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Chapter 2

Special Relativity: Geometric Viewpoint

Version 1102.3.K by Kip, 25 April 2012. Slight revisions from Version 1102.2.K

Please send comments, suggestions, and errata via email to kip@caltech.edu, or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 2.1

Reader’s Guide

• Parts II (Statistical Physics), III (Optics), IV (Elasticity), V (Fluids), and VI (Plas-
mas) of this book deal almost entirely with Newtonian Physics; only a few sections
and exercises are relativistic. Readers who are inclined to skip those relativistic
items (which are all labeled as “Track 2” can skip this chapter, and then return to
it just before embarking on Part VII (General Relativity).

• More specifically, this chapter is a prerequisite for the following: sections on rela-
tivistic kinetic theory in Chap. 3, Ex. 16.11 on relativistic shocks in fluids, many
comments in Secs. II–VI about relativistic effects and connections between Newto-
nian physics and relativistic physics, and all of Part VII (General Relativity)

• Those readers who already have a strong understanding of special relativity should
at least browse this chapter, especially Secs. 2.2–2.4, 2.8, 2.11–2.13 to learn this
book’s geometric viewpoint and a few concepts (such as the stress-energy tensor)
that they might not have met previously.

2.1 Overview

This chapter is a fairly complete introduction to special relativity, at an intermediate level.
We extend the geometric viewpoint, developed in Chap. 1 for Newtonian physics, to the
domain of special relativity; and we extend the tools of differential geometry, developed in
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Chap. 1 for Newtonian physics’ arena, 3-dimensional Euclidean-space, to special relativity’s
arena, 4-dimensional Minkowski-spacetime.

We begin in Sec. 2.2 by defining inertial (Lorentz) reference frames, and then introducing
fundamental, geometric, reference-frame-independent concepts: events, 4-vectors, and the
invariant interval between events. Then in Sec. 2.3 we develop the basic concepts of tensor
algebra in Minkowski spacetime (tensors, the metric tensor, the inner product and tensor
product, and contraction), patterning our development on the corresponding concepts in
Euclidean space. In Sec. 2.4 we illustrate our tensor-algebra tools by using them to describe
— without any coordinate system or reference frame — the kinematics (world lines, 4-
velocities, 4-momenta) of point particles that move through Minkowski spacetime. The
particles are allowed to collide with each other and be accelerated by an electromagnetic
field. In Sec. 2.5, we introduce components of vectors and tensors in an inertial reference
frame and rewrite our frame-independent equations in slot-naming index notation; and then
in Sec. 2.6 we use these extended tensorial tools to restudy the motions, collisions, and
electromagnetic accelerations of particles. In Sec. 2.7 we discuss Lorentz transformations in
Minkowski spacetime, and in Sec. 2.8 we develop spacetime diagrams and use them to study
length contraction, time dilation, and simultaneity breakdown. In Sec. 2.9 we illustrate the
tools we have developed by asking whether the laws of physics permit a highly advanced
civilization to build time machines for traveling backward in time as well as forward. In
Sec. 2.10 we introduce directional derivatives, gradients, and the Levi-Civita tensor, and
in Sec. 2.11 we use these tools to discuss Maxwell’s equations and the geometric nature of
electric and magnetic fields. In Sec. 2.12 we develop our final set of geometric tools: volume
elements and the integration of tensors over spacetime, and in Sec. 2.13 we use these tools
to define the stress-energy tensor, and to formulate very general versions of the conservation
of 4-momentum.

2.2 Foundational Concepts

2.2.1 Inertial frames, inertial coordinates, events, vectors, and

spacetime diagrams

Because the nature and geometry of Minkowski spacetime are far less obvious intuitively
than those of Euclidean 3-space, we shall need a crutch in our development of the geometric
viewpoint for physics in spacetime. That crutch will be inertial reference frames.

An inertial reference frame is a (conceptual) three-dimensional latticework of measuring
rods and clocks (Fig. 2.1) with the following properties: (i) The latticework moves freely
through spacetime (i.e., no forces act on it), and is attached to gyroscopes so it does not
rotate with respect to distant, celestial objects. (ii) The measuring rods form an orthogonal
lattice, and the length intervals marked on them are uniform when compared to, e.g., the
wavelength of light emitted by some standard type of atom or molecule. Therefore, the rods
form an orthonormal, Cartesian coordinate system with the coordinate x measured along one
axis, y along another, and z along the third. (iii) The clocks are densely packed throughout
the latticework so that, ideally, there is a separate clock at every lattice point. (iv) The
clocks tick uniformly when compared to the period of the light emitted by some standard
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Fig. 2.1: An inertial reference frame. From Taylor and Wheeler (1992).

type of atom or molecule; i.e., they are ideal clocks. (v) The clocks are synchronized by the
Einstein synchronization process: If a pulse of light, emitted by one of the clocks, bounces
off a mirror attached to another and then returns, the time of bounce tb, as measured by
the clock that does the bouncing, is the average of the times of emission and reception, as
measured by the emitting and receiving clock: tb =

1
2
(te + tr).

1

Our first fundamental, frame-independent relativistic concept is the event. An event is a
precise location in space at a precise moment of time; i.e., a precise location (or “point”) in
4-dimensional spacetime. We sometimes will denote events by capital script letters such as
P and Q — the same notation as for points in Euclidean 3-space.

A 4-vector (also often referred to as a vector in spacetime or just a vector) is a straight
arrow ∆~x reaching from one event P to another Q. We often will deal with 4-vectors and
ordinary (3-space) vectors simultaneously, so we shall use different notations for them: bold-
face Roman font for 3-vectors, ∆x, and arrowed italic font for 4-vectors, ∆~x. Sometimes we
shall identify an event P in spacetime by its vectorial separation ~xP from some arbitrarily
chosen event in spacetime, the “origin” O.

An inertial reference frame provides us with a coordinate system for spacetime. The
coordinates (x0, x1, x2, x3) = (t, x, y, z) which it associates with an event P are P’s location
(x, y, z) in the frame’s latticework of measuring rods, and the time t of P as measured by
the clock that sits in the lattice at the event’s location. (Many apparent paradoxes in special
relativity result from failing to remember that the time t of an event is always measured by
a clock that resides at the event, and never by clocks that reside elsewhere in spacetime.)

It is useful to depict events on spacetime diagrams, in which the time coordinate t = x0

of some inertial frame is plotted upward, and two of the frame’s three spatial coordinates,
x = x1 and y = x2, are plotted horizontally. Figure 2.2 is an example. Two events P and Q
are shown there, along with their vectorial separations ~xP and ~xQ from the origin and the
vector ∆~x = ~xQ − ~xP that separates them from each other. The coordinates of P and Q,

1For a deeper discussion of the nature of ideal clocks and ideal measuring rods see, e.g., pp. 23–29 and
395–399 of Misner, Thorne, and Wheeler (1973).
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Fig. 2.2: A spacetime diagram depicting two events P and Q, their vectorial separations ~xP and
~xQ from an (arbitrarily chosen) origin, and the vector ∆~x = ~xQ − ~xP connecting them. The laws
of physics cannot involve the arbitrary origin O; we introduce it only as a conceptual aid.

which are the same as the components of ~xP and ~xQ in this coordinate system, are (tP , xP ,
yP , zP) and (tQ, xQ, yQ, zQ); and correspondingly, the components of ∆~x are

∆x0 = ∆t = tQ − tP , ∆x1 = ∆x = xQ − xP ,

∆x2 = ∆y = yQ − yP , ∆x3 = ∆z = zQ − zP . (2.1)

We shall denote these components of ∆~x more compactly by ∆xα, where the index α and
all other lower case Greek indexes take on values t = 0, x = 1, y = 2, and z = 3.

