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Box 13.1
Reader’s Guide

• This chapter relies heavily on the geometric view of Newtonian physics (including
vector and tensor analysis) laid out in the sections of Chap. 1 labeled “[N]”.

• This chapter also relies on the concepts of strain and its irreducible tensorial parts
(the expansion, shear and rotation) introduced in Chap. 11.

• Chapters 13–18 (fluid mechanics and magnetohydrodynamics) are extensions of
this chapter; to understand them, this chapter must be mastered.

• Portions of Part V, Plasma Physics (especially Chap. 20 on the “two-fluid formal-
ism”), rely heavily on this chapter.

• Small portions of Part VI, General Relativity, will entail relativistic fluids, for which
concepts in this chapter will be important.

13.1 Overview

Having studied elasticity theory, we now turn to a second branch of continuum mechanics:
fluid dynamics. Three of the four states of matter (gases, liquids and plasmas) can be
regarded as fluids and so it is not surprising that interesting fluid phenomena surround
us in our everyday lives. Fluid dynamics is an experimental discipline and much of what
has been learned has come in response to laboratory investigations. Fluid dynamics finds
experimental application in engineering, physics, biophysics, chemistry and many other fields.

1



2

The observational sciences of oceanography, meteorology, astrophysics and geophysics, in
which experiments are less frequently performed, are also heavily reliant upon fluid dynamics.
Many of these fields have enhanced our appreciation of fluid dynamics by presenting flows
under conditions that are inaccessible to laboratory study.

Despite this rich diversity, the fundamental principles are common to all of these appli-
cations. The fundamental assumption which underlies the governing equations that describe
the motion of fluid is that the length and time scales associated with the flow are long com-
pared with the corresponding microscopic scales, so the continuum approximation can be
invoked. In this chapter, we will derive and discuss these fundamental equations. They are,
in some respects, simpler than the corresponding laws of elastodynamics. However, as with
particle dynamics, simplicity in the equations does not imply that the solutions are simple,
and indeed they are not! One reason is that there is no restriction that fluid displacements
be small (by constrast with elastodynamics where the elastic limit keeps them small), so
most fluid phenomena are immediately nonlinear.

Relatively few problems in fluid dynamics admit complete, closed-form, analytic solu-
tions, so progress in describing fluid flows has usually come from the introduction of clever
physical “models” and the use of judicious mathematical approximations. In more recent
years numerical fluid dynamics has come of age and in many areas of fluid mechanics, finite
difference simulations have begun to complement laboratory experiments and measurements.

Fluid dynamics is a subject where considerable insight accrues from being able to vi-
sualize the flow. This is true of fluid experiments where much technical skill is devoted to
marking the fluid so it can be photographed, and numerical simulations where frequently
more time is devoted to computer graphics than to solving the underlying partial differential
equations. We shall pay some attention to flow visualization. The reader should be warned
that obtaining an analytic solution to the equations of fluid dynamics is not the same as
understanding the flow; it is usually a good idea to sketch the flow pattern at the very least,
as a tool for understanding.

We shall begin this chapter in Sec. 13.2 with a discussion of the physical nature of a
fluid: the possibility to describe it by a piecewise continuous density, velocity, and pressure,
and the relationship between density changes and pressure changes. Then in Sec. 13.3 we
shall discuss hydrostatics (density and pressure distributions of a static fluid in a static
gravitational field); this will parallel our discussion of elastostatics in Chap. 10. Following
a discussion of atmospheres, stars and planets, we shall explain the microphysical basis of
Archimedes’ law.

Our foundation for moving from hydrostatics to hydrodynamics will be conservation laws
for mass, momentum and energy. To facilitate that transition, in Sec. 13.4 we shall examine
in some depth the physical and mathematical origins of these conservation laws in Newtonian
physics.

The stress tensor associated with most fluids can be decomposed into an isotropic pressure
and a viscous term linear in the rate of shear or velocity gradient. Under many conditions the
viscous stress can be neglected over most of the flow and diffusive heat conductivity (Chap.
17) is negligible. The fluid is then called ideal.1 We shall study the laws governing ideal

1An ideal fluid (also called a perfect fluid) should not to be confused with an ideal or perfect gas—one
whose pressure is due solely to kinetic motions of particles and thus is given by P = nkBT , with n the
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fluids in Sec. 13.5. After deriving the relevant conservation laws and equation of motion,
we shall derive and discuss the Bernoulli theorem (which relies on negligible viscosity) and
show how it can simplify the description of many flows. In flows for which the speed neither
approaches the speed of sound, nor the gravitational escape velocity, the fractional changes
in fluid density are relatively small. It can then be a good approximation to treat the fluid as
incompressible and this leads to considerable simplification, which we also study in Sec. 13.5.
As we shall see, incompressibility can be a good approximation not just for liquids which
tend to have large bulk moduli, but also, more surprisingly, for gases.

In Sec. 13.7 we augment our basic equations with terms describing the action of the
viscous stresses. This allows us to derive the famous Navier-Stokes equation and to illustrate
its use by analyzing pipe flow. Much of our study of fluids in future chapters will focus on
this Navier-Stokes equation.

In our study of fluids we shall often deal with the influence of a uniform gravitational field,
such as that on earth, on lengthscales small compared to the earth’s radius. Occasionally,
however, we shall consider inhomogeneous gravitational fields produced by the fluid whose
motion we study. For such situations it is useful to introduce gravitational contributions to
the stress tensor and energy density and flux. We present and discuss these in a box, Box
13.3, where they will not impede the flow of the main stream of ideas.

13.2 The Macroscopic Nature of a Fluid: Density, Pres-
sure, Flow velocity; Fluids vs. Gases

The macroscopic nature of a fluid follows from two simple observations.
The first is that in most flows the macroscopic continuum approximation is valid: Be-

cause, in a fluid, the molecular mean free paths are small compared to macroscopic length-
scales, we can define a mean local velocity v(x, t) of the fluid’s molecules, which varies
smoothly both spatially and temporally; we call this the fluid’s velocity. For the same rea-
son, other quantities that characterize the fluid, e.g. the density ρ(x, t), also vary smoothly
on macroscopic scales. Now, this need not be the case everywhere in the flow. The excep-
tion is a shock front, which we shall study in Chap. 16; there the flow varies rapidly, over
a length of order the collision mean free path of the molecules. In this case, the continuum
approximation is only piecewise valid and we must perform a matching at the shock front.
One might think that a second exception is a turbulent flow where, it might be thought, the
average molecular velocity will vary rapidly on whatever length scale we choose to study, all
the way down to intermolecular distances, so averaging becomes problematic. As we shall
see in Chap. 14, this is not the case; in turbulent flows there is generally a length scale far
larger than intermolecular distances below which the flow varies smoothly.

The second observation is that fluids do not oppose a steady shear strain. This is easy
to understand on microscopic grounds as there is no lattice to deform and the molecular
velocity distribution remains isotropic in the presence of a static shear. By kinetic theory
considerations (Chap. 2), we therefore expect that a fluid’s stress tensor T will be isotropic
in the local rest frame of the fluid (i.e., in a frame where v = 0). This allows us to write

particle number density, kB Boltzmann’s constant, and T temperature; see Box 13.2.
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T = Pg in the local rest frame, where P is the fluid’s pressure and g is the metric (with
Kronecker delta components, gij = δij).

The laws of fluid mechanics, as we shall develop them, are valid equally well for liquids,
gases, and (under many circumstances) plasmas. In a liquid, as in a solid, the molecules are
packed side by side (but can slide over each other easily). In a gas or plasma the molecules
are separated by distances large compared to their sizes. This difference leads to different
behaviors under compression:

For a liquid, e.g. the water in a lake, the molecules resist strongly even a very small
compression; and, as a result, it is useful to characterize the pressure increase by a bulk
modulus K, as in an elastic solid (Chap. 10):

δP = −KΘ = K
δρ

ρ
for a liquid. (13.1)

(Here we have used the fact that the expansion Θ is the fractional increase in volume, or
equivalently by mass conservation the fractional decrease in density.) The bulk modulus
for water is about 2.2 GPa, so as one goes downward in a lake far enough to double the
pressure from one atmosphere (105 Pa to 2×105 Pa), the fractional change in density is only
δρ/ρ = (2 × 105/2.2 × 109) # one part in 10,000.

Gases and plasmas, by contrast, are much less resistant to compression. Due to the large
distance between molecules, a doubling of the pressure requires, in order of magnitude, a
doubling of the density; i.e.

δP

P
= Γ

δρ

ρ
for a gas, (13.2)

where Γ is a proportionality factor of order unity. The numerical value of Γ depends on the
physical situation. If the gas is ideal (i.e., perfect) [so P = ρkBT/µmp in the notation of Box
13.2, Eq. (4)] and the temperature T is being held fixed by thermal contact with some heat
source as the density changes (isothermal process), then δP ∝ δρ and Γ = 1. Alternatively,
and much more commonly, the fluid’s entropy might remain constant because no significant
heat can flow in or out of a fluid element during the density change. In this case Γ is called
the adiabatic index, and (continuing to assume ideality, P = ρkBT/µmp), it can be shown
using the laws of thermodynamics that

Γ = γ ≡ CP /CV for adiabatic process in an ideal gas, (13.3)

where CP , CV are the specific heats at constant pressure and volume; see Ex. 13.2. [Our
specific heats, like the energy, entropy and enthalpy, are defined on a per unit mass basis, so
CP = T (∂s/∂T )P is the amount of heat that must be added to a unit mass of the fluid to
increase its temperature by one unit, and similarly for CV = T (∂s/∂T )ρ.]

From Eqs. (13.1) and (13.2) we see that Γ = KP ; so why do we use K for liquids and
Γ for gases and plasmas? Because in a liquid K remains nearly constant when P changes
by large fractional amounts δP/P ! 1, while in a gas or plasma it is Γ that remains nearly
constant.

For other thermodynamic aspects of fluid dynamics, which will be very important as we
proceed, see Box 13.2.
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Box 13.2
Thermodynamic Considerations

One feature of fluid dynamics, especially gas dynamics, that distinguishes it from
elastodynamics, is that the thermodynamic properties of the fluid are often very impor-
tant and we must treat energy conservation explicitly. In this box we review, from Chap.
4, some of the thermodynamic concepts we shall need in our study of fluids; see also, e.g.,
Reif (1959). We shall have no need for partition functions, ensembles and other statistical
aspects of thermodynamics. Instead, we shall only need elementary thermodynamics.

We begin with the nonrelativistic first law of thermodynamics (4.8) for a sample
of fluid with energy E, entropy S, volume V , number NI of molecules of species I,
temperature T , pressure P , and chemical potential µI for species I:

dE = TdS − PdV +
∑

I

µIdNI . (1)

Almost everywhere in our treatment of fluid mechanics (and throughout this chapter),
we shall assume that the term

∑
I µIdNI vanishes. Physically this happens because

all relevant nuclear reactions are frozen (occur on timescles τreact far longer than the
dynamical timescales τdyn of interest to us), so dNI = 0; and each chemical reaction is
either frozen dNI = 0, or goes so rapidly (τreact & τdyn) that it and its inverse are in
local thermodynamic equilibrium (LTE):

∑
I µIdNI = 0 for those species involved in the

reactions. In the intermediate situation, where some relevant reaction has τreact ∼ τdyn,
we would have to carefully keep track of the relative abundances of the chemical or
nuclear species and their chemical potentials.

