4 and then applying Gauss’s law:

0 =

∫

V
∇·TdV =

∫

∂V
T·dΣ =

∫

∂V
T·ndA = [(T·n)upper face−(T·n)lower face]A . (11.21)

Here in the next-to-last expression we have used dΣ = ndA where dA is the scalar area
element and n is the unit normal to the pill-box face, and in the last term we have assumed
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the pill box has a small face so T · n can be treated as constant and be pulled outside the
integral. The result is the boundary condition that T · n must be continuous across any
boundary, i.e. in index notation, Tijnj is continuous.

Physically this is nothing but the law of force balance across the boundary: The force
per unit area acting from the lower side to the upper side must be equal and opposite to that
acting from upper to lower. As an example, if the upper face is bounded by vacuum then the
solid’s stress tensor must satisfy Tijnj = 0 at the surface. If a normal pressure P is applied
by some external agent at the upper face, then the solid must respond with a normal force
equal to P : niTijnj = P . If a vectorial force per unit area Fi is applied at the upper face by
some external agent, then it must be balanced: Tijnj = Fi.

11.3.3 Energy of Deformation

Take a wire of length ! and cross sectional area A, and stretch it (e.g. via the “Hooke’s-law
experiment” of Fig. 11.1) by an amount ζ ′ that grows gradually from 0 to ∆!. When the
stretch is ζ ′, the force that does the stretching is F ′ = EA(ζ ′/!) = EV/!2)ζ ′; here V = EA!
is the wire’s volume and E is its Young’s modulus. As the wire is gradually lengthened, the
stretching force F ′ does work

W =

∫ ∆"

0

F ′dζ ′ =

∫ ∆"

0

(EV/!)ζ ′dζ ′

=
1

2
EV (∆!/!)2 . (11.22)

This tells us that the stored elastic energy per unit volume is

U =
1

2
E(∆!/!)2 (11.23)

To generalize this formula to three dimensions, consider an arbitrary but very small
region V inside a body that has already been stressed by a displacement vector field ξi and
is thus already experiencing an elastic stress Tij given by the three-dimensional stress-strain
relation (11.18). Imagine building up this displacement gradually from zero at the same rate
everywhere in and around V, so at some moment during the buildup the displacement field
is ξ′i = ξiε (with the parameter ε gradually growing from 0 to 1). At that moment, the stress
tensor (by virtue of the linearity of the stress-strain relation) is T ′

ij = Tijε. On the boundary
∂V of the region V, this stress exerts a force ∆F ′

i = −T ′
ij∆Σj across any surface element

∆Σj , from the exterior of ∂V to its interior. As the displacement grows, this surface force
does the following amount of work on V:

∆Wsurf =

∫
∆F ′

idξ
′
i =

∫
(−T ′

ij∆Σj)dξ
′
i = −

∫ 1

0

Tijε∆Σjξ
′
idε = −1

2
Tij∆Σjξi . (11.24)

The total amount of work done can be computed by adding up the contributions from all
the surface elements of ∂V:

Wsurf = −1

2

∫

∂V
TijξidΣj = −1

2

∫

V
(Tijξi);jdV = −1

2
(Tijξi);jV . (11.25)
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In the second step we have used Gauss’s theorem, and in the third step we have used the
smallness of the region V to infer that the integrand is very nearly constant and the integral
is the integrand times the total volume V of V.

Does this equal the elastic energy stored in V? The answer is “no”, because we must
also take account of the work done in the interior of V by gravity or any other non-elastic
force that may be acting. Now, although it is not easy in practice to turn gravity off and
then on, we must do so in this thought experiment: In the volume’s final deformed state, the
divergence of its elastic stress tensor is equal to the gravitational force density, ∇ · T = ρg
[Eqs. (11.13) and (11.14]; and in the initial, undeformed and unstressed state, ∇ · T must
be zero, whence so must be g. Therefore, we must imagine growing the gravitational force
proportional to ε just like we grow the displacement, strain and stress. During this growth,
the gravitational force ρg′V = ρgV ε does the following amount of work on our tiny region
V:

Wgrav =

∫
ρV g′ · dξ′ =

∫ 1

0

ρV gε · ξdε =
1

2
ρV g · ξ =

1

2
(∇ · T) · ξV =

1

2
Tij;jξiV . (11.26)

The total work done to deform V is the sum of the work done by the elastic force
(11.25) on its surface and the gravitational force (11.26) in its interior, Wsurf + Wgrav =
−1

2(ξiTij);jV + 1
2Tij;jξiV = −1

2Tijξi;jV . This work gets stored in V as elastic energy, so the
energy density is U = −1

2Tijξi;j. Inserting Tij = −KΘgij −2µΣij and ξi;j = 1
3Θgij +Σij +Rij

and performing some simple algebra that relies on the symmetry properties of the expansion,
shear, and rotation (Ex. 11.5), we obtain

U =
1

2
KΘ2 + µΣijΣij . (11.27)

Note that this elastic energy density is always positive if the elastic moduli are positive —
as they must be in order that matter be be stable to small perturbations.

For the more general, anisotropic case, expression (11.27) becomes [by virtue of the
stress-strain relation Tij = −Yijklξk;l, Eq. (11.17)]

U =
1

2
ξi;jYijklξk;l . (11.28)

The volume integral of the elastic energy density (11.27) or (11.28) can be used as an
action from which to compute the stress, by varying the displacement (Ex. 11.6). Since
only the part of Y that is symmetric under interchange of the first and second pairs of slots
contributes to U , only that part can affect the action-principle-derived stress. Therefore, it
must be that Yijkl = Yklij. This is the symmetry we asserted earlier.

11.3.4 Molecular Origin of Elastic Stress

It is important to understand the microscopic origin of the elastic stress. Consider an ionic
solid in which singly ionized ions (e.g. sodium and chlorine) attract their nearest neighbours
through their mutual Coulomb attraction and repel their next nearest neighbors and so on.
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Fig. 11.5: Action of electromagnetic forces within a solid. If we compute the force acting on one
side of a slice of material, the integral is dominated by interactions between atoms lying in the
shaded area. The force is effectively a surface force rather than a volume force. In elastostatic
equilibrium, the forces acting on the two sides of the slice are effectively equal and opposite.

(b)(a)

Fig. 11.6: a) A perfect crystal in which the atoms are organized in a perfectly repeating lattice
can develop very large shear strains without yielding. b) Real materials contain dislocations which
greatly reduce their rigidity. The simplest type of dislocation, shown here, is the edge dislocation.
The dislocation will move and the crystal will undergo inelastic deformation when the stress is
typically less than one per cent of the yield shear stress for a perfect crystal.

Overall, there is a net attraction, which is balanced by the short range repulsion of the bound
electrons. Now consider a thin slice of material of thickness intermediate between the inter-
atomic spacing and the solid’s inhomogeneity scale, a few atomic spacings thick (Figure 11.5).
If we calculate the force acting on the material in the slice, exerted by external atoms on
one side of the slice, we find that the sum converges very close to the boundary. Although
the electrostatic force between individual atoms is long range, the material is electrically
neutral and, when averaged over many atoms, the net electric force is of short range. We
can therefore treat the net force acting on a region that is large enough to encompass many
atoms, but much smaller than the body’s inhomogeneity scale, as a surface force governed by
local conditions in the material. This is essential if we are to be able to write down a local,
linear stress-strain relation Tij = −YijklSkl. This need not have been the case and there are
circumstances when a long range force develops. One example occurs with certain types of
crystal (e.g. tourmaline) which develop internal, piezoelectric fields when strained.

Our treatment so far has implicitly made the assumption that matter is continuous on
all scales and that derivatives are mathematically well-defined. Of course, this is not the
case. In fact, we not only need to acknowledge the existence of atoms, we must use this fact
to compute the elastic moduli.

We can estimate the elastic moduli in ionic or metallic materials by observing that, if
a crystal lattice were to be given a dimensionless strain of order unity, then the elastic
stress would be of order the electrostatic force between adjacent ions divided by the area
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Substance K µ E ν cL cT

GPa GPa GPa km s−1 km s−1

Steel 170 81 210 0.29 5.9 3.2
Copper 130 45 120 0.34 4.6 2.2
Glass 47 28 70 0.25 5.8 3.3
Rubber 10 0.0007 0.002 0.50 1.0 0.03

Table 11.1: Bulk, Shear and Young’s moduli and Poisson’s ratio for a range of materials. The final
two columns quote the longitudinal and transverse sound speeds defined in the following chapter.

associated with each ion. If the lattice spacing is a ∼ 2Å and the ions are singly charged,
then K, µ ∼ e2/4πε0a4 ∼ 100 GPa. This is about a million atmospheres. Covalently bonded
compounds are less tightly bound and have somewhat smaller elastic moduli. See Table 11.1.

It might be thought, on the basis of this argument, that crystals can be subjected to
strains of order unity before they attain their elastic limits. However, as explained above,
most materials are only elastic for strains ! 10−3. The reason for this difference is that
crystals are generally imperfect and are laced with dislocations. Relatively small stresses
suffice for the dislocations to move through the solid and for the crystal thereby to undergo
permanent deformation (Fig. 11.6).

****************************

EXERCISES

Exercise 11.3 Derivation and Practice: Elastic Force Density
From Eq. (11.18) derive expression (11.19) for the elastostatic force density inside an elastic
body.

Exercise 11.4 *** Practice: Biharmonic Equation
A homogeneous, isotropic, elastic solid is in equilibrium under (uniform) gravity and applied
surface stresses. Use Eq. (11.19) to show that the displacement inside it ξ(x) is biharmonic,
i.e. it satisfies the differential equation

∇2∇2ξ = 0 . (11.29a)

Show also that the expansion Θ satisfies the Lapace equation

∇2Θ = 0 . (11.29b)

Exercise 11.5 Derivation and Practice: Elastic Energy
Beginning with U = −1

2Tijξi;j [text following Eq. (11.26)], derive U = 1
2KΘ2 + µΣijΣij for

the elastic energy density inside a body.
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Exercise 11.6 Derivation and Practice: Action Principle for Elastic Stress
For an anisotropic, elastic body with elastic energy density U = 1

2ξi;jYijklξk;l, integrate this
energy density over a three-dimensional region V (not necessarily small) to get the total
elastic energy E . Now, consider a small variation δξi in the displacement field. Evaluate the
resulting change δE in the elastic energy without using the relation Tij = −Yijklξk;l. Convert
to a surface integral over ∂V and therefrom infer the stress-strain relation Tij = −Yijklξk;l.

Exercise 11.7 Problem: Order of Magnitude Estimates

(a) What length of steel wire can hang vertically without breaking?

(b) What is the maximum size of a non-spherical asteroid? [Hint: if the asteroid is too
large, its gravity will deform it into a spherical shape.]

(c) Can a helium balloon lift the tank used to transport the helium?