When the physics or geometry of a situation being studied suggests some preferred inertial
frame (e.g., the frame in which some piece of experimental apparatus is at rest), then we
typically will use as axes for our spacetime diagrams the coordinates of that preferred frame.
On the other hand, when our situation provides no preferred inertial frame, or when we
wish to emphasize a frame-independent viewpoint, we shall use as axes the coordinates of a
completely arbitrary inertial frame and we shall think of the spacetime diagram as depicting
spacetime in a coordinate-independent, frame-independent way.

We shall use the terms inertial coordinate system and Lorentz coordinate system inter-
changeably2 to mean the coordinate system (t, x, y, z) provided by an inertial frame; and we
shall also use the term Lorentz frame interchangeably with inertial frame. A physicist or
other intelligent being who resides in a Lorentz frame and makes measurements using its
latticework of rods and clocks will be called an observer.

Although events are often described by their coordinates in a Lorentz reference frame,
and 4-vectors by their components (coordinate differences), it should be obvious that the
concepts of an event and a 4-vector need not rely on any coordinate system whatsoever for
their definition. For example, the event P of the birth of Isaac Newton, and the event Q of
the birth of Albert Einstein are readily identified without coordinates. They can be regarded
as points in spacetime, and their separation vector is the straight arrow reaching through
spacetime from P to Q. Different observers in different inertial frames will attribute different
coordinates to each birth and different components to the births’ vectorial separation; but
all observers can agree that they are talking about the same events P and Q in spacetime

2because it was Lorentz (1904) who first studied the relationship of one such coordinate system to another:
the Lorentz transformation.
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and the same separation vector ∆~x. In this sense, P, Q, and ∆~x are frame-independent,
geometric objects (points and arrows) that reside in spacetime.

2.2.2 Principle of Relativity; the Interval and its Invariance

Einstein’s Principle of Relativity, stated in modern form, says that Every (special relativistic)
law of physics must be expressible as a geometric, frame-independent relationship between
geometric, frame-independent objects, i.e. objects such as points in spacetime and 4-vectors
and tensors, which represent physical quantities such as events and particle momenta and
the electromagnetic field. This is nothing but our Geometric Principle for the physical laws,
lifted from the Euclidean-space arena of Newtonian physics to the Minkowski-spacetime
arena of Special Relativity.

Since the laws are all geometric (i.e., unrelated to any reference frame or coordinate
system), there is no way that they can distinguish one inertial reference frame from any
other. This leads to an alternative form of the Principle of Relativity (one commonly used
in elementary textbooks and equivalent to the above): All the (special relativistic) laws of
physics are the same in every inertial reference frame, everywhere in spacetime. This, in
fact, is Einstein’s own version of his Principle of Relativity; only in the half century since
his death have we learned to reexpress it in geometric language.

A more operational version of Einstein’s original version of his Principle is the following:
Give identical instructions for a specific physics experiment to two different observers in two
different inertial reference frames at the same or different locations in Minkowski (i.e., gravity-
free) spacetime. The experiment must be self-contained, i.e., it must not involve observations
of the external universe’s properties (the “environment”), though it might utilize carefully
calibrated tools derived from the external universe. For example, an unacceptable experiment
would be a measurement of the anisotropy of the Universe’s cosmic microwave radiation and
a computation therefrom of the observer’s velocity relative to the radiation’s mean rest frame;
such an experiment studies the Universal environment, not the fundamental laws of physics.
An acceptable experiment would be a measurement of the speed of light using the rods
and clocks of the observer’s own frame, or a measurement of cross sections for elementary
particle reactions using cosmic-ray particles whose incoming energies and compositions are
measured as initial conditions for the experiment. The Principle of Relativity says that
in these or any other similarly self-contained experiments, the two observers in their two
different inertial frames must obtain identically the same experimental results—to within
the accuracy of their experimental techniques. Since the experimental results are governed
by the (nongravitational) laws of physics, this is equivalent to the statement that all physical
laws are the same in the two inertial frames.

Perhaps the most central of special relativistic laws is the one stating that the speed
of light c in vacuum is frame-independent, i.e., is a constant, independent of the inertial
reference frame in which it is measured. In other words, there is no aether that supports
light’s vibrations and in the process influences its speed — a remarkable fact that came as
a great experimental surprise to physicists at the end of the nineteenth century.

The constancy of the speed of light is built into Maxwell’s equations. In order for the
Maxwell equations to be frame independent, the speed of light, which appears in them, must
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Box 2.2

Measuring the Speed of Light Without Light

r
q,µ

Q

ae

r am

q,µ v

Q

In some inertial reference frame, we perform two experiments using two particles, one with
a large charge Q; the other, a test particle, with a much smaller charge q and mass µ. In
the first experiment we place the two particles at rest, separated by a distance |∆x| ≡ r
and measure the electrical repulsive acceleration ae of q (left diagram). In Gaussian
cgs units (where the speed of light shows up explicitly instead of via ǫoµo = 1/c2), the
acceleration is ae = qQ/r2µ. In the second experiment, we connect Q to ground by a
long wire, and we place q at the distance |∆x| = r from the wire and set it moving at
speed v parallel to the wire. The charge Q flows down the wire with an e-folding time
τ so the current is I = dQ/dτ = (Q/τ)e−t/τ . At early times 0 < t ≪ τ , this current
I = Q/τ produces a solenoidal magnetic field at q with field strength B = (2/cr)(Q/τ),
and this field exerts a magnetic force on q, giving it an acceleration am = q(v/c)B/µ =
2vqQ/c2τr/µ. The ratio of the electric acceleration in the first experiment to the magnetic
acceleration in the second experiment is ae/am = c2τ/2rv. Therefore, we can measure
the speed of light c in our chosen inertial frame by performing this pair of experiments,
carefully measuring the separation r, speed v, current Q/τ , and accelerations, and then
simply computing c =

√

(2rv/τ)(ae/am). The Principle of Relativity insists that the
result of this pair of experiments should be independent of the inertial frame in which
they are performed. Therefore, the speed of light c which appears in Maxwell’s equations
must be frame-independent. In this sense, the constancy of the speed of light follows
from the Principle of Relativity as applied to Maxwell’s equations.

also be frame independent. In this sense, the constancy of the speed of light follows from
the Principle of Relativity; it is not an independent postulate. This is illustrated in Box 2.2.

The constancy of the speed of light underlies our ability to use the geometrized units
introduced in Sec. 1.10. Any reader who has not studied that section should do so now. We
shall use geometrized units throughout this chapter, and also throughout this book, when
working with relativistic physics.

We turn, next, to another fundamental concept, the interval (∆s)2 between the two
events P and Q whose separation vector is ∆~x. In a specific but arbitrary inertial reference
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frame and in geometrized units, (∆s)2 is given by

(∆s)2 ≡ −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 = −(∆t)2 +
∑

i,j

δij∆x
i∆xj ; (2.2a)

cf. Eq. (2.1). If (∆s)2 > 0, the events P and Q are said to have a spacelike separation; if
(∆s)2 = 0, their separation is null or lightlike; and if (∆s)2 < 0, their separation is timelike.
For timelike separations, (∆s)2 < 0 implies that ∆s is imaginary; to avoid dealing with
imaginary numbers, we describe timelike intervals by

(∆τ)2 ≡ −(∆s)2 , (2.2b)

whose square root ∆τ is real.
The coordinate separation between P and Q depends on one’s reference frame; i.e., if

∆xα
′

and ∆xα are the coordinate separations in two different frames, then ∆xα
′ 6= ∆xα.