Consider a small fluid element with mass ∆m, energy per unit mass u, entropy per
unit mass s, and volume per unit mass 1/ρ. Then inserting E = u∆m, S = s∆m and
V = ∆m/ρ into the first law dE = TdS − PdV , we obtain the form of the first law that
we shall use in almost all of our fluid dynamics studies:

du = Tds − Pd

(
1

ρ

)
. (2)

The internal energy (per unit mass) u comprises the random translational energy of the
molecules that make up the fluid, together with the energy associated with their internal
degrees of freedom (rotation, vibration etc.) and with their intermolecular forces. The
term Tds represents some amount of heat (per unit mass) that may get injected into a
fluid element, e.g. by viscous heating (last section of this chapter), or may get removed,
e.g. by radiative cooling.

In fluid mechanics it is useful to introduce the enthalpy H = E + PV of a fluid
element (cf. Ex. 4.3) and the corresponding enthalpy per unit mass h = u+P/ρ. Inserting
u = h−P/ρ into the left side of the first law (2), we obtain the first law in the “enthalpy
representation” [Eq. (4.23)]:
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Box 13.2, Continued

dh = Tds +
dP

ρ
. (3)

Because all reactions are frozen or are in LTE, the relative abundances of the various
nuclear and chemical species are fully determined by a fluid element’s density ρ and
temperature T (or by any two other variables in the set ρ, T , s, and P ). Correspondingly,
the thermodynamic state of a fluid element is completely determined by any two of these
variables. In order to calculate all features of that state from two variables, we must
know the relevant equations of state, such as P (ρ, T ) and s(ρ, T ); or P = P (ρ, s) and
T = T (ρ, s); or the fluid’s fundamental thermodynamic potential (Table 4.1) from which
follow the equations of state.

We shall often deal with perfect gases (also called ideal gasses : gases in which
intermolecular forces and the volume occupied by the molecules are treated as totally
negligible). For any ideal gas, the pressure arises solely from the kinetic motions of the
molecules and so the equation of state P (ρ, T ) is

P =
ρkBT

µmp
. (4)

Here µ is the mean molecular weight and mp is the proton mass [cf. Eq. (3.47c) with
the number density of particles n = N̄/V reexpressed as ρ/µmp] . The mean molecular
weight µ is the mean mass per gas molecule in units of the proton mass (e.g., µ = 1 for
hydrogen, µ = 32 for oxygen O2, µ = 28.8 for air); and this µ should not be confused
with the chemical potential of species I, µI (which will rarely if ever be used in our fluid
mechanics analyses). [The concept of an ideal gas must not be confused an ideal fluid —
one for which dissipative processes (viscosity and heat conductivity) are negligible.]

An idealisation that is often accurate in fluid dynamics is that the fluid is adiabatic;
that is to say there is no heating or cooling resulting from dissipative processes, such
as viscosity, thermal conductivity or the emission and absorption of radiation. When
this is a good approximation, the entropy per unit mass s of a fluid element is constant
following a volume element with the flow, i.e.

ds/dt = 0. (5)

In an adiabatic flow, there is only one thermodynamic degree of freedom and so we
can write P = P (ρ, s) = P (ρ). Of course, this function will be different for fluid elements
that have different s. In the case of an ideal gas, a standard thermodynamic argument
(Ex. 13.2) shows that the pressure in an adiabatically expanding or contracting fluid
element varies with density as δP/P = γδρ/ρ, where γ = CP /CV is the adiabatic index
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Box 13.2, Continued

[Eqs. (13.2) and (13.3)]. If, as is often the case, the adiabatic index remains constant
over a number of doublings of the pressure and density, then we can integrate this to
obtain the equation of state

P = K(s)ργ , (6)

where K(s) is some function of the entropy. This is sometimes called the polytroic
equation of state, and a polytropic index n not to be confused with number density of
particles!) is defined by γ = 1+1/n. See, e.g., the discussion of stars and planets in Sec.
13.3.2, and Exs. 13.5. A special case of adiabatic flow is isentropic flow. In this case, the
entropy is constant everywhere, not just along individual streamlines.

Whenever the pressure can be regarded as a function of the density alone (the
same function everywhere), the fluid is called barotropic. Note that barytropes are not
necessarily isentropes; for example, in a fluid of sufficiently high thermal conductivity,
the temperature will be constant everywhere (isothermal), thereby causing both P and
s to be unique functions of ρ.

13.3 Hydrostatics

Just as we began our discussion of elasticity with a treatment of elastostatics, so we will
introduce fluid mechanics by discussing hydrostatic equilibrium.

The equation of hydrostatic equilibrium for a fluid at rest in a gravitational field g is the
same as the equation of elastostatic equilibrium with a vanishing shear stress, so T = Pg:

∇ · T = ∇P = ρg (13.4)

[Eq. (10.14) with f = −∇ · T]. Here g is the acceleration of gravity (which need not be
constant, e.g. it varies from location to location inside the Sun). It is often useful to express
g as the gradient of the Newtonian gravitational potential Φ,

g = −∇Φ . (13.5)

Note our sign convention: Φ is negative near a gravitating body and zero far from all bodies.
It is determined by Newton’s field equation for gravity

∇2Φ = − ∇ · g = 4πGρ . (13.6)

From Eq. (13.4), we can draw some immediate and important inferences. Take the curl
of Eq. (13.4):

∇Φ× ∇ρ = 0 . (13.7)

This tells us that, in hydrostatic equilibrium, the contours of constant density coincide with
the equipotential surfaces, i.e. ρ = ρ(Φ), and Eq. (13.4) itself tells us that as we move from
point to point in the fluid, the changes in P and Φ are related by dP/dΦ = −ρ(Φ). This, in
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P1
P2 P3

Mercury

g

Water Water
Water

Fig. 13.1: Elementary demonstration of the principle of hydrostatic equilibrium. Water and mer-
cury, two immiscible fluids of different density, are introduced into a container with two connected
chambers as shown. The pressure at each point on the bottom of the container is equal to the
weight per unit area of the overlying fluids. The pressures P1 and P2 at the bottom of the left
chamber are equal, but because of the density difference between mercury and water, they differ
from the pressure P3 at the bottom of the right chamber.

turn, implies that the difference in pressure between two equipotential surfaces Φ1 and Φ2 is
given by

∆P = −
∫ Φ2

Φ1

ρ(Φ)dΦ, (13.8)

Moreover, as ∇P ∝ ∇Φ, the surfaces of constant pressure (the isobars) coincide with the
gravitational equipotentials. This is all true when g varies inside the fluid, or when it is
constant.

The gravitational acceleration g is actually constant to high accuracy in most non-
astrophysical applications of fluid dynamics, for example on the surface of the earth. In
this case, the pressure at a point in a fluid is, from Eq. (13.8), equal to the total weight of
fluid per unit area above the point,

P (z) = g

∫ ∞

z

ρdz , (13.9)

where the integral is performed by integrating upward in the gravitational field; cf. Fig. 13.1.
For example, the deepest point in the world’s oceans is the bottom of the Marianas trench
in the Pacific, 11.03 km. Adopting a density # 103kg m−3for water and a value # 10 m s−2

for g, we obtain a pressure of # 108Pa or # 103 atmospheres. This is comparable with the
yield stress of the strongest materials. It should therefore come as no surprize to discover
that the deepest dive ever recorded by a submersible was made by the Trieste in 1960, when
it reached a depth of 10.91 km, just a bit shy of the lowest point in the trench. Since the
bulk modulus of water is K = 2.2 Gpa, at the bottom of the trench the water is compressed
by δρ/ρ = P/K # 5 per cent.
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V

d

V

Fig. 13.2: Derivation of Archimedes’ Law.

13.3.1 Archimedes’ Law

The Law of Archimedes, states that when a solid body is totally or partially immersed in a
fluid in a uniform gravitational field g = −gez, the total buoyant upward force of the fluid
on the body is equal to the weight of the displaced fluid.

A formal proof can be made as follows; see Fig. 13.2. The fluid, pressing inward on the
body across a small element of the body’s surface dΣ, exerts a force dFbuoy = T( ,−dΣ),
where T is the fluid’s stress tensor and the minus sign is because, by convention, dΣ points
out of the body rather than into it. Converting to index notation and integrating over the
body’s surface ∂V, we obtain for the net buoyant force

F buoy
i = −

∫

∂V
TijdΣj . (13.10)

Now, imagine removing the body and replacing it by fluid that has the same pressure P (z)
and density ρ(z), at each height z, as the surrounding fluid; this is the fluid that was originally
displaced by the body. Since the fluid stress on ∂V has not changed, the buoyant force will
be unchanged. Use Gauss’s law to convert the surface integral (13.10) into a volume integral
over the interior fluid (the originally displaced fluid)

F buoy
i = −

∫

V
Tij;jdV . (13.11)

The displaced fluid obviously is in hydrostatic equilibrium with the surrounding fluid, and its
equation of hydrostatic equilibrium Tij;j = ρgi [Eq. (13.4)], when inserted into Eq. (13.11),
implies that

Fbuoy = −g

∫

V
ρdV = −Mg , (13.12)

where M is the mass of the displaced fluid. Thus, the upward buoyant force on the original
body is equal in magnitude to the weight Mg of the displaced fluid. Clearly, if the body
has a higher density than the fluid, then the downward gravitational force on it (its weight)
will exceed the weight of the displaced fluid and thus exceed the buoyant force it feels, and
the body will fall. If the body’s density is less than that of the fluid, the buoyant force will
exceed its weight and it will be pushed upward.

A key piece of physics underlying Archimedes law is the fact that the intermolecular
forces acting in a fluid, like those in a solid (cf. Sec. 10.3), are of short range. If, instead, the
forces were of long range, Archimedes’ law could fail. For example, consider a fluid that is
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electrically conducting, with currents flowing through it that produce a magnetic field and
resulting long-range magnetic forces (the magnetohydrodynamic situation studied in Chap.
18). If we then substitute an insulating solid for some region V of the conducting fluid, the
force that acts on the solid will be different from the force that acted on the displaced fluid.

13.3.2 Stars and Planets

Stars and massive planets—if we ignore their rotation—are self-gravitating fluid spheres.
We can model the structure of a such non-rotating, spherical, self-gravitating fluid body by
combining the equation of hydrostatic equilibrium (13.4) in spherical polar coordinates,

dP

dr
= −ρdΦ

dr
, (13.13)

with Poisson’s equation,

∇2Φ =
1

r2

d

dr

(
r2dΦ

dr

)
= 4πGρ , (13.14)

to obtain
1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ. (13.15)

This can be integrated once radially with the aid of the boundary condition dP/dr = 0 at
r = 0 (pressure cannot have a cusp-like singularity) to obtain

dP

dr
= −ρGm

r2
, (13.16a)

where

m = m(r) ≡
∫ r

0

4πρr2dr (13.16b)

is the total mass inside radius r. Equation (13.16a) is an alternative form of the equation of
hydrostatic equilibrium at radius r inside the body: Gm/r2 is the gravitational acceleration
g at r, ρ(Gm/r2) = ρg is the downward gravitational force per unit volume on the fluid, and
dP/dr is the upward buoyant force per unit volume.

Equations (13.13)—(13.16b) are a good approximation for solid planets such as Earth,
as well as for stars and fluid planets such as Jupiter, because, at the enormous stresses
encountered in the interior of a solid planet, the strains are so large that plastic flow will
occur. In other words, the limiting shear stresses are much smaller than the isotropic part
of the stress tensor.