****************************

11.4 Young’s Modulus and Poisson’s Ratio for an Isotropic
Material: A Simple Elastostatics Problem

As a simple example of an elastostatics problem, we shall explore the connection between
our three-dimensional theory of stress and strain, and the one-dimensional Hooke’s law [Fig.
11.1 and Eq. (11.1)].

Consider a thin rod of square cross section hanging along the ez direction of a Cartesian
coordinate system (Fig. 11.1). Subject the rod to a stretching force applied normally and
uniformly at its ends. (It could just as easily be a rod under compression.) Its sides are free
to expand transversely, since no force acts on them, dFi = TijdΣj = 0. As the rod is slender,
vanishing of dFi at its x and y sides implies to high accuracy that the stress components
Tix and Tiy will vanish throughout the interior; otherwise there would be a very large force
density Tij;j inside the rod. Using Tij = −KΘgij − 2µΣij , we then obtain

Txx = −KΘ − 2µΣxx = 0 , (11.30a)

Tyy = −KΘ − 2µΣyy = 0 , (11.30b)

Tyz = −2µΣyz = 0 , (11.30c)

Txz = −2µΣxz = 0 , (11.30d)

Txy = −2µΣxy = 0 , (11.30e)

Tzz = −KΘ − 2µΣzz . (11.30f)

From the first two of these equations and Σxx + Σyy + Σzz = 0 we obtain a relationship
between the expansion and the nonzero components of the shear,

KΘ = µΣzz = −2µΣxx = −2µΣyy ; (11.31)
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and from this and Eq. (11.30f) we obtain Tzz = −3KΘ. The decomposition of Sij into its
irreducible tensorial parts tells us that Szz = ξz;z = Σzz + 1

3Θ, which becomes, upon using
Eq. (11.31), ξz;z = [(3K + µ)/3µ]Θ. Combining with Tzz = −3KΘ we obtain Hooke’s law
and an expression for Young’s modulus E in terms of the bulk and shear moduli:

−Tzz

ξz;z
=

9µK

3K + µ
= E . (11.32)

It is conventional to introduce Poisson’s ratio, ν, which is defined to be minus the ratio
of the lateral strain to the longitudinal strain during a deformation of this type, in which
the transverse motion is unconstrained. It can be expressed as a ratio of elastic moduli as
follows:

ν = −ξx,x

ξz,z
= −

Σxx + 1
3Θ

Σzz + 1
3Θ

=
3K − 2µ

2(3K + µ)
, (11.33)

where we have used Eq. (11.31). We tabulate these and their inverses for future use:

E =
9µK

3K + µ
, ν =

3K − 2µ

2(3K + µ)
; K =

E

3(1 − 2ν)
, µ =

E

2(1 + ν)
. (11.34)

We have already remarked that mechanical stability of a solid requires that K, µ > 0.
Using Eq. (11.34), we observe that this imposes a restriction on Poisson’s ratio, namely that
−1 < ν < 1/2. For metals, Poisson’s ratio is typically 1/3 and the shear modulus is roughly
half the bulk modulus. For a substance that is easily sheared but not easily compressed, like
rubber, the bulk modulus is relatively high and ν ' 1/2 (cf. Table 11.1.) For some exotic
materials, Poison’s ratio can be negative (cf. Yeganeh-Haeri et al 1992).

Although we derived them for a square strut under compression, our expressions for
Young’s modulus and Poisson’s ratio are quite general. To see this, observe that the deriva-
tion would be unaffected if we combined many parallel, square fibers together. All that is
necessary is that the transverse motion be free so that the only applied force is normal to a
pair of parallel faces.

11.5 T2 Cylindrical and Spherical Coordinates: Con-
nection Coefficients and Components of Strain

Thus far, in our discussion of elasticisty, we have resticted ourselves to Cartesian coordi-
nates. However, many problems in elasticity are most efficiently solved using cylindrical or
spherical coordinates, so in this section we shall develop some mathematical tools for those
coordinate systems. In doing so we follow the vectorial conventions of standard texts on
electrodynamics and quantum mechanics (e.g., Jackson 1999, and Messiah 1962): We intro-
duce an orthonormal set of basis vectors associated with each of our curvilinear coordinate
systems; the coordinate lines are orthogonal to each other, and the basis vectors have unit
lengths and point along the coordinate lines. In our study of continuum mechanics (Part III
– Elasticity, Part IV – Fluid Mechanics, and Part V – Plasma Physics), we shall follow this
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practice. Then in studying General Relativity and Cosmology (Part VI) we shall introduce
and use basis vectors that are not orthonormal.

Our notation for cylindrical coordinates is (-,φ, z); - (pronounced “pomega”) is distance
from the z axis, and φ is angle around the z axis, so

- =
√

x2 + y2 , φ = arctan(y/x) . (11.35a)

The unit basis vectors that point along the coordinate axes are denoted e#, eφ, ez, and are
related to the Cartesian basis vectors by

e# = (x/-)ex + (y/-)ey , eφ = −(y/-)ex + (x/-)ey , ez = Cartesian ez . (11.35b)

Our notation for spherical coordinates is (r, θ,φ), with (as should be very familiar)

r =
√

x2 + y2 + z2 , θ = arccos(z/r) , φ = arctan(y/x) . (11.36a)

The unit basis vectors associated with these coordinates are

er =
x

r
ex +

y

r
ey +

z

r
ez , eθ =

z

r
e# − -

r
ez , eφ = − y

-
ex +

x

-
ey . (11.36b)

Because our bases are orthonormal, the components of the metric of 3-dimensional space
retain the Kronecker-delta values

gjk ≡ ej · ek = δjk, (11.37)

which permits us to keep all vector and tensor indices down, by contrast with spacetime
where we must distinguish between up and down; cf. Sec. 1.5.4

In Jackson (1999), Messiah (1962) and other standard texts, formulas are written down
for the gradient and Laplacian of a scalar field, and the divergence and curl of a vector field,
in cylindrical and spherical coordinates; and one uses these formulas over and over again.
In elasticity theory we deal largely with second rank tensors, and will need formulae for
their various derivatives in cylindrical and spherical coordinates. In this book we introduce
a mathematical tool, connection coefficients Γijk, by which those formulae can be derived
when needed.

The connection coefficients quantify the turning of the orthonormal basis vectors as one
moves from point to point in Euclidean 3-space; i.e., they tell us how the basis vectors at
one point in space are connected to (related to) those at another point. More specifically, we
define Γijk by the two equivalent relations

∇kej = Γijkei ; Γijk = ei · (∇kej) ; (11.38)

here ∇k ≡ ∇ek
is the directional derivative along the orthonormal basis vector ek; cf. Eq.

(1.54a). Notice that (as is true quite generally; cf. Sec. 1.9) the differentiation index comes

4Occasionally, e.g. in the useful equation εijmεklm = δij
kl ≡ δi

kδj
l − δi

lδ
j
k [Eq. (1.61)], it is convenient to put

some indices up; but because gjk = δjk, any component with an index up is equal to that same component
with an index down; e.g., δi

k ≡ δik.
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last on Γ. Because our basis is orthonormal, it must be that ∇k(ei · ej) = 0. Expanding this
out using the standard rule for differentiating products, we obtain ej · (∇kei) + ei · (∇kej) =
0. Then invoking the definition (11.38) of the connection coefficients, we see that Γijk is
antisymmetric on its first two indices:

Γijk = −Γjik . (11.39)

In Part VI, when we use non-orthonormal bases, this antisymmetry will break down.
It is straightforward to compute the connection coefficients for cylindrical and spherical

coordinates from the definition (11.38), expressions (11.35b) and (11.36b) for the cylindrical
and spherical basis vectors in terms of the Cartesian basis vectors, and from the fact that
in Cartesian coordinates the connection coefficients vanish (ex, ey and ez do not rotate as
one moves through Euclidean 3-space). One can also deduce the cylindrical and spherical
connection coefficients by drawing pictures of the basis vectors and observing how they
change from point to point. For cylindrical coordinates, we see from Fig. 11.7 that ∇φe# =
eφ/-. A similar pictorial calculation (which the reader is encouraged to do) reveals that
∇φeφ = −e#/-. All other derivatives vanish. Therefore, the only nonzero connection
coefficients in cylindrical coordinates are

Γ#φφ = − 1

-
, Γφ#φ =

1

-
, (11.40)

which have the required antisymmetry [Eq. (11.39)]. Likewise, for spherical coordinates (Ex.
11.9)

Γθrθ = Γφrφ = −Γrθθ = −Γrφφ =
1

r
, Γφθφ = −Γθφφ =

cot θ

r
; (11.41)

The connection coefficients are the keys to differentiating vectors and tensors. Consider
the strain tensor S = ∇ξ. Applying the product rule for differentiation, we obtain

∇k(ξjej) = (∇kξj)ej + ξj(∇kej) = ξj,kej + ξjΓljkel . (11.42)

Here the comma denotes the directional derivative, along a basis vector, of the components
treated as scalar fields. For example, in cylindrical coordinates we have

ξi,# =
∂ξi
∂-

, ξi,φ =
1

-

∂ξi
∂φ

, ξi,z =
∂ξi
∂z

; (11.43)

and in spherical coordinates we have

ξi,r =
∂ξi
∂r

, ξi,θ =
1

r

∂ξi
∂θ

, ξi,φ =
1

r sin θ

∂ξi
∂φ

. (11.44)

Taking the i’th component of Eq. (11.42) we obtain

Sik = ξi;k = ξi,k + Γijkξj . (11.45)
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e
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Fig. 11.7: Pictorial evaluation of Γφ#φ. In the right-most assemblage of vectors we compute
∇φe# as follows: We draw the vector to be differentiated, e#, at the tail of eφ (the vector along
which we differentiate) and also at its head. We then subtract e# at the head from that at the
tail; this difference is ∇φe#. It obviously points in the eφ direction. When we perform the same
calculation at a radius % that is smaller by a factor 2 (left assemblage of vectors), we obtain a
result, ∇φe#, that is twice as large. Therefore the length of this vector must scale as 1/%. By
looking quantitatively at the length at some chosen radius %, one can see that the multiplicative
coefficient is unity: ∇φe# = 1

#eφ . Comparing with Eq. (11.38), we deduce that Γφ#φ = 1/%.

Here ξi;k are the nine components of the gradient of the vector field ξ(x) evaluated in any
orthonormal basis. We can use Eq. (11.45) to evaluate the expansion Θ = TrS = ∇ · ξ.
Using Eq. (11.40) , (11.41) , we obtain

Θ = ∇ · ξ =
∂ξ#
∂-

+
1

-

∂ξφ
∂φ

+
∂ξz
∂z

+
ξ#
-

=
1

-

∂

∂-
(-ξ#) +

1

-

∂ξφ
∂φ

+
∂ξz
∂z

(11.46)

in cylindrical coordinates, and

Θ = ∇ · ξ =
∂ξr
∂r

+
1

r

∂ξθ
∂θ

+
1

r sin θ

∂ξφ
∂φ

+
2ξr
r

+
cot θξθ

r

=
1

r2

∂

∂r
(r2ξr) +

1

r sin θ

∂

∂θ
(sin θξθ) +

1

r sin θ

∂ξφ
∂φ

(11.47)

in spherical coordinates, in agreement with formulae in standard textbooks such as the flyleaf
of Jackson (1999).