Despite this frame dependence, the Principle of Relativity forces the interval (∆s)2 to be the
same in all frames:

(∆s)2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

= −(∆t′)2 + (∆x′)2 + (∆y′)2 + (∆z′)2 (2.3)

We shall now sketch a proof for the case of two events P and Q whose separation is timelike:
Choose the spatial coordinate systems of the primed and unprimed frames in such a way

that (i) their relative motion (with speed β that will not enter into our analysis) is along the
x direction and the x′ direction, (ii) event P lies on the x and x′ axes, and (iii) event Q lies in
the x-y plane and in the x′-y′ plane, as shown in Fig. 2.3. Then evaluate the interval between
P and Q in the unprimed frame by the following construction: Place a mirror parallel to the
x-z plane at precisely the height h that permits a photon, emitted from P, to travel along
the dashed line of Fig. 2.3 to the mirror, then reflect off the mirror and continue along the
dashed path, arriving at event Q. If the mirror were placed lower, the photon would arrive
at the spatial location of Q sooner than the time of Q; if placed higher, it would arrive later.
Then the distance the photon travels (the length of the two-segment dashed line) is equal
to c∆t = ∆t, where ∆t is the time between events P and Q as measured in the unprimed
frame. If the mirror had not been present, the photon would have arrived at event R after
time ∆t, so c∆t is the distance between P and R. From the diagram, it is easy to see that
the height of R above the x axis is 2h−∆y, and the Pythagorean theorem then implies that

(∆s)2 = −(∆t)2 + (∆x)2 + (∆y)2 = −(2h−∆y)2 + (∆y)2 . (2.4a)

The same construction in the primed frame must give the same formula, but with primes

(∆s′)2 = −(∆t′)2 + (∆x′)2 + (∆y′)2 = −(2h′ −∆y′)2 + (∆y′)2 . (2.4b)

The proof that (∆s′)2 = (∆s)2 then reduces to showing that the Principle of Relativity
requires that distances perpendicular to the direction of relative motion of two frames be the
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Fig. 2.3: Geometry for proving the invariance of the interval.

same as measured in the two frames, h′ = h, ∆y′ = ∆y. We leave it to the reader to develop
a careful argument for this [Ex. 2.2].

Because of its frame invariance, the interval (∆s)2 can be regarded as a geometric property
of the vector ∆~x that reaches from P to Q; we shall call it the squared length (∆~x)2 of ∆~x:

(∆~x)2 ≡ (∆s)2 . (2.5)

Note that this squared length, despite its name, can be negative (for timelike ∆~x) or zero
(for null ∆~x) as well as positive (for spacelike ∆~x).

The invariant interval (∆s)2 between two events is as fundamental to Minkowski space-
time as the Euclidean distance between two points is to flat 3-space. Just as the Euclidean
distance gives rise to the geometry of 3-space, as embodied, e.g., in Euclid’s axioms, so the
interval gives rise to the geometry of spacetime, which we shall be exploring. If this space-
time geometry were as intuitively obvious to humans as is Euclidean geometry, we would not
need the crutch of inertial reference frames to arrive at it. Nature (presumably) has no need
for such a crutch. To Nature (it seems evident), the geometry of Minkowski spacetime, as
embodied in the invariant interval, is among the most fundamental aspects of physical law.

Before we leave this central idea, we should emphasize that vacuum electromagnetic
radiation is not the only type of wave in nature. In this course, we shall encounter dispersive
media, such as optical fibers and plasmas, where electromagnetic signals travel slower than c,
and we shall analyze sound waves and seismic waves where the governing laws do not involve
electromagnetism at all. How do these fit into our special relativistic framework? The answer
is simple. Each of these waves involves an underlying medium that is at rest in one particular
frame (not necessarily inertial), and the velocity of the wave, specifically the group velocity,
is most simply calculated in this frame from the wave’s and medium’s fundamental laws.
We can then use the kinematic rules of Lorentz transformations to compute the velocity in
another frame. However, if we had chosen to compute the wave speed in the second frame
directly, using the same fundamental laws, we would have gotten the same answer, albeit
perhaps with greater effort. All waves are in full compliance with the Principle of Relativity.
What is special about vacuum electromagnetic waves and, by extension, photons, is that no
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medium (or “aether” as it used to be called) is needed for them to propagate. Their speed is
therefore the same in all frames.

This raises an interesting question. What about other waves that do not require an
underlying medium? What about electron de Broglie waves? Here the fundamental wave
equation, Schrödinger’s or Dirac’s, is mathematically different from Maxwell’s and contains
an important parameter, the electron rest mass. This allows the fundamental laws of rela-
tivistic quantum mechanics to be written in a form that is the same in all inertial reference
frames and that allows an electron, considered as either a wave or a particle, to travel at a
different speed when measured in a different frame.

What about non-electromagnetic waves whose quanta have vanishing rest mass? For a
half century, we thought that neutrinos provided a good example, but we now know from
experiment that their rest masses are non-zero. However, there are other particles that have
not yet been detected, including photinos (the hypothesized, supersymmetric partners to
photons) and gravitons (and their associated gravitational waves which we shall discuss in
Chapter 26), that are believed to exist without a rest mass (or an aether!), just like photons.
Must these travel at the same speed as photons? The answer, according to the Principle of
Relativity, is “yes”. The reason is simple. Suppose there were two such waves or particles
whose governing laws led to different speeds, c and c′ < c, each the same in all reference
frames. If we then move with speed c′ in the direction of propagation of the second wave, we
would bring it to rest, in conflict with our hypothesis that its speed is frame-independent.
Therefore all signals, whose governing laws require them to travel with a speed that has no
governing parameters (no rest mass and no underlying medium with physical properties)
must travel with a unique speed which we call “c”. The speed of light is more fundamental
to relativity than light itself!

****************************

EXERCISES

Exercise 2.1 Practice: Geometrized Units
Do exercise 1.14 in Chap. 1.

Exercise 2.2 Derivation and Example: Invariance of the Interval
Complete the derivation of the invariance of the interval given in the text [Eqs. (2.4)], using
the Principle of Relativity in the form that the laws of physics must be the same in the
primed and unprimed frames. Hints, if you need them:

(a) Having carried out the construction shown in Fig. 2.3 in the unprimed frame, use the
same mirror and photons for the analogous construction in the primed frame. Argue
that, independently of the frame in which the mirror is at rest (unprimed or primed),
the fact that the reflected photon has (angle of reflection) = (angle of incidence) in
the primed frame implies that this is also true for this same photon in the unprimed
frame. Thereby conclude that the construction leads to Eq. (2.4b) as well as to (2.4a).

(b) Then argue that the perpendicular distance of an event from the common x and x′

axis must be the same in the two reference frames, so h′ = h and ∆y′ = ∆y; whence
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Eqs. (2.4b) and (2.4a) imply the invariance of the interval. [For a leisurely version of
this argument, see Secs. 3.6 and 3.7 of Taylor and Wheeler (1992).]

****************************

2.3 Tensor Algebra Without a Coordinate System

Having introduced points in spacetime (interpreted physically as events), the invariant in-
terval (∆s)2 between two events, 4-vectors (as arrows between two events), and the squared
length of a vector (as the invariant interval between the vector’s tail and tip), we can now
introduce the remaining tools of tensor algebra for Minkowski spacetime in precisely the same
way as we did for the Euclidean 3-space of Newtonian physics, with the invariant interval
between events playing the same role as the Euclidean squared length between Euclidean
points. In particular:

A tensor T( , , ) is a real-valued linear function of vectors in Minkowski spacetime.
(We use slanted letters T for tensors in spacetime and unslanted letters T in Euclidean space.)
A tensor’s rank is equal to its number of slots. The inner product of two 4-vectors is

~A · ~B ≡ 1

4

[

( ~A+ ~B)2 − ( ~A− ~B)2
]

, (2.6)

where ( ~A+ ~B)2 is the squared length of this vector, i.e. the invariant interval between its tail
and its tip. The metric tensor of spacetime is that linear function of 4-vectors whose value
is the inner product of the vectors

g( ~A, ~B) ≡ ~A · ~B . (2.7)

Using the inner product, we can regard any vector A as a rank-1 tensor: ~A( ~C) ≡ ~A · ~C.
Similarly, the tensor product ⊗ is defined precisely as in the Euclidean domain, Eqs.

(1.5a) and (1.5b), as is the contraction of two slots of a tensor against each other, Eqs. (1.6a)
and (1.6b), which lowers the tensor’s rank by two.