Let us make an order of magnitude estimate of the interior pressure in a star or planet of
mass M and radius R. We use the equation of hydrostatic equilibrium (13.4) or (13.16a), ap-
proximating m by M , the density ρ by M/R3 and the gravitational acceleration by GM/R2,
so that

P ∼ GM2

R4
. (13.17)
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In order to improve upon this estimate, we must solve Eq. (13.15). We therefore need a
prescription for relating the pressure to the density. A common idealization is the polytropic
relation, namely that

P ∝ ρ1+1/n (13.18)

where n is called the polytropic index (cf. last part of Box 13.2). [This finesses the issue of the
thermal balance of stellar interiors, which determines the temperature T (r) and thence the
pressure P (ρ, T ).] Low mass white dwarf stars are well approximated as n = 1.5 polytropes
[Eq. (2.50c)], and red giant stars are somewhat similar in structure to n = 3 polytropes. The
giant planets, Jupiter and Saturn mainly comprise a H-He fluid which is well approximated
by an n = 1 polytrope, and the density of a small planet like Mercury is very roughly
constant (n = 0). We also need boundary conditions to solve Eqs. (13.16). We can choose
some density ρc and corresponding pressure Pc = P (ρc) at the star’s center r = 0, then
integrate Eqs. (13.16) outward until the pressure P drops to zero, which will be the star’s
(or planet’s) surface. The values of r and m there will be the star’s radius R and mass M .
For details of polytropic stellar models constructed in this manner see, e.g., Chandrasekhar
(1939); for the case n = 1, see Ex. 13.5 below.

We can easily solve the equation of hydrostatic equilibrium (13.16a) for a constant density
(n = 0) star to obtain

P = P0

(
1 − r2

R2

)
, (13.19)

where the central pressure is

P0 =

(
3

8π

)
GM2

R4
, (13.20)

consistent with our order of magnitude estimate (13.17).

13.3.3 Hydrostatics of Rotating Fluids

The equation of hydrostatic equilibrium (13.4) and the applications of it discussed above are
valid only when the fluid is static in a reference frame that is rotationally inertial. However,
they are readily extended to bodies that rotate rigidly, with some uniform angular velocity
Ω relative to an inertial frame. In a frame that corotates with the body, the fluid will have
vanishing velocity v, i.e. will be static, and the equation of hydrostatic equilibrium (13.4)
will be changed only by the addition of the centrifugal force per unit volume:

∇P = ρ(g + gcen) = −ρ∇(Φ + Φcen) . (13.21)

Here
gcen = −Ω× (Ω× r) = −∇Φcen (13.22)

is the centrifugal acceleration; ρgcen is the centrifugal force per unit volume; and

Φcen = −1

2
(Ω× r)2 . (13.23)
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is a centrifugal potential whose gradient is equal to the centrifugal acceleration in our sit-
uation of constant Ω. The centrifugal potential can be regarded as an augmentation of
the gravitational potential Φ. Indeed, in the presence of uniform rotation, all hydrostatic
theorems [e.g., Eqs. (13.7) and (13.8)] remain valid with Φ replaced by Φ + Φcen.

We can illustrate this by considering the shape of a spinning fluid planet. Let us sup-
pose that almost all the mass of the planet is concentrated in its core so the gravitational
potential Φ = −GM/r is unaffected by the rotation. Now, the surface of the planet must
be an equipotential of Φ+Φcen (coinciding with the zero-pressure isobar) [cf. Eq. (13.7) and
subsequent sentences, with Φ → Φ + Φcen]. The contribution of the centrifugal potential at
the equator is −Ω2R2

e/2 and at the pole zero. The difference in the gravitational potential
Φ between the equator and the pole is # g(Re − Rp) where Re, Rp are the equatorial and
polar radii respectively and g is the gravitational acceleration at the planet’s surface. There-
fore, adopting this centralized-mass model, we estimate the difference between the polar and
equatorial radii to be

Re − Rp # Ω2R2

2g
(13.24)

The earth, although not a fluid, is unable to withstand large shear stresses (because its
shear strain cannot exceed ∼ 0.001); therefore its surface will not deviate by more than
the maximum height of a mountain from its equipotential. If we substitute g # 10m s−2,
R # 6 × 106m and Ω # 7 × 10−5rad s−1, we obtain Re − Rp # 10km, about half the correct
value of 21km. The reason for this discrepancy lies in our assumption that all the mass
lies in the center. In fact, it is distributed fairly uniformly in radius and, in particular,
some mass is found in the equatorial bulge. This deforms the gravitational equipotential
surfaces from spheres to ellipsoids, which accentuates the flattening. If, following Newton
(in his Principia Mathematica 1687), we assume that the earth has uniform density then the
flattening estimate is about 2.5 times larger than the actual flattening (Ex. 13.6), in fairly
good agreement with the Earth’s shape.

****************************

EXERCISES

Exercise 13.1 Practice: Weight in Vacuum
How much more would you weigh in vacuo?

Exercise 13.2 Derivation: Adiabatic Index
Show that for an ideal gas [one with equation of state P = (k/µmp)ρT ; Eq. (4) of Box
13.2], the specific heats are related by CP = CV + k/(µmp), and the adiabatic index is
Γ = γ ≡ CP /CV . [The solution is given in most thermodynamics textbooks.]

Exercise 13.3 Example: Earth’s Atmosphere
As mountaineers know, it gets cooler as you climb. However, the rate at which the temper-
ature falls with altitude depends upon the assumed thermal properties of air. Consider two
limiting cases.
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Fig. 13.3: Actual temperature variation in the Earth’s mean atmosphere at temperate latitudes.

(a) In the lower stratosphere (Fig. 13.3), the air is isothermal. Use the equation of hydro-
static equilibrium (13.4) to show that the pressure decreases exponentially with height
z

P ∝ exp(−z/H),

where the scale height H is given by

H =
kBT

µmpg

and µ is the mean molecular weight of air and mp is the proton mass. Evaluate this
numerically for the lower stratosphere and compare with the stratosphere’s thickness.
By how much does P drop between the bottom and top of the isothermal region?

(b) Suppose that the air is isentropic so that P ∝ ργ [Eq. (6) of Box 13.2], where γ is the
specific heat ratio. (For diatomic gases like nitrogen and oxygen, γ ∼ 1.4.) Show that
the temperature gradient satisfies

dT

dz
= −γ − 1

γ

gµmp

k
.

Note that the temperature gradient vanishes when γ → 1. Evaluate the temperature
gradient, otherwise known as the lapse rate at low altitudes. The average lapse rate at
low altitudes is measured to be ∼ 6K km−1 (Fig. 13.3). Show that this is intermediate
between the two limiting cases of an isentropic and isothermal lapse rate.
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Center of Buoyancy

Center of Gravity

Fig. 13.4: Stability of a Boat. We can understand the stability of a boat to small rolling motions
by defining both a center of gravity for weight of the boat and also a center of buoyancy for the
upthrust exerted by the water.

Exercise 13.4 Problem: Stability of Boats
Use Archimedes Law to explain qualitatively the conditions under which a boat floating in
still water will be stable to small rolling motions from side to side. [Hint, you might want
to introduce a center of buoyancy inside the boat, as in Figure 13.4.]

Exercise 13.5 Problem: Jupiter and Saturn
The text described how to compute the central pressure of a non-rotating, constant density
planet. Repeat this exercise for the polytropic relation P = Kρ2 (polytropic index n = 1),
appropriate to Jupiter and Saturn. Use the information that MJ = 2 × 1027kg, MS =
6 × 1026kg, RJ = 7 × 104km to estimate the radius of Saturn. Hence, compute the central
pressures, gravitational binding energy and polar moments of inertia of both planets.

Exercise 13.6 Example: Shape of a constant density, spinning planet

(a) Show that the spatially variable part of the gravitational potential for a uniform density,
non-rotating planet can be written as Φ = 2πGρr2/3, where ρ is the density.

(b) Hence argue that the gravitational potential for a slowly spinning planet can be written
in the form

Φ =
2πGρr2

3
+ Ar2P2(µ)

where A is a constant and P2 is a Legendre polynomial of µ = sin(latitude). What
happens to the P1 term?

(c) Give an equivalent expansion for the potential outside the planet.

(d) Now transform into a frame spinning with the planet and add the centrifugal potential
to give a total potential.

(e) By equating the potential and its gradient at the planet’s surface, show that the dif-
ference between the polar and the equatorial radii is given by

Re − Rp # 5Ω2R2

4g
,

where g is the gravitational acceleration at the surface. Note that this is 5 times the
answer for a planet whose mass is all concentrated at its center [Eq. (13.24)].
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Exercise 13.7 Problem: Shapes of Stars in a Tidally Locked Binary System
Consider two stars, with the same mass M orbiting each other in a circular orbit with
diameter (separation between the stars’ centers) a. Kepler’s laws tell us that their orbital
angular velocity is Ω =

√
2GM/a3. Assume that each star’s mass is concentrated near its

center so that everywhere except near a star’s center the gravitational potential, in an inertial
frame, is Φ = −GM/r1 −GM/r2 with r1 and r2 the distances of the observation point from
the center of star 1 and star 2. Suppose that the two stars are “tidally locked”, i.e. tidal
gravitational forces have driven them each to rotate with rotational angular velocity equal
to the orbital angular velocity Ω. (The moon is tidally locked to the earth; that is why it
always keeps the same face toward the earth.) Then in a reference frame that rotates with
angular velocity Ω, each star’s gas will be at rest, v = 0.

(a) Write down the total potential Φ + Φcen for this binary system.

(b) Using Mathematica or Maple or some other computer software, plot the equipotentials
Φ + Φcen = (constant) for this binary in its orbital plane, and use these equipotentials
to describe the shapes that these stars will take if they expand to larger and larger
radii (with a and M held fixed). You should obtain a sequence in which the stars, when
compact, are well separated and nearly round, and as they grow tidal gravity elongates
them, ultimately into tear-drop shapes followed by merger into a single, highly distorted
star. With further expansion there should come a point where they start flinging mass
off into the surrounding space (a process not included in this hydrostatic analysis).

****************************

13.4 Conservation Laws

As a foundation for making the transition from hydrostatics to hydrodynamics [to situa-
tions with nonzero fluid velocity v(x, t)], we shall give a general discussion of Newtonian
conservation laws, focusing especially on the conservation of mass and of linear momentum.

We begin with the differential law of mass conservation,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (13.25)

which we met and used in our study of elastic media [Eq. (11.2c)]. This is the obvious analog
of the laws of conservation of charge ∂ρe/∂t+∇·j = 0 and of particles ∂n/∂t+∇·S = 0, which
we met in Chapter 2 [Eqs. (1.73)]. In each case the law says (∂/∂t)(density of something) =
∇·( flux of that something). This, in fact, is the universal form for a differential conservation
law.

Each Newtonian differential conservation law has a corresponding integral conservation
law, which we obtain by integrating the differential law over some arbitrary 3-dimensional vol-
ume V , e.g. the volume used in Fig. 13.2 above to discuss Archimedes’ Law: (d/dt)

∫
V ρdV =
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∫
V(∂ρ/∂t)dV = −

∫
V ∇ · (ρv)dV . Applying Gauss’s law to the last integral, we obtain

d

dt

∫

V
ρdV = −

∫

∂V
ρv · dΣ , (13.26)

where ∂V is the closed surface bounding V. The left side is the rate of change of mass inside
the region V. The right side is the rate at which mass flows into V through ∂V (since ρv is
the mass flux, and the inward pointing surface element is −dΣ). This is the same argument,
connecting differential to integral conservation laws, as we gave in Eqs. (1.72) and (1.73)
for electric charge and for particles, but going in the opposite direction. And this argument
depends in no way on whether the flowing material is a fluid or not. The mass conservation
laws (13.25) and (13.26) are valid for any kind of material whatsoever.