The components of the rotation are most easily deduced using Rij = −εijkφk with φ =
1
2∇ × ξ, and the standard expressions for the curl in cylindrical and spherical coordinates
(e.g., Jackson 1999). Since the rotation does not enter into elasticity theory in a significant
way, we shall refrain from writing down the results. The components of the shear are
computed in Box 11.3.

By a computation analogous to Eq. (11.42) we can construct an expression for the gradient
of a tensor of any rank. For a second rank tensor T = Tijei ⊗ ej we obtain (Ex. 11.8)

Tij;k = Tij,k + ΓilkTlj + ΓjlkTil . (11.48)
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Box 11.3
Shear Tensor in Spherical and Cylindrical Coordinates

Using our rules for forming the gradient of a vector we can derive a general expression
for the shear tensor

Σij =
1

2
(ξi;j + ξj;i) −

1

3
δijξk;k

=
1

2
(ξi,j + ξj,i + Γiljξl + Γjliξl) −

1

3
δij(ξk,k + Γklkξl) . (1)

Evaluating this in cylindrical coordinates using the connection coefficients (11.40), we

obtain

Σ## =
2

3

∂ξ#
∂-

− 1

3

ξ#
-

− 1

3-

∂ξφ
∂φ

− 1

3

∂ξz
∂z

Σφφ =
2

3-

∂ξφ
∂φ

+
2

3

ξ#
-

− 1

3

∂ξ#
∂-

− 1

3

∂ξz
∂z

Σzz =
2

3

∂ξz
∂z

− 1

3

∂ξ#
∂-

− 1

3

ξ#
-

− 1

3-

∂ξφ
∂φ

Σφz = Σzφ =
1

2-

∂ξz
∂φ

+
1

2

∂ξφ
∂z

Σz# = Σ#z =
1

2

∂ξ#
∂z

+
1

2

∂ξz
∂-

Σ#φ = Σφ# =
1

2

∂ξφ
∂-

− ξφ
2-

+
1

2-

∂ξ#
∂φ

. (2)

Likewise, in spherical coordinates using the connection coefficients (11.41), we obtain

Σrr =
2

3

∂ξr
∂r

− 2

3r
ξr −

cotθ

3r
ξθ −

1

3r

∂ξθ
∂θ

− 1

3r sin θ

∂ξφ

∂φ

Σθθ =
2

3r

∂ξθ
∂φ

+
ξr
3r

− 1

3

∂ξr
∂r

− cotθξθ
3r

− 1

3r sin θ

∂ξφ
∂φ

Σφφ =
2

3r sin θ

∂ξφ
∂φ

+
2cotθξθ

3r
+
ξr
3r

− 1

3

∂ξr
∂r

− 1

3r

∂ξθ
∂θ

Σθφ = Σφθ =
1

2r

∂ξφ
∂θ

− cotθξφ
2r

+
1

2r sin θ

∂ξθ
∂φ

Σφr = Σrφ =
1

2r sin θ

∂ξr
∂φ

+
1

2

∂ξφ
∂r

− ξφ
2r

Σrθ = Σθr =
1

2

∂ξθ
∂r

− ξθ
2r

+
1

2r

∂ξr
∂θ

. (3)
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Equation (11.48) for the components of the gradient can be understood as follows: In cylin-
drical or spherical coordinates, the components Tij can change from point to point as a result
of two things: a change of the tensor T, or the turning of the basis vectors. The two connec-
tion coefficient terms in Eq. (11.48) remove the effects of the basis turning, leaving in Tij;m

only the influence of the change of T itself. There are two correction terms corresponding to
the two slots (indices) of T; the effects of basis turning on each slot get corrected one after
another. If T had had n slots, then there would have been n correction terms, each with the
form of the two in Eq. (11.48).

These expressions for derivatives of tensors are not required to deal with the vector fields
of introductory electromagnetic theory, but they are essential to manipulate the tensor fields
encountered in elasticity. As we shall see in Sec. 23.3, with one further generalization, we
can go on to differentiate tensors in any basis (orthonormal or non-orthonormal) in a curved
spacetime, as is needed to perform calculations in general relativity.

Although the algebra of evaluating the components of derivatives such as (11.48) in
explicit form (e.g., in terms of {r, θ,φ}) can be long and tedious when done by hand, in
the modern era of symbolic manipulation via computers (e.g. Maple or Mathematica), the
algebra can be done quickly and accurately to obtain, e.g., expressions such as Eqs. (3) of
Box 11.3.

****************************

EXERCISES

Exercise 11.8 Derivation and Practice: Gradient of a Second Rank Tensor
By a computation analogous to Eq. (11.42), derive Eq. (11.48) for the components of the
gradient of a second rank tensor in any orthonormal basis

Exercise 11.9 Derivation and Practice: Connection in Spherical Coordinates

(a) By drawing pictures analogous to Fig. 11.7, show that

∇φer =
1

r
eφ , ∇θer =

1

r
eθ , ∇φeθ =

cot θ

r
eφ . (11.49)

(b) From these relations deduce the connection coefficients (11.41).

Exercise 11.10 Derivation and Practice: Expansion in Cylindrical and Spherical Coordi-
nates
Derive Eqs. (11.46) and (11.47) for the divergence of the vector field ξ in cylindrical and
spherical coordinates using the connection coefficients (11.40) and (11.41).

****************************
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ϖ1

ϖ2

Fig. 11.8: Pipe.

11.6 T2 Solving the 3-Dimensional Elastostatic Equa-
tion in Cylindrical Coordinates: Simple Methods,
Separation of Variables and Green’s Functions

11.6.1 Simple Methods: Pipe Fracture and Torsion Pendulum

As an example of an elastostatic problem with cylindrical symmetry, consider a cylindrical
pipe that carries a high-pressure fluid (water, oil, natural gas, ...); Fig. 11.8 How thick must
the pipe’s wall be to ensure that it will not burst due to the fluid’s pressure? We shall sketch
the solution, leaving the details to the reader in Ex. 11.11.

We suppose, for simplicity, that the pipe’s length is held fixed by its support system: it
does not lengthen or shorten when the fluid pressure is changed. Then by symmetry, the
displacement field in the pipe wall is purely radial and depends only on radius; i.e., its only
nonzero component is ξ#(-). The radial dependence is governed by radial force balance,

f# = KΘ;# + 2µΣ#j;j = 0 . (11.50)

[Eq. (11.19)].
The expansion and the components of shear that appear in this force-balance equation can

be read off the cylindrical-coordinate Eq. (11.46) and Eq. (2) of Box 10.3; most importantly

Θ =
∂ξ#
∂-

+
ξ#
-

. (11.51)

The second term in the radial force balance equation (11.50) is proportional to σ#j;j which,
using Eq. (11.46) and noting that the only nonzero connection coefficients are Γ#φφ =
−Γφ#φ = −1/- [Eq. (11.40)] and that symmetry requires the strain tensor to be diago-
nal, becomes

Σ#j;j = Σ##,# + Γ#φφΣφφ + Γφ#φΣ## . (11.52)

Inserting the components of the strain tensor from Eq. (2) of Box 10.3 and the values of the
connection coefficients and comparing the result with Expression (11.51) for the expansion,
we obtain the remarkable result that σ#j;j = 2

3∂Θ/∂-. Inserting this into the radial force
balance equation (11.51), we obtain

f# =

(
K +

4µ

3

)
∂Θ

∂-
= 0 . (11.53)
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Thus, inside the pipe wall, the expansion vanishes (the radial compression of the pipe ma-
terial is equal and opposite to the azimuthal stretching), and correspondingly, the radial
displacement must have the form [cf. Eq. (11.51)]

ξ# = A- +
B

-
(11.54)

for some constants A and B. The values of these constants are fixed by the boundary
conditions at the inner and outer faces of the pipe wall: T## = P at - = -1 (inner wall)
and T## = 0 at - = -2 (outer wall). Here P is the pressure of the fluid that the pipe
carries and we have neglected the atmosphere’s pressure on the outer face by comparison.
Evaluating T## = −KΘ − 2µΣ## in terms of ξ# and inserting (11.54) and then imposing
these boundary conditions, we obtain

A =
P

2K + 2µ/d

-2
1

-2
2 −-2

1

, B =
P

2µ

-2
1-

2
2

-2
2 −-2

1

. (11.55)

The only nonvanishing components of the shear then work out to be equal to the radial
strain:

Σ## = −Σφφ = S## =
∂ξ#
∂-

= −P

µ

-2
1

-2
2 −-2

1

(
-2

2

2-2
− 3µ

6K + 2µ

)
(11.56)

This strain is maximal at the inner wall of the pipe; expressing it in terms of the ratio λ
of the outer to the inner pipe radius λ = -2/-1 and using the values of K = 180GPa and
µ = 81GPa for steel, we bring this maximum strain into the form

S## =
P

µ

5λ2 − 2

10(λ2 − 1)
. (11.57)

The pipe will break at a strain ∼ 10−3; for safety it is best to keep the actual strain
smaller than this by an order of magnitude, |S##| ! 10−4. A typical pressure for an oil
pipeline is P ' 10 atmospheres ' 106 Pa, compared to the shear modulus of steel µ = 81
GPa, so P/µ ' 1.2 × 10−5. Inserting this into Eq. (11.57) with |S##| ! 10−4, we deduce
that the ratio of the pipe’s outer radius to its inner radius must be λ = -2/-1 " 1.02. If the
pipe has a diameter of one meter, then its wall thickness should be at least one centimeter.
This is typical of the pipes in oil pipelines.

Exercise 11.12 presents a second fairly simple example of elastostatics in cylindrical co-
ordinates: a computation of the period of a torsion pendulum.

11.6.2 Separation of Variables and Green’s Functions: Thermoe-
lastic Noise in a LIGO Mirror

In more complicated situations that have moderate amounts of symmetry, the elastostatic
equations can be solved by the same kinds of sophisticated mathematical techniques as
one uses in electrostatics: separation of variables, Green’s functions, complex potentials,
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or integral transform methods; see, e.g. Gladwell (1980). We provide an example in this
section, focusing on separation of variables and Green’s functions.