2.4 Particle Kinetics and Lorentz Force Without a

Reference Frame

2.4.1 Relativistic Particle Kinetics: World Lines, 4-Velocity,

4-Momentum and its Conservation, 4-Force

In this section, we shall illustrate our geometric viewpoint by formulating the special rela-
tivistic laws of motion for particles.

A particle moves through 4-dimensional spacetime along a curve (its world line) which
we shall denote by ~x(τ). Here ~x(τ) is the particle’s location in spacetime (or, equivalently,
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the vector from the arbitrary origin to that location) when an ideal clock that it carries (one
controlled by some atomic oscillator) reads τ . We call τ the particle’s proper time.

The particle will typically experience an acceleration as it moves, produced, e.g., by
an external electromagnetic field. This raises the question of how the acceleration affects
the ticking rate of the particle’s ideal clock. We define the accelerated clock to be ideal if
its ticking rate is totally unaffected by its acceleration, i.e., if it ticks at the same rate as
a freely moving (inertial) ideal clock that is momentarily at rest with respect to it. The
builders of inertial guidance systems for airplanes and missiles always try to make their
clocks as acceleration-independent, i.e., as ideal, as possible.

We shall refer to the inertial frame in which a particle is momentarily at rest as its
momentarily comoving inertial frame or momentary rest frame. Now, the particle’s clock
(which measures τ) is ideal and so are the inertial frame’s clocks (which measure coordinate
time t). Therefore, a tiny interval ∆τ of the particle’s proper time is equal to the lapse of
coordinate time in the particle’s momentary rest frame, ∆τ = ∆t. Moreover, since the two
events ~x(τ) and ~x(τ + ∆τ) on the clock’s world line occur at the same spatial location in
its momentary rest frame, ∆xi = 0 (where i = 1, 2, 3), to first order in ∆τ , the invariant
interval between those events is (∆s)2 = −(∆t)2+

∑

i,j ∆x
i∆xjδij = −(∆t)2 = −(∆τ)2. This

shows that the particle’s proper time τ is equal to the square root of the invariant interval,
τ =

√
−s2, along its world line.

τ =0 
1 

2 
3 
4 
5 

6 

7 

x y 

t 

u → 

 

 

u → 

Fig. 2.4: Spacetime diagram showing the world line ~x(τ) and 4-velocity ~u of an accelerated particle.
Note that the 4-velocity is tangent to the world line.

Figure 2.4 shows the world line of the accelerated particle in a spacetime diagram where
the axes are coordinates of an arbitrary Lorentz frame. This diagram is intended to emphasize
the world line as a frame-independent, geometric object. Also shown in the figure is the
particle’s 4-velocity ~u, which (by analogy with velocity in 3-space) is the time derivative of
its position:

~u ≡ d~x/dτ . (2.8)

This derivative is defined by the usual limiting process

d~x

dτ
≡ lim

∆τ→0

~x(τ +∆τ)− ~x(τ)

∆τ
. (2.9)

The squared length of the particle’s 4-velocity is easily seen to be −1:

~u2 ≡ g(~u, ~u) =
d~x

dτ
· d~x
dτ

=
d~x · d~x
(dτ)2

= −1 . (2.10)
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The last equality follows from the fact that d~x · d~x is the squared length of d~x which equals
the invariant interval (∆s)2 along it, and (dτ)2 is minus that invariant interval.

The particle’s 4-momentum is the product of its 4-velocity and rest mass

~p ≡ m~u = md~x/dτ ≡ d~x/dζ . (2.11)

Here the parameter ζ is a renormalized version of proper time,

ζ ≡ τ/m . (2.12)

This ζ , and any other renormalized version of proper time with position-independent renor-
malization factor, are called affine parameters for the particle’s world line. Expression (2.11),
together with ~u2 = −1, implies that the squared length of the 4-momentum is

~p 2 = −m2 . (2.13)

In quantum theory a particle is described by a relativistic wave function which, in the
geometric optics limit (Chapter 6), has a wave vector ~k that is related to the classical
particle’s 4-momentum by

~k = ~p/~ . (2.14)

The above formalism is valid only for particles with nonzero rest mass, m 6= 0. The
corresponding formalism for a particle with zero rest mass (e.g. a photon or a graviton) can
be obtained from the above by taking the limit as m → 0 and dτ → 0 with the quotient
dζ = dτ/m held finite. More specifically, the 4-momentum of a zero-rest-mass particle is well
defined (and participates in the conservation law to be discussed below), and it is expressible
in terms of the particle’s affine parameter ζ by Eq. (2.11)

~p =
d~x

dζ
. (2.15)

The particle’s 4-velocity ~u = ~p/m, by contrast, is infinite and thus undefined; and proper
time τ = mζ ticks vanishingly slowly along its world line and thus is undefined. Because
proper time is the square root of the invariant interval along the world line, the interval
between two neighboring points on the world line vanishes. Therefore, the world line of a
zero-rest-mass particle is null . (By contrast, since dτ 2 > 0 and ds2 < 0 along the world line
of a particle with finite rest mass, the world line of a finite-rest-mass particle is timelike.)

The 4-momenta of particles are important because of the law of conservation of 4-
momentum (which, as we shall see in Sec. 2.6, is equivalent to the conservation laws for
energy and ordinary momentum): If a number of “initial” particles, named A = 1, 2, 3, . . .
enter a restricted region of spacetime V and there interact strongly to produce a new set of
“final” particles, named Ā = 1̄, 2̄, 3̄, . . . (Fig. 2.5), then the total 4-momentum of the final
particles must be the same as the total 4-momentum of the initial ones:

∑

Ā

~pĀ =
∑

A

~pA . (2.16)
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x y 
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p 
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p → p → 

p → 

1 2 

2 1 

V 

Fig. 2.5: Spacetime diagram depicting the law of 4-momentum conservation for a situation where
two particles, numbered 1 and 2, enter an interaction region V in spacetime, there interact strongly,
and produce two new particles, numbered 1̄ and 2̄. The sum of the final 4-momenta, ~p1̄ + ~p2̄, must
be equal to the sum of the initial 4-momenta, ~p1 + ~p2.

Note that this law of 4-momentum conservation is expressed in frame-independent, geometric
language—in accord with Einstein’s insistence that all the laws of physics should be so
expressible. As we shall see in Part VII, 4-momentum conservation is a consequence of
the translation symmetry of flat, 4-dimensional spacetime. In general relativity’s curved
spacetime, where that translation symmetry is lost, we lose 4-momentum conservation except
under special circumstances; see Sec. 24.9.4.

If a particle moves freely (no external forces and no collisions with other particles), then
its 4-momentum ~p will be conserved along its world line, d~p/dζ = 0. Since ~p is tangent to
the world line, this means that the direction of the world line in spacetime never changes;
i.e., the free particle moves along a straight line through spacetime. To change the particle’s
4-momentum, one must act on it with a 4-force ~F ,

d~p/dτ = ~F . (2.17)

If the particle is a fundamental one (e.g., photon, electron, proton), then the 4-force must
leave its rest mass unchanged,

0 = dm2/dτ = −d~p2/dτ = −2~p · d~p/dτ = −2~p · ~F ; (2.18)

i.e., the 4-force must be orthogonal to the 4-momentum.

2.4.2 Geometric Derivation of the Lorentz Force Law

As an illustration of these physical concepts and mathematical tools, we shall use them to
deduce the relativistic version of the Lorentz force law. From the outset, in accord with the
Principle of Relativity, we insist that the law we seek be expressible in geometric, frame-
independent language, i.e. in terms of vectors and tensors.