Writing the differential conservation law in the form (13.25), where we monitor the chang-
ing density at a given location in space rather than moving with the material, is called the
Eulerian approach. There is an alternative Lagrangian approach to mass conservation, in
which we focus on changes of density as measured by somebody who moves, locally, with
the material, i.e. with velocity v. We obtain this approach by differentiating the product ρv
in Eq. (13.25), to obtain

dρ

dt
= −ρ∇ · v , (13.27)

where
d

dt
≡ ∂

∂t
+ v · ∇ . (13.28)

The operator d/dt is known as the convective time derivative (or advective time derivative)
and crops up often in continuum mechanics. Its physical interpretation is very simple.
Consider first the partial derivative (∂/∂t)x. This is the rate of change of some quantity
[the density ρ in Eq. (13.27)] at a fixed point in space in some reference frame. In other
words, if there is motion, ∂/∂t compares this quantity at the same point P in space for
two different points in the material: one that was at P at time t + dt; the other that
was at P at the earlier time dt. By contrast, the convective time derivative (d/dt) follows
the motion, taking the difference in the value of the quantity at successive times at the
same point in the moving matter. It therefore measures the rate of change of ρ (or any
other quantity) following the material rather than at a fixed point in space; it is the time
derivative for the Lagrangian approach. Note that the convective derivative d/dt is the
Newtonian limit of relativity’s proper time derivative along the world line of a bit of matter,
d/dτ = uα∂/∂xα = (dxα/dτ)∂/∂xα [Secs. 1.4.2 and 1.6].

The Lagrangian approach can also be expressed in terms of fluid elements. Consider a
fluid element, with a bounding surface attached to the fluid, and denote its volume by ∆V .
The mass inside the fluid element is ∆M = ρ∆V . As the fluid flows, this mass must be
conserved, so d∆M/dt = (dρ/dt)∆V + ρ(d∆V/dt) = 0, which we can rewrite as

dρ

dt
= −ρd∆V/dt

∆V
. (13.29)
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Comparing with Eq. (13.27), we see that

∇ · v =
d∆V/dt

∆V
. (13.30)

Thus, the divergence of v is the fractional rate of increase of a fluid element’s volume. Notice
that this is just the time derivative of our elastostatic equation ∆V/V = ∇ · ξ = Θ [Eq.
(10.8)] (since v = dξ/dt), and correspondingly we denote

∇ · v ≡ θ = dΘ/dt , (13.31)

and call it the fluid’s rate of expansion.
Equation (13.25) is our model for Newtonian conservation laws. It says that there is a

quantity, in this case mass, with a certain density, in this case ρ, and a certain flux, in this
case ρv, and this quantity is neither created nor destroyed. The temporal derivative of the
density (at a fixed point in space) added to the divergence of the flux must vanish. Of course,
not all physical quantities have to be conserved. If there were sources or sinks of mass, then
these would be added to the right hand side of Eq. (13.25).

Turn, now, to momentum conservation. The (Newtonian) law of momentum conservation
must take the standard conservation-law form (∂/∂t)(momentum density) +∇ · (momentum
flux) = 0.

If we just consider the mechanical momentum associated with the motion of mass, its
density is the vector field ρv. There can also be other forms of momentum density, e.g.
electromagnetic, but these do not enter into Newtonian fluid mechanics. For fluids, as for
an elastic medium (Chap. 11), the momentum density is simply ρv.

The momentum flux is more interesting and rich. Quite generally it is, by definition, the
stress tensor T, and the differential conservation law says

∂(ρv)

∂t
+ ∇ · T = 0 . (13.32)

[Eq. (1.90)]. For an elastic medium, T = −KΘg − 2µΣ [Eq. (10.18)] and the conservation
law (13.32) gives rise to the elastodynamic phenomena that we explored in Chap. 11. For a
fluid we shall build up T piece by piece:

We begin with the rate dp/dt that mechanical momentum flows through a small element
of surface area dΣ, from its back side to its front (i.e. the rate that it flows in the “positive
sense”; cf. Fig. 1.16b). The rate that mass flows through is ρv·dΣ, and we multiply that mass
by its velocity v to get the momentum flow: dp/dt = (ρv)(v · dΣ). This flow of momentum
is the same thing as a force F = dp/dt acting across dΣ; so it can be computed by inserting
dΣ into the second slot of a “mechanical” stress tensor Tm: dp/dt = T( , dΣ) [cf. the
definition (1.88) of the stress tensor]. By writing these two expressions for the momentum
flow in index notation, dpi/dt = (ρvi)vjdΣj = TijdΣj , we read off the mechanical stress
tensor: Tij = ρvivj; i.e.,

Tm = ρv ⊗ v . (13.33)
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This tensor is symmetric (as any stress tensor must be), and it obviously is the flux of
mechanical momentum since it has the form (momentum density)⊗(velocity).

Let us denote by f the net force per unit volume that acts on the fluid. Then, instead of
writing momentum conservation in the usual Eulerian differential form (13.32), we can write
it as

∂(ρv)

∂t
+ ∇ · Tm = f , (13.34)

(conservation law with a source on the right hand side!). Inserting Tm = ρv ⊗ v into
this equation, converting to index notation, using the rule for differentiating products, and
combining with the law of mass conservation, we obtain the Lagrangian law

ρ
dv

dt
= f . (13.35)

Here d/dt = ∂/∂t + v · ∇ is the convective time derivative, i.e. the time derivative moving
with the fluid; so this equation is just Newton’s “F=ma”, per unit volume. In order for the
equivalent versions (13.34) and (13.35) of momentum conservation to also be equivalent to
the Eulerian formulation (13.32), it must be that there is a stress tensor Tf such that

f = −∇ · Tf ; and T = Tm + Tf . (13.36)

Then Eq. (13.34) becomes the Eulerian conservation law (13.32).
Evidently, a knowledge of the stress tensor Tf for some material is equivalent to a knowl-

edge of the force density f that acts on it. Now, it often turns out to be much easier to
figure out the form of the stress tensor, for a given situation, than the form of the force.
Correspondingly, as we add new pieces of physics to our fluid analysis (isotropic pressure,
viscosity, gravity, magnetic forces), an efficient way to proceed at each stage is to insert
the relevant physics into the stress tensor T, and then evaluate the resulting contribution
f = −∇ ·Tf to the force and thence to the Lagrangian law of force balance (13.35). At each
step, we get out in f = −∇ ·Tf the physics that we put into Tf .

There may seem something tautological about the procedure (13.36) by which we went
from the Lagrangian “F=ma” equation (13.35) to the Eulerian conservation law (13.32).
the “F=ma” equation makes it look like mechanical momentum is not be conserved in the
presence of the force density f . But we make it be conserved by introducing the momentum
flux Tf . It is almost as if we regard conservation of momentum as a principle to be preserved
at all costs and so every time there appears to be a momentum deficit, we simply define it
as a bit of the momentum flux. This, however, is not the whole story. What is important
is that the force density f can always be expressed as the divergence of a stress tensor;
that fact is central to the nature of force and of momentum conservation. An erroneous
formulation of the force would not necessarily have this property and there would not be a
differential conservation law. So the fact that we can create elastostatic, thermodynamic,
viscous, electromagnetic, gravitational etc. contributions to some grand stress tensor (that
go to zero outside the regions occupied by the relevant matter or fields), as we shall see in
the coming chapters, is significant and affirms that our physical model is complete at the
level of approximation to which we are working.
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We can proceed in the same way with energy conservation as we have with momentum.
There is an energy density U(x, t) for a fluid and an energy flux F(x, t), and they obey a
conservation law with the standard form

∂U

∂t
+ ∇ · F = 0 . (13.37)

At each stage in our buildup of fluid mechanics (adding, one by one, the influences of com-
pressional energy, viscosity, gravity, magnetism), we can identify the relevant contributions
to U and F and then grind out the resulting conservation law (13.37). At each stage we get
out the physics that we put into U and F.

We conclude with a remark about relativity. In going from Newtonian physics (this
chapter) to special relativity (Chap. 1), mass and energy get combined (added) to form a
conserved mass-energy or total energy. That total energy and the momentum are the tem-
poral and spatial parts of a spacetime 4-vector, the 4-momentum; and correspondingly, the
conservation laws for mass [Eq. (13.25)], nonrelativistic energy [Eq. (13.37)], and momentum
[Eq. (13.32)] get unified into a single conservation law for 4-momentum, which is expressed as
the vanishing 4-dimensional, spacetime divergence of the 4-dimensional stress-energy tensor
(Sec. 1.12).

13.5 Conservation Laws for an Ideal Fluid

We now turn from hydrostatic situations to fully dynamical fluids. We shall derive the
fundamental equations of fluid dynamics in several stages. In this section, we will confine
our attention to ideal fluids, i.e., flows for which it is safe to ignore dissipative processes
(viscosity and thermal conductivity), and for which, therefore, the entropy of a fluid element
remains constant with time. In the next section we will introduce the effects of viscosity,
and in Chap. 17 we will introduce heat conductivity. At each stage, we will derive the
fundamental fluid equations from the even-more-fundamental conservation laws for mass,
momentum, and energy.

13.5.1 Mass Conservation

Mass conservation, as we have seen, takes the (Eulerian) form ∂ρ/∂t + ∇ · (ρv) = 0 [Eq.
(13.25)], or equivalently the (Lagrangian) form dρ/dt = −ρ∇ ·v [Eq. (13.27)], where d/dt =
∂/∂t + v · ∇ is the convective time derivative (moving with the fluid) [Eq. (13.28)].

We define a fluid to be incompressible when dρ/dt = 0. Note: incompressibility does
not mean that the fluid cannot be compressed; rather, it merely means that in the situation
being studied, the density of each fluid element remains constant as time passes. From Eq.
(13.28), we see that incompressibility implies that the velocity field has vanishing divergence
(i.e. it is solenoidal, i.e. expressible as the curl of some potential). The condition that the
fluid be incompressible is a weaker condition than that the density be constant everywhere;
for example, the density varies substantially from the earth’s center to its surface, but if the
material inside the earth were moving more or less on surfaces of constant radius, the flow



20

would be incompressible. As we shall shortly see, approximating a flow as incompressible
is a good approximation when the flow speed is much less than the speed of sound and the
fluid does not move through too great gravitational potential differences.

13.5.2 Momentum Conservation

For an ideal fluid, the only forces that can act are those of gravity and of the fluid’s isotropic
pressure P . We have already met and discussed the contribution of P to the stress tensor,
T = Pg, when dealing with elastic media (Chap. 10) and in hydrostatics (Sec. 13.3). The
gravitational force density, ρg, is so familiar that it is easier to write it down than the
corresponding gravitational contribution to the stress. Correspondingly, we can most easily
write momentum conservation in the form

∂(ρv)

∂t
+ ∇ · T = ρg ; i.e.

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v + Pg) = ρg , (13.38)

where the stress tensor is given by

T = ρv ⊗ v + Pg for an ideal fluid (13.39)

[cf. Eqs. (13.33), (13.34) and (13.4)]. The first term, ρv ⊗ v, is the mechanical momentum
flux (also called the kinetic stress), and the second, Pg, is that associated with the fluid’s
pressure.

In most of our applications, the gravitational field g will be externally imposed, i.e., it will
be produced by some object such as the Earth that is different from the fluid we are studying.
However, the law of momentum conservation remains the same, Eq. (13.38), independently
of what produces gravity, the fluid or an external body or both. And independently of its
source, one can write the stress tensor Tg for the gravitational field g in a form presented and
discussed in Box 13.3 below — a form that has the required property −∇ · Tg = ρg = (the
gravitational force density).

13.5.3 Euler Equation

The “Euler equation” is the equation of motion that one gets out of the momentum conser-
vation law (13.38) by performing the differentiations and invoking mass conservation (13.25):

dv

dt
= −∇P

ρ
+ g for an ideal fluid. (13.40)

This Euler equation was first derived in 1785 by the Swiss mathematician and physicist
Leonhard Euler.

