
Contents

17 Compressible and Supersonic Flow 1
17.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
17.2 Equations of Compressible Flow . . . . . . . . . . . . . . . . . . . . . . . . . 3
17.3 Stationary, Irrotational Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

17.3.1 Quasi-One Dimensional Flow . . . . . . . . . . . . . . . . . . . . . . 6
17.3.2 Setting up a Stationary, Transonic Flow . . . . . . . . . . . . . . . . 8
17.3.3 Rocket Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

17.4 One Dimensional, Time-Dependent Flow . . . . . . . . . . . . . . . . . . . . 14
17.4.1 Riemann Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
17.4.2 Shock Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

17.5 Shock Fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
17.5.1 Junction Conditions Across a Shock; Rankine-Hugoniot Relations . . 20
17.5.2 Internal Structure of Shock . . . . . . . . . . . . . . . . . . . . . . . 23
17.5.3 Shock jump conditions in a perfect gas with constant γ . . . . . . . . 24
17.5.4 Mach Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

17.6 Similarity Solutions — Sedov-Taylor Blast Wave . . . . . . . . . . . . . . . . 29
17.6.1 Atomic Bomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
17.6.2 Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

0



Chapter 17

Compressible and Supersonic Flow

Version 1017.1.K.tex 25 February 2009
Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 17.1
Reader’s Guide

• This chapter relies heavily on Chap. 12 and on Secs. 15.2, 15.3 and 15.5 of Chap.
15.

• No subsequent chapters rely substantially on this one.

17.1 Overview

So far, we have mainly been concerned with flows that are slow enough that they may
be treated as incompressible. We now consider flows in which the velocity approaches or
even exceeds the speed of sound and in which density changes along streamlines cannot be
ignored. Such flows are common in aeronautics and astrophysics. For example, the motion
of a rocket through the atmosphere is faster than the speed of sound in air. In other words,
it is supersonic. Therefore, if we transform into the frame of the rocket, the flow of air past
the rocket is also supersonic.

When the flow speed exceeds the speed of sound in some reference frame, it is not possible
for a pressure pulse to travel upstream in that frame and change the direction of the flow.
However, if there is a solid body in the way (e.g. a rocket or aircraft), the flow direction
must change. In a supersonic flow, this change happens nearly discontinuously, through the
formation of shock fronts at which the flow suddenly decelerates from supersonic to subsonic.
An example is shown in Fig. 17.1. Shock fronts are an inevitable feature of supersonic flows.

In another example of supersonic flow, a rocket itself is propelled by the thrust created by
escaping hot gases from its exhaust. These hot gases move through the exhaust at supersonic
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Fig. 17.1: Complex pattern of shock waves formed around a model aircraft in a wind tunnel with
air moving ten percent faster than the speed of sound (i.e. with Mach number M = 1.1.) Image
from W. G. Vicenti; reproduced from Van Dyke 1982.

speeds, expanding and cooling as they accelerate. In this manner the random thermal motion
of the gas molecules is converted into an organised bulk motion that carries away negative
momentum from the rocket and pushes it forward.

Sun
400 km s -1

Earth

Bow Shock

Fig. 17.2: The supersonic solar wind forms a type of shock front known as a bow shock when it
passes by a planet.

The solar wind furnishes yet another example of a supersonic flow. This high speed flow
of ionized gas is accelerated in the solar corona and removes a fraction ∼ 10−14 of the sun’s
mass every year. Its own pressure accelerates it to supersonic speeds of ∼ 400 km s−1. When
the outflowing solar wind encounters a planet, it is rapidly decelerated to subsonic speed by
passing through a strong discontinuity known as a bow shock, which surrounds the planet
(Fig. 17.2). The bulk kinetic energy in the solar wind, built up during acceleration, is rapidly
and irreversibly transformed into heat as it passes through this shock front.

In this chapter, we shall study some properties of supersonic flows. After restating the
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basic equations of compressible fluid dynamics (Sec. 17.2), we shall analyze three impor-
tant, simple cases: quasi-one-dimensional stationary flow (Sec. 17.3), time-dependent one
dimensional flow (Sec. 17.4), and normal adiabatic shock fronts (Sec. 17.5). In these sec-
tions, we shall apply the results of our analyses to some contemporary examples, including
the Space Shuttle (Box 17.2), rocket engines, shock tubes, and the Mach cone, N-wave and
sonic booms produced by supersonic projectiles and aircraft. In Sec. 17.6, we will develop
similarity-solution techniques for supersonic flows and apply them to supernovae, underwater
depth charges, and nuclear-bomb explosions in the earth’s atmosphere.

17.2 Equations of Compressible Flow

In Chap. 12, we derived the equations of fluid dynamics, allowing for compressibility. We
expressed them as conservation laws for mass [Eq. (12.25)], momentum [∂(ρv)/∂t+∇ ·T = 0
with T as given in Table 12.2], and energy [∂U/∂t + ∇ · F = 0 with U and F as given in
Table 12.2]; and also an evolution law for entropy [Eq. (12.71)]. When, as in this chapter,
heat conduction is negligible (κth → 0) and the gravitational field is a time-independent,
external one (not generated by the flowing fluid), these equations become

∂ρ

∂t
+ ∇ · (ρv) = 0 , (17.1)

∂(ρv)

∂t
+ ∇ · (Pg + ρv ⊗ v − 2ησ − ζθg) = ρg , (17.2)

∂

∂t

[
(
1

2
v2 + u + Φ)ρ

]
+ ∇ · [(1

2
v2 + h + Φ)ρv − 2ησ · v − ζθv] = 0 , (17.3)

∂(ρs)

∂t
+ ∇ · (ρsv) =

1

T

(
2ησ : σ + ζθ2

)
. (17.4)

Here σ : σ is index-free notation for σijσij .
Some comments are in order. Equation (17.1) is the complete mass conservation equation

(continuity equation) assuming that matter is neither added to nor removed from the flow.
Equation (17.2) expresses the conservation of momentum allowing for one external force,
gravity. Other external forces can be added. Equation (17.3), expressing energy conservation,
includes a viscous contribution to the energy flux. If there are sources or sinks of fluid energy,
then these must be included on the right-hand side of this equation. Possible sources of energy
include chemical or nuclear reactions; possible energy sinks include cooling by emission of
radiation. We will incorporate the effects of heat conduction into the energy equation in
the next chapter. Equation (17.4) expresses the evolution of entropy, and will also need
modification if there are additional contributions to the energy equation. The right-hand
side of this equation is the rate of increase of entropy due to viscous heating. This equation
is not independent of the preceding equations and the laws of thermodynamics, but is often
more convenient to use. In particular, one often uses it (together with the first law of
thermodynamics) in place of energy conservation (17.3).
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These equations must be supplemented with an equation of state in the form P (ρ, T )
or P (ρ, s). For simplicity, we shall often focus on a perfect gas that undergoes adiabatic
evolution with constant specific-heat ratio (adiabatic index) γ, so the equation of state has
the simple form (Box 12.2 and Ex. 12.2)

P = K(s)ργ . (17.5)

Here K(s) is a function of the entropy per unit mass s and is thus constant during adiabatic
evolution, but will change across shocks because the entropy increases in a shock (Sec. 17.5).
The value of γ depends on the number of thermalized internal degrees of freedom of the gas’s
constituent particles (Ex. 17.1). For a gas of free particles (e.g. fully ionized hydrogen), it
is γ = 5/3; for the earth’s atmosphere, at temperatures between about 10 K and 1000 K, it
is γ = 7/5 = 1.4 (Ex. 17.1).

For such a gas, we can integrate the first law of thermodynamics (Box 12.2) to obtain a
formula for the internal energy per unit mass,

u =
P

(γ − 1)ρ
, (17.6)

where we have assumed that the internal energy vanishes as the temperature T → 0. It
will prove convenient to express the density ρ, the internal energy per unit mass u and the
enthalpy per unit mass h in terms of the sound speed

c =

√(
∂P

∂ρ

)

s

=

√
γP

ρ
(17.7)

[Eq. (15.48d)]. A little algebra gives

ρ =

(
c2

γK

)1/(γ−1)

, u =
c2

γ(γ − 1)
, h = u +

P

ρ
=

c2

γ − 1
. (17.8)

****************************

EXERCISES

Exercise 17.1 *** Example: Values of γ
Consider a gas consisting of several different particle species, e.g. oxygen molecules and
nitrogen molecules in the case of the Earth’s atmosphere. Consider a sample of this gas
with volume V , containing NA particles of species A all in thermodynamic equilibrium at a
temperature T sufficiently low that we can ignore effects of special relativity. Let species A
have νA internal degrees of freedom (e.g., rotation and vibration) that are thermally excited,
so on average each such particle has 3

2kBT of translational energy plus 1
2νAkBT of internal

energy. Then the sample’s total energy E and pressure P are

E =
∑

A

(
3

2
+
νA

2

)
NAkBT , P =

1

V

∑

A

NAkBT . (17.9)
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Fig. 17.3: The ratio of specific heats γ for air as a function of temperature.

(a) Use the laws of thermodynamics to show that the specific heats at fixed volume and
pressure are

CV ≡
(

T∂S

∂T

)

V,NA

=
E

T
=

∑

A

(
3

2
+
νA

2

)
NAkB , CP =

(
T∂S

∂T

)

P,NA

= CV +
PV

T
,

(17.10)
so the ratio of specific heats is

γ =
CP

CV
= 1 +

∑
A NA∑

A NA

(
3
2 + νA

2

) . (17.11)

(b) If there are no thermalized internal degrees of freedom, νA = 0 (e.g., for a fully ion-
ized, nonrelativistic gas), then γ = 5/3. For the earth’s atmosphere, at temperatures
between about 10 K and 1000 K, the rotational degrees of freedom of the O2 and N2

molecules are thermally excited, but the temperature is too low to excite their vibra-
tional degrees of freedom. Explain why this means that νO2 = νN2 = 2, which implies
γ = 7/5 = 1.4. (HInt: there are just two orthogonal axes around which the diatomic
molecule can rotate.)