Consider a particle with charge q and rest mass m 6= 0, interacting with an electromag-
netic field. It experiences an electromagnetic 4-force whose mathematical form we seek. The
Newtonian version of the electromagnetic force F = q(E + v ×B) is proportional to q and
contains one piece (electric) that is independent of velocity v, and a second piece (magnetic)
that is linear in v. It is reasonable to expect that, in order to produce this Newtonian limit,
the relativistic 4-force ~F will be proportional to q and will be linear in the 4-velocity ~u.
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Linearity means there must exist some second-rank tensor F( , ), the electromagnetic field
tensor, such that

d~p/dτ = ~F ( ) = qF( , ~u) . (2.19)

Because the 4-force ~F must be orthogonal to the particle’s 4-momentum and thence also to
its 4-velocity, ~F · ~u ≡ ~F (~u) = 0, expression (2.19) must vanish when ~u is inserted into its
empty slot. In other words, for all timelike unit-length vectors ~u,

F(~u, ~u) = 0 . (2.20)

It is an instructive exercise (Ex. 2.3) to show that this is possible only if F is antisymmetric,
so the electromagnetic 4-force is

d~p/dτ = qF( , ~u) , where F( ~A, ~B) = −F( ~B, ~A) for all ~A and ~B . (2.21)

This must be the relativistic form of the Lorentz force law. In Sec. 2.11 below, we shall
deduce the relationship of the electromagnetic field tensor F to the more familiar electric
and magnetic fields, and the relationship of this relativistic Lorentz force to its Newtonian
form (1.7c).

This discussion of particle kinematics and the electromagnetic force is elegant, but per-
haps unfamiliar. In Secs. 2.6 and 2.11 we shall see that it is equivalent to the more elementary
(but more complex) formalism based on components of vectors in 3-space.

****************************

EXERCISES

Exercise 2.3 Derivation and Example: Antisymmetry of Electromagnetic Field Tensor
Show that Eq. (2.20) can be true for all timelike, unit-length vectors ~u if and only if F is
antisymmetric. [Hints: (i) Show that the most general second-rank tensor F can be written as
the sum of a symmetric tensor S and an antisymmetric tensor A, and that the antisymmetric
piece contributes nothing to Eq. (2.20). (ii) Let ~B and ~C be any two vectors such that ~B+ ~C

and ~B − ~C are both timelike; show that S( ~B, ~C) = 0. (iii) Convince yourself (if necessary
using the component tools developed in the next section) that this result, together with the

4-dimensionality of spacetime and the large arbitrariness inherent in the choice of ~A and ~B,
implies S vanishes (i.e., it gives zero when any two vectors are inserted into its slots).]

Exercise 2.4 Problem: Relativistic Gravitational Force Law
In Newtonian theory the gravitational potential Φ exerts a force F = dp/dt = −m∇Φ on
a particle with mass m and momentum p. Before Einstein formulated general relativity,
some physicists constructed relativistic theories of gravity in which a Newtonian-like scalar
gravitational field Φ exerted a 4-force ~F = d~p/dτ on any particle with rest mass m, 4-velocity
~u and 4-momentum ~p = m~u. What must that force law have been, in order to (i) obey the
Principle of Relativity, (ii) reduce to Newton’s law in the non-relativistic limit, and (iii)
preserve the particle’s rest mass as time passes?

****************************
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2.5 Component Representation of Tensor Algebra

In Minkowski spacetime, associated with any inertial reference frame (Fig. 2.1 and Sec.
2.2.1), there is a Lorentz coordinate system {t, x, y, z} = {x0, x1, x2, x3} generated by the
frame’s rods and clocks. And associated with these coordinates there is a set of basis vectors
{~et, ~ex, ~ey, ~ez} = {~e0, ~e1, ~e2, ~e3}; cf. Fig. 1.3. (The reason for putting the indices up on the
coordinates but down on the basis vectors will become clear below.) The basis vector ~eα
points along the xα coordinate direction, which is orthogonal to all the other coordinate
directions, and it has squared length −1 for α = 0 (vector pointing in a timelike direction)
and +1 for α = 1, 2, 3 (spacelike):

~eα · ~eβ = ηαβ . (2.22)

Here ηαβ (a spacetime analog of the Kronecker delta) are defined by

η00 ≡ −1 , η11 ≡ η22 ≡ η33 ≡ 1 , ηαβ ≡ 0 if α 6= β . (2.23)

Any basis in which ~eα · ~eβ = ηαβ is said to be orthonormal (by analogy with the Euclidean
notion of orthonormality, ej · ek = δjk).

The fact that ~eα ·~eβ 6= δαβ prevents many of the Euclidean-space component-manipulation
formulas (1.9c)–(1.9h) from holding true in Minkowski spacetime. There are two approaches
to recovering these formulas. One approach, used in many old textbooks (including the first
and second editions of Goldstein’s Classical Mechanics and Jackson’s Classical Electrody-
namics), is to set x0 = it, where i =

√
−1 and correspondingly make the time basis vector

be imaginary, so that ~eα · ~eβ = δαβ . When this approach is adopted, the resulting formalism
does not care whether indices are placed up or down; one can place them wherever one’s
stomach or liver dictate without asking one’s brain. However, this x0 = it approach has
severe disadvantages: (i) it hides the true physical geometry of Minkowski spacetime, (ii) it
cannot be extended in any reasonable manner to non-orthonormal bases in flat spacetime,
and (iii) it cannot be extended in any reasonable manner to the curvilinear coordinates that
one must use in general relativity. For these reasons, most modern texts (including the third
editions of Goldstein and Jackson) take an alternative approach, one always used in general
relativity. This alternative, which we shall adopt, requires introducing two different types of
components for vectors, and analogously for tensors: contravariant components denoted by
superscripts, e.g. T αβγ, and covariant components denoted by subscripts, e.g. Tαβγ . In Parts
I–VI of this book we introduce these components only for orthonormal bases; in Part VII we
develop a more sophisticated version of them, valid for nonorthonormal bases.

A vector or tensor’s contravariant components are defined as its expansion coefficients in
the chosen basis [analog of Eq. (1.9d) in Euclidean 3-space]:

~A ≡ Aα~eα , T ≡ T αβγ~eα ⊗ ~eβ ⊗ ~eγ . (2.24a)

Here and throughout this book, Greek (spacetime) indices are to be summed whenever they
are repeated with one up and the other down. The covariant components are defined as the
numbers produced by evaluating the vector or tensor on its basis vectors [analog of Eq. (1.9e)
in Euclidean 3-space]:

Aα ≡ ~A(~eα) = ~A · ~eα , Tαβγ ≡ T(~eα, ~eβ, ~eγ) . (2.24b)
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These definitions have a number of important consequences. We shall derive them one
after another and then at the end shall summarize them succinctly with equation numbers:

(i) The covariant components of the metric tensor are gαβ = g(~eα, ~eβ) = ~eα · ~eβ = ηαβ .
Here the first equality is the definition (2.24b) of the covariant components and the
second equality is the orthonormality relation (2.22) for the basis vectors.

(ii) The covariant components of any tensor can be computed from the contravariant com-
ponents by Tλµν = T(~eλ, ~eµ, ~eν) = T αβγ~eα⊗~eβ⊗~eγ(~eλ, ~eµ, ~eν) = T αβγ(~eα ·~eλ)(~eβ ·~eµ)(~eγ ·
~eν) = T αβγgαλgβµgγν . The first equality is the definition (2.24b) of the covariant com-
ponents, the second is the expansion (2.24a) of T on the chosen basis, the third is the
definition (1.5a) of the tensor product, and the fourth is one version of our result (i)
for the covariant components of the metric.

(iii) This result, Tλµν = T αβγgαλgβµgγν , together with the numerical values (i) of gαβ, implies
that when one lowers a spatial index there is no change in the numerical value of a
component, and when one lowers a temporal index, the sign changes: Tijk = T ijk,
T0jk = −T 0jk, T0j0 = +T 0j0, T000 = −T 000. We shall call this the “sign-flip-if-temporal”
rule. As a special case, −1 = g00 = g00, 0 = g0j = −g0j , δjk = gjk = gjk — i.e., the
metric’s covariant and contravariant components are numerically identical; they are
both equal to the orthonormality values ηαβ .