Our example is chosen as one that makes contact with things we have already learned in
optics (gravitational-wave interferometers; Sec. 8.5) and in statistical physics (the fluctuation-
dissipation theory; Sec. 5.6). This application is the computation of thermoelastic noise
in second-generation gravitational-wave detectors such as Advanced LIGO. Our analysis is
based on Braginsky, Gorodetsky and Vyatchanin (1999); see also Liu and Thorne (2000).
Thermoelastic Context for the Elastostatic Problem to be Solved

We discussed laser interferometer gravitational-wave detectors in Sec. 5.6 (see especially
Fig. 8.11). Recall that in such a detector, a gravitational wave moves four test-mass mirrors
relative to each other, and laser interferometry is used to monitor the resulting oscillatory
changes in the mirror separations. As we discussed in Sec. 5.6.1, the separations actually
measured are the differences in the mirrors’ generalized coordinates q, each of which is the
longitudinal position ξz of the test mass’s mirrored front face, weighted by the laser beam’s
Gaussian-shaped intensity distribution and averaged over the mirror’s face:

q =

∫
e−#2/#2

o

π-2
o

ξz(-,φ)-dφd- (11.58)

[Eq. (5.61) with a change of notation]. Here (-,φ, z) are cylindrical coordinates with the
axis - = 0 along the center of the laser beam, -o ∼ 4 cm is the radius at which the light’s
intensity has dropped by a factor 1/e, and ξz(-,φ) is the longitudinal displacement of the
mirror face. The gravitational-wave signal is the difference of mirror positions divided by
the interferometer arm length L = 4 km: h(t) = {[q1(t) − q2(t)] − [q3(t) − q4(t)]} /L, where
the subscripts label the four mirrors. The thermoelastic noise is uncorrelated between the
four test masses and, because the test masses and the beam spots on them are identical, it
is the same in all four test masses—which means that the spectral densities of their noises
add incoherently, giving

Sh(f) =
4Sq(f)

L2
. (11.59)

Here Sq(f) is the spectral density of the fluctuations of the generalized coordinate q of any
one of the test masses.

The thermoelastic noise is a variant of thermal noise; it arises when fluctuations of the
thermal energy distribution inside a test mass randomly cause a slight increase (or decrease)
in the test-mass temperature near the laser beam spot, and a corresponding thermal expan-
sion (or contraction) of the test-mass material near the beam spot. This random expansion
(or contraction) entails a displacement ξz of the test-mass surface and a corresponding ran-
dom change of the generalized coordinate q [Eq. (11.58)].

In Ex. 11.14 we use the fluctuation-dissipation theorem (Sec. 5.6) to derive the following
prescription for computing the spectral density Sq(f) of these random thermoelastic fluctua-
tions of q. Our prescription is expressed in terms of a thought experiment: Imagine applying
a static, normal (z-directed) force Fo to the face of the test mass at the location of the beam
spot, with the force distributed spatially with the same Gaussian profile as q so the applied
stress is

T applied
zz =

e−#2/#2
o

π-2
o

Fo . (11.60)
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This applied stress induces a strain distribution S inside the test mass, and that strain
includes an expansion Θ(-,φ, z). The analysis in Ex. 11.14 shows that the spectral density
of thermoelastic noise is expressible as follows in terms of an integral over the squared
gradient of this expansion:

Sq(f) =
2κthE2α2kT 2

(1 − 2ν)2C2
V ρ

2F 2
o (2πf)2

〈∫
(∇Θ)2-dφd-dz

〉
. (11.61)

Here κth is the coefficient of thermal conductivity (Sec. 2.7), E is Young’s modulus, ν is the
Poisson ratio, α is the coefficient of linear thermal expansion (fractional change of length
induced by a unit change of temperature), T is temperature, CV is the specific heat per unit
mass at constant volume, ρ is the density, and f is the frequency at which the noise is being
evaluated.

The computation of the thermoelastic noise, thus, boils down to computing the distri-
bution Θ(-,φ, z, t) of expansion induced by the applied stress (11.60), and then evaluating
the integral in Eq. (11.61). The computation is made easier by the fact that Θ and ∇Θ
are concentrated in a region of size ∼ -o ∼ 4 cm, which is small compared to the test-mass
radius and length (∼ 16 cm), so in our computation we can idealize the test mass as having
infinite radius and length (i.e., as being an “infinite half space” or “half-infinite body”).5

Equations of Elasticity in Cylindrical Coordinates, and their Solution

Because the applied stress is cylindrical, the induced strain and expansion will also be
cylindrical, and are thus computed most easily using cylindrical coordinates.

One way to compute the expansion Θ is to solve the zero-internal-force equation f =
(K + 1

3µ)∇(∇ · ξ) + µ∇2ξ = 0 for the cylindrical components ξ#(z,-) and ξz(z,-) of the
displacement (a problem in elastostatics), and then evaluate the divergence Θ = ∇ · ξ. (The
component ξφ vanishes by symmetry.) It is straightforward, using the techniques of Sec.
11.5, to compute the cylindrical components of f . Reexpressing the bulk and shear moduli
K and µ in terms of Young’s modulus E and Poisson’s ratio ν [Eq. (11.34)] and setting the
internal forces to zero, we obtain

f# =
E

2(1 + ν)(1 − 2ν)

[
2(1 − ν)

(
∂2ξ#
∂-2

+
1

-

∂ξ#
∂-

− ξ#
-2

)

+ (1 − 2ν)
∂2ξ#
∂z2

+
∂2ξz
∂z∂-

]
= 0 , (11.62a)

fz =
E

2(1 + ν)(1 − 2ν)

[
(1 − 2ν)

(
∂2ξz
∂-2

+
1

-

∂ξz
∂-

)

+ 2(1 − ν)∂
2ξz
∂z2

+
∂2ξ#
∂z∂-

+
1

-

∂ξ#
∂z

]
= 0 . (11.62b)

These are two coupled, linear, second-order differential equations for the two unknown
components of the displacement vector. As with the analogous equations of electrostatics and
magnetostatics, these can be solved by separation of variables, i.e. by setting ξ# = R(-)Z(z)

5Finiteness of the test mass turns out to increase Sq(f) by about 20 per cent (Liu and Thorne, 2000).
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and inserting into Eq. (11.62a). We seek solutions that die out at large - and z. The general
variables-separated solutions of this sort are

ξ# =

∫ ∞

0

[α(k) − (2 − 2ν − kz)β(k)] e−kzJ1(k-)kdk ,

ξz =

∫ ∞

0

[α(k) + (1 − 2ν + kz)β(k)] e−kzJ0(k-)dk , (11.63)

where J0 and J1 are Bessel functions of order 0 and 1.

Boundary Conditions

The functions α(k) and β(k) are determined by boundary conditions on the face of the
test mass: The force per unit area exerted across the face by the strained test-mass material,
Tzj at z = 0 with j = {-,φ, z}, must be balanced by the applied force per unit area,
T applied

zj [Eq. (11.60)]. The (shear) forces in the φ direction, Tzφ and T applied
zφ , vanish because

of cylindrical symmetry and thus provide no useful boundary condition. The (shear) force
in the - direction, which must vanish since T applied

z# = 0, is given by [cf. Eq. (2) in Box 11.3]

Tz#(z = 0) = −2µΣz# = −µ

(
∂ξz
∂-

+
∂ξ#
∂z

)
= −µ

∫ ∞

0

[β(k) − α(k)] J1(kz)kdk = 0 ,

(11.64)
which implies that β(k) = α(k). The (normal) force in the z direction, which must balance
the applied normal force, is Tzz = −KΘ−2µΣzz; using Eq. (2) in Box 11.3 and Eqs. (11.63),
this reduces to

Tzz(z = 0) = −2µ

∫ ∞

0

α(k)J0(k-)kdk = T applied
zz =

e−#2/#2
o

π-2
o

Fo cos(2πft) , (11.65)

which can be inverted6 to give

α(k) = β(k) = − 1

4πµ
e−k2#2

o/4Fo cos(2πft) . (11.66)

Inserting this into the Eqs. (11.63) for the displacement, and then evaluating the expansion
Θ = ∇ · ξ = ξz,z +-−1(-ξ#),#, we obtain

Θ = −4ν

∫ ∞

0

α(k)e−kzJ0(k-)kdk . (11.67)

Side Remark: As in electrostatics and magnetostatics, so also in elasticity theory, one
can solve an elastostatics problem using Green’s functions instead of separation of variables.
We explore this, for our applied Gaussian force, in Ex. 11.15 below. For greater detail on
Green’s functions in elastostatics and their applications, from an engineer’s viewpoint, see
Johnson (1985). For other commonly used solution techniques see, e.g. Gladwell (1980).

Noise Spectral Density

6The inversion and the subsequent evaluation of the integral of (∇Θ)2 are aided by the following expres-
sions for the Dirac delta function: δ(k − k′) = k

∫ ∞
0 J0(k%)J0(k′%)%d% = k

∫ ∞
0 J1(k%)J1(k′%)%d%.
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Fig. 11.9: Torsion Pendulum

It is now straightforward to compute the gradient of this expansion, square and integrate
to get the spectral density Sq(f) [Eq. (11.61)]. That result, when inserted into Eq. (11.59)
gives, for the gravitational-wave noise,

Sh(f) =
32(1 + ν)2κthα2kT 2

√
2πC2

V ρ
2-3

o(2πf)2
. (11.68)

A possible material for the test masses is sapphire, for which ν = 0.29, κth = 40 W m−1

K−1, α = 5.0 × 10−6 K−1, CV = 790 J kg−1 K−1, ρ = 4000 kg m−3. Inserting these into Eq.
(11.68), along with the interferometer arm length L = 4 km, a laser-beam radius -o = 40
mm, and room temperature T = 300 K, we obtain the following result for the thermoelastic
gravity-wave noise in a bandwidth equal to frequency:

√
fSh(f) = 2.6 × 10−23

√
100Hz

f
. (11.69)

We shall explore the consequences of this noise for gravitational-wave detection in Chap. 26.

****************************

EXERCISES

Exercise 11.11 Derivation and Practice: Fracture of a Pipe
Fill in the details of the text’s analysis of the deformation of a pipe carrying a high-pressure
fluid, and the wall thickness required to protect the pipe against fracture, Sec. 11.6.1.

Exercise 11.12 Practice: Torsion pendulum
A torsion pendulum is a very useful tool for performing the classical Eötvös experiment
and for seeking evidence for hypothetical fifth (not to mention sixth) forces (see, e.g., Will
1993 and references therein, or Fig. 1.6 of Misner, Thorne and Wheeler 1973). It would
be advantageous to design a torsion pendulum with a one day period (Figure 11.9). In
this exercise we shall estimate whether this is possible. The pendulum consists of a thin
cylindrical wire of length l and radius a. At the bottom of the wire are suspended three
masses at the corners of an equilateral triangle at a distance b from the wire.
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(a) Show that the longitudinal strain is

ξz;z =
3mg

πa2E
. (11.70a)

(b) What component of shear is responsible for the restoring force in the wire, which causes
torsion pendulum to oscillate?