(c) Between about 1000 and roughly 10,000 K the vibrational degrees of freedom are
thermalized but the molecules have not dissociated substantially into individual atoms
nor become substantially ionized. Explain why this means that νO2 = νN2 = 4 in this
temperature range, which implies γ = 9/7 = 1.29. (Hint: an oscillator has kinetic
energy and potential energy.)

(d) At roughly 10,000 K the two oxygen atoms in O2 dissociate from each other, the two
nitrogen atoms in N2 dissociate, and electrons begin to ionize from the atoms. Explain
why this drives γ up toward 5/3 ' 1.67.

The actual value of γ as a function of temperature for the range 200 K to 1300 K is shown in
Fig. 17.3. Evidently, γ = 1.4 is a good approximation only up to about 400 K; the transition
toward γ = 1.29 occurs gradually between about 400 K and 1400 K.
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Fig. 17.4: Variation of cross sectional area, A, of a narrow bundle of flow lines as the Mach
number, M , increases. Note that the flow is transonic (M = 1) when A is at its minimum, A∗ .

****************************

17.3 Stationary, Irrotational Flow

17.3.1 Quasi-One Dimensional Flow

In their full generality, the fluid dynamic equations (17.1)–(17.4) are quite unwieldy. To
demonstrate some of the novel features of supersonic flow, we shall proceed as in earlier
chapters: We shall specialize to a very simple type of flow in which the physical effects of
interest are strong, and extraneous effects are negligible.

In particular, in this section, we shall seek insight into smooth transitions between subsonic
and supersonic flow by restricting ourselves to a stationary (∂/∂t = 0), irrotational (∇×v =
0) flow in which gravity and viscosity are negligible (Φ = η = ζ = 0), as are various effects
not included in our general equations: chemical reactions, thermal conductivity and radiative
losses. (We shall explore effects of gravity in Ex. 17.4.) The vanishing viscosity implies [from
the entropy evolution equation (17.4)] that the entropy per baryon s is constant along each
flow line. We shall assume that s is the same on all flow lines, so the flow is fully isentropic
(s constant everywhere) and the pressure P = P (ρ, s) can thus be regarded as a function
only of the density, P = P (ρ). When we need a specific form for P (ρ), we will use that of
an ideal gas with constant specific-heat ratio [Eqs. (17.5)–(17.8); Ex. 17.1], but much of our
analysis will be done for a general isentropic P (ρ). We will make one further approximation,
that the flow is almost one dimensional. In other words, the velocity vectors all make small
angles with each other in the region of interest.

These drastic simplifications are actually appropriate for many cases of practical interest.
Granted these simplifications, we can consider a narrow bundle of streamlines which we call
a streamtube and introduce, as a tool in studying it, its cross sectional area A, normal to
the flow (Fig. 17.4).

As the flow is stationary, the equation of mass conservation (17.1) states that the rate at
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which mass passes through the streamtube’s cross section must be independent of position
along the tube:

ρvA = constant; (17.12)

here v is the speed of the fluid in the streamtube. Rewriting this in differential form, we
obtain

dA

A
+

dρ

ρ
+

dv

v
= 0 . (17.13)

Because the flow is stationary and inviscid, the law of energy conservation (17.3) reduces to
Bernoulli’s theorem [Eqs. (12.46), (12.47)]:

h +
1

2
v2 = constant (17.14)

along each streamline and thus along our streamtube. Since the flow is adiabatic, we can
use the first law of thermodynamics (Box 12.2) dh = dP/ρ+ Tds = dP/ρ = c2dρ/ρ [where
c is the speed of sound (17.7)] to write Eq. (17.14) in the differential form

dρ

ρ
+

vdv

c2
= 0 . (17.15)

Finally and most importantly, we combine Eqs. (17.13) and (17.15) to obtain

dv

v
=

dA/A

M2 − 1
;

dρ

ρ
=

dA/A

M−2 − 1
. (17.16)

where
M ≡ v/c (17.17)

is the Mach number. This Mach number is an important new dimensionless number that can
be used to characterize compressible flows. When the Mach number is less than 1, the flow
is called subsonic; when M > 1, it is supersonic. By contrast with the Reynolds, Rossby
and Ekman numbers, which are usually defined using a single set of (characteristic) values of
the flow parameters (V , ν, Ω, L) and thus have a single value for any given flow, the Mach
number by convention is defined at each point in the flow and thus is a flow variable M(x)
similar to v(x) and ρ(x).

Equations (17.16) make remarkable predictions: At points along a streamtube where
the flow is extremely subsonic M ) 1, v varies inversely with A, in accord with everyday
experience. At points where the flow is subsonic M < 1 but not extremely so, a decrease in
the cross sectional area A still causes the fluid to speed up (v to increase), but not so strongly
as when M ) 1. By contrast, at points where the flow is supersonic M > 1, a decrease of
A causes the speed v to decrease, and an increase of A causes it to increase—just opposite
to everyday, subsonic experience! However, because mass is still conserved, ρvA = constant,
the synchronous decrease (or increase) of v and A is compensated by the opposite evolution
of ρ. At points where the flow is extremely supersonic M * 1, v remains nearly constant as
A changes. Finally, a transition from subsonic to supersonic flow (i.e., a sonic point M = 1)
can occur only at a minimum of the tube’s area A. These conclusions are very useful in
analyzing stationary, high-speed flows.
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Fig. 17.5: Stationary flow through a channel between two chambers maintained at different
pressures P1 and P2. When the pressure difference P1 − P2 is large enough, the flow is subsonic
to the left of the channel’s throat and supersonic to the right. As it nears or enters the second
chamber, the supersonic flow must decelerate abruptly to a subsonic speed in a strong shock.

17.3.2 Setting up a Stationary, Transonic Flow

The reader may wonder, at this point, whether it is easy to set up a flow in which the speed of
the fluid changes continuously from subsonic to supersonic. The answer is quite illuminating.
We can illustrate the answer using two chambers maintained at different pressures, P1 and
P2, and connected through a narrow channel along which the cross sectional area passes
smoothly through a minimum A = A∗, the channel’s throat (Fig. 17.5). When P2 = P1,
there will be no flow between the two chambers. When we decrease P2 slightly below P1,
there will be a slow subsonic flow through the channel (curve 1 in Fig. 17.5) that eventually
will equalize the pressures. As we decrease P2 further, there comes a point (P = P crit

2 ) at
which the flow is forced to be transonic at the channel’s throat A = A∗ (curve 2). For all
pressures P2 > P crit

2 , the flow is also transonic at the throat and has a universal form to the
left of and near the throat, independent of the value of P2 (curve 2)—including a universal
value for the rate of mass flow through the throat! This universal flow is supersonic to the
right of the throat, but it must be brought to rest in chamber 2, since there is a hard wall
at the chamber’s end. How is it brought to rest? Through a shock front, where it is driven
subsonic almost discontinuously (curves 3 and 4; Sec. 17.5 below).
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Subsonic Flow

Combustion
Chamber

Supersonic Flow

Ve
P0

A*

P*

De Laval Nozzle

Skirt

Fig. 17.6: Schematic illustration of a rocket engine. Note the skirt, which increases the thrust
produced by the escaping exhaust gases.

How, physically, is it possible for the flow to have a universal form to the left of the
shock? The key to this is that in any supersonic region of the flow, disturbances are unable
to propagate upstream, so the upstream fluid has no way of knowing what the pressure P2

is in chamber 2. Although the flow to the left of the shock is universal, the location of the
shock and the nature of the subsonic, post-shock flow are affected by P2, since information
can propagate upstream through that subsonic flow, from chamber 2 to the shock.

The reader might now begin to suspect that the throat, in the transonic case, is a very
special location. It is, and that location is known as a critical point of the stationary flow.
From a mathematical point of view, critical points are singular points of the equations of
stationary flow [Eqs. (17.12)–(17.16)]. This singularity shows up in the solutions to the equa-
tions, as depicted in Fig. 17.5(c). The universal solution that passes transonically through
the critical point (solution 2) joins onto two different solutions to the right of the throat:
solution 2a, which is supersonic, and solution 2b, which is subsonic. Which solution occurs
in practice depends on conditions downstream. Other solutions that are arbitrarily near this
universal solution [dashed curves in Fig. 17.5(c)] are either double valued and consequently
unphysical, or are everywhere subsonic or everywhere supersonic (in the absence of shocks).

The existence of critical points is a price we must pay, mathematically, for not allowing
our equations to be time dependent. If we were to solve the time-dependent equations (which
would then be partial differential equations), we would find that they change from elliptic
to hyperbolic as the flow passes through a critical point.

From a physical point of view, critical points are the places where a sound wave propagat-
ing upstream remains at rest in the flow. They are therefore the one type of place from which
time-dependent transients, associated with setting up the flow in the first place, cannot de-
cay away (if the equations are dissipation-free, i.e., inviscid). Thus, even the time-dependent
equations can display peculiar behaviors at a critical point. However, when dissipation is
introduced, these peculiarities get smeared out.

17.3.3 Rocket Engines

We have shown that, in order to push a quasi-one-dimensional flow from subsonic to super-
sonic, one must send it through a throat. This result is exploited in the design of rocket
engines and jet engines.

In a rocket engine, hot gas is produced by controlled burning of fuel in a large chamber
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and it then escapes through a converging-diverging (also known as De Laval) nozzle, as shown
in Fig. 17.6. The nozzle is designed with a skirt so the flow becomes supersonic smoothly
when it passes through the nozzle’s throat.