(iv) It is easy to see that this sign-flip-if-temporal rule for lowering indices implies the same
sign-flip-if-temporal rule for raising them, which in turn can be written in terms of
metric components as T αβγ = Tλµνg

λαgµβgνγ.

(v) It is convenient to define mixed components of a tensor, components with some indices
up and others down, as having numerical values obtained by raising or lowering some
but not all of its indices using the metric, e.g. T α

µν = T αβγgβµgγν = Tλµνg
λα. Numeri-

cally, this continues to follow the sign-flip-if-temporal rule: T 0
0k = −T 00k, T 0

jk = T 0jk,
and it implies, in particular, that the mixed components of the metric are gαβ = δαβ
(the Kronecker-delta values; plus one if α = β and zero otherwise).

Summarizing these results: The numerical values of the components of the metric in
Minkowski spacetime are

gαβ = ηαβ , gαβ = δαβ , gα
β = δαβ , gαβ = ηαβ ; (2.24c)

and indices on all vectors and tensors can be raised and lowered using these components of
the metric

Aα = gαβA
β , Aα = gαβAβ , T α

µν ≡ gµβgνγT
αβγ T αβγ ≡ gβµgγνT α

µν . (2.24d)

This says numerically that lowering a temporal index changes the component’s sign and
lowering a spatial index leaves the component unchanged—and similarly for raising indices;
the sign-flip-if-temporal rule.
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This index notation gives rise to formulas for tensor products, inner products, values of
tensors on vectors, and tensor contractions, that are the obvious analogs of those in Euclidean
space:

[Contravariant components of T( , , )⊗ S( , )] = T αβγSδǫ , (2.24e)

~A · ~B = AαBα = AαB
α , T(A,B,C) = TαβγA

αBβCγ = T αβγAαBβCγ , (2.24f)

Covariant components of [1&3contraction of R ] = Rµ
αµβ ,

Contravariant components of [1&3contraction of R ] = Rµα
µ
β . (2.24g)

Notice the very simple pattern in Eqs. (2.24), which universally permeates the rules of
index gymnastics, a pattern that permits one to reconstruct the rules without any memoriza-
tion: Free indices (indices not summed over) must agree in position (up versus down) on the
two sides of each equation. In keeping with this pattern, one often regards the two indices
in a pair that is summed (one index up and the other down) as “strangling each other” and
thereby being destroyed, and one speaks of “lining up the indices” on the two sides of an
equation to get them to agree.

In Part VII, when we use non-orthonormal bases, all of these index-notation equations
(2.24) will remain valid unchanged except for the numerical values (2.24c) of the metric
components and the sign-flip-if-temporal rule.

In Minkowski spacetime, as in Euclidean space, we can (and often we shall) use slot-
naming index notation to represent frame-independent geometric objects and equations and
physical laws. (Readers who have not studied Sec. 1.5.1 on slot-naming index notation should
do so now.)

For example, we shall often write the frame-independent Lorentz force law d~p/dτ =
qF( , ~u) as dpµ/dτ = qFµνu

ν.
Notice that, because the components of the metric in any Lorentz basis are gαβ = ηαβ ,

we can write the invariant interval between two events xα and xα + dxα as

ds2 = gαβdx
αdxβ = −dt2 + dx2 + dy2 + dz2 . (2.25)

This is called the special relativistic line element.

****************************

EXERCISES

Exercise 2.5 Derivation: Component Manipulation Rules
Derive the relativistic component manipulation rules (2.24e)–(2.24g).

Exercise 2.6 Numerics of Component Manipulations
In some inertial reference frame, the vector ~A and second-rank tensor T have as their

only nonzero components A0 = 1, A1 = 2, A2 = A3 = 0; T 00 = 3, T 01 = T 10 = 2, T 11 = −1.
Evaluate T( ~A, ~A) and the components of T( ~A, ) and ~A⊗ T.
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Exercise 2.7 Practice: Meaning of Slot-Naming Index Notation

(a) Convert the following expressions and equations into geometric, index-free notation:
AαBγδ; AαBγ

δ; Sα
βγ = Sγβ

α; AαBα = AαB
βgαβ .

(d) Convert T( ,S(R( ~C, ), ), ) into slot-naming index notation.

Exercise 2.8 Practice: Index Gymnastics

(a) Simplify the following expression so the metric does not appear in it: AαβγgβρSγλg
ρδgλα.

(b) The quantity gαβg
αβ is a scalar since it has no free indices. What is its numerical

value?

(c) What is wrong with the following expression and equation? Aα
βγSαγ ; Aα

βγSβTγ =
RαβδS

β.

****************************

2.6 Particle Kinetics in Index Notation and in a Lorentz

Frame

As an illustration of the component representation of tensor algebra, let us return to the
relativistic, accelerated particle of Fig. 2.4 and, from the frame-independent equations for
the particle’s 4-velocity ~u and 4-momentum ~p (Sec. 2.4), derive the component description
given in elementary textbooks.

We introduce a specific inertial reference frame and associated Lorentz coordinates xα and
basis vectors {~eα}. In this Lorentz frame, the particle’s world line ~x(τ) is represented by its
coordinate location xα(τ) as a function of its proper time τ . The contravariant components
of the separation vector d~x between two neighboring events along the particle’s world line
are the events’ coordinate separations dxα [Eq. (2.1)]; and correspondingly, the components
of the particle’s 4-velocity ~u = d~x/dτ are

uα = dxα/dτ (2.26a)

(the time derivatives of the particle’s spacetime coordinates). Note that Eq. (2.26a) implies

vj ≡ dxj

dt
=
dxj/dτ

dt/dτ
=
uj

u0
. (2.26b)

Here vj are the components of the ordinary velocity as measured in the Lorentz frame. This
relation, together with −1 = ~u2 = gαβu

αuβ = −(u0)2+ δiju
iuj = −(u0)2(1− δijv

ivj), implies
that the components of the 4-velocity have the forms familiar from elementary textbooks:

u0 = γ , uj = γvj , where γ =
1

(1− δijvivj)
1

2

. (2.26c)
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Fig. 2.6: Spacetime diagram in a specific Lorentz frame, showing the frame’s 3-space t = 0 (stippled
region), the world line of a particle, the 4-velocity ~u of the particle as it passes through the 3-space
(i.e., at time t = 0); and two 3-dimensional vectors that lie in the 3-space: the spatial part of the
particle’s 4-velocity, u, and the particle’s ordinary velocity v.

It is useful to think of vj as the components of a 3-dimensional vector v, the ordinary
velocity, that lives in the 3-dimensional Euclidean space t = const of the chosen Lorentz
frame. As we shall see below, this 3-space is not well defined until a Lorentz frame has
been chosen, and correspondingly, v relies for its existence on a specific choice of frame.
However, once the frame has been chosen, v can be regarded as a coordinate-independent,
basis-independent 3-vector lying in the frame’s 3-space t =const. Similarly, the spatial part
of the 4-velocity ~u (the part with components uj in our chosen frame) can be regarded as a
3-vector u lying in the frame’s 3-space; and Eqs. (2.26c) become the component versions of
the coordinate-independent, basis-independent 3-space relations

u = γv , γ =
1√

1− v2
. (2.26d)

Figure 2.6 shows stippled the 3-space t = 0 of a specific Lorentz frame, and the 4-velocity
~u and ordinary velocity v of a particle as it passes through that 3-space.