(c) Show that the pendulum undergoes torsional oscillations with period

P = 2π

(
!

g

)1/2 (
2b2Eξz;z

a2µ

)1/2

(11.70b)

(d) Do you think you could design a pendulum that attains the goal of a one day period?

Exercise 11.13 Derivation and Practice: Evaluation of Elastostatic Force in Cylindrical
Coordinates
Derive Eqs. (11.62) for the cylindrical components of the internal elastostatic force per unit
volume f = (K + 1

3µ)∇(∇ · ξ) + µ∇2ξ in a cylindrically symmetric situation.

Exercise 11.14 Derivation and Example: Thermoelastic Noise
Derive Eq. (11.61) for the thermoelastic noise in a gravitational-wave test mass by the
following steps: First, read the discussion of the fluctuation-dissipation theorem in Sec. 5.6,
and then read Ex. 5.7, which is the starting point for the derivation. Our Sq(f) is given by
Eq. (5.70). The key unknown quantity in this equation is the dissipation rate Wdiss associated
with a sinusoidally oscillating applied stress [Eq. (11.60), multiplied by cos(2πft)].

(a) There are three important time scales in this problem: (i) the oscillation period of the
applied stress τapplied = 1/f ∼ 0.01 s, (ii) the time τsound for sound waves to travel across
the test mass (a distance ∼ 14 cm; the sound speed, as we shall see in Chap. 11, is
roughly

√
E/ρ), and (iii) the time τheat for diffusive heat conductivity to substantially

change the temperature distribution inside the test mass (cf. the discussion of heat
conductivity in Sec. 2.7). Estimate, roughly, τsound and τheat, and thereby show that
τsound % τapplied % τheat. Explain why this means that in evaluating Wdiss, we can
(i) treat the test-mass strain as being produced quasistatically (i.e., we can ignore
the inertia of the test-mass material), and (ii) we can treat the expansion of the test-
mass material adiabatically (i.e., ignore the effects of heat flow when computing the
temperature distribution in the test mass).

(b) Show that, when the test-mass material adiabatically expands by an amount ∆V/V =
Θ, its temperature goes down by

δT =
−αET

CV ρ(1 − 2ν)
Θ . (11.71)

For a textbook derivation of this, see Sec. 6 of Landau and Lifshitz (1986). In that
section a clean distinction is made between the bulk modulus K for expansions at



34

constant temperature and that Kad for adiabatic expansion. For most materials, these
bulk moduli are nearly the same; for example, for sapphire they differ by only ∼ 1 part
in 105 [cf. Eqs. (6.7), (6.8) of Landau and Lifshitz (1986) and the numbers for sapphire
at the end of Sec. 11.6.2; and note the difference of notation: α of this paper is 1/3
that of Landau and Lifshitz, and CV ρ of this paper is CV of Landau and Lifshitz].

(c) The inhomogeneity of the expansion Θ causes the temperature perturbation δT to be
inhomogeneous, and that inhomogeneity produces a heat flux q = −κth∇δT . When-
ever an amount Q of heat flows from a region of high temperature T to one of slightly
lower temperature T − dT , there is an increase of entropy, dS = Q/(T − dT )−Q/T =
QdT/T 2. Show that for our situation, the resulting rate of entropy increase per unit
volume is

dS

dV dt
=

−q · ∇δT
T 2

=
κth · (∇δT )2

T 2
. (11.72)

(We shall rederive this fundamental result from a different viewpoint in Part IV.)

(d) This entropy increase entails a creation of new thermal energy at a rate per unit volume
dEth/dV dt = TdS/dV dt. Since, for our thought experiment with temporally oscillating
applied stress, this new thermal energy must come from the oscillating elastic energy,
the rate of dissipation of elastic energy must be

Wdiss =

∫
κth(∇δT )2TdV . (11.73)

By combining with Eq. (11.71), inserting into Eq. (5.70) and averaging over the period
τapplied of the applied force, derive Eq. (11.61) for Sq(f). Explain why, in this equation,
we can treat the applied force as static rather than oscillatory, which is what we did
in the text.

Exercise 11.15 *** Example: Green’s Function for Normal Force on Half-Infinite Body
Suppose that a stress T applied

zj (xo) is applied on the face z = 0 of a half-infinite elastic
body (one that fills the region z > 0). Then by virtue of the linearity of the elastostatics
equation f = (K + 1

3µ)∇(∇ · ξ) + µ∇2ξ = 0 and the linearity of its boundary conditions,

T internal
zj = T applied

zj , there must be a Green’s function Gjk(x−xo) such that the body’s internal
displacement ξ(x) is given by

ξj(x) =

∫
Gjk(x − x0)T

applied
zk (xo)d

2xo . (11.74)

Here the integral is over all points xo on the face of the body (z = 0), and x can be anywhere
inside the body, z ≥ 0.

(a) Show that, if a force Fj is applied on the body’s surface at a single point, the origin of
coordinates, then the displacement inside the body is

ξj(x) = Gjk(x)Fk . (11.75)

Thus, the Green’s function can be thought of as the body’s response to a point force
on its surface.
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(b) As a special case, consider a point force Fz directed perpendicularly into the body.
The resulting displacement turns out to have cylindrical components7

ξz = Gzz(-, z)Fz =
1 + ν

2πE

[
2(1 − ν)
-

+
z2

-3

]
Fz ,

ξ# = G#z(-, z)Fz = −(1 + ν)(1 − 2ν)

2πE

Fz

-
. (11.76)

It is straightforward to show that this displacement does satisfy the elastostatics equa-
tions (11.62). Show that it also satisfies the required boundary condition Tz#(z = 0) =
−2µΣz# = 0.

(c) Show that for this displacement, Tzz = −KΘ − 2µΣzz vanishes everywhere on the
body’s surface z = 0 except at the origin - = 0 and is infinite there. Show that the
integral of this normal stress over the surface is Fz, and therefore Tzz(z = 0) = Fzδ2(x)
where δ2 is the two-dimensional Dirac delta function in the surface. This is the second
required boundary condition

(d) Plot the integral curves of the displacement vector ξ (i.e. the curves to which ξ is
parallel) for a reasonable choice of Poisson’s ratio ν. Explain physically why the curves
have the form you find.

(e) One can use the Green’s function (11.76) to compute the displacement ξ induced by
the Gaussian-shaped pressure (11.60) applied to the body’s face, and to then evaluate
the induced expansion and thence the thermoelastic noise; see Braginsky, Gorodetsky
and Vyatchanin (1999), or Liu and Thorne (2000). The results agree with those (11.67)
and (11.68) deduced using separation of variables.

****************************

11.7 Reducing the Elastostatic Equations to One Di-
mension for a Bent Beam; Cantilever Bridges

When dealing with bodies that are much thinner in two dimensions than the third (e.g. rods,
wires, and beams), one can use the method of moments to reduce the three-dimensional
elastostatic equations to ordinary differential equations in one dimension (a process called
dimensional reduction). We have already met an almost trivial example of this in our discus-
sion of Hooke’s law and Young’s modulus (Sec. 11.4 and Fig. 11.1). In this section we shall
discuss a more complicated example, the bending of a beam through a small displacement
angle; and in Ex. 11.17 we shall analyze a more complicated example: the bending of a very
long, elastic wire into a complicated shape called an elastica.

7For the other components of the Green’s function, written in Cartesian coordinates (since a non-normal
applied force breaks the cylindrical symmetry), see Eqs. (8.18) of Landau and Lifshitz (1986).
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(c) (d)
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Fig. 11.10: Bending of a cantilever. a) A beam is held rigidly at one end and extends horizontally
with the other end free. We introduce an orthonormal coordinate system (x, y, z) with ex extending
along the beam. We only consider small departures from equilibrium. The bottom of the beam will
be compressed, the upper portion extended. There is therefore a neutral surface z = 0 on which
the strain ξx,x vanishes. b) The beam shown here has rectangular cross section with horizontal
width w, vertical thickness h and length !. c) The bending torque M must be balanced by the
torque exerted by the vertical shearing force S. d) S must vary along the beam so as to support
the beam’s weight per unit length, W .

Our beam-bending example is motivated by a common method of bridge construction,
which uses cantilevers. (A famous historical example is the old bridge over the Firth of Forth
in Scotland that was completed in 1890 with a main span of half a km.) The principle is
to attach two independent beams to the two shores and allow them to meet in the middle.
(In practice the beams are usually supported at the shores on piers and strengthened along
their lengths with trusses.)

Let us make a simple model of a cantilever (Figure 11.10). Consider a beam clamped
rigidly at one end, with length !, horizontal width w and vertical thickness h. Introduce local
cartesian coordinates with ex pointing along the beam and ez pointing vertically upward.
Imagine the beam extending horizontally in the absence of gravity. Now let it sag under
its own weight so that each element is displaced through a small distance ξ(x). The upper
part of the beam is stretched while the lower part is compressed, so there must be a neutral
surface where the horizontal strain ξx,x vanishes. This neutral surface must itself be curved
downward. Let its downward displacement from the horizontal plane that it occupied before
sagging be η(x)(> 0), let a plane tangent to the neutral surface make an angle θ(x) (also
> 0) with the horizontal, and adjust the x and z coordinates so x runs along the slightly
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curved neutral plane and z is orthogonal to it (Fig. 11.10). The longitudinal strain is then
given to first order in small quantities by

ξx,x =
z

R = z
dθ

dx
' z

d2η

dx2
, (11.77)

where R = dx/dθ > 0 is the radius of curvature of the beam’s bend and we have chosen
z = 0 at the neutral surface. The one-dimensional displacement η(x) will be the focus of
dimensional reduction of the elastostatic equations.

As in our discussion of Hooke’s law for a stretched rod (Sec. 11.4), we can regard the
beam as composed of a bundle of long parallel fibers, stretched along their length and free
to contract transversely. The longitudinal stress is therefore

Txx = −Eξx,x = −Ez
d2η

dx2
. (11.78)

We can now compute the horizontal force density, which must vanish in elastostatic
equilibrium8

fx = −Txx,x − Txz,z = Ez
d3η

dx3
− Txz,z = 0. (11.79)

This is a partial differential equation. We convert it into a one-dimensional ordinary differ-
ential equation by the method of moments : We multiply it by z and integrate over z (i.e.,
we compute its “first moment”). Integrating the second term,

∫
zTxz,zdz, by parts and using

the boundary condition Txz = 0 on the upper and lower surfaces of the beam, we obtain

Eh3

12

d3η

dx3
= −

∫ h/2

−h/2

Txzdz . (11.80)

Notice (using Txz = Tzx) that the integral, when multiplied by the beam’s width w in the y
direction, is the vertical shearing force S(x) in the beam:

S =

∫
Tzxdydz = w

∫ h/2

−h/2

Tzxdz = −D
d3η

dx3
. (11.81)

Here

D ≡ E

∫
z2dydz = Ewh3/12 (11.82)

is called the beam’s flexural rigidity. Notice that it is the second moment of the beam’s
Young’s modulus.