To analyze this flow in some detail, let us approximate it as precisely steady and isen-
tropic, and the gas as perfect (no viscosity) with constant ratio of specific heats γ. In this
case, the enthalpy is h = c2/(γ − 1) [Eqs. (17.8)], so Bernoulli’s theorem (17.14) reduces to

c2

(γ − 1)
+

1

2
v2 =

c2
0

(γ − 1)
. (17.18)

Here c is the sound speed in the flow and c0 is the “stagnation” sound speed, i.e., the sound
speed evaluated in the rocket chamber where v = 0 . Dividing this Bernoulli theorem by c2

and manipulating, we learn how the sound speed varies with Mach number M = v/c:

c = c0

[
1 +

γ − 1

2
M2

]−1/2

. (17.19)

From mass conservation [Eq. (17.12)], we know that the cross sectional area A varies as
A ∝ ρ−1v−1 ∝ ρ−1M−1c−1 ∝ M−1c(γ+1)/(1−γ), where we have used ρ ∝ c2/(γ−1) [Eqs. (17.8)].
Combining with Eq. (17.19), and noting that M = 1 where A = A∗ (i.e., the flow is transonic
at the throat), we find that

A

A∗
=

1

M

[
2

γ + 1
+

(
γ − 1

γ + 1

)
M2

] (γ+1)
2(γ−1)

, (17.20)

The pressure P∗ at the throat can be deduced from P ∝ ργ ∝ c2γ/(γ−1) [Eqs. (17.5) and
(17.8)] together with Eq. (17.19) with M = 0 and P = P0 = (stagnation pressure) in the
chamber and M = 1 at the throat:

P∗ = P0

(
2

γ + 1

) γ
γ−1

. (17.21)

We use these formulas in Box 17.2 and Ex. 17.3 to evaluate, numerically, some features of
the space shuttle and its rocket engines.

Bernoulli’s theorem is a statement that the fluid’s energy is conserved along a stream-
tube. (For conceptual simplicity we shall regard the entire interior of the nozzle as a single
streamtube.) By contrast with energy, the fluid’s momentum is not conserved, since it pushes
against the nozzle wall as it flows. As the subsonic flow accelerates down the nozzle’s con-
verging region, the area of its streamtube diminishes, and the momentum flowing per second
in the streamtube, (P + ρv2)A, decreases; the momentum is being transferred to the nozzle
wall. If the rocket did not have a skirt, but instead opened up completely to the outside
world at its throat, the rocket thrust would be

T∗ = (ρ∗v
2
∗ + P∗)A∗ = (γ + 1)P∗A∗ . (17.22)

This is much less than if momentum had been conserved along the subsonic, accelerating
streamtubes.
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Much of the “lost” momentum is regained, and the thrust is made significantly larger
than T∗, by the force of the skirt on the stream tube in the diverging part of the nozzle
(Fig. 17.6). The nozzle’s skirt keeps the flow quasi-one-dimensional well beyond the throat,
driving it more and more strongly supersonic. In this accelerating, supersonic flow the tube’s
momentum flow (P + ρv2)A increases downstream, and there is a compensating increase of
the rocket’s forward thrust. This skirt-induced force accounts for a significant fraction of the
thrust of a well-designed rocket engine.

Rockets work most efficiently when the exit pressure of the gas, as it leaves the base
of the skirt, matches the external pressure in the surrounding air. When the pressure in
the exhaust is larger than the external pressure, the flow is termed under-expanded and a
pulse of low pressure, known as a rarefaction will be driven into the escaping gases causing
them to expand and increasing their speed. However, the exhaust will now be pushing on
the surrounding air, rather than on the rocket. More thrust could have been exerted on
the rocket if the flow had not been under-expanded. By contrast, when the exhaust has a
smaller pressure that the surrounding air (i.e., is over-expanded), shock fronts will form near
the exit of the nozzle, affecting the fluid flow and sometimes causing separation of the flow
from the nozzle’s walls. It is important that the nozzle’s skirt be shaped so that the exit
flow is neither seriously over- or under-expanded.

****************************

EXERCISES

Exercise 17.2 Derivation: De Laval Nozzle
Verify Eqs. (17.16) and (17.21).

Exercise 17.3 Problem: Space Shuttle’s Solid-Fuel Boosters
Use the rough figures in Box 17.2 to estimate the energy released per unit mass in burning
the fuel. Does your answer seem reasonable to you?

Exercise 17.4 *** Example: Adiabatic, Spherical Accretion of Gas Onto a Black Hole or
Neutron Star
Consider a black hole or neutron star with mass M , at rest in interstellar gas that has
constant ratio of specific heats γ. In this exercise you will derive some features of the
adiabatic, spherical accretion of the gas onto the hole or star, a problem first solved by
Bondi (1952). This exercise shows how gravity can play a role analogous to a De Laval
nozzle: it can trigger a transition of the flow from subsonic to supersonic.

(a) Let ρ∞ and c∞ be the density and sound speed in the gas far from the hole (at radius
r = ∞). Use dimensional analysis to estimate the rate of accretion of mass Ṁ onto
the star or hole, in terms of the parameters of the system: M , γ, ρ∞, c∞, and New-
ton’s gravitation constant G. [Hint: dimensional considerations alone cannot give the
answer. Why? Augment your dimensional considerations by a knowledge of how the
answer should scale with one of the parameters, e.g. the density, ρ∞.]
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Box 17.2
Space Shuttle

The Space Shuttle provides many convenient examples of the behavior of supersonic
flows. At launch, the shuttle and fuel have a mass ∼ 2 × 106 kg. The maximum thrust,
T ∼ 3 × 107N, occurs at lift-off and lifts the rocket with an initial acceleration relative
to the ground of ∼ 0.5g. This increases to ∼ 3g as the fuel is burned and the total mass
diminishes. Most of the thrust is produced by two solid-fuel boosters which burn fuel at a
combined rate of ṁ ∼ 10000 kg s−1 over a two minute period. They produce a combined
thrust of T ∼ 2 × 107N averaged over the two minutes, from which we can estimate the
speed of the escaping gases as they leave the exhaust. Assuming that this speed is quite
supersonic (so Pe ) ρev2

e), we estimate that ve ∼ T/ṁ ∼ 2km s−1 . Now the combined
exit areas of the two exhausts is Ae ∼ 20m2, roughly four times the combined throat
area, A∗. Using Eq. (17.20), we deduce that the exit Mach number is Me ∼ 3.

The exit pressure is Pe ∼ T/γM2
e Ae ∼ 8 × 104 N m−2, about atmospheric. The

stagnation pressure within the combustion region is roughly

P0 ∼ Pe

[
1 +

(γ − 1)M2
e

2

] γ
γ−1

∼ 35 atmospheres. (1)

Of course the actual operation is far more complex than this. For example, to optimize
the final altitude, one must allow for the decreasing mass and atmospheric pressure as
well as the two dimensional gas flow through the nozzle.

The space shuttle can also be used to illustrate the properties of shock waves
(Sec. 17.5). When the shuttle re-enters the atmosphere it is traveling highly supersoni-
cally. It must therefore be preceded by a strong shock front which heats the onrushing
air and consequently heats the shuttle. The shuttle continues moving supersonically un-
til it reaches an altitude of 15km and until this time creates a shock wave pattern that
can be heard on the gound as a sonic boom. The maximum heating rate occurs at an
altitude of 70km. Here, the shuttle moves at V ∼ 7km s−1 and the sound speed is about
280 m s−1, giving a Mach number of 25. If we adopt a specific heat ratio γ ∼ 1.5 and a
mean molecular weight µ ∼ 10 appropriate to dissociated air, we can conclude from the
Rankine-Hugoniot conditions and the ideal gas law, Eq. (4) of Box 12.2, that the post
shock temperature is

T ∼ 2(γ − 1)µmpV 2

(γ + 1)2k
∼ 9000K (2)

Exposure to gas at this high a temperature heats the nose to ∼ 1800K.

There is a second, well-known consequence of this high temperature and that is
that it is sufficient to ionise the air partially as well as dissociate it. This surrounds the
shuttle with a sheath of plasma, which as we shall discover in chapter 18, prevents radio
communication. The blackout is maintained for about 12 minutes.
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(b) Give a simple physical argument, devoid of dimensional considerations, that produces
the same answer for Ṁ as you deduced in part (a).

(c) Because the neutron star and black hole are both very compact with intense gravity
near their surfaces, the inflowing gas is guaranteed to accelerate to supersonic speeds
as it falls in. Explain why the speed will remain supersonic in the case of the hole,
but must transition through a shock to subsonic flow near the surface of the neutron
star. If the star has the same mass M as the hole, will the details of its accretion
flow [ρ(r), c(r), v(r)] be the same as or different from those for the hole, outside the
star’s shock? Will the mass accretion rates Ṁ be the same or different? Justify your
answers, physically.

(d) By combining the Euler equation for v(r) with the equation of mass conservation,
Ṁ = 4πr2ρv, and with the sound-speed equation c2 = (∂P/∂ρ)s, show that

(v2 − c2)
1

ρ

dρ

dr
=

GM

r2
− 2v2

r
. (17.23)

Thereby deduce that the flow speed vs, sound speed cs, and radius rs at the sonic point
(the radius of transition from subsonic to supersonic flow) are related by

v2
s = c2

s =
GM

2rs
. (17.24)

(e) By combining with the Bernoulli equation (with the effects of gravity included), deduce
that the sound speed at the sonic point is related to that at infinity by

c2
s =

2c2
∞

5 − 3γ
(17.25)

and that the radius of the sonic point is

rs =
(5 − 3γ)

4

GM

c2
∞

. (17.26)

Thence also deduce a precise value for the mass accretion rate Ṁ in terms of the
parameters of the problem. Compare with your estimate of Ṁ in parts (a) and (b).
[Comment: For γ = 5/3, which is the value for hot, ionized gas, this analysis places the
sonic point at an arbitrarily small radius. In this limiting case (i) general relativistic
effects strengthen the gravitational field, thereby moving the sonic point well outside
the star or hole, and (ii) your answer for Ṁ has a finite value close to the general
relativistic prediction. See Part VI of this book.]

(f) Much of the interstellar medium is hot and ionized, with density about one proton per
cubic centimeter and temperature about 104 K. In such a medium, what is the mass
accretion rate onto a 10 solar mass hole, and approximately how long does it take for
the hole’s mass to double?