The Euler equation has a very simple physical interpretation: dv/dt is the convective
derivative of the velocity, i.e. the derivative moving with the fluid, which means it is the
acceleration felt by the fluid. This acceleration has two causes: gravity, g, and the pressure
gradient ∇P . In a hydrostatic situation, v = 0, the Euler equation reduces to the equation
of hydrostatic equilibrium, ∇P = ρg [Eq. (13.4)]
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In Cartesian coordinates, the Euler equation (13.40) and mass conservation (13.25) com-
prise four equations in five unknowns, ρ, P, vx, vy, vz. In order to close this system of equa-
tions, we must relate P to ρ. For an ideal fluid, we use the fact that the entropy of each
fluid element is conserved (because there is no mechanism for dissipation),

ds

dt
= 0 , (13.41)

together with an equation of state for the pressure in terms of the density and the entropy,
P = P (ρ, s). In practice, the equation of state is often well approximated by incompressibil-
ity, ρ = constant, or by a polytropic relation, P = K(s)ρ1+1/n [Eq. (13.18)].

13.5.4 Bernoulli’s Theorem; Expansion, Vorticity and Shear

Bernoulli’s theorem is well known. Less well appreciated are the conditions under which it
is true. In order to deduce these, we must first introduce a kinematic quantity known as the
vorticity,

ω = ∇ × v. (13.42)

The attentive reader may have noticed that there is a parallel between elasticity and fluid
dynamics. In elasticity, we are concerned with the gradient ∇ξ of the displacement vector
field ξ and we decompose it into expansion Θ, rotation R or φ = 1

2∇×ξ, and shearΣ. In fluid
dynamics, we are interested in the gradient ∇v of the velocity field v = dξ/dt and we make
an analogous decomposition. The fluid analog of expansion Θ = ∇ · ξ is [as we saw when
discussing mass conservation, Eq. (13.31)] its time derivative θ ≡ ∇ ·v = dΘ/dt, the rate of
expansion. Rotation φ is uninteresting in elastostatics because it causes no stress. Vorticity
ω ≡ ∇ × v = 2dφ/dt is its fluid counterpart, and although primarily a kinematic quantity,
it plays a vital role in fluid dynamics because of its close relation to angular momentum; we
shall discuss it in more detail in the following chapter. Shear Σ is responsible for the shear
stress in elasticity. We shall meet its counterpart, the rate of shear tensor σ = dΣ/dt below
when we introduce the viscous stress tensor.

To derive the Bernoulli theorem, we begin with the Euler equation dv/dt = −(1/ρ)∇P +
g; we express g as −∇Φ; we convert the convective derivative of velocity (i.e. the accelera-
tion) into its two parts dv/dt = ∂v/∂t + (v ·∇)v; and we rewrite (v ·∇)v using the vector
identity

v × ω ≡ v × (∇ × v) =
1

2
∇v2 − (v · ∇)v . (13.43)

The result is
∂v

∂t
+ ∇(

1

2
v2 + Φ) +

∇P

ρ
− v × ω = 0. (13.44)

This is just the Euler equation written in a new form, but it is also the most general version
of the Bernoulli theorem. Two special cases are of interest:

(i) Steady flow of an ideal fluid. A steady flow is one in which ∂(everything)/∂t = 0, and
an ideal fluid is one in which dissipation (due to viscosity and heat flow) can be ignored.
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Ideality implies that the entropy is constant following the flow, i.e. ds/dt = (v·∇)s = 0.
From the thermodynamic identity, dh = Tds + dP/ρ [Eq. (3) of Box 13.2] we obtain

(v · ∇)P = ρ(v · ∇)h. (13.45)

(Remember that the flow is steady so there are no time derivatives.) Now, define the
Bernoulli function, B, by

B ≡ 1

2
v2 + h + Φ . (13.46)

This allows us to take the scalar product of the gradient of Eq. (13.46) with the velocity
v to rewrite Eq. (13.44) in the form

dB

dt
= (v · ∇)B = 0, (13.47)

This says that the Bernoulli function, like the entropy, does not change with time in a
fluid element. Let us define streamlines, analogous to lines of force of a magnetic field,
by the differential equations

dx

vx
=

dy

vy
=

dz

vz
(13.48)

In the language of Sec. 1.5, these are just the integral curves of the (steady) velocity
field; they are also the spatial world lines of the fluid elements. Equation (13.47) says
that the Bernoulli function is constant along streamlines in a steady, ideal flow.

(ii) Irrotational flow of an isentropic fluid. An even more specialized type of flow is one
where the vorticity vanishes and the entropy is constant everywhere. A flow in which
ω = 0 is called an irrotational flow. (Later we shall learn that, if an incompressible flow
initially is irrotational and it encounters no walls and experiences no significant viscous
stresses, then it remains always irrotational.) Now, as the curl of the velocity field
vanishes, we can follow the electrostatic precedent and introduce a velocity potential
ψ(x, t) so that at any time,

v = ∇ψ for an irrotational flow. (13.49)

A flow in which the entropy is constant everywhere is called isentropic (Box 13.2).
Now, the first law of thermodynamics [Eq. (3) of Box 13.2] implies that ∇h = T∇s +
(1/ρ)∇P . Therefore, in an isentropic flow, ∇P = ρ∇h. Imposing these conditions on
Eq. (13.44), we obtain, for an isentropic, irrotational flow:

∇
[
∂ψ

∂t
+ B

]
= 0. (13.50)

Thus, the quantity ∂ψ/∂t + B will be constant everywhere in the flow, not just along
streamlines. (If it is a function of time, we can absorb that function into ψ without
affecting v, leaving it constant in time as well as in space.) Of course, if the flow
is steady so ∂(everything)/∂t = 0, then B itself is constant. Note the important
restriction that the vorticity in the flow must vanish.
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Fig. 13.5: Schematic illustration of a Pitot tube used to measure airspeed. The tube points into
the flow well away from the boundary layer. A manometer measures the pressure difference between
the stagnation points S, where the external velocity is very small, and several orifices O in the side
of the tube where the pressure is almost equal to that in the free air flow. The air speed can then
be inferred by application of the Bernoulli theorem.

The most immediate consequence of Bernoulli’s theorem in a steady, ideal flow (constancy
of B = 1

2v
2 + h + Φ along flow lines) is that the enthalpy h falls when the speed increases.

For an ideal gas in which the adiabatic index γ is constant over a large range of densities
so P ∝ ργ , the enthalpy is simply h = c2/(γ − 1), where c is the speed of sound. For an
incompressible liquid, it is P/ρ. Microscopically, what is happening is that we can decompose
the motion of the constituent molecules into a bulk motion and a random motion. The total
kinetic energy should be constant after allowing for variation in the gravitational potential.
As the bulk kinetic energy increases, the random or thermal kinetic energy must decrease,
leading to a reduction in pressure.

A simple, though important application of the Bernoulli theorem is to the Pitot tube
which is used to measure air speed in an aircraft (Figure 13.5). A Pitot tube extends out
from the side of the aircraft and points into the flow. There is one small orifice at the end
where the speed of the gas relative to the tube is small and several apertures along the tube,
where the gas moves with approximately the air speed. The pressure difference between the
end of the tube and the sides is measured using an instrument called a manometer and is then
converted into an airspeed using the formula v = (2∆P/ρ)1/2. For v ∼ 100m s−1, ρ ∼ 1kg
m−3, ∆P ∼ 5000N m−3 ∼ 0.05 atmospheres. Note that the density of the air ρ will vary
with height.

13.5.5 Conservation of Energy

As well as imposing conservation of mass and momentum, we must also address energy
conservation. So far, in our treatment of fluid dynamics, we have finessed this issue by simply
postulating some relationship between the pressure P and the density ρ. In the case of ideal
fluids, this is derived by requiring that the entropy be constant following the flow. In this
case, we are not required to consider the energy to derive the flow. However, understanding
how energy is conserved is often very useful for gaining physical insight. Furthermore, it is
imperative when dissipative processes operate.
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Quantity Density Flux
Mass ρ ρv
Momentum ρv T = Pg + ρv ⊗ v
Energy U = (1

2v
2 + u + Φ)ρ F = (1

2v
2 + h + Φ)ρv

Table 13.1: Densities and Fluxes of mass, momentum, and energy for an ideal fluid in an externally
produced gravitational field.

The most fundamental formulation of the law of energy conservation is Eq. (13.37):
∂U/∂t + ∇ · F = 0. To explore its consequences for an ideal fluid, we must insert the
appropriate ideal-fluid forms of the energy density U and energy flux F.

When (for simplicity) the fluid is in an externally produced gravitational field Φ, its
energy density is obviously

U = ρ

(
1

2
v2 + u + Φ

)
for ideal fluid with external gravity. (13.51)

Here the three terms are kinetic, internal, and gravitational. When the fluid participates
in producing gravity and one includes the energy of the gravitational field itself, the energy
density is a bit more subtle; see Box 13.3.

In an external field one might expect the energy flux to be F = Uv, but this is not quite
correct. Consider a bit of surface area dA orthogonal to the direction in which the fluid is
moving, i.e., orthogonal to v. The fluid element that crosses dA during time dt moves through
a distance dl = vdt, and as it moves, the fluid behind this element exerts a force PdA on it.
That force, acting through the distance dl, feeds an energy dE = (PdA)dl = PvdAdt across
dA; the corresponding energy flux across dA has magnitude dE/dAdt = Pv and obviously
points in the v direction, so it contributes Pv to the energy flux F. This contribution is
missing from our initial guess F = Uv. We shall explore its importance at the end of this
subsection. When it is added to our guess, we obtain for the total energy flux

F = ρv

(
1

2
v2 + h + Φ

)
for ideal fluid with external gravity. (13.52)

Here h = u + P/ρ is the enthalpy per unit mass [cf. Box 13.2]. Inserting Eqs. (13.51) and
(13.52) into the law of energy conservation (13.37), and requiring that the external gravity
be static (time independent) so the work it does on the fluid is conservative, we get out the
following ideal-fluid equation of energy balance:

∂

∂t

[
ρ

(
1

2
v2 + u + Φ

)]
+∇·

[
ρv

(
1

2
v2 + h + Φ

)]
= 0 for ideal fluid & static external gravity.

(13.53)
When the gravitational field is dynamical and/or being generated by the fluid itself, we must
use a more complete gravitational energy density and stress; see Box 13.3.

By combining this law of energy conservation with the corresponding laws of momentum
and mass conservation (13.25) and (13.38), and using the first law of thermodynamics dh =
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P1

Nozzle

P2
v2

v1

Fig. 13.6: Joule-Kelvin cooling of a gas. Gas flows steadily through a nozzle from a chamber at
high pressure to one at low pressure. The flow proceeds at constant enthalpy. Work done against
the intermolecular forces leads to cooling. The efficiency of cooling is enhanced by exchanging heat
between the two chambers. Gases can also be liquefied in this manner as shown here.

Tds+(1/ρ)dP , we obtain the remarkable result that the entropy per unit mass is conserved
moving with the fluid.

ds

dt
= 0 for an ideal fluid. (13.54)

The same conclusion can be obtained when the gravitational field is dynamical and not
external (cf. Box 13.3 and Ex. 13.14]), so no statement about gravity is included with this
equation. This entropy conservation should not be surprising. If we put no dissipative
processes into the energy density or stress tensor, then we get no dissipation out. Moreover,
the calculation that leads to Eq. (13.54) assures us that, so long as we take full account
of mass and momentum conservation, then the full and sole content of the law of energy
conservation for an ideal fluid is ds/dt = 0.