As an aside, we can gain some insight into Eq. (11.81) by examining the torques that
act on a segment of the beam with length dx. As shown in Fig. 11.10c, the shear forces on

8Because the coordinates are curvilinear, there are connection coefficient terms in this equation that have
been omitted: −ΓxjkTjk − ΓjkjTxk. However each Γ has magnitude 1/R so these terms are of order Tjk/R,
whereas the terms kept in Eq. (11.79) are of order Txx/! and Txz/h; and since the thickness h and length !
of the beam are small compared to the beam’s radius of curvature R, the connection-coefficient terms are
negligible.
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the two ends of the segment exert a clockwise torque 2S(dx/2) = Sdx. This is balanced
by a counterclockwise torque due to the stretching of the upper half of the segment and
compression of the lower half, i.e. due to the bending of the beam. This bending torque is

M ≡
∫

Txxzdydz = −D
d2η

dx2
(11.83)

on the right end of the segment and minus this on the left, so torque balance says (dM/dx)dx =
Sdx, i.e.

S = dM/dx . (11.84)

This is precisely Eq. (11.81).
Equation (11.81) [or equivalently (11.84)] embodies half of the elastostatic equations. It

is the x component of force balance fx = 0, converted to an ordinary differential equation by
evaluating its lowest non-vanishing moment: its first moment,

∫
zfxdydz = 0 [Eq. (11.80)].

The other half is the z component of stress balance, which we can write as

Tzx,x + Tzz,z + ρg = 0 (11.85)

(vertical elastic force balanced by gravitational pull on the beam). We can convert this to
a one-dimensional ordinary differential equation by taking its lowest nonvanishing moment,
its zero’th moment, i.e. by integrating over y and z. The result is

dS

dx
= −W , (11.86)

where W = gρwh is the beam’s weight per unit length.
Combining our two dimensionally reduced components of force balance, Eqs. (11.81) and

(11.86), we obtain a fourth order differential equation for our one-dimensional displacement
η(x):

d4η

dx4
=

W

D
. (11.87)

(Fourth order differential equations are characteristic of elasticity.)
Equation (11.87) can be solved subject to four appropriate boundary conditions. How-

ever, before we solve it, notice that for a beam of a fixed length !, the deflection η is inversely
proportional to the flexural rigidity. Let us give a simple example of this scaling. American
floors are conventionally supported by wooden joists of 2” (inch) by 6” lumber with the 6”
side vertical. Suppose an inept carpenter installed the joists with the 6” side horizontal.
The flexural rigidity of the joist would be reduced by a factor 9 and the center of the floor
would be expected to sag 9 times as much as if the joists had been properly installed – a
potentially catastrophic error.

Also, before solving Eq. (11.87), let us examine the approximations that we have made.
First, we have assumed that the sag is small compared with the length of the beam in
making the small angle approximation in Eq. (11.77), and we have assumed the beam’s
radius of curvature is large compared to its length in neglecting connection coefficient terms
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(footnote 8). These will usually be the case, but are not so for the elastica studied in Ex.
11.17. Second, by using the method of moments rather than solving for the complete local
stress tensor field, we have ignored the effects of some components of the stress tensor. In
particular, in evaluating the bending torque [Eq. (11.83)] we have ignored the effect of the
Tzx component of the stress tensor. This is O(h/!)Txx and so our equations can only be
accurate for fairly slender beams. Third, the extension above the neutral surface and the
compression below the neutral surface lead to changes in the cross sectional shape of the
beam. The fractional error here is of order the longitudinal shear, which is small for real
materials.

The solution to Eq. (11.87) is a fourth order polynomial with four unknown constants
to be set by boundary conditions. In this problem, the beam is held horizontal at the fixed
end so that η(0) = η′(0) = 0, where ′ = d/dx. At the free end, Tzx and Txx must vanish, so
the shearing force S must vanish, whence η′′′(!) = 0 [Eq. (11.81)]; and the bending torque
M [Eq. (11.83)] must also vanish, whence [by Eq. (11.84)]

∫
Sdx ∝ η′′(!) = 0. By imposing

these four boundary conditions η(0) = η′(0) = η′′(!) = η′′′(!) on the solution of Eq. (11.87),
we obtain for the beam shape

η(x) =
W

D

(
1

4
!2x2 − 1

6
!x3 +

1

24
x4

)
. (11.88a)

Therefore the end of the beam sags by

η(!) =
W !4

8D
. (11.88b)

Problems in which the beam rests on supports rather than is clamped can be solved in
a similar manner. The boundary conditions will be altered, but the differential equation
(11.87) will be unchanged.

Now suppose that we have a cantilever bridge of constant vertical thickness h and total
span 2! ∼100m made of material with density ρ ∼ 8 × 103kg m−3 (e.g. reinforced concrete)
and Young’s modulus E ∼ 100GPa. Suppose further that we want the center of the bridge
to sag by no more than η ∼ 1m. According to Eq. (11.88b), the thickness of the beam must
satisfy

h "
(

3ρg!4

2Eη

)1/2

∼ 2.7m . (11.89)

This estimate makes no allowance for all the extra strengthening and support present in real
structures (e.g. via trusses and cables) and so it is an overestimate.

****************************

EXERCISES

Exercise 11.16 Derivation: Sag in a cantilever

(a) Verify Eqs. (11.88) for the sag in a horizontal beam clamped at one end and allowed
to hang freely at the other end.
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(a) (b)

(c) (d)
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Fig. 11.11: Elastica. (a) A bent wire is in elastostatic equilibrium under the action of equal and
opposite forces applied at its two ends. x measures distance along the neutral surface; z measures
distance orthogonal to the wire in the plane of the bend. (b), (c), (d) Examples of the resulting
shapes.

(b) Now consider a similar beam with constant cross section and loaded with weights so
that the total weight per unit length is W (x). Give a Green’s function for the sag of
the free end in terms of an integral over W (x).

Exercise 11.17 *** Example: Elastica
Consider a slender wire of rectangular cross section resting on a horizontal surface (so gravity
is unimportant), with horizontal thickness h and vertical thickness w. Let the wire be bent
in the horizontal plane (so gravity is unimportant) as a result of equal and opposite forces F
that act at its ends; Fig. 11.11. The various shapes the wire can assume are called elastica;
they were first computed by Euler in 1744 and are discussed on pp. 401–404 of Love (1927).
The differential equation that governs the wire’s shape is similar to that for the cantilever,
Eq. (11.87), with the simplification that the wire’s weight does not enter the problem and
the complication that the wire is long enough to deform through large angles.
It is convenient (as in the cantilever problem, Fig. 11.10) to introduce curvilinear coordi-
nates with coordinate x measuring distance along the neutral surface, z measuring distance
orthogonal to x in the plane of the bend (horizontal plane), and y measured perpendicular
to the bending plane (vertically). The unit vectors along the x, y, and z directions are ex,
ey, ez (Figure 11.11). Let θ(x) be the angle between ex and the applied force F; θ(x) is
determined, of course, by force and torque balance.

(a) Show that force balance along the x and z directions implies

F cos θ =

∫
Txxdydz , F sin θ =

∫
Tzxdydz ≡ S . (11.90a)
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(b) Show that torque balance for a short segment of wire implies

S =
dM

dx
, where M(x) ≡

∫
zTxxdydz is the bending torque. (11.90b)

(c) Show that the stress-strain relation in the wire implies

M = −D
dθ

dx
, (11.90c)

where D = Ewh3/12 is the flexural rigidity, Eq. (11.82).

(d) From the above relations, derive the following differential equation for the shape of the
wire:

d2θ

dx2
= −F sin θ

D
. (11.90d)

This is the same equation as desribes the motion of a simple pendulum!

(e) Go back through your analysis and identify any place that connection coefficients would
enter into a more careful computation, and explain why the connection-coefficient terms
are neglible.

(f) Find one non-trivial solution of the elastica equation (11.90d) either analytically using
elliptic integrals or numerically. (The general solution can be expressed in terms of
elliptic integrals.)

(g) Solve analytically or numerically for the shape adopted by the wire corresponding to
your solution in (f), in terms of Cartesian coordinates (X, Z) in the bending (horizon-
tal) plane. Hint: express the curvature of the wire, 1/R = dθ/dx as

dθ

dx
=

d2X

dZ2

[
1 +

(
dX

dZ

)2
]−3/2

. (11.90e)

(h) Obtain a uniform piece of wire and adjust the force F to compare your answer with
experiment.

Exercise 11.18 Example: Foucault Pendulum
In the design of a Foucault pendulum for measuring the earth’s general relativistic “gravit-
omagnetic field” (discussed further in Part VI), it is crucial that the pendulum’s restoring
force be isotropic, since anisotropy will make the swinging period be different in different
planes and thereby will cause precession of the plane of swing (Braginsky, Polnarev and
Thorne 1984). The answer to the elastica exercise 11.17 can be adapted to model the effect
of anisotropy on the pendulum’s period.
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Fig. 11.12: Foucault Pendulum

(a) Consider a pendulum of mass m and length ! suspended as shown in Figure 11.12 by a
rectangular wire with thickness h in the plane of the bend (X−Z plane) and thickness
w orthogonal to that plane (Y direction). Explain why the force that the wire exerts
on the mass is −F = −(mg cos θo + m!θ̇2o)ex, where g is the acceleration of gravity,
θo is defined in the figure, θ̇o is the time derivative of θo due to the swinging of the
pendulum, and in the second term we have assumed that the wire is long compared to
its region of bend. Express the second term in terms of the amplitude of swing θmax

o ,
and show that for small amplitudes θmax

o % 1, F ' mgex. Use this approximation in
the subsequent parts.

(b) Assuming that all along the wire, its angle θ(x) to the vertical is small, θ % 1, show
that

θ(x) = θo[1 − e−x/λ] , (11.91a)

where λ (not to be confused with the Lame constant) is

λ =
h

(12ε)1/2
, (11.91b)

ε = ξx,x is the longitudinal strain in the wire, and h is the wire’s thickness in the plane
of its bend. Note that the bending of the wire is concentrated near the support, so this
is where dissipation will be most important and where most of the suspension thermal
noise will arise (cf. Sec. 5.6 for discussion of thermal noise).

(c) Hence show that the shape of the wire is given in terms of cartesian coordinates by

Z = [X − λ(1 − e−X/λ)]θo , (11.91c)

and that the pendulum period is

P = 2π

(
!− λ

g

)1/2

. (11.91d)

(d) Finally show that the pendulum periods when swinging along ex and ey differ by

δP

P
=

(
h − w

!