****************************
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17.4 One Dimensional, Time-Dependent Flow

17.4.1 Riemann Invariants

Let us turn now to time-dependent flows. Again we confine our attention to the simplest sit-
uation that illustrates the physics, in this case, truly one-dimensional motion of an isentropic
fluid in the absence of viscosity, thermal conductivity and gravity, so the flow is adiabatic
as well as isentropic (entropy constant in time as well as space). The motion of the gas in
such a flow is described by the equation of continuity and the Euler equation specialized to
one dimension.

dρ

dt
= −ρ∂v

∂x
,

dv

dt
= −1

ρ

∂P

∂x
, (17.27)

where
d

dt
=

∂

∂t
+ v

∂

∂x
(17.28)

is the convective time derivative (the time derivative moving with the fluid).
Given an isentropic equation of state P = P (ρ) that relates the pressure to the density,

these two nonlinear equations can be combined into a single second order differential equation
in the velocity. However, it is more illuminating to work with the first-order set. As the
gas is isentropic, the density ρ and sound speed c = (dP/dρ)1/2 can both be regarded as
functions of a single thermodynamic variable, which we choose to be the pressure.

Taking linear combinations of Eqs. (17.27), we obtain two partial differential equations

∂v

∂t
± 1

ρc

∂P

∂t
+ (v ± c)

(
∂v

∂x
± 1

ρc

∂P

∂x

)
= 0 , (17.29)

which together are equivalent to Eqs. (17.27). We can rewrite these equations in terms of
Riemann invariants

J± ≡ v ±
∫

dP

ρc
(17.30)

and characteristic speeds
V± ≡ v ± c. (17.31)

in the following way: (
∂

∂t
+ V±

∂

∂x

)
J± = 0. (17.32)

Equation (17.32) tells us that the convective derivative of each Riemann invariant J±
vanishes for an observer who moves, not with the fluid speed, but, instead, with the speed
V±. We say that each Riemann invariant is conserved along its characteristic (denoted by
C±), which is a path through spacetime satisfying

C± :
dx

dt
= v ± c. (17.33)

Note that in these equations, both v and c are functions of x and t.
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Fig. 17.7: Spacetime diagram showing the characteristics (thin solid and dashed lines) for a one
dimensional adiabatic flow of an isentropic gas. The paths of the fluid elements are shown as thick
solid lines. Initial data are presumed to be specified over some interval ∂S of x at time t = 0. The
Riemann invariant J+ is constant along each characteristic C+ (thin dashed line) and thus at point
P it has the same value, unchanged, as at point A in the initial data. Similarly J− is invariant
along each characteristic C− (thin solid line) and thus at P it has the same value as at B. The
shaded area of spacetime is the domain of dependence S of ∂S

The characteristics have a natural interpretation. They describe the motion of small
disturbances traveling backward and forward relative to the fluid at the local sound speed.
As seen in the fluid’s local rest frame v = 0, two neighboring events in the flow, separated
by a small time interval ∆t and a space interval ∆x = +c∆t so that they lie on the same
C+ characteristic, will have small velocity and pressure differences satisfying ∆v = −∆P/ρc
[as one can deduce from Eqs. (17.27) with v = 0, d/dt = ∂/∂t and c2 = dP/dρ]. Now, for
a linear sound wave, propagating along the positive x direction, ∆v and ∆P will separately
vanish. However in a nonlinear wave, only the combination ∆J+ = ∆v + ∆P/ρc will vanish
along C+. Integrating over a finite interval of time, we recover the constancy of J+ along
the characteristic C+ [Eq. (17.30)].

The Riemann invariants provide a general method for deriving the details of the flow
from initial conditions. Suppose that the fluid velocity and the thermodynamic variables are
specified over an interval of x, designated ∂S, at an initial time t = 0 [Fig. 17.7]. This means
that J± are also specified over this interval. We can then determine J± at any point P in the
domain of dependence S of ∂S (i.e., at any point linked to ∂S by two characteristics C±) by
simply propagating each of J± unchanged along its characteristic. From these values of J±
at P, we can solve algebraically for all the other flow variables (v, P , ρ, ...) at P. To learn
the evolution outside the domain of dependence S, we must specify the initial conditions
outside ∂S.

In practice, we do not actually know the characteristics C± until we have solved for the
flow variables, so we must solve for the characteristics as part of the solution process. This
means, in practice, that the solution involves algebraic manipulations of (i) the equation
of state and the relations J± = v ±

∫
dP/ρc, which give J± in terms of v and c; and (ii)

the conservation laws that J± are constant along C±, i.e. along curves dx/dt = v ± c.
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Fig. 17.8: Evolution of a nonlinear sound wave. The fluid at the crest of the wave moves faster
than the fluid in the trough. Mathematically, the flow eventually becomes triple-valued. Physically,
a shock wave develops.

These algebraic manipulations have the goal of deducing c(x, t) and v(x, t) from the initial
conditions on ∂S. We shall exhibit a specific example in the next subsection.

We can use Riemann invariants to understand qualitatively how a nonlinear sound wave
evolves with time. If the wave propagates in the positive x direction into previously undis-
turbed fluid (fluid with v = 0), then the J− invariant, propagating backward along C−,
is constant everywhere, so v =

∫
dP/ρc + constant. Let us use q ≡

∫
dP/ρc as our wave

variable. For a perfect gas with constant ratio of specific heats γ, q = 2c/(γ − 1), so our
oscillating wave variable is essentially the oscillating sound speed. Constancy of J− then says
that v = q − q0, where q0 is the stagnation value of q, i.e. the value of q in the undisturbed
fluid.

Now, J+ = v+q is conserved on each rightward characteristic C+, and so both v and q are
separately conserved on each C+. If we sketch a profile of the wave pulse as in Fig. 17.8 and
measure its amplitude using the quantity q, then the relation v = q − q0 says that the fluid
at the crest of the wave moves faster than the fluid in a trough. This causes the leading edge
of the wave to steepen, a process we have already encountered in our discussion of shallow-
water solitons (Chap. 15). Now, sound waves, by constrast with shallow-water waves, are
non-dispersive so the steepening will continue until |dv/dx| → ∞ (Fig. 17.8). When the
velocity gradient becomes sufficiently large, viscosity and dissipation will become strong,
producing an increase of entropy and a breakdown of our isentropic flow. This breakdown
and entropy increase will occur in an extremely thin region—a shock wave, which we shall
study in Sec. 17.5

17.4.2 Shock Tube

We have shown how one dimensional isentropic flows can be completely analyzed by prop-
agating the Riemann invariants along characteristics. Let us illustrate this in more detail
by analyzing a shock tube, a laboratory device for creating supersonic flows and studying
the behavior of shock waves. In a shock tube, high pressure gas is retained at rest in the
left half of a long tube by a thin membrane. At time t = 0, the membrane is ruptured by a
laser beam and the gas rushes into the tube’s right half, which has usually been evacuated.
Diagnostic photographs and velocity and pressure measurements are synchronised with the
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Fig. 17.9: Shock Tube. (a) At t ≤ 0 gas is held at rest at high pressure P0 in the left half of
the tube. (b) At t > 0 the high-pressure gas moves rightward down the tube at high speed, and
a rarefaction wave propagates leftward at the sound speed. (c) Space-time diagram showing the
flow’s characteristics (C+: thin dashed lines; C−: thin solid lines) and fluid paths (thick solid lines).
To the left of the rarefaction wave, x < −cot, the fluid is undisturbed. To the right of the gas front,
x > [2/(γ − 1)]cot, is undisturbed (near) vacuum

onset of the flow.
Let us idealize the operation of a shock tube by assuming, once more, that the gas is

perfect with constant γ, so that P ∝ ργ. For times t ≤ 0, we suppose that the gas has
uniform density ρ0 and pressure P0 (and consequently uniform sound speed c0) at x ≤ 0,
and that ρ = P = 0 at x ≥ 0. At time t = 0, the barrier is removed and the gas flows towards
positive x. Now, the first Riemann invariant J+ is conserved on C+, which originates in the
static gas, so it has the value

J+ = v +
2c

γ − 1
=

2c0

γ − 1
. (17.34)

Note that in this case, the invariant is the same on all rightward characteristics, i.e. through-
out the flow, so

v =
2(c0 − c)

γ − 1
everywhere. (17.35)

The second invariant is

J− = v − 2c

γ − 1
. (17.36)

Its constant values are not so easy to identify because those characteristics C− that travel
through the perturbed flow all emerge from the origin, where v and c are indeterminate;
cf. Fig. 17.9. However, by combining Eq. (17.35) with Eq. (17.36), we deduce that v and
c are separately constant on each characteristic C−. This enables us, trivially, to solve the
differential equation dx/dt = v − c for the leftward characteristics C−, obtaining

C− : x = (v − c)t . (17.37)
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Here we have set the constant of integration equal to zero so as to obtain all the characteristics
that propagate through the perturbed fluid. (For those in the unperturbed fluid, v = 0 and
c = c0, so x = x0 − c0t with x0 < 0 the characteristic’s initial location.)

Now Eq. (17.37) is true on each characteristic in the perturbed fluid. Therefore it is true
throughout the perturbed fluid. We can therefore combine Eqs. (17.35), (17.37) to solve for
v(x, t) and c(x, t) throughout the perturbed fluid. That solution, together with the obvious
solution (same as initial data) to the left and right of the perturbed fluid, is:

v = 0 , c = c0 at x < −c0t ,

v =
2

γ + 1

(
c0 +

x

t

)
, c =

2c0

γ + 1
−

(
γ − 1

γ + 1

)
x

t
at − c0t < x <

2c0

γ − 1
t ,

vacuum prevails at x >
2c0

γ − 1
t . (17.38)

Notice, in this solution, that the gas at x < 0 remains at rest until a rarefaction wave from
the origin reaches it. Thereafter it is accelerated rightward by the local pressure gradient,
and as it accelerates it expands and cools so its speed of sound c goes down; asymptotically
it reaches zero temperature as exhibited by c = 0 and an asymptotic speed v = 2c0/(γ − 1)
[cf. Eq. (17.34)]; see Fig. 17.9. In the expansion, the internal random velocity of the gas
molecules is transformed into an ordered velocity just as in a rocket’s exhaust. However, the
total energy per unit mass in the stationary gas is u = c2

0/γ(γ− 1) [Eq. (17.8)], which is less
than the asymptotic kinetic energy per unit mass of 2c2

0/(γ − 1)2. The missing energy has
gone into performing work on the gas that is still struggling to reach its asymptotic speed.