Let us return to the contribution Pv to the energy flux. A good illustration of the
necessity for this term is provided by the Joule-Kelvin method commonly used to cool gases
(Fig. 13.6). In this method, gas is driven under pressure through a nozzle or porous plug
into a chamber where it can expand and cool. Microscopically, what is happening is that the
molecules in a gas are not completely free but attract one another through intermolecular
forces. When the gas expands, work is done against these forces and the gas therefore
cools. Now let us consider a steady flow of gas from a high pressure chamber to a low
pressure chamber. The flow is invariably so slow (and gravity so weak!) that the kinetic
and gravitational potential energy contributions can be ignored. Now as the mass flux ρv is
also constant the enthalpy per unit mass, h must be the same in both chambers. The actual
temperature drop is given by

∆T =

∫ P2

P1

µJKdP, (13.55)

where µJK = (∂T/∂P )h is the Joule-Kelvin coefficient. A straighforward thermodynamic
calculation yields the identity

µJK = − 1

ρ2Cp

(
∂(ρT )

∂T

)

P

(13.56)

The Joule-Kelvin coefficient of a perfect gas obviously vanishes.
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13.6 Incompressible Flows

A common assumption that is made when discussing the fluid dynamics of highly subsonic
flows is that the density is constant, i.e., that the fluid is incompressible. This is a natural
approximation to make when dealing with a liquid like water which has a very large bulk
modulus. It is a bit of a surprise that it is also useful for flows of gases, which are far more
compressible under static conditions.

To see its validity, suppose that we have a flow in which the characteristic length L
over which the fluid variables P, ρ, v etc. vary is related to the characteristic timescale T
over which they vary by L " vT—and in which gravity is not important. In this case, we
can compare the magnitude of the various terms in the Euler equation (13.40) to obtain an
estimate of the magnitude of the pressure variation:

∂v

∂t︸︷︷︸
v/T

+ (v · ∇)v︸ ︷︷ ︸
v2/L

= − ∇P

ρ︸︷︷︸
δP/ρL

− ∇Φ︸︷︷︸
δΦ/L

. (13.57)

Multiplying through by L and using L/T " v we obtain δP/ρ ∼ v2+|δΦ|. Now, the variation
in pressure will be related to the variation in density by δP ∼ c2δρ, where c is the sound
speed (not light speed) and we drop constants of order unity in making these estimates.
Inserting this into our expression for δP , we obtain the estimate for the fractional density
fluctuation

δρ

ρ
∼ v2

c2
+
δΦ

c2
. (13.58)

Therefore, if the fluid speeds are highly subsonic (v & c) and the gravitational potential does
not vary greatly along flow lines, |δΦ| & c2, then we can ignore the density variations moving
with the fluid in solving for the velocity field. Correspondingly, since ρ−1dρ/dt = ∇ · v = θ
[Eq. (13.27)], we can make the approximation

∇ · v # 0. (13.59)

This argument breaks down when we are dealing with sound waves for which L ∼ cT .
For air at atmospheric pressure the speed of sound is c ∼ 300 m/s, which is very fast

compared to most flows speeds one encounters, so most flows are “incompressible”.
It should be emphasized, though, that “incompressibility”, which is an approximation

made in deriving the velocity field, does not imply that the density variation can be neglected
in all other contexts. A particularly good example of this is provided by convection flows
which are driven by buoyancy as we shall discuss in Chap. 17.

****************************

EXERCISES

Exercise 13.8 Problem: A Hole in My Bucket
There’s a hole in my bucket. How long will it take to empty? (Try an experiment and if the
time does not agree with the estimate suggest why this is so.)
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Box 13.3
Self Gravity T2

In the text, we mostly treat the gravitational field as externally imposed and indepen-
dent of the behavior of the fluid. This is usually a good approximation. However, it is
inadequate for discussing the properties of planets and stars. It is easiest to discuss the
necessary modifications required by self-gravitational effects by amending the conserva-
tion laws.

As long as we work within the domain of Newtonian physics, the mass conservation
equation (13.25) is unaffected. However, we included the gravitational force per unit
volume ρg as a source of momentum in the momentum conservation law. It would
fit much more neatly into our formalism if we could express it as the divergence of a
gravitational stress tensor Tg. To see that this is indeed possible, use Poisson’s equation
∇ · g = −4πGρ to write

∇ · Tg = −ρg =
(∇ · g)g

4πG
=

∇ · [g ⊗ g − 1
2g

2g]

4πG
,

so

Tg =
g ⊗ g − 1

2g
2g

4πG
. (1)

Readers familiar with classical electromagnetic theory will notice an obvious and under-
standable similarity to the Maxwell stress tensor whose divergence equals the Lorentz
force density.

What of the gravitational momentum density? We expect that this can be related
to the gravitational energy density using a Lorentz transformation. That is to say it
is O(v/c2) times the gravitational energy density, where v is some characteristic speed.
However, in the Newtonian approximation, the speed of light, c, is regarded as infinite
and so we should expect the gravitational momentum density to be identically zero in
Newtonian theory—and indeed it is. We therefore can write the full equation of motion
(13.38), including gravity, as a conservation law

∂(ρv)

∂t
+ ∇ · Ttotal = 0 (2)

where Ttotal includes Tg.

Turn to energy conservation: We have seen in the text that, in a constant, external
gravitational field, the fluid’s total energy density U and flux F are given by Eqs. (13.51)
and (13.52). In a general situation, we must add to these some field energy density and
flux. On dimensional grounds, these must be Ufield ∝ g2/G and Ffield ∝ Φ,tg/G (where
g = −∇Φ). The proportionality constants can be deduced by demanding that for an
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Box 13.3, Continued T2
ideal fluid in the presence of gravity, the law of energy conservation when combined with
mass conservation, momentum conservation, and the first law of thermodynamics, lead
to ds/dt = 0 (no dissipation in, so no dissipation out); see Eq. (13.54) and associated
discussion. The result [Ex. 13.14] is

U = ρ(
1

2
v2 + u + Φ) +

g2

8πG
, (3)

F = ρv(
1

2
v2 + h + Φ) +

1

4πG

∂Φ

∂t
g . (4)

Actually, there is an ambiguity in how the gravitational energy is localized. This

ambiguity arises physically from the fact that one can transform away the gravitational
acceleration g, at any point in space, by transforming to a reference frame that falls freely
there. Correspondingly, it turns out, one can transform away the gravitational energy
density at any desired point in space. This possibility is embodied mathematically in
the possibility to add to the energy flux F the time derivative of αΦ∇Φ/4πG and add
to the energy density U minus the divergence of this quantity (where α is an arbitrary
constant), while preserving energy conservation ∂U/∂t + ∇ · F = 0. Thus, the following
choice of energy density and flux is just as good as Eqs. (2) and (3); both satisfy energy
conservation:

U = ρ(
1

2
v2 +u+Φ)+

g2

8πG
−α∇ ·

(
Φ∇Φ

4πG

)
= ρ[

1

2
v2 +u+(1−α)Φ]+(1−2α)

g2

8πG
, (5)

F = ρv(
1

2
v2 + h + Φ) +

1

4πG

∂Φ

∂t
g + α

∂

∂t

(
Φ∇Φ

4πG

)

= ρv(
1

2
v2 + h + Φ) + (1 − α)

1

4πG

∂Φ

∂t
g +

α

4πG
Φ
∂g

∂t
. (6)

[Here we have used the gravitational field equation ∇2Φ = 4πGρ and g = −∇Φ.] Note
that the choice α = 1/2 puts all of the energy density into the ρΦ term, while the choice
α = 1 puts all of the energy density into the field term g2. In Ex. 13.15 it is shown
that the total gravitational energy of an isolated system is independent of the arbitrary
parameter α, as it must be on physical grounds.

A full understanding of the nature and limitations of the concept of gravitational
energy requires the general theory of relativity (Part VI). The relativistic analog of the
arbitrariness of Newtonian energy localization is an arbitrariness in the gravitational
“stress-energy pseudotensor”.
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Box 13.4
Flow Visualization

There are various methods for visualizing fluid flows. We have already met the
streamlines which are the integral curves of the velocity field v at a given time. They
are the analog of magnetic lines of force. They will coincide with the paths of individual
fluid elements if the flow is stationary. However, when the flow is time-dependent, the
paths will not be the same as the streamlines. In general, the paths will be the solutions
of the equations

dx

dt
= v(x, t). (1)

These paths are the analog of particle trajectories in mechanics.

Yet another type of flow line is a streak. This is a common way of visualizing a flow
experimentally. Streaks are usually produced by introducing some colored or fluorescent
tracer into the flow continuously at some fixed point, say x0, and observing the locus of
the tracer at some fixed time, say t0. Now, if x(t;x0, t0) is the expression for the location
of a particle released at time t at x0 and observed at time t0, then the equation for the
streak emanating from x0 and observed at time t0 is the parametric relation

x(t) = x(t;x0, t0)

Streamlines, paths and streaks are exhibited below.

Streak

Streamlines

v
v

x0

(t)

individual
paths

= const
Paths

t0

x0

t=

x

Exercise 13.9 Problem: Rotating Planets, Stars and Disks
Consider a stationary, axisymmetric planet star or disk differentially rotating under the
action of a gravitational field. In other words, the motion is purely in the azimuthal direction.

(a) Suppose that the fluid has a barotropic equation of state P = P (ρ). Write down the
equations of hydrostatic equilibrium including the centrifugal force in cylindrical polar
coordinates. Hence show that the angular velocity must be constant on surfaces of
constant cylindrical radius. This is called von Zeipel’s theorem. (As an application,
Jupiter is differentially rotating and therefore might be expected to have similar ro-
tation periods at the same latitude in the north and the south. This is only roughly
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V Dhydrofoil

Fig. 13.7: Water flowing past a hydrofoil as seen in the hydrofoil’s rest frame.

true, suggesting that the equation of state is not completely barotropic.)

(b) Now suppose that the structure is such that the surfaces of constant entropy per unit
mass and angular momentum per unit mass coincide.(This state of affairs can arise
if slow convection is present.) Show that the Bernoulli function [Eq. (13.46)] is also
constant on these surfaces. (Hint: Evaluate ∇B.)

Exercise 13.10 Problem: Crocco’s Theorem

(a) Consider steady flow of an ideal fluid. The Bernoulli function is conserved along
streamlines. Show that the variation of B across streamlines is given by

∇B = T∇s + v × ω . (13.60)

(b) As an example, consider the air in a tornado. In the tornado’s core, the velocity
vanishes; and it also vanishes beyond the tornado’s outer edge. Use Crocco’s theorem
to show that the pressure in the core is substantially different from that at the outer
edge. Is it lower, or is it higher? How does this explain the ability of a tornado to
make the walls of a house explode?

Exercise 13.11 Derivation: Joule-Kelvin Coefficient
Verify Eq. (13.56)

Exercise 13.12 Problem: Cavitation
A hydrofoil moves with velocity V at a depth D = 3m below the surface of a lake. (See
Figure 13.7.) How fast must the hydrofoil move to make the water next to it boil? (Boiling
results from the pressure P trying to go negative.)

Exercise 13.13 Example: Collapse of a bubble
Suppose that a spherical bubble has just been created in the water above the hydrofoil in
the previous question. We will analyze its collapse, i.e. the decrease of its radius R(t) from
its value Ro at creation. First show that the assumption of incompressibility implies that the
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radial velocity of the fluid at any radial location r can be written in the form v = F (t)/r2.
Then use the radial component of the Euler equation (13.40) to show that

1

r2

dF

dt
+ v
∂v

∂r
+

1

ρ

∂P

∂r
= 0

and integrate this outward from the bubble surface at radius R to infinite radius to obtain

−1

R

dF

dt
+

1

2
v2(R) =

P0

ρ

where P0 is the ambient pressure. Hence show that the bubble surface moves with speed

v(R) =

(
2P0

3ρ

)1/2
[(

R0

R

)3

− 1

]1/2

Suppose that bubbles formed near the pressure minimum on the surface of the hydrofoil are
swept back onto a part of the surface where the pressure is much larger. By what factor must
the bubbles collapse if they are to create stresses which inflict damage on the hydrofoil?

A modification of this solution is also important in interpreting the fascinating phe-
nomenon of Sonoluminescence (Brenner, Hilgenfeldt & Lohse 2002). This arises when fluids
are subjected to high frequency acoustic waves which create oscillating bubbles. The tem-
peratures inside these bubbles can get so large that the air becomes ionized and radiates.