The components of the particle’s 4-momentum ~p in our chosen Lorentz frame have special
names and special physical significances: The time component of the 4-momentum is the
particle’s energy E as measured in that frame

E ≡ p0 = mu0 = mγ =
m√

1− v2
= (the particle’s energy)

≃ m+
1

2
mv2 for |v| ≪ 1 . (2.27a)

Note that this energy is the sum of the particle’s rest mass-energy m = mc2 and its kinetic
energy mγ − m (which, for low velocities, reduces to the familiar nonrelativistic kinetic
energy E = 1

2
mv2). The spatial components of the 4-momentum, when regarded from the

viewpoint of 3-dimensional physics, are the same as the components of the momentum, a
3-vector residing in the chosen Lorentz frame’s 3-space:

pj = muj = mγvj =
mvj√
1− v2

= Evj = (j-component of particle’s momentum) ; (2.27b)

or, in basis-independent, 3-dimensional vector notation,

p = mu = mγv =
mv√
1− v2

= Ev = (particle’s momentum) . (2.27c)
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For a zero-rest-mass particle, as for one with finite rest mass, we identify the time com-
ponent of the 4-momentum, in a chosen Lorentz frame, as the particle’s energy, and the
spatial part as its momentum. Moreover, if—appealing to quantum theory—we regard a
zero-rest-mass particle as a quantum associated with a monochromatic wave, then quantum
theory tells us that the wave’s angular frequency ω as measured in a chosen Lorentz frame
will be related to its energy by

E ≡ p0 = ~ω = (particle’s energy) ; (2.28a)

and, since the particle has ~p2 = −(p0)2 + p2 = −m2 = 0 (in accord with the lightlike nature
of its world line), its momentum as measured in the chosen Lorentz frame will be

p = En = ~ωn . (2.28b)

Here n is the unit 3-vector that points in the direction of the particle’s travel, as measured in
the chosen frame; i.e. (since the particle moves at the speed of light v = 1), n is the particle’s
ordinary velocity. Eqs. (2.28a) and (2.28b) are the temporal and spatial components of the

geometric, frame-independent relation ~p = ~~k [Eq. (2.14), which is valid for zero-rest-mass
particles as well as finite-mass ones].

The introduction of a specific Lorentz frame into spacetime can be said to produce a
“3+1” split of every 4-vector into a 3-dimensional vector plus a scalar (a real number). The
3+1 split of a particle’s 4-momentum ~p produces its momentum p plus its energy E = p0;
and correspondingly, the 3+1 split of the law of 4-momentum conservation (2.16) produces
a law of conservation of momentum plus a law of conservation of energy:

∑

Ā

pĀ =
∑

A

pA ,
∑

Ā

EĀ =
∑

A

EA . (2.29)

Here the unbarred quantities are momenta and energies of the particles entering the inter-
action region, and the barred quantities are those of the particles leaving; cf. Fig. 2.5.

Because the concept of energy does not even exist until one has chosen a Lorentz frame,
and neither does that of momentum, the laws of energy conservation and momentum con-
servation separately are frame-dependent laws. In this sense, they are far less fundamental
than their combination, the frame-independent law of 4-momentum conservation.

By learning to think about the 3+1 split in a geometric, frame-independent way, one
can gain much conceptual and computational power. As a example, consider a particle
with 4-momentum ~p, being studied by an observer with 4-velocity ~U . In the observer’s
own Lorentz reference frame, her 4-velocity has components U0 = 1 and U j = 0, and
therefore, her 4-velocity is ~U = Uα~eα = ~e0, i.e. it is identically equal to the time basis
vector of her Lorentz frame. This means that the particle energy that she measures is
E = p0 = −p0 = −~p · ~e0 = −~p · ~U . This equation, derived in the observer’s Lorentz frame, is
actually a geometric, frame-independent relation: the inner product of two 4-vectors. It says
that when an observer with 4-velocity ~U measures the energy of a particle with 4-momentum
~p, the result she gets (the time part of the 3+1 split of ~p as seen by her) is

E = −~p · ~U . (2.30)
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We shall use this equation in later chapters. In Exs. 2.9 and 2.10, the reader can get
experience at deriving and interpreting other frame-independent equations for 3+1 splits.
Exercise 2.11 exhibits the power of this geometric way of thinking by using it to derive the
Doppler shift of a photon.

****************************

EXERCISES

Exercise 2.9 **Practice: Frame-Independent Expressions for Energy, Momentum, and Ve-
locity3

An observer with 4-velocity ~U measures the properties of a particle with 4-momentum ~p.
The energy she measures is E = −~p · ~U , Eq. (2.30).

(a) Show that the particle’s rest mass can be expressed in terms of ~p as

m2 = −~p 2 . (2.31a)

(b) Show that the momentum the observer measures has the magnitude

|p| = [(~p · ~U)2 + ~p · ~p] 12 . (2.31b)

(c) Show that the ordinary velocity the observer measures has the magnitude

|v| = |p|
E , (2.31c)

where |p| and E are given by the above frame-independent expressions.

(d) Show that the ordinary velocity v, thought of as a 4-vector that happens to lie in the
observer’s 3-space of constant time, is given by

~v =
~p+ (~p · ~U)~U

−~p · ~U
. (2.31d)

Exercise 2.10 **Example: 3-Metric as a Projection Tensor
Consider, as in Exercise 2.9, an observer with 4-velocity ~U who measures the properties of
a particle with 4-momentum ~p.

(a) Show that the Euclidean metric of the observer’s 3-space, when thought of as a tensor
in 4-dimensional spacetime, has the form

P ≡ g + ~U ⊗ ~U . (2.32a)

3Exercises marked with double stars are important expansions of the material presented in the text.



22

Show, further, that if ~A is an arbitrary vector in spacetime, then − ~A · ~U is the com-
ponent of ~A along the observer’s 4-velocity ~U , and

P( , ~A) = ~A+ ( ~A · ~U)~U (2.32b)

is the projection of ~A into the observer’s 3-space; i.e., it is the spatial part of ~A as
seen by the observer. For this reason, P is called a projection tensor. In quantum
mechanics, one introduces the concept of a projection operator P̂ as one that satisfies
the equation P̂ 2 = P̂ . Show that the projection tensor P is a projection operator in
the same sense:

PαµP
µ
β = Pαβ . (2.32c)

(b) Show that Eq. (2.31d) for the particle’s ordinary velocity, thought of as a 4-vector, can
be rewritten as

~v =
P( , ~p)

−~p · ~U
. (2.33)

Exercise 2.11 **Example: Doppler Shift Derived without Lorentz Transformations

(a) An observer at rest in some inertial frame receives a photon that was emitted in a
direction n by an atom moving with ordinary velocity v (Fig. 2.7). The photon fre-
quency and energy as measured by the emitting atom are νem and Eem; those measured
by the receiving observer are νrec and Erec. By a calculation carried out solely in the
receiver’s inertial frame (the frame of Fig. 2.7), and without the aid of any Lorentz
transformation, derive the standard formula for the photon’s Doppler shift,

νrec
νem

=

√
1− v2

1− v · n . (2.34)

Hint: Use Eq. (2.30) to evaluate Eem using receiver-frame expressions for the emitting

atom’s 4-velocity ~U and the photon’s 4-momentum ~p.

(b) Suppose that instead of emitting a photon, the emitter ejects a particle with finite rest
mass m. Using the same method, derive an expression for the ratio of received energy
to emitted energy, Erec/Eem, expressed in terms of the emitter’s ordinary velocity v and
the particle’s ordinary velocity V (both as measured in the receiver’s frame).

****************************

v

n emitter

receiver

Fig. 2.7: Geometry for Doppler shift.



23

2.7 Lorentz Transformations

Consider two different inertial reference frames in Minkowski spacetime. Denote their Lorentz
coordinates by {xα} and {xµ̄} and their bases by {eα} and {eµ̄}, and write the transformation
from one basis to the other as

~eα = ~eµ̄L
µ̄
α , ~eµ̄ = ~eαL

α
µ̄ . (2.35)

As in Euclidean 3-space, Lµ̄
α and Lα

µ̄ are elements of two different transformation matrices,
and since these matrices operate in opposite directions, they must be the inverse of each
other:

Lµ̄
αL

α
ν̄ = δµ̄ν̄ , Lα

µ̄L
µ̄
β = δαβ . (2.36a)

Notice the up/down placement of indices on the elements of the transformation matrices: the
first index is always up, and the second is always down. This is just a convenient convention,
which helps systematize the index shuffling rules in a way that can easily be remembered.
Our rules about summing on the same index when up and down, and matching unsummed
indices on the two sides of an equation automatically dictate the matrix to use in each of
the transformations (2.35); and similarly for all other equations in this section.