In the more realistic case where there initially is some low-density gas in the evacuated
half of the tube, the expanding driver gas creates a strong shock as it plows into the low-
density gas. In the next section we shall explore the structure of this and other shock fronts.

****************************

EXERCISES

Exercise 17.5 Problem: Fluid Paths in Free Expansion
We have computed the velocity field for a freely expanding gas, Eq. (17.38). Use this result
to show that the path of an individual fluid element is

x =
2c0t

γ − 1
+

(
γ + 1

γ − 1

)
x0

(
−c0t

x0

) 2
γ+1

at 0 < −x0/c0 < t .

Exercise 17.6 Problem: Riemann Invariants for Shallow-Water Flow
Consider the one-dimensional flow of shallow water in a straight, narrow channel, neglecting
dispersion and boundary layers. The equations governing the flow, as derived and discussed
in Chap. 15, are

∂h

∂t
+
∂(hv)

∂x
= 0 ,

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= 0 ; (17.39)
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Fig. 17.10: Terminology and notation for a shock front and the flow into and out of it.

cf. Eqs. (15.23a) and (15.23b). Here h(x, t) is the height of the water and v(x, t) is its
depth-independent velocity.

(a) Find two Riemann invariants J± for these equations, and find two conservation laws
for these J± which are equivalent to the shallow-water equations (17.39).

(b) Use these Riemann invariants to demonstrate that shallow-water waves steepen in the
manner depicted in Fig. 15.4, a manner analogous to the peaking of the nonlinear
sound wave in Fig. 17.8.

(c) Use these Riemann invariants to solve for the flow of water h(x, t) and v(x, t) after a
dam breaks (the problem posed in Ex. 15.8). The initial conditions, at t = 0, are v = 0
everywhere, and h = ho at x < 0, h = 0 (no water) at x > 0.

****************************

17.5 Shock Fronts

We have just demonstrated that in an ideal fluid, large perturbations to fluid dynamical
variables inevitably evolve to form a divergently large velocity gradient—a shock front or
a shock wave or simply a shock. Now, when the gradient becomes large, we can no longer
ignore the viscous stress because the viscous terms in the Navier-Stokes equation involve
second derivatives in space, whereas the inertial term involves only first derivatives. As in
turbulence and in boundary layers, so also in a shock front, the viscous stress converts the
fluid’s ordered, bulk kinetic energy into microscopic kinetic energy, i.e. thermal energy. The
ordered fluid velocity v thereby is rapidly—almost discontinuously—reduced from supersonic
to subsonic, and the fluid is heated. The cooler, supersonic region of incoming fluid is said
to be ahead of or upstream from the shock, and it hits the shock’s front side; the hotter,
subsonic region of outgoing fluid is said to be behind or downstream from the shock, and it
emerges from the shock’s back side; see Fig. 17.10.
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17.5.1 Junction Conditions Across a Shock; Rankine-Hugoniot
Relations

The viscosity is crucial to the internal structure of the shock, but it is just as negligible in
the downstream flow behind the shock as in the upstream flow ahead of the shock, since
there velocity gradients are modest again. Remarkably, if (as is usually the case) the shock
front is very thin compared to the length scales in the upstream and downstream flows,
and the time for the fluid to pass through the shock is short compared to the upstream
and downstream timescales, then we can deduce the net influence of the shock on the flow
without any reference to the viscous processes that operate within the shock, and without
reference to the shock’s detailed internal structure. We do so by treating the shock as a
discontinuity across which certain junction conditions must be satisfied. This is similar to
electromagnetic theory, where the junction conditions for the electric and magnetic fields
across a material interface are independent of the detailed structure of the interface.

The keys to the shock’s junction conditions are the conservation laws for mass, momentum
and energy: The fluxes of mass, momentum, and energy must usually be the same in the
downstream flow, emerging from the shock, as in the upstream flow, entering the shock. To
understand this, we first note that, because the time to pass through the shock is so short,
mass, momentum and energy cannot accumulate in the shock, so the flow can be regarded
as stationary. In a stationary flow the mass flux is always constant, as there is no way to
create new mass; its continuity across the shock can be written as

[ρv · n] = 0 , (17.40a)

where n is the unit normal to the shock front and the square bracket means the difference
in the values on the downstream and upstream sides of the shock. Similarly, the total
momentum flux, T ·n, must be conserved in the absence of external forces. Now T has both
a mechanical component, Pg + ρv ⊗ v and a viscous component, −ζθg − 2ησ. However,
the viscous component is negligible in the upstream and downstream flows, which are being
matched to each other, so the mechanical component by itself must be conserved across the
shock front:

[(Pg + ρv ⊗ v) · n] = 0 . (17.40b)

Similar remarks apply to the energy flux, though here we must be slightly more restrictive.
There are three ways that a change in the energy flux could occur. First, energy may be
added to the flow by chemical or nuclear reactions that occur in the shock front. Second, the
gas may be heated to such a high temperature that it will lose energy through the emission
of radiation. Third, energy may be conducted far upstream by suprathermal particles so as
to pre-heat the incoming gas. This will thicken the shock front and may make it so thick
that it can no longer be sensibly approximated as a discontinuity. If any of these processes
are occuring, we must check to see whether they are strong enough to significantly influence
energy conservation across the shock. What such a check often reveals is that preheating is
negligible, and the lengthscales over which the chemical and nuclear reactions and radiation
emission operate are much greater than the length over which viscosity acts. In this case we
can conserve energy flux across the viscous shock and then follow the evolutionary effects of
reactions and radiation (if significant) in the downstream flow.
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A shock with negligible preheating, and with negligible radiation emission and chemical
and nuclear reactions inside the shock, will have the same energy flux in the departing,
downstream flow as in the entering, upstream flow, i.e., they will satisfy

[(
1

2
v2 + h

)
ρv · n

]
= 0 . (17.40c)

Shocks which satisfy the conservation laws of mass, momentum and energy, Eqs. (17.40),
are said to be adiabatic.

By contrast, with mass, momentum and energy, the flux of entropy will not be conserved
across a shock front, since viscosity and other dissipative processes increase the entropy as
the fluid flows through the shock. So far, the only type of dissipation which we have discussed
is viscosity and this is sufficient by itself to produce a shock front and keep it thin. However,
heat conduction, which we shall analyze in the following chapter, and electrical resistivity,
which is important in magnetic shocks (Chap. 18), can also contribute to the dissipation and
can influence the detailed structure of the shock front.

For an adiabatic shock, the three requirements of mass, momentum and energy con-
servation, known collectively as the Rankine-Hugoniot relations, enable us to relate the
downstream flow and its thermodynamic variables to their upstream counterparts.1

Let us work in a reference frame where the incoming flow is normal to the shock front and
the shock is at rest, so the flow is stationary. Then the conservation of tangential momentum
— the tangential component of Eq. (17.40b) — tells us that the outgoing flow is also normal
to the shock in our chosen reference frame. We say that the shock is normal, not oblique.

We use the subscripts 1, 2 to denote quantities measured ahead of and behind the shock
respectively; i.e., 1 is the incoming flow and 2 is the outgoing flow (cf. Fig. 17.10 above).
The Rankine-Hugoniot relations (17.40) then take the forms

ρ2v2 = ρ1v1 = j , (17.41a)

P2 + ρ2v
2
2 = P1 + ρ1v

2
1 , (17.41b)

h2 +
1

2
v2

2 = h1 +
1

2
v2

1 , (17.41c)

where j is the mass flux, which is determined by the upstream flow.
These equations can be brought into a more useful form by replacing the density with

the specific volume V ≡ 1/ρ, replacing the enthalpy by its value in terms of P and V ,
h = u + P/ρ = u + PV , and performing some algebra; the result is

u2 − u1 =
1

2
(P1 + P2)(V1 − V2) (17.42a)

j2 =
P2 − P1

V1 − V2
, (17.42b)

1The existence of shocks was actually understood quite early on, more or less in this way, by Stokes.
However, he was persuaded by his former student Rayleigh that such discontinuities were impossible because
they would violate energy conservation. With a deference that professors traditionally show their students,
Stokes believed him.
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Fig. 17.11: Shock Adiabat. The pressure and specific volume V = 1/ρ in the upstream flow
are P1 and V1, and in the downstream flow P2 and V2. The dashed curves are ordinary adiabats
(curves of constant entropy per unit mass s). The thick curve is the shock adiabat, the curve of
allowed downstream states (V2, P2) for a given upstream state (V1, P1). The actual location of the
downstream state on this adiabat is determined by the mass flux j flowing through the shock: the
slope of the dotted line connecting the upstream and downstream states is −j2.

v1 − v2 = [(P2 − P1)(V1 − V2)]
1/2 . (17.42c)

This is the most widely used form of the Rankine-Hugoniot relations. It must be augmented
by the equation of state in the form

u = u(P, V ) . (17.43)

Some of the physical content of these Rankine-Hugoniot relations is depicted in Fig. 17.11.
The thermodynamic state of the upstream (incoming) fluid is the point (V1, P1) in this
volume-pressure diagram. The thick solid curve, called the shock adiabat, is the set of
all possible downstream (outgoing) fluid states. This shock adiabat can be computed by
combining Eq. (17.42a) with the equation of state (17.43). Those equations will actually
give a curve that extends away from (V1, P1) in both directions, up-leftward and down-
rightward. Only the up-leftward portion is compatible with an increase of entropy across the
shock; the down-rightward portion requires an entropy decrease, which is forbidden by the
second law of thermodynamics, and therefore is not drawn on Fig. 17.11. The actual location
(V2, P2) of the downstream state along the shock adiabat is determined by the Eq. (17.42b)
in a simple way: the slope of the dotted line connecting the upstream and downstream states
is −j2, where j is the mass flux passing through the shock. When one thereby has learned
(V2, P2), one can compute the downstream speed v2 from Eq. (17.42c).