Exercise 13.14 T2 Derivation: No dissipation “in” means no dissipation “‘out”, and
verification of the claimed gravitational energy density and flux
Consider an ideal fluid interacting with a (possibly dynamical) gravitational field that the
fluid itself generates via ∇2Φ = 4πGρ. For this fluid, take the law of energy conservation
∂U/∂t + ∇ ·F = 0 and from it subtract the scalar product of v with the law of momentum
conservation, v · [∂(ρv)/∂t+∇ ·T)]; then simplify using the law of mass conservation and the
first law of thermodynamics, to obtain ρds/dt = 0. In your computation, use for U and F
the expressions given in Eqs. (3) and (4) of Box 13.3. This calculation tells us two things: (i)
The law of energy conservation for an ideal fluid reduces simply to conservation of entropy
moving with the fluid; we have put no dissipative physics into the fluxes of momentum and
energy, so we get no dissipation out. (ii) The gravitational energy density and flux contained
in Eqs. (3) and (4) of Box 13.3 must be correct, since they guarantee that gravity does not
alter this “no dissipation in, no dissipation out” result.

Exercise 13.15 T2 Example: Gravitational Energy
Integrate the energy density U of Eq. (4) of Box 13.3 over the interior and surroundings of an
isolated gravitating system to obtain the system’s total energy. Show that the gravitational
contribution to this total energy (i) is independent of the arbitrariness (parameter α) in the
energy’s localization, and (ii) can be written in the following forms:

Eg =

∫
dV

1

2
ρΦ = − 1

8πG

∫
dV g2 =

−G

2

∫ ∫
dV dV ′ρ(x)ρ(x′)

|x − x′| (13.61)

Interpret each of these expressions physically.

****************************
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13.7 Viscous Flows - Pipe Flow

13.7.1 Decomposition of the Velocity Gradient

It is an observational fact that many fluids develop a shear stress when they flow. Pouring
honey from a spoon provides a convenient example. The stresses that are developed are
known as viscous stresses. Most fluids, however, appear to flow quite freely; for example, a
cup of tea appears to offer little resistance to stirring other than the inertia of the water.
It might then be thought that viscous effects only account for a negligible correction to
the description of the flow. However, this is not the case. Despite the fact that many fluids
behave in a nearly ideal fashion almost always and almost everywhere, the effects of viscosity
are still of great consequence. One of the main reasons for this is that most flows that we
encounter touch solid bodies at whose surfaces the velocity must vanish. This leads to the
formation of boundary layers whose thickness is controlled by strength of the viscous forces.
This boundary layer can then exert a controlling influence on the bulk flow. It may also lead
to the development of turbulence.

We must therefore augment our equations of fluid dynamics to include viscous stress.
Our formal development proceeds in parallel to that used in elasticity, with the velocity field
v = dξ/dt replacing the displacement field ξ. As already discussed briefly in Sec. 13.5.4
we decompose the velocity gradient tensor ∇v into its irreducible tensorial parts: a rate
of expansion, θ, a symmetric rate of shear tensor σ and an antisymmetric rate of rotation
tensor r, i.e.

∇v =
1

3
θg + σ + r . (13.62)

Note that we use lower case symbols to distinguish the fluid case from its elastic counterpart:
θ = dΘ/dt, σ = dΣ/dt, r = dR/dt. Proceeding directly in parallel to the treatment in Chap.
10, we write

θ = ∇ · v (13.63a)

σij =
1

2
(vi;j + vj;i) −

1

3
θgij (13.63b)

rij =
1

2
(vi;j − vj;i) = −1

2
εijkω

k (13.63c)

where ω = 2dφ/dt is the vorticity, which is the counterpart of the rotation vector φ.

13.7.2 Navier-Stokes Equation

Although, as we have emphasized, a fluid at rest does not exert a shear stress, and this
distinguishes it from an elastic solid, a fluid in motion can resist shear in the velocity field.
It has been found experimentally that in most fluids the magnitude of this shear stress
is linearly related to the velocity gradient. This law, due to Hooke’s contemporary, Isaac
Newton, is the analogue of the linear relation between stress and strain that we used in our
discussion of elasticity. Fluids that obey this law are known as Newtonian. (Some examples
of the behavior of non-Newtonian fluids are exhibited in Figure 13.8.)
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Thixotropic

Newtonian Shear
Stress

Newtonian

Shear
Stress

Rheopectic Plastic

Time Rate of Strain
(a) (b)

Fig. 13.8: Some examples of non-Newtonian behavior in fluids. a). In a Newtonian fluid the
shear stress is proportional to the rate of shear σ and does not vary with time when σ is constant.
However, some substances, such as paint, flow more freely with time and are said to be thixotropic.
Microscopically, what happens is that the molecules become aligned with the flow which reduces
the resistance. The opposite behaviour is exhibited by rheopectic substances. b). An alternative
type of non-Newtonian behavior is exhibited by various plastics where a threshold stress is needed
before flow will commence.

Fluids are usually isotropic. (Important exceptions include smectic liquid crystals.)
Therefore, by analogy with the theory of elasticity, we can describe the linear relation be-
tween stress and rate of strain using two constants called the coefficients of bulk and shear
viscosity and denoted ζ and η respectively. We write the viscous contribution to the stress
tensor as

Tvis = −ζθg − 2ησ (13.64)

by analogy to Eq. (10.18).
If we add this viscous contribution to the stress tensor, then the law of momentum

conservation ∂(ρv)/∂t + ∇ · T = ρg gives the following modification of Euler’s equation
(13.40), which contains viscous forces:

ρ
dv

dt
= −∇P + ρg + ∇(ζθ) + 2∇ · (ησ) (13.65)

This is called the Navier-Stokes equation, and the last two terms are the viscous force density.
For incompressible flows (e.g., whenever the flow is highly subsonic; Sec. 13.6), θ can be

approximated as zero so the bulk viscosity can be ignored. In this case, Eq. (13.65) simplifies
to

dv

dt
= −∇P

ρ
+ g + ν∇2v , (13.66)

where

ν =
η

ρ
(13.67)

is known as the kinematic viscosity. This is the commonly quoted form of the Navier-Stokes
equation.
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13.7.3 Energy conservation and entropy production

The viscous stress tensor represents an additional momentum flux which can do work on the
fluid at a rate Tvis · v per unit area. There is therefore a contribution

Fvis = Tvis · v (13.68)

to the energy flux, just like the term Pv appearing (via the ρvh) in Eq. (13.52). Diffusive
heat flow (thermal conductivity) can also contribute to the energy flux; its contribution is
[Eq. (2.67b)]

Fcond = −κ∇T , (13.69)

where κ is the coefficient of thermal conductivity. The molecules or particles that produce the
viscosity and the heat flow also carry energy, but their energy density is included already in u,
the total internal energy per unit mass. The total energy flux, including these contributions,
is shown in Table 13.2, along with the energy density and the density and flux of momentum.

We see most clearly the influence of the dissipative viscous forces and heat conduction
on energy conservation by inserting the energy density and flux from Table 13.2 into the
law of energy conservation ∂U/∂t + ∇ · F = 0, subtracting v · [∂(ρv)/∂t + ∇ · T = 0] (v
dotted into momentum conservation), and simplifying using mass conservation and the first
law of thermodynamics. The result [Ex. 13.18] is the following equation for the evolution of
entropy:

T

[
ρ

(
ds

dt

)
+ ∇ ·

(
Fcond

T

)]
= ζθ2 + 2ησ : σ +

κ

T
(∇T )2 . (13.70)

The term in square brackets on the left side represents an increase of entropy per unit volume
moving with the fluid due to dissipation (the total increase minus that due to heat flowing
conductively into a unit volume); multiplied by T this is the dissipative increase in entropy
density. This increase of random, thermal energy is being produced, on the right side, by
viscous heating (first two terms), and by the flow of heat Fcond = −κ∇T down a temperature
gradient −∇T (third term).

The dissipation equation (13.70) is the full content of the law of energy conservation for
a dissipative fluid, when one takes account of mass conservation, momentum conservation,
and the first law of thermodynamics.

Remarkably, we can combine this Lagrangian rate of viscous dissipation with the equation
of mass conservation (13.25) to obtain an Eulerian differential equation for the entropy
increase:

∂(ρs)

∂t
+ ∇ · (ρsv − κ∇ ln T ) =

1

T

(
ζθ2 + 2ησ : σ +

κ

T
(∇T )2

)
. (13.71)

The left hand side of this equation describes the rate of change of entropy density plus the
divergence of entropy flux. The right hand side is therefore the rate of production of entropy
per unit volume. Invoking the second law of thermodynamics, this must be positive definite.
Therefore the two coefficients of viscosity, like the bulk and shear moduli, must be positive,
as must the coefficient of thermal conductivity κ (heat must flow from hotter regions to
cooler regions).
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Quantity Density Flux
Mass ρ ρv

Momentum ρv T = ρv ⊗ v + Pg + g2

4πG − ζθg − 2ησ
Energy U = (1

2v
2 + u + Φ)ρ F = (1

2v
2 + h + Φ)ρv − ζθv − 2ησ · v − κ∇T

Table 13.2: Densities and Fluxes of mass, momentum, and energy for a dissipative fluid in an
externally produced gravitational field. For self-gravitating systems see Box 13.3

13.7.4 Molecular Origin of Viscosity

Microscopically, we can distinguish gases from liquids. In gases, molecules of mass m travel a
distance of order their mean free path λ before they collide. If there is a velocity gradient, ∇v
in the fluid, then they will, on average, transport a momentum ∼ mλ∇v with themselves.
If there are n molecules per unit volume traveling with mean speeds c̄, then the extra
momentum crossing a unit area in unit time is ∼ nmc̄λ∇v, from which we may extract an
estimate of the coefficient of shear stress

η =
1

3
ρc̄λ . (13.72)

Here the numerical coefficient of 1/3 has been inserted to agree with a proper kinetic-theory
calculation. (Since, in the language of Chap. 2, the viscosity coefficients are actually “trans-
port coefficients” for momentum, a kinetic-theory calculation can be made using the tech-
niques of Section 2.7.) Note from Eq. (13.72) that in a gas the coefficient of viscosity will
increase with temperature (∝ T 1/2).

In a liquid, where the molecules are less mobile, it is the close intermolecular attraction
that produces the shear stress. The ability of molecules to slide past one another therefore
increases rapidly with their thermal activation, causing typical liquid viscosity coefficients
to fall dramatically with temperature.

13.7.5 Reynolds’ Number

The kinematic viscosity ν has dimensions [L]2[T ]−1. This suggests that we quantify the
importance of viscosity by comparing ν with the product of a characteristic velocity in the
flow V and a characteristic length L. The dimensionless combination

R =
LV

ν
(13.73)

is known as the Reynolds’ number, and is the first of many dimensionless numbers we shall
encounter in our study of fluid mechanics. Flows with Reynolds number much less than unity
– such as the tragic Boston molasses tank explosion in 1919 – are dominated by viscosity.
Large Reynolds’ number flows can still be controlled by viscosity (as we shall see in later
chapters), especially when acting near boundaries, despite the fact that the viscous stresses
are negligible over most of the volume.
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Quantity Kinematic viscosity ν (m2s−1)
Water 10−6

Air 10−5

Glycerine 10−3

Blood 3 × 10−6

Table 13.3: Kinematic viscosity for common fluids.