) (
1

48ε

)1/2

. (11.91e)
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Fig. 11.13: A playing card of length !, width w and thickness h is subjected to a compressive
force F , applied at both ends. The ends of the card are fixed but are free to pivot.

From this one can determine how accurately the two thicknesses h and w must be
equal to achieve a desired degree of isotropy in the period. A similar analysis can be
carried out for the more realistic case of a slightly elliptical wire.

****************************

11.8 Bifurcation, Buckling and Mountain Folding

So far, we have considered stable elastostatic equilibria, and have implicitly assumed that
the only reason for failure of a material is exceeding the elastic limit. However, anyone who
has built a house of cards knows that mechanical equilibria can be unstable, with startling
consequences. A large scale example is the formation of mountains. The surface of the
earth is covered by several interlocking horizontal plates that are driven into each other by
slow (hundred-million-year) convective motions in the underlying mantle. When plates are
pushed together, mountains can be formed in two ways: by folding (e.g. the Jura Mountains
of France) which sometimes happens when a portion of crust is compressed in just one
direction, and by forming domes (e.g. the Black Hills of Dakota) which arise when there is
simultaneous compression along two directions.

For a simple model of folding, take a new playing card and squeeze it between your
finger and thumb (Figure 11.13). When you squeeze gently, the card remains flat, but when
you gradually increase the force past a critical value Fcrit, the card suddenly “buckles,” i.e.
bends; and the curvature of the bend then increases rapidly with the applied force. For a
force somewhat higher than Fcrit there are equilibrium states of “higher quantum number”,
i.e. with one or more nodes in the transverse displacement η(x) of the card.

To understand this quantitatively, we derive an eigenequation for the transverse displace-
ment η as a function of distance x from one end of the card. (Although the card is effectively
two dimensional, it has translation symmetry along its transverse dimension, so we can use
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0

F=0

F>Fcrit

2

F=Fcrit

Fig. 11.14: Schematic illustration of the behavior of the frequency of small oscillations about
equilibrium and the displacement of the center of the card, η0. Equilibria with ω2 > 0 are stable;
those with ω2 < 0 are unstable. The applied force F increases in the direction of the arrows.

the one-dimensional equations of the previous section.) We suppose that the ends are free
to pivot but not move, so

η(0) = η(!) = 0 . (11.92)

For small displacements, the bending torque of our dimensionally-reduced one-dimensional
theory is [Eq. (11.83)]

M(x) = −D
d2η

dx2
, (11.93)

where D = wh3E/12 is the flexural rigidity [Eq. (11.82)]. As the card is very light (negligible
gravity), the total torque around location x, acting on a section of the card from x to one
end, is the bending torque applied at x plus the torque associated with the applied force
−Fη(x), and this sum must vanish:

D
d2η

dx2
+ Fη = 0 . (11.94)

The eigenfunction solutions of Eq. (11.94) satisfying boundary conditions (11.92) are

η = η0 sin kx , (11.95a)

where

k =

(
F

D

)1/2

=
nπ

!
for non-negative integers n. (11.95b)

Therefore, there is a critical force given by

Fcrit =
π2D

!2
=
π2wh3E

12!2
, (11.96)

below which there is no solution except η = 0 (an unbent card). When the applied force is
equal to Fcrit, the unbent card is still a solution, and there is an additional solution (11.95)
with n = 1 (a single arch with no nodes). The linear approximation, which we have used,
cannot tell us the height η0 of the arch as a function of F ; it reports, incorrectly, that for
F = Fcrit all arch heights are allowed and for F > Fcrit there is no solution with n = 1.
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V

0

V

0

(a) (b)

Fig. 11.15: Representation of bifurcation by a potential energy function V (ξ0). a) When the
applied force is small, there is only one stable equilibrium. b) As the applied force F is increased,
the bottom of the potential well flattens and eventually the number of equilibria increases from one
to three, of which only two are stable.

When nonlinearities are taken into account (Ex. 11.19), the force F and the arch height ηo

are related by

F = Fcrit

(
1 +

1

2
sin2(θo/2) + O[sin4(θo/2)]

)
, where θo =

πηo

!
. (11.97)

The sudden appearance of this new n = 1, arched equilibrium state as F is increased through
Fcrit is called a bifurcation of equilibria.

Bifurcations show up sharply in the elastodynamics of the playing card, as we shall see in
Sec. 11.3.5: When F < Fcrit, small perturbations of the card’s shape oscillate stably. When
F = Fcrit, the card is neutrally stable, and its zero-frequency motion leads the card from its
straight equilibrium state to its n = 1 bent equilibrium. When F > Fcrit, the straight card
is an unstable equilibrium: its n = 1 perturbations grow in time, driving the card toward
the n = 1 equilibrium state of Eq. (11.97).

Another nice way of looking at bifurcations is in terms of energy. Consider candidate
equilibrium states labeled by the height η0 of their arch. For each value of η0, give the card
(for concreteness) the n = 1 sine-wave shape η = η0 sin(πx/!). Compute the total elastic
energy U(η0) associated with the card’s bending and subtract off the work F δX done on the
card by the applied forces F when the card arches from η0 = 0 to height η0. (Here δX(η0) is
the arch-induced decrease in straight-line separation between card’s the ends). The resulting
quantity, V (η0) = U − F δX is the card’s free energy — analogous to the Gibb’s free energy
G = E − TS + PV of thermodynamics; it is the relevant energy for analyzing the card’s
equilibrium and dynamics, when the force F is continually being applied at the two ends.
This free energy has the shapes shown in Fig. 11.15. At small values of the force [curve (a)],
the free energy has only one minimum η0 = 0 corresponding to a single stable equilibrium,
the straight card. However, as the force is increased through Fcrit, the potential minimum
flattens out and then becomes a maximum flanked by two new minima [curve (b)]. The
maximum for F > Fcrit is the unstable, zero-displacement (straight-card) equilibrium and
the two minima are the two stable finite amplitude equilibria with positive and negative η0.

This procedure of representing a continuous system with an infinite number of degrees
of freedom by just one or a few coordinates and finding the equilibrium by minimizing a
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free energy is quite common and powerful. Coordinates like η0 are sometimes called state
variables, and physical parameters like the force F are then called control variables.

The compressed card’s bifurcation is an example of a cusp catastrophe; it is an analog
of the catastrophes we met in geometrical optics in Sec. 6.5. Other examples of bifurcations
include the failure of struts under excessive compressive loads, the instability (or whirling) of
a drive shaft when it rotates too rapidly, and the development of triaxiality in self-gravitating
fluid masses (i.e. stars) when their rotational kinetic energy becomes comparable with their
gravitational energy.

Let us now return to the problem of mountain folding with which we began this section.
Our playing-card model is obviously inadequate to describe the full phenomenon, as we have
omitted gravitational forces and the restoring force associated with the earth’s underlying
mantle. Gravity causes no difficulties of principle as it just changes the equilibrium state.
Coupling to the mantle can be modeled by treating it as an underlying viscoelastic medium.
When it departs from equilibrium, the mantle changes not on a dynamical time (the time for
a seismic wave to cross it, of order minutes), but instead on the time for the mantle rocks to
flow, typically millions of years. Despite these limitations, our playing-card model can give a
semiquantitative understanding of why plates of rock (E ∼ 100GPa, ν ∼ 0.25), buckle when
subjected to large, horizontal, compressive forces.

****************************

EXERCISES

Exercise 11.19 Derivation and Example: Bend as a Function of Applied Force
Derive Eq. (11.97) relating the angle θo ' (dη/dx)x=0 = kηo = πηo/! to the applied force
F when the card has an n = 1, arched shape. Hint: Use the elastica differential equation
d2θ/dx2 = −(F/D) sin θ [Eq. (11.90d)] for the angle between the card and the applied force
at distance x from the card’s end. The sin θ becomes θ in the linear approximation used
in the text; the nonlinearities embodied in the sine give rise to the desired relation. The
following steps along the way toward a solution are mathematically the same as used when
computing the period of a pendulum as a function of its amplitude of swing.

(a) Derive the first integral of the elastica equation

(dθ/dx)2 = 2(F/D)(cos θ − cos θo) , (11.98)

where θo is an integration constant. Show that the boundary condition of no bending
torque (no inflexion of the card’s shape) at the card ends implies θ = θo at x = 0 and
x = !; whence θ = 0 at the card’s center, x = !/2.

(b) Integrate the differential equation (11.98) to obtain

!

2
=

√
D

2F

∫ θo

0

dθ√
cos θ − cos θo

. (11.99)
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(c) Perform the change of variable sin(θ/2) = sin(θo/2) sinφ and thereby bring Eq. (11.99)
into the form

! = 2

√
D

F

∫ π/2

0

dφ√
1 − sin2(θo/2) sin2 φ

= 2

√
D

F
K[sin2(θo/2)] . (11.100)

Here K(y) is the complete elliptic integral of the first type, with the parametrization
used by Mathematica (which differs from many books).

(d) Expand Eq. (11.100) in powers of sin2(θo/2) to obtain

F = Fcrit
4

π2
K2[sin2(θo/2)] = Fcrit

[
1 +

1

2
sin2(θo/2) +

11

32
sin4(θo/2) + . . .

]
, (11.101)

which is our desired result (11.97).

Exercise 11.20 Practice: The Height of Mountains
Estimate the maximum size of a mountain by requiring that the shear stress in the underlying
rocks not exceed the elastic limit. Compare your answer with the height of the tallest
mountains on Earth.

Exercise 11.21 Example: Neutron Star Crusts
The crust of a neutron star is made of iron (A = 56, Z = 26) at density ρ. It is supported
against the pull of gravity by the pressure of a relativistic, degenerate, electron gas (Sec.
2.5.4) whose iron ions are arranged in a body centered cubic lattice that resists shearing.
Estimate the ratio of shear modulus to bulk modulus µ/K, and use this to estimate roughly
the ratio of height to width of mountains on a neutron star. You might proceed as follows:

(a) Show that the electron Fermi energy is given by

EF = (3π2ne)
1/3!c ,

where ne = Zρ/AmP is the free electron density. Hence show the Fermi pressure is
given by

pF =
1

4
neEF .

(b) Use the definition of Bulk Modulus preceding Eq. (11.18) to express it in the form

K =
1

3
neEF

(c) Show that the iron ions’ body centered cubic lattice produces a shear modulus of
magnitude

µ = C
(ne

Z

)4/3
Z2e2 ,

where C is a numerical constant of order unity. Hence show that the ratio of the shear
modulus to the bulk modulus is

µ

K
=

(
3

π

)2/3

CZ2/3

(
e2

!c

)
.



48

(d) By an order-of-magnitude analysis of stress balance inside a mountain, estimate its
ratio of height to width. Your answer should be very small compared to unity.