It can be shown that the pressure and density always increase across a shock (as is the
case in Fig. 17.11), and the fluid always decelerates,

P2 > P1 , V2 < V1 , v2 < v1 ; (17.44)

see Ex. 17.10. It can also be demonstrated in general, and will be verified in a particular case
below, that the Rankine-Hugoniot relations require the flow to be supersonic with respect
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to the shock front upstream v1 > c1 and subsonic downstream, v2 < c2. Physically, this is
sensible (as we have seen above): When the fluid approaches the shock supersonically, it is not
possible to communicate a pressure pulse upstream from the shock (via a Riemann invariant
moving at the speed of sound) and thereby cause the flow to decelerate; therefore, to slow the
flow a shock must develop.2 By contrast, the shock front can and does respond to changes
in the downstream conditions, since it is in causal contact with the downstream flow; sound
waves and a Riemann invariant can propagate upstream, through the downstream flow, to
the shock.

17.5.2 Internal Structure of Shock

Although they are often regarded as discontinuities, shocks, like boundary layers, do have
structure. The simplest case is that of a gas in which the shear viscosity coefficient is
molecular in origin and is given by η = ρν ∼ ρlmfpv̄th/3, where lmfp is the molecular mean
free path and vth ∼ c is the thermal speed of the molecules. In this case the viscous stress
Txx = −ζθ − 2ησxx is −(ζ + 4η/3)dv/dx, where ζ is the coefficient of bulk viscosity which
can be of the same order as the coeffient of shear viscosity. In the shock, this must roughly
balance the total kinetic momentum flux ∼ ρv2. If we estimate the velocity gradient dv/dx
by v1/δS where δS is a measure of the shock thickness and we estimate the sound speed
in the shock front by c ∼ v1, then we deduce that the shock thickness is δS ∼ lmfp, the
collision mean free path in the gas. For air at standard temperature and pressure, the mean
free path is lmfp ∼ (

√
2nπσ2)−1 ∼ 70 nm, where n is the molecular density and σ is the

molecular diameter. This is very small! Microscopically, it makes sense that δS ∼ lmfp as an
individual molecule only needs a few collisions to randomize its ordered motion perpendicular
to the shock front. However, this estimate raises a problem as it brings into question our
use of the continuum approximation (cf. Sec. 12.1). It turns out that, when a more careful
calculation of the shock structure is carried out incorporating heat conduction, the shock
thickness is several mean free paths, fluid dynamics is acceptable for an approximate theory,
and the results are in rough accord with measurements of the velocity profiles of shocks with
modest Mach numbers. Despite this, a kinetic treatment is usually necessary for an accurate
description of the shock structure.

So far we have assumed that the shocked fluid is made of uncharged molecules. A more
complicated type of shock can arise in an ionized gas, i.e. a plasma (Part V). Shocks in the
solar wind are examples. In this case, the collision mean free paths are enormous, in fact
comparable with the transverse size of the shock, and therefore one might expect the shocks to
be so thick that the Rankine-Hugoniot relations will fail. However, spacecraft measurements
reveal solar-wind shocks that are relatively thin—far thinner than the collisional mean free
paths of the plasma’s electrons and ions. In this case, it turns out that collisionless, collective
interactions in the plasma are responsible for the viscosity and dissipation. (The particles
create plasma waves, which in turn deflect the particles.) These processes are so efficient that
thin shock fronts can occur without individual particles having to hit one another. Since

2Of course, if there is some faster means of communication, for example photons or, in an astrophysical
context, cosmic rays, then there may be a causal contact between the shock and the inflowing gas, and this
can either prevent shock formation or lead to a more complex shock structure.
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the shocks are thin, they must satisfy the Rankine-Hugoniot relations. We shall discuss
collisionless shocks further in Chap. 20.

To summarize, shocks are machines that decelerate a normally incident upstream flow to
a subsonic speed, so it can be in causal contact with conditions downstream. In the process,
bulk momentum flux, ρv2, is converted into pressure, bulk kinetic energy is converted into
internal energy, and entropy is manufactured by the dissipative processes at work in the
shock front. For a given shock Mach number, the downstream conditions are fixed by
the conservation laws of mass, momentum and energy and are independent of the detailed
dissipation mechanism.

17.5.3 Shock jump conditions in a perfect gas with constant γ

Let us again specialize to a perfect gas with constant specific-heat ratio γ, so the equation of
state is u = PV/(γ − 1) and the sound speed is c =

√
γP/ρ =

√
γPV [Eqs. (17.5)–(17.8)].

We measure the strength of the shock using the shock Mach number M , which is defined to
be the Mach number in the upstream flow, M ≡ M1 = v1/c1 =

√
v2

1/γP1V1. With the aid
of this equation of state and Mach number, we can bring the Rankine-Hugoniot relations
(17.42) into the form

ρ1

ρ2
=

V2

V1
=

v2

v1
=
γ − 1

γ + 1
+

2

(γ + 1)M2
, (17.45a)

P2

P1
=

2γM2

γ + 1
− γ − 1

γ + 1
, (17.45b)

M2
2 =

2 + (γ − 1)M2

2γM2 − (γ − 1)
. (17.45c)

Here M2 ≡ v2/c2 is the downstream Mach number.
The results for this equation of state illustrate a number of general features of shocks: The

density and pressure increase across the shock, the flow speed decreases, and the downstream
flow is subsonic—all discussed above—and one important new feature: A shock weakens as
its Mach number M decreases. In the limit that M → 1, the jumps in pressure, density, and
speed vanish and the shock disappears.

In the strong-shock limit, M * 1, the jumps are

ρ1

ρ2
=

V2

V1
=

v2

v1
' γ − 1

γ + 1
, (17.46a)

P2

P1
' 2γM2

γ + 1
. (17.46b)

Thus, the density jump is always of order unity, but the pressure jump grows ever larger as
M increases. Air has γ ' 1.4 (Ex. 17.1), so the density compression ratio for a strong shock
in air is 6 and the pressure ratio is P2/P1 = 1.2M2
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Fig. 17.12: Construction for Mach cone formed by a supersonic projectile. The cone angle is
α = sin−1(M−1), where M = vp/c0 is the Mach number of the projectile.

17.5.4 Mach Cone

The shock waves formed by a supersonically moving body are quite complex close to the
body and depend on its detailed shape, Reynolds’ number, etc. However, far from the body,
the leading shock has the form of the Mach cone shown in Fig. 17.12. We can understand
this cone by the construction shown in the figure. The shock is the boundary between that
fluid which is in sound-based causal contact with the projectile and that which is not. This
boundary is mapped out by (conceptual) sound waves that propagate into the fluid from the
projectile at the ambient sound speed c0. When the projectile is at the indicated position,
the envelope of these circles is the shock front and has the shape of the Mach cone, with
opening angle (the Mach angle)

α = sin−1(
1

M
) . (17.47)

P

Fig. 17.13: Double shock created by supersonic projectile and associated “N wave” pressure
distribution.

Usually, there will be two such shock cones, one attached to the projectile’s bow shock
and the other formed out of the complex shock structure in its tail region. The pressure
must jump twice, once across each of these shocks, and will therefore form an N wave which
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propagates cylindrically away from the projectile as shown in Fig. 17.13. Behind the first
shock, the density and pressure drop off gradually by more than the first shock’s compression.
As a result, the fluid flowing into the second shock has a lower pressure, density, and sound
speed than that flowing into the first (cf. Fig. 17.13). This causes the Mach number of the
second shock to be higher than that of the first, and its Mach angle thus to be smaller. As a
result, the separation between the shocks increases as they travel—∝ r1/2 it turns out, where
r is the perpendicular distance of the point of observation from the projectile’s trajectory.
In order to conserve energy flux the wave amplitude will then decrease ∝ r−3/4, rather than
∝ r−1/2 as would be true of a cylindrical sound pulse [?]. Often a double boom can be heard
on the ground.

****************************

EXERCISES

Exercise 17.7 *** Problem: Hydraulic Jumps and Breaking Ocean Waves
Run water at a high flow rate from a kitchen tap onto a dinner plate (Fig. 17.14). What you
see is called a hydraulic jump. It is the kitchen analog of a breaking ocean wave, and the
shallow-water-wave analog of a shock front in a compressible gas. In this exercise you will
develop the theory of hydraulic jumps (and breaking ocean waves) using the same tools as
for shock fronts.

Fig. 17.14: Hydraulic jump on a dinner plate under a kitchen tap.

(a) Recall that for shallow-water waves, the water motion, below the water’s surface, is
nearly horizontal with speed independent of depth z (Ex. 15.1). The same is true of
the water in front of and behind a hydraulic jump. Apply the conservation of mass and
momentum to a hydraulic jump, in the jump’s rest frame, to obtain equations for the
height of the water h2 and water speed v2 behind the jump (emerging from it) in terms
of those in front of the jump, h1, v1. These are the analog of the Rankine-Hugoniot
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relations for a shock front. [Hint: In momentum conservation you will need to use the
pressure P as a function of height in front of and behind the jump.]

(b) You did not use energy conservation across the jump in your derivation, but it was
needed in the analysis of a shock front. Why?

(c) Show that the upstream speed v1 is greater than the speed
√

gh1 of small-amplitude
gravity waves [shallow-water waves; Eq. (15.10) and associated discussion]; i.e. the
upstream flow is “supersonic”. Similarly show that the downstream flow speed v2 is
slower than the speed

√
gh2 of small-amplitude gravity waves; i.e., the downstream

flow is “subsonic”.

(d) We normally view a breaking ocean wave in the rest frame of the quiescent upstream
water. Use your hydraulic-jump equations to show that the speed of the breaking
wave as seen in this frame is related to the depths h1 and h2 in front of and behind
the breaking wave by

vbreak =

[
g(h1 + h2)h2

2h1

]1/2

[(Fig. 17.15)].

vbreak

v=0

h2

h1

Fig. 17.15: Ocean wave breaking on a slowly sloping beach. The depth of water ahead of the
wave is h1 and the depth behind the wave is h2.