13.7.6 Blood Flow

Let us now consider one simple example of a viscous stress at work, namely the flow of blood
down an artery. Let us model the artery as a cylindrical pipe of radius R, down which the
blood is forced by a pressure gradient. This is an example of what is called pipe flow. In
the absence of external forces, and time-dependence, the divergence of the total stress tensor
must vanish. Therefore,

∇ · [ρv ⊗ v + Pg − 2ησ] = 0 (13.74)

Now, in most instances of pipe flow ρv2 & ∆P =(the pressure difference between the two
ends), so we can neglect the first term in Eq. (13.74). We now suppose that the flow is
solely along the z− direction only a function of cylindrical radius 2. (This is an example
of laminar flow.) This is, in fact, a very important restriction. As we shall discuss in detail
in the following chapter, many flows become turbulent and this has a major impact on the
result.

As the density is effectively constant (we satisfy the conditions for incompressible flow),
and we must conserve mass, the velocity cannot change along the pipe. Therefore the only
non-vanishing component of the shear tensor is the 2z component. Reexpressing Eq. (13.74)
in cylindrical coordinates, and inferring from it that the pressure is a function of z only and
not of 2, we obtain

1

2

d

d2

(
2η

dv

d2

)
= −dP

dz
, (13.75)

where dP/dz is the pressure gradient along the pipe. This differential equation must be
solved subject to the boundary conditions that the velocity gradient vanish at the center of
the pipe and that the velocity vanish at its walls. The solution is

v(2) = −dP

dz

R2 −22

4η
(13.76)

We can now evaluate the total discharge or mass of fluid flowing along the pipe.

dm

dt
=

∫ R

0

ρv2π2d2 = −πρR
4

8η

dP

dz
(13.77)

This relation is known as Poiseuille’s law.
Now let us apply this to blood. Consider an artery of radius R = 1mm. An estimate of

the pressure gradient may be obtained from the difference between the diastolic and systolic
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pressure measured by a doctor (∼ 40mm of mercury ∼ 5×103N m−2 in a healthy adult) and
dividing by the length of the artery, ∼ 1m. The kinematic viscosity is η/ρ = ν = 3×10−6m2

s−1 from Table 13.3. The rate of blood flow is then ∼ 3 × 10−4kg s−1 or ∼ 3 × 10−7m3s−1.
Now, supposing there are ten such arteries of this size and length, the total blood flow will
be ∼ 3 × 10−6m3s−1.

Actually, the heart of a healthy adult pumps the full complement of blood ∼ 5litres or
∼ 5 × 10−3 m3 every minute at a mean rate of ∼ 10−4m3s−1 about thirty times faster than
this estimate. The main reason for this large discrepancy is that we have assumed in our
calculation that the walls of an artery are rigid. They are not. They are quite elastic and are
able to contract and expand in a wave-like manner so as to boost the blood flow considerably.
Note that the Poiseuille formula is very sensitive to the radius of the pipe, dm/dt ∝ R4, so a
factor two increase in radius increases the flow of blood by sixteen. So, both hardening and
thinning of the arteries will therefore strongly inhibit the flow of blood. Eat salads!

****************************

EXERCISES

Exercise 13.16 Problem: Mean free path
Estimate the collision mean free path of the air molecules around you. Hence verify the
estimate for the kinematic viscosity of air given in Table 13.3.

Exercise 13.17 Example: Kinematic interpretation of Vorticity
Consider a velocity field with non-vanishing curl. Define a locally orthonormal basis at a
point in the velocity field so that one basis vector, ex is parallel to the vorticity. Now imagine
the remaining two basis vectors as being frozen into the fluid. Show that they will both rotate
about the axis defined by ex and that the vorticity will be the sum of their angular velocities
(i.e. twice the average of their angular velocities).

Exercise 13.18 Derivation: Entropy Increase
Derive the Lagrangian equation (13.70) for the rate of increase of entropy in a dissipative
fluid by the steps in the sentence preceeding that equation. [Hints: If you have already done
the analogous problem, Ex. 13.14, for an ideal fluid, then you need only compute the new
terms that arise from the dissipative momentum flux Tvis = −ζθg − 2ησ and dissipative
energy fluxes Fvis = Tvis · v and Fcond = −κ∇T . The sum of these new contributions, when
you subtract v · (momentum conservation) from energy conservation, is ∇ · Tvis − ∇ · (v ·
Tvis) − ∇ · Fcond; and this must be added to the left side of the result ρTds/dt = 0, Eq.
(13.54), for an ideal fluid.]

****************************

Bibliographic Note

There are many good texts on fluid mechanics, most directed toward an engineering or
applied mathematics audience. Among those we find useful are Acheson (1990) at an ele-
mentary level, and Batchelor (1970) and Lighthill (1986) at a more advanced level. Landau
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Box 13.5
Terminology in Chapter 12

This chapter introduces a large amount of terminology. We list much of it here.

adiabatic A process in which each fluid element conserves its entropy.

adiabatic index The parameter Γ that relates pressure and density changes δP/P =
Γδρ/ρ in an adiabatic process. For an ideal gas, it is the ratio of specific heats,
Γ = γ ≡ CP/CV .

advective time derivative The time derivative d/dt = ∂/∂t + v · ∇ moving with the
fluid.

barotropic A process or equation in which pressure can be regarded as a function solely
of density, P = P (ρ).

Bernoulli function , also sometimes called Bernoulli constant. B = ρ(1
2v

2 + h + Φ).

bulk viscosity, coefficient of The proportionality constant ζ relating rate of expan-
sion to viscous stress, Tvis = −ζθg

convective time derivative Same as advective time derivative

dissipation A process that increases the entropy. Viscosity and diffusive heat flow are
forms of dissipation.

equation of state In this chapter, where chemical and nuclear reactions do not occur:
relations of the form u(ρ, s), P (ρ, s) or u(ρ, T ), P (ρ, T ).

Eulerian changes Changes in a quantity at fixed location; cf. Lagrangian changes

Euler equation Newton’s “F = ma” equation for an ideal fluid, ρdv/dt = −∇P + ρg.

expansion, rate of Fractional rate of increase of a fluid element’s volume; θ = ∇ · v.

gas A fluid in which the separations between molecules are large compared to the molec-
ular sizes and there are no long-range forces between molecules except gravity;
contrast this with a fluid.

ideal gas (also called “perfect gas”) A gas in which the sizes of the molecules and
(nongravitational) forces between them are completely neglected, so the pressure
is due solely to kinetic motions of molecules, P = nkBT .

ideal flow A flow in which there is no dissipation.

ideal fluid (also called “perfect fluid”) A fluid in which there are no dissipative pro-
cesses.

incompressible A process or fluid in which the fractional changes of density are small,
δρ/ρ& 1.

inviscid With negligible viscosity.

irrotational A flow or fluid with vanishing vorticity.

isentropic A process or fluid in which the entropy per unit rest. mass s is the same
everywhere.
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Box 13.5, Continued

isothermal A process or fluid in which the temperature is the same. everywhere.

isobar A surface of constant pressure.

kinematic viscosity ν ≡ η/ρ, the ratio of the coefficient of shear viscosity to the den-
sity.

Lagrangian changes Changes measured moving with the fluid; cf. Eulerian changes.

laminar flow A non-turbulent flow.

liquid A fluid such as water in which the molecules are packed side by side; contrast
this with a gas.

mean molecular weight The average mass of a molecule in a gas, divided by the mass
of a proton.

Navier-Stokes equation Newton’s “F = ma” equation for a viscuous, incompressible
fluid, dv/dt = −(1/ρ)∇P + ν∇2v + g.

Newtonian fluid Two meanings: (i) nonrelativistic fluid; (ii) a fluid in which the only
anisotropic stresses are those due to bulk and shear viscosity.

perfect gas Ideal gas.

perfect fluid Ideal fluid.

polytropic A barotropic pressure-density relation of the form P ∝ ρ1+1/n for some
constant n called the polytopic index. The proportionality constant is often some
function of entropy.

Reynolds’ number The ratio R = LV/ν, where L is the characteristic lengthscale of
a flow, V is the characteristic velocity, and ν is the kinematic viscosity. In order
of magnitude this is the ratio of inertial acceleration v · v to viscous acceleration
ν∇2v in the Navier-Stokes equation.

rotation, rate of Antisymmetric part of the gradient of velocity; vorticity converted
into an antisymmetric tensor using the Levi-Civita tensor.

shear, rate of Symmetric trace-free part of the gradient of velocity.

steady flow One that is independent of time in some chosen coordinate system.

turbulent flow A flow characterized by chaotic fluid motions.

vorticity The curl of the velocity field.

and Lifshitz (1959) as always is terse, but good for physicists who already have some knowl-
edge of the subject. Tritton (1977) takes an especially physical approach to the subject,
with lots of useful diagrams and photographs of fluid flows.

Physical intuition is very important in fluid mechanics, and is best developed with the aid
of visualizations — both movies and photographs. In recent years many visualizations have
been made available on the web. For a catalog, see University of Iowa Fluids Laboratory
(1999). Movies that we have found especially useful are those of Hunter Rouse (1965) and
the National Committee for Fluid Mechanics Films (1963).
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Box 13.6
Important Concepts in Chapter 12

• Dependance of pressure on density: equation of state; δP = Kδρ/ρ for liquid;
δP/P = Γδρ/ρ for gas, Sec. 13.2

• Hydrostatic equilibrium, Sec. 13.3

• Archimedes law, Sec. 13.3.1

• Shapes of rotating bodies, Sec. 13.3.2

• Centrifugal potential and hydrostatics in rotating reference frame, Sec. 13.3.3

• Conservation laws: mass, momentum and energy; Lagrangian vs. Eulerian ap-
proach, Sec. 13.4

• Gravitational field: densities and fluxes of momentum and energy, Box 13.3

• Viscous stress and energy flux, Sec. 13.7.2

• Thermal conductivity and diffusive energy flux, Sec. 13.7.2

• Densities and fluxes of mass, momentum, and energy summarized, Tables 13.1 and
13.2

• Euler equation (momentum conservation) for an ideal fluid, Secs. 13.5.2, 13.5.3

• Bernoulli’s theorem, Sec. 13.5.4

• Incompressibility of subsonic gas, Sec. 13.6

• Rates of expansion, rotation, and shear, and vorticity, Secs. 13.5.4 and 13.7.1

• Navier-Stokes equation (momentum conservation) for viscous, incompressible fluid,
Sec. 13.7.2

• Energy conservation equivalent to a law for evolution for entropy, Secs. 13.5.5,
13.7.3

• Entropy increase (dissipation) due to viscosity and diffusive heat flow, Sec. 13.7.3

• Molecular origin of viscosity, Sec. 13.7.4

Bibliography

Acheson, D. J. 1990. Elementary Fluid Dynamics, Oxford: Clarendon Press.



41

Batchelor, G. K. 1970. An Introduction to Fluid Dynamics, Cambridge: Cambridge
University Press.

Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Rev. Mod. Phys. 74 425

Chandrasekhar, S. 1939. Stellar Structure, Chicago: University of Chicago Press;
reprinted by Dover Publications.

Landau, L. D. and Lifshitz, E. M. 1959. Fluid Mechanics, Oxford: Pergamon.

Lighthill, J. 1986. An Informal Introduction to Theoretical Fluid Mechanics, Oxford:
Oxford University Press.

National Committee for Fluid Mechanics Films, ca. 1963. Fluid Mechanics Films.
Available at http://web.mit.edu/fluids/www/Shapiro/ncfmf.html .

Reif, F. 1959. Fundamentals of Statistical and Thermal Physics, New York: McGraw-
Hill.

Rouse, H. ca. 1965. Fluid Mechanics Movies. Available at
http://users.rowan.edu/∼orlins/fm/movies.html .

Tritton, D. J. 1977. Physical Fluid Dynamics, Wokingham: van Nostrand-Reinhold.

University of Iowa Fluids Laboratory. 1999. Flow Visualization & Simulation Gallery,
http://css.engineering.uiowa.edu/fluidslab/referenc/visualizations.html .

White, F. M. 1974. Viscous Fluid Flow, New York: McGraw-Hill.