****************************

11.9 T2 Reducing the Elastostatic Equations to Two
Dimensions for a Deformed Thin Plate: Stress-
Polishing a Telescope Mirror

The world’s largest optical telescopes, the two ten meter Keck telescopes, are located on
Mauna Kea in Hawaii. It is very difficult to support traditional, monolithic mirrors so
that they maintain their figure as the telescope slews, because they are so heavy; so for
Keck a new method of fabrication was sought. The solution devised by Jerry Nelson and
his colleagues was to construct the telescope out of 36 separate hexagons, each 0.9m on a
side. However, this posed a second problem, grinding each hexagon’s reflecting surface to
the required hyperboloidal shape. For this, a novel technique called stressed mirror polishing
was developed. This technique relies on the fact that it is relatively easy to grind a surface to
a spherical shape, but technically highly challenging to create a non-axisymmetric shape. So,
during the grinding, stresses are applied around the boundary of the mirror to deform it and
a spherical surface is produced. The stresses are then removed and the mirror springs into
the desired nonspherical shape. Computing the necessary stresses is a problem in classical
elasticity theory and, in fact, is a good example of a large number of applications where
the elastic body can be approximated as a thin plate and its shape can be analyzed using
elasticity equations that are reduced from three dimensions to two by the method of moments.

For stress polishing of mirrors, the applied stresses are so large that we can ignore gravi-
tational forces (at least in our simplified treatment). We suppose that the hexagonal mirror
has a uniform thickness h and idealize it as a circle of radius R, and we introduce Cartesian
coordinates with (x, y) in the horizontal plane (the plane of the mirror before deformation
and polishing begin), and z vertical. The mirror is deformed as a result of a net vertical force
per unit area (pressure) F (x, y). This force is applied at the lower surface when positive and
the upper surface when negative. In addition there are shear forces and bending moments
applied around the rim of the mirror.

As in our analysis of a cantilever in Sec. 11.7, we assume the existence of a neutral
surface in the deformed mirror, where the horizontal strain vanishes, Tab = 0. (Here and
below we use letters from the early part of the Latin alphabet for horizontal x = x1, y = x2

components.) We denote the vertical displacement of the neutral surface by η(x, y). By
applying the method of moments to the three-dimensional equation stress balance Tjk,k = 0
in a manner similar to our cantilever analysis, we obtain the following two-dimensional
equation for the mirror’s shape:

∇2(∇2η) = F (x, y)/D . (11.102a)
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glass block radial arm

F3

10cm

F2F1

r1 r2

Fig. 11.16: Schematic showing mirror blank, radial arm and lever assembly used to apply shear
forces and bending torques to the rim of a mirror in stress polishing. (F1 need not equal F2 as
there is a pressure F applied to the back surface of the mirror and forces applied at 23 other points
around its rim.) The shear force is S = F2 − F1 and the bending torque is M = r2F2 − r1F1

Here ∇2 is the horizontal Laplacian, i.e. ∇2η ≡ η,aa = η,xx + η,yy. Equation (11.102a) is the
two-dimensional analog of the equation d4η/dx4 = W/D for the shape of a cantilever [Eq.
(11.87)], and the two-dimensional flexural rigidity that appears in it is

D =
Eh3

12(1 − ν2)
, (11.102b)

where E is the mirror’s Young’s modulus, h is its thickness and ν is its Poisson ratio. The
quantity ∇2∇2 that operates on η in the shape equation (11.102a) is called the biharmonic
operator ; it also appears in 3-dimensional form in the biharmonic equation (11.29a) for the
displacement inside a homogeneous, isotropic body to which surface stresses are applied.

The shape equation (11.102a) must be solved subject to boundary conditions around the
mirror’s rim: the applied shear forces and bending torques.

The individual Keck mirror segments were constructed out of a ceramic material with
Young’s modulus E = 89GPa and Poisson’s ratio ν = 0.24 (cf. Table 11.1). A mechanical
jig was constructed to apply the shear forces and bending torques at 24 uniformly spaced
points around the rim of the mirror (Figure 11.16). The maximum stress was applied for the
six outermost mirrors and was 2.4 × 106N m−2, 12 per cent of the breaking tensile strength
(2 × 107N m−2).

This stress-polishing worked beautifully and the Keck telescopes have become highly
successful tools for astronomical research.

****************************

EXERCISES

Exercise 11.22 *** Derivation and Example: Dimensionally Reduced Shape Equation for
a Stressed Plate
Use the method of moments (Sec. 11.7) to derive the two-dimensional shape equation
(11.102a) for the stress-induced deformation of a thin plate, and expression (11.102b) for
the 2-dimensional flexural rigidity. Here is a step-by-step guide, in case you want or need it:

(a) First show, on geometrical grounds, that the in-plane strain is related to the vertical
displacement by [cf. Eq. (11.77)]

ξa,b = −zη,ab . (11.103a)
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(b) Next derive an expression for the horizontal components of the stress, Tab, in terms of
double derivatives of the displacement function η(x, y) [analog of Txx = −Ezd2η/dx2,
Eq. (11.78), for a stressed rod]. This can be done (i) by arguing on physical grounds that
the vertical component of stress, Tzz, is much smaller than the horizontal components
and therefore can be approximated as zero [an approximation to be checked in part (f)
below], (ii) by expressing Tzz = 0 in terms of the strain and thence displacement and
using Eqs. (11.34) to arrive at

Θ = −
(

1 − 2ν

1 − ν

)
z∇2η , (11.103b)

where ∇2 is the horizontal Laplacian, (iii) by then writing Tab in terms of Θ and ξa,b

and combining with Eqs. (11.103a) and (11.103b) to get the desired equation:

Tab = Ez

[
ν

(1 − ν2)
∇2η δab +

η,ab

(1 + ν)

]
. (11.103c)

(c) With the aid of this equation, write the horizontal force density in the form

fa = −Tab,b − Taz,z = − Ez

1 − ν2
∇2η,a − Taz,z = 0 . (11.103d)

Then, as in the cantilever analysis [Eq. (11.80)], reduce the dimensionality of this force
equation by the method of moments. The zero’th moment (integral over z) vanishes;
why? Therefore, the lowest nonvanishing moment is the first (multiply by z and
integrate). Show that this gives

Sa ≡
∫

Tzadz = D∇2η,a , (11.103e)

where D is the 2-dimensional flexural rigidity (11.102b). The quantity Sa is the vertical
shear force per unit length acting perpendicular to a line in the mirror, whose normal
is in the direction a; it is the 2-dimensional analog of a stressed rod’s shear force S
[Eq. (11.81)].

(d) For physical insight into Eq. (11.103e), define the bending torque per unit length
(bending torque density)

Mab ≡
∫

zTabdz , (11.103f)

and show with the aid of Eq. (11.103c) that (11.103e) is the law of torque balance
Sa = Mab,b — the 2-dimensional analog of a stressed rod’s S = dM/dx [Eq. (11.84)].

(e) Compute the total vertical shearing force acting on a small area of the plate as the line
integral of Sa around its boundary, and by applying Gauss’s theorem, deduce that the
vertical shear force per unit area is Sa,a. Argue that this must be balanced by the net
force density F applied to the face of the plate, and thereby deduce the law of vertical
force balance.

Sa,a = F . (11.103g)
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By combining with the law of torque balance (11.103e), obtain the plate’s bending
equation ∇2(∇2η) = F/D, Eq. (11.102a) — the final result we were seeking.

(f) Use this bending equation to verify the approximation made in part (b), that Tzz is
small compared to the horizontal stresses; specifically, show that Tzz ' F is O(h/R)2Tab,
where h is the plate thickness and R is the plate radius.

Exercise 11.23 Example: Paraboloidal Mirror
Show how to construct a paraboloidal mirror of radius R and focal length f by stressed
polishing.

(a) By comparing the shape of a paraboloid to that of a sphere of similar curvature at the
origin, show that the required vertical displacement of the stressed mirror is

η(r) =
r4

64f 3
,

where r is the radial coordinate and we only retain terms of leading order.

(b) Hence use Eq. (11.102a) to show that a uniform force per unit area

F =
D

f 3
,

where D is the Flexural Rigidity, must be applied to the bottom of the mirror. (Ignore
the weight of the mirror.)

(c) Hence show that if there are N equally-spaced levers attached at the rim, the vertical
force applied at each of them is

Szr =
πDR2

Nf 3

and the associated bending torque is

M =
πDR3

2Nf 3
.

(d) Show that the radial displacement is

ξr = − r3z

16f 3
,

where z is the vertical distance from the neutral surface, halfway through the mirror.

(e) Hence evaluate the expansion Θ and the components of the strain tensor Σ and show
that the maximum stress in the mirror is

Tmax =
(3 − 2ν)R2hE

32(1 − 2ν)(1 + ν)f 3
,

where h is the mirror thickness. Comment on the limitations of this technique for
making a thick, “fast” (i.e. 2R/f large) mirror.

****************************
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Box 11.4
Important Concepts in Chapter 10

• Foundational Concepts

– Displacement vector field ξ, Sec. 11.2.1

– Strain tensor S = ∇ξ, Sec. 11.2.1

– Irreducible tensorial parts of strain: expansion Θ, rotation Rij and shear Σij ,
Sec. 11.2.2

– Bulk and shear moduli K, µ; elastic stress tensor T = −KΘg − 2µΣ, Sec.
11.3.2

– Molecular origin of moduli and orders of magnitude, Sec. 11.3.4

– Elastic force on a unit volume, f = −∇ · T = (K + µ/3)∇(∇ · ξ) + µ∇2ξ
Sec. 11.3.2

– Elastic force balance, Sec. 111.3.2

– Elastic energy (energy of deformation), Sec. 11.3.3

– Connection Coefficients and their use in cylindrical and spherical coordinate
systems, Sec11.5

• Elastostatic Equilibrium

– Differential equation for displacement, f = 0 or f + ρg = 0, Sec. 11.3.2

– Boundary condition Tijnj continuous, Sec. 11.3.2

– Methods of solving for displacement in full 3 dimensions: separation of vari-
ables, Green’s functions, Sec. 11.6.2 and Exs. 11.14, 11.15

– Dimensional reduction via method of moments, and application to rods, beams
and fibers, and to plates: Secs. 11.7, 11.9

– Bifurcation of equilibria: Sec. 11.8

Bibliographic Note

Elasticity Theory was developed in the 19th and early 20th centuries. The classic textbook
from that era is Love (1927), which is available as a Dover reprint. An outstanding, somewhat
more modern text is Landau and Lifshitz (1986) — originally written in the 1950s and revised
in a third edition in 1986, shortly before Lifshitz’s death. This is, perhaps, the most readable
of all the textbooks that Landau and Lifshitz wrote, and is still widely used by physicists
in the early 21st century. Other good texts include Southwell (1941), and Timoshenko
and Goodier (1970). For a sophisticated treatment of methods of solving the elastostatic
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equations for a body on which external forces act, see Gladwell (1980). For Green’s function
solutions, see Johnson (1984).
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