Exercise 17.8 Problem: Shock Tube
Consider a shock tube as discussed in Sec. 17.4 and Fig. 17.11. Suppose that there is a small
density of gas at rest in the evacuated half of the tube, with specific heat ratio γ1 which
might differ from that of the driver gas, and with initial sound speed c1. After the membrane
is ruptured, the driver gas will expand into the evacuated half of the tube forming a shock
front. Show that, in the limit of very large pressure ratio across the shock, the shock Mach
number is

M1 '
(
γ1 + 1

γ − 1

) (
c0

c1

)
,

where c0 is the driver gas’s initial sound speed.
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Exercise 17.9 Problem: Sonic Boom from the Space Shuttle
Use the quoted scaling of N wave amplitude with cylindrical radius r to make an order of
magnitude estimate of the flux of acoustic energy produced by the space shuttle flying at
Mach 2 at an altitude of 20km. Quote your answer in dB [cf. Eq. (15.56)].

Exercise 17.10 Derivation and Challenge: Signs of Change Across a Shock

(a) Almost all equations of state satisfy the condition (∂2V/∂P 2)s > 0. Show that, when
this is satisfied, the Rankine-Hugoniot relations and the law of entropy increase imply
that the pressure and density must increase across a shock and the fluid must decelerate;
i.e., P2 > P1, V2 < V1, and v2 < v1.

(b) Show that in a fluid that violates (∂2V/∂P 2)s > 0, the pressure and density must
still increase and the fluid decelerate across a shock, as otherwise the shock would be
unstable.

For a solution to this exercise, see Sec. 84 of Landau and Lifshitz (1959).

Exercise 17.11 Problem: Relativistic Shock
In astrophysics (e.g. in supernova explosions and in jets emerging from the vicinities of black
holes), one sometimes encounters shock fronts for which the flow speeds relative to the shock
approach the speed of light, and the internal energy density is comparable to the rest mass
density.

(a) Show that the relativistic Rankine-Hugoniot equations for such a shock take the fol-
lowing form:

η2
2 − η2

1 = (P2 − P1)(η1V1 + η2V2) , (17.48a)

j2 =
P2 − P1

η1V1 − η2V2
, (17.48b)

v2γ2 = jV2 , v1γ1 = jV1 . (17.48c)

Here, (i) we use units in which the speed of light is one (as in Chap. 1); (ii) V ≡ 1/ρo is
the volume per unit rest mass and ρo is the rest-mass density (equal to some standard
rest mass per baryon times the number density of baryons; cf. Sec. 1.11.4); (iii) we
denote the total density of mass-energy including rest mass by ρR (it was denoted ρ
in Chap. 1) and the internal energy per unit rest mass by u so ρR = ρo(1 + u); and in
terms of these the quantity η ≡ (ρR + P )/ρo = 1 + u + P/ρo = 1 + h is the relativistic
enthalpy per unit rest mass (i.e. the enthalpy per unit rest mass including the rest-mass
contribution to the energy) as measured in the fluid rest frame; (iv) P is the pressure
as measured in the fluid rest frame; (v) v is the flow velocity in the shock’s rest frame
and γ ≡ 1/

√
1 − v2, so vγ is the spatial part of the flow 4-velocity; and (vi) j is the

rest-mass flux (rest mass per unit area per unit time) entering and leaving the shock.

(b) Use a pressure-volume diagram to discuss these relativistic Rankine-Hugoniot equa-
tions in a manner analogous to Fig. 17.11.
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(c) Show that in the nonrelativistic limit, the relativistic Rankine-Hugoniot equations
(17.48) reduce to the nonrelativistic ones (17.41 ).

****************************

17.6 Similarity Solutions — Sedov-Taylor Blast Wave

Strong explosions can generate shock waves. Examples include atmospheric nuclear explo-
sions, supernova explosions, and depth charges. The debris from a strong explosion will be
at much higher pressure than the surrounding gas and will therefore drive a strong spherical
shock into the surroundings. Initially, this shock wave will travel at roughly the radial speed
of the expanding debris. However, the mass of fluid swept up by the shock will eventually
exceed that of the explosion debris. The shock will then decelerate and the energy of the
explosion will be transferred to the swept-up fluid. It is of obvious importance to be able to
calculate how fast and how far the shock front will travel.

First make an order of magnitude estimate. Let the total energy of the explosion be E and
the density of the surrounding fluid (assumed uniform) be ρ0. Then after time t, when the
shock radius is R(t), the mass of swept-up fluid will be ∼ ρ0R3. The fluid velocity behind the
shock will be roughly the radial velocity of the shock front, v ∼ Ṙ ∼ R/t, and so the kinetic
energy of the swept-up gas will be ∼ ρ0R5/t2. There will also be internal energy in the post-
shock flow, with energy density roughly equal to the post-shock pressure, ρu ∼ P ∼ ρ0Ṙ2

[cf. the strong-shock jump condition (17.45b) with P1 ∼ ρ0c2
0 so P1M2 ∼ ρ0v2 ∼ ρ0Ṙ2]. The

total internal energy within the expanding shock will then be ∼ ρṘ2R3, equal in order of
magnitude to the kinetic energy. Equating either term to the total energy E of the explosion,
we obtain the rough estimate

E = κρ0R
5t−2 , (17.49)

which implies that at time t the shock front has reached the radius

R =

(
E

κρ0

)1/5

t2/5 . (17.50)

Here κ is a numerical constant of order unity. This scaling should hold roughly from the
time that the mass of the debris is swept up to the time that the shock weakens to a Mach
number of order unity so we can no longer use the strong-shock value ∼ ρ0Ṙ2 for the post
shock pressure.

Note that we could have obtained Eq. (17.50) by a purely dimensional argument as E
and ρ0 are the only significant controlling parameters in the problem. However, it is usually
possible and always desirable to justify any such dimensional argument on the basis of the
governing equations.

If, as we shall assume, the motion remains radial and the gas is perfect with constant
specific-heat ratio γ, then we can solve for the details of the flow behind the shock front by
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integrating the radial flow equations

∂ρ

∂t
+

1

r2

∂

∂r
(r2ρv) = 0 , (17.51a)

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂P

∂r
= 0 , (17.51b)

∂

∂t

(
P

ργ

)
+ v

∂

∂r

(
P

ργ

)
= 0 . (17.51c)

The first two equations are the familiar continuity equation and Euler equation written
for a spherical flow. The third equation is energy conservation expressed as the adiabatic-
expansion relation, P ∝ ργ moving with a fluid element. Although P/ργ is time-indendent
for each fluid element, its value will change from element to element. Gas that has passed
through the shock more recently will be given a smaller entropy than gas which was swept
up when the shock was stronger, and thus will have a smaller value of P/ργ .

Given suitable initial conditions, the partial differential equations (17.51) can be inte-
grated numerically. However, there is a practical problem in that it is not easy to determine
the initial conditions in an explosion! Fortunately, at late times, when most of the mass has
been swept up, the fluid evolution is independent of the details of the initial expansion and
in fact can be understood analytically as a similarity solution. By this, we mean that the
shape of the radial profiles of pressure, density and velocity are independent of time.

We have already seen some examples of similarity solutions. The first was the Blasius
solution for the structure of a laminar boundary layer (Sec. 13.4). In this case we argued
on the basis of mass and momentum conservation that the thickness of the boundary layer
as a function of distance x downstream would be ∼ δ = (νx/V )1/2 where V was the speed
of the flow above the boundary layer. This motivated us to introduce the dimensionless
variable ξ = y/δ and argue that the boundary layer’s speed vx(x, y) would be equal to the
free stream velocity V times some universal function f ′(ξ). This anszatz converted the fluid’s
partial differential equations into an ordinary differential equation for f(ξ), which we solved
numerically.

Our explosion problem is somewhat similar. The characteristic scaling length in the
explosion is the radius R(t) of the shock, so the fluid and thermodynamic variables should
be expressible as some characteristic values multiplying universal functions of

ξ ≡ r/R(t) . (17.52)

Our thermodynamic variables are P, ρ, u and a natural choice for their characteristic values
is the values immediately behind the shock. If we assume that the shock is strong then we
can use the strong-shock jump conditions (17.46a), (17.46b) to determine those values, and
then write

P =
2

γ + 1
ρ0Ṙ

2P̃ (ξ) , (17.53a)

ρ =
γ + 1

γ − 1
ρ0 ρ̃(ξ) , (17.53b)

v =
2

γ + 1
Ṙ ṽ(ξ) , (17.53c)
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Fig. 17.16: Scaled pressure, density and velocity as a function of scaled radius behind a Sedov-
Taylor blast wave in air with γ = 1.4.

with P̃ (1) = ρ̃(1) = ṽ(1) = 1 since ξ = 1 is the shock’s location. Note that the velocity
v is scaled to the post-shock velocity measured in the inertial frame in which the upstream
fluid is at rest, rather than in the non-inertial frame in which the decelerating shock is at
rest. The self-similarity anszatz (17.53) and resulting self-similar solution for the flow are
called the Sedov-Taylor blast-wave solution, since L. I. Sedov and G. I. Taylor independently
developed it.

We need one more piece of information before we can solve for the flow: the varia-
tion of the shock radius R with time. However all that is necessary is the scaling R =
(E/κρ0)1/5t2/5 ∝ t2/5 [Eq. (17.50)] with the constant κ left undetermined for the moment.
The partial differential equations (17.51) can then be transformed into ordinary differential
equations by inserting the anszatz (17.53), changing the independent variables from r, t to
R, ξ, and using

(
∂

∂t

)

r

= −
(
ξṘ

R

)(
∂

∂ξ

)

R

+ Ṙ

(
∂

∂R

)

ξ

= −
(

2ξ

5t

) (
∂

∂ξ

)

R

+
2R

5t

(
∂

∂R

)

ξ

, (17.54)

(
∂

∂r

)

t

=

(
1

R

) (
∂

∂ξ

)

R

. (17.55)

The three resulting first order differential equations are rather complex but can in fact be
solved analytically (e.g. Landau and Lifshitz 1959). The results for an explosion in air are
exhibited in Fig. 17.16.

Armed with these solutions for P̃ (ξ), ρ̃(ξ), ṽ(ξ), we can evaluate the flow’s energy E,
which is equal to the explosion’s total energy during the time interval when this similarity



32

solution is accurate. The energy E is given by the integral

E =

∫ R

0

4πr2drρ

(
1

2
v2 + u

)

=
4πρ0R3Ṙ2(γ + 1)

(γ − 1)

∫ 1

0

dξξ2ρ̃

(
2ṽ2

(γ + 1)2
+

2P̃

(γ + 1)2ρ̃

)
. (17.56)

Here we have used Eqs. (17.53) and substituted u = P/ρ(γ − 1) for the internal energy
[Eq. (17.6)]. The energy E appears not only on the left side of this equation, but also on the
right, in the terms ρoR3Ṙ2 = (4/25)E/κ. Thus, E cancels out, and Eq. (17.56) becomes an
equation for the unknown constant κ. Evaluating that equation numerically, we find that κ
varies from 2.5 to 1.4 as γ increases from 1.4 (air) to 1.67 (monatomic gas or fully ionised
plasma).

It is enlightening to see how the fluid behaves in this blast-wave solution. The fluid that
passes through the shock is compressed so that it mostly occupies a fairly thin spherical
shell immediately behind the shock [see the spike in ρ̃(ξ) in Fig. 17.16]. This shell moves
somewhat slower than the shock [v = 2Ṙ/(γ + 1); Eq. (17.53) and Fig. 17.16]. As the
post-shock flow is subsonic, the pressure within the blast wave is fairly uniform [see the
curve P̃ (ξ) in fig. 17.16]; in fact the central pressure is typically about half the maximum
pressure immediately behind the shock. This pressure pushes on the spherical shell, thereby
accelerating the freshly swept-up fluid.

17.6.1 Atomic Bomb

The first atomic bomb was exploded in New Mexico in 1945, and photographs released later
that year (Fig. 17.17) showed the radius of the blast wave as a function of time. The pictures
were well fit by R ∼ 60(t/1ms)0.4 m up to about t = 100 ms when the shock Mach number fell
to about unity (Fig. 17.17). Combining this information with the Sedov-Taylor similarity
solution, the Russian physicist L. I. Sedov and others were able to infer the total energy
released, which was an official American secret at the time.

If we adopt an intermediate specific heat ratio of γ = 1.5, as the air will be partially
ionised by the shock front, we can use Eq. (17.56) to obtain the estimate E ∼ 1.5×1014 J or
about the same energy release as 30 ktons of TNT. (Hydrogen bombs have been manufactured
over a thousand times more energetic than the first atomic bombs. However, contemporary
arsenals contain bombs that are typically only one megaton!)

We can use the Sedov-Taylor solution to infer some further features of the explosion. The
post-shock gas is at density ∼ (γ+ 1)/(γ− 1) ∼ 5 times the ambient density ρ0 ∼ 1 kg m−3.
Similarly, using the perfect gas law with a mean molecular weight µ ∼ 10 and the strong
shock jump conditions, the post shock temperature can be computed:

T2 =
mpµ

ρ2k
∼ 4 × 104

(
t

1ms

)−1.2

K . (17.57)

This is enough to ionise the gas at early times.
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Fig. 17.17: Exploding atomic bomb.
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Fig. 17.18: Cassiopeia A – a supernova remnant left behind an exploding star in our galaxy
approximately 300 years ago. The image to the left is made using the Very Large Array Radio
Telescope; that to the right by the Chandra X-ray Observatory.

17.6.2 Supernovae

The evolution of most massive stars ends in a supernova explosion (like that which was
observed in 1987 in the Large Magellanic Cloud), in which a neutron star of mass m ∼ 3×1030

kg is formed. This neutron star has a gravitational binding energy of about 0.1mc2 ∼
3 × 1046 J. Most of this binding energy is released in the form of neutrinos in the collapse
that forms the neutron star, but an energy E ∼ 1044J drives off the outer envelope of the
pre-supernova star, a mass M0 ∼ 1031kg. This stellar material escapes with a rms speed
V0 ∼ (2E/M0)1/2 ∼ 5000 km s−1. The expanding debris eventually drives a blast wave into
the surrounding interstellar medium of density ρ0 ∼ 10−21kg m−3. The expansion of the blast
wave can be modeled using the Sedov-Taylor solution after the swept-up interstellar gas has
become large enough to dominate the blast wave, so the star-dominated initial conditions
are no longer important—i.e. after a time ∼ (3M0/4πρ0)1/3/V0 ∼ 1000yr. The blast wave
then decelerates in a Sedov-Taylor self-similar way until the shock speed nears the sound
speed in the surrounding gas; this takes about 100, 000yr. Supernova remnants of this sort
are efficient emitters of radio waves and several hundred have been observed in the Galaxy.

In some of the younger examples, like Cassiopeia A, (Fig. 17.18) it is possible to determine
the expansion speed, and the effects of deceleration can be measured. The observations are
consistent with the prediction of the Sedov-Taylor solution, namely that the radius varries
as R ∝ t2/5, or R̈ = −3Ṙ2/2R.

****************************

EXERCISES

Exercise 17.12 Problem: Underwater explosions
A simple analytical solution to the Sedov-Taylor similarity equations, can be found for the
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particular case γ = 7. This is a fair approximation to the behavior of water under explosive
conditions as it will be almost incompressible.

(a) Make the ansatz (whose self-consistency we’ll check later), that the velocity in the
post-shock flow varies linearly with radius from the origin to the shock, i.e. ṽ(ξ) = ξ.
Use Eq. (17.54) to transform the equation of continuity into an ordinary differential
equation and hence solve for the density function ρ̃(ξ).

(b) Next use the equation of motion to discover that P̃ (ξ) = ξ3.

(c) Verify that your solutions for the functions P̃ , ρ̃, ṽ satisfy the remaining entropy equa-
tion therby vindicating the original ansatz.

(d) Finally, substitute into Eq. (17.56) to show that

E =
2πR5ρ0

225t2

(e) An explosive charge weighing 100kg with an energy release of 108J kg−1 is detonated
underwater. For what range of shock radius do you expect that the Sedov-Taylor
similarity solution will be valid?

Exercise 17.13 Problem: Stellar Winds
Many stars possess powerful stellar winds which drive strong spherical shock waves into the
surrounding interstellar medium. If the strength of the wind remains constant, the kinetic
and internal energy of the swept-up interstellar medium will increase linearly with time.

(a) Modify the analysis of the point explosion to show that the speed of the shock wave at
time t is 3R(t)/5t, where R is the associated shock radius. What is the speed of the
post-shock gas?

(b) Now suppose that the star explodes as a supernova and the blast wave expands into
the relatively slowly moving stellar wind. Suppose that the rate at which mass has left
the star and the speed of the wind have been constant for a long time. How do you
expect the density of gas in the wind to vary with radius? Modify the Sedov-Taylor
analysis again to show that the expected speed of the shock wave at time t is now
2R(t)/3t.

Exercise 17.14 Problem: Similarity Solution for Shock Tube
Use a self-similarity analysis to derive the solution (17.38) for the shock-tube flow depicted
in Fig. 17.9.

****************************
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Box 17.3
Important Concepts in Chapter 16

• γ-law equation of state, P = K(s)ργ , Sec. 17.2

– Values of γ for various situations, Sec. 17.2, Ex. 17.1

• Mach number, subsonic flow, supersonic flow, Sec. 17.3.1

• Quasi-one-dimensional transonic flow, Sec. 17.3

– Opposite signs of dv/dA in supersonic vs. subsonic flow; and of dρ/dA, Sec.
17.3.1

– Sonic point and critical point of flow, Secs. 17.3.1 and 17.3.2

– How a rocket engine works, and its De Laval nozzle, Sec. 17.3.3

• Transonic accretion of gas onto a neutron star or black hole, Ex. 17.4

• Riemann invariants for one-dimensional, time-dependent compressible flow, Sec.
17.4.1

– Their use to compute the details of the flow, Secs. 17.4.1, 17.4.2

• Steepening of a nonlinear sound wave to form a shock, Sec. 17.4.1, Fig. 17.8

• Shock tube, Sec. 17.4.2

• Shock waves, Sec. 17.5

– Upstream and downstream sides of the shock, Sec. 17.5

– Continuity of normal fluxes of mass, momentum and energy across a shock,
Sec. 17.5.1

– Rankine-Hugoniot relations for shock; shock adiabat, Secs. 17.5.1, and 17.5.3;
and Ex. 17.11 in relativistic regime

– Internal structure and thickness of a shock and role of viscosity, Sec. 17.5.2

– Mach cone, N-wave and sonic boom, Sec. 17.5.4 and Ex. 17.9

– Hydraulic jump and breaking ocean waves, Ex. 17.7

• Sedov-Taylor similarity solution for the flow behind a shock, Sec. 17.6

– Application to bombs and supernovae, Secs. 17.6.1, 17.6.2

Bibliographic Note

For textbook treatments of compressible flows and shock waves, we recommend Liepmann
and Roshko (1968), Thompson (1984), and the relevant sections of Landau and Lifshitz
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(1959). The two-volume treatise by Zel’dovich and Raizer (1979) is a compendium of insights
into shock waves and high-temperature hydrodynamics by an author (Yakov Borisovich
Zel’dovich) who had a huge influence in the design of nuclear and thermonuclar weapons in
the USSR and later on astrophysics and cosmology. Sedov (1959) is a classic and insightful
treatise on similarity methods in physics. The movie by Coles (1965) of the flow of air down
a channel with throats gives good physical insight into subsonic, supersonic, and transonic
flows, and shocks.
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