In Euclidean 3-space the orthonormality of the two bases dictated that the transforma-
tions must be orthogonal, i.e. must be reflections or rotations. In Minkowski spacetime,
orthonormality implies gαβ = ~eα · ~eβ = (~eµ̄L

µ̄
α) · (~eν̄Lν̄

β) = Lµ̄
αL

ν̄
βgµ̄ν̄ ; i.e.,

gµ̄ν̄L
µ̄
αL

ν̄
β = gαβ , and similarly gαβL

α
µ̄L

β
ν̄ = gµ̄ν̄ . (2.36b)

Any matrices whose elements satisfy these equations is a Lorentz transformation.
From the fact that vectors and tensors are geometric, frame-independent objects, one can

derive the Minkowski-space analogs of the Euclidean transformation laws for components
(1.13a), (1.13b):

Aµ̄ = Lµ̄
αA

α , T µ̄ν̄ρ̄ = Lµ̄
αL

ν̄
βL

ρ̄
γT

αβγ , and similarly in the opposite direction.
(2.37a)

Notice that here, as elsewhere, these equations can be constructed by lining up indices in
accord with our standard rules.

If (as is conventional) we choose the spacetime origins of the two Lorentz coordinate
systems to coincide, then the vector ~x extending from the origin to some event P, whose
coordinates are xα and xᾱ, has components equal to those coordinates. As a result, the
transformation law for the coordinates takes the same form as that (2.37a) for components
of a vector:

xα = Lα
µ̄x

µ̄ , xµ̄ = Lµ̄
αx

α . (2.37b)

The product Lα
µ̄L

µ̄
¯̄ρ of two Lorentz transformation matrices is a Lorentz transformation

matrix; and under this product rule, the Lorentz transformations form a mathematical group,
the Lorentz group, whose “representations” play an important role in quantum field theory.

An important specific example of a Lorentz transformation is the following

||Lα
µ̄ || =









γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1









, ||Lµ̄
α || =









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1









, (2.38a)
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where β and γ are related by

|β| < 1 , γ ≡ (1− β2)−
1

2 . (2.38b)

One can readily verify [Ex. 2.12] that these matrices are the inverses of each other and that
they satisfy the Lorentz-transformation relation (2.36b). These transformation matrices
produce the following change of coordinates [Eq. (2.37b)]

t = γ(t̄+ βx̄) , x = γ(x̄+ βt̄) , y = ȳ , z = z̄ ,

t̄ = γ(t− βx) , x̄ = γ(x− βt) , ȳ = y , z̄ = z . (2.38c)

These expressions reveal that any particle at rest in the unbarred frame (a particle with
fixed, time-independent x, y, z) is seen in the barred frame to move along the world line
x̄ = const−βt̄, ȳ = const, z̄ = const. In other words, the unbarred frame is seen by observers
at rest in the barred frame to move with uniform velocity ~v = −β~ex̄, and correspondingly the
barred frame is seen by observers at rest in the unbarred frame to move with the opposite
uniform velocity ~v = +β~ex. This special Lorentz transformation is called a pure boost along
the x direction.

****************************

EXERCISES

Exercise 2.12 Derivation: Lorentz Boosts
Show that the matrices (2.38a), with β and γ satisfying (2.38b), are the inverses of each
other, and that they obey the condition (2.36b) for a Lorentz transformation.

Exercise 2.13 Example: General Boosts and Rotations

(a) Show that, if nj is a 3-dimensional unit vector and β and γ are defined as in Eq. (2.38b),
then the following is a Lorentz transformation; i.e., it satisfies Eq. (2.36b).

L0
0̄ = γ , L0

j̄ = Lj
0̄ = βγnj , Lj

k̄ = Lk
j̄ = (γ − 1)njnk + δjk . (2.39)

Show, further, that this transformation is a pure boost along the direction n with speed
β, and show that the inverse matrix Lµ̄

α for this boost is the same as Lα
µ̄, but with

β changed to −β.

(b) Show that the following is also a Lorentz transformation:

[Lα
µ̄ ] =









1 0 0 0
0
0 [Rij̄ ]
0









, (2.40)

where [Rij̄ ] is a three-dimensional rotation matrix for Euclidean 3-space. Show, further,
that this Lorentz transformation rotates the inertial frame’s spatial axes (its latticework
of measuring rods), while leaving the frame’s velocity unchanged; i.e., the new frame
is at rest with respect to the old.
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One can show (not surprisingly) that the general Lorentz transformation [i.e., the
general solution of Eqs. (2.36b)] can be expressed as a sequence of pure boosts, pure
rotations, and pure inversions (in which one or more of the coordinate axes are reflected
through the origin, so xα = −xᾱ).

****************************

2.8 Spacetime Diagrams for Boosts

Figure 2.8 illustrates the pure boost (2.38c). Diagram (a) in that figure is a two-dimensional
spacetime diagram, with the y- and z-coordinates suppressed, showing the t̄ and x̄ axes of
the boosted Lorentz frame F̄ in the t, x Lorentz coordinate system of the unboosted frame
F . That the barred axes make angles tan−1 β with the unbarred axes, as shown, can be
inferred from the Lorentz transformation equation (2.38c). Note that the orthogonality of
the t̄ and x̄ axes to each other (~et̄ · ~ex̄ = 0) shows up as the two axes making the same angle
π/2−β with the null line x = t. The invariance of the interval guarantees that for a = 1 or 2,
the event x̄ = a on the x̄-axis lies at the intersection of that axis with the dashed hyperbola
x2 − t2 = a2; and similarly, the event t̄ = a on the t̄-axis lies at the intersection of that axis
with the dashed hyperbola t2 − x2 = a2.

As is shown in diagram (b) of the figure, the barred coordinates t̄, x̄ of an event P can be
inferred by projecting from P onto the t̄- and x̄-axes, with the projection going parallel to
the x̄- and t̄- axes respectively. Diagram (c) shows the 4-velocity ~u of an observer at rest in
frame F and that, ~̄u, of an observer at rest in frame F̄ . The events which observer F regards
as all simultaneous, with time t = 0, lie in a 3-space that is orthogonal to ~u and includes the
x-axis. This is the Euclidean 3-space of reference frame F and is also sometimes called F ’s
3-space of simultaneity. Similarly, the events which observer F̄ regards as all simultaneous,
with t̄ = 0, live in the 3-space that is orthogonal to ~̄u and includes the x̄-axis. This is the
Euclidean 3-space (3-space of simultaneity) of frame F̄ .

1
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Fig. 2.8: Spacetime diagrams illustrating the pure boost (2.38c) from one Lorentz reference frame
to another.
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Exercise 2.14 uses spacetime diagrams, similar to Fig. 2.8, to deduce a number of im-
portant relativistic phenomena, including the contraction of the length of a moving object
(“length contraction”), the breakdown of simultaneity as a universally agreed upon concept,
and the dilation of the ticking rate of a moving clock (“time dilation”). This exercise is
extremely important; every reader who is not already familiar with it should study it.

****************************

EXERCISES

Exercise 2.14 **Example: Spacetime Diagrams
Use spacetime diagrams to prove the following:

(a) Two events that are simultaneous in one inertial frame are not necessarily simultaneous
in another. More specifically, if frame F̄ moves with velocity ~v = β~ex as seen in frame
F , where β > 0, then of two events that are simultaneous in F̄ the one farther “back”
(with the more negative value of x̄) will occur in F before the one farther “forward”.

(b) Two events that occur at the same spatial location in one inertial frame do not neces-
sarily occur at the same spatial location in another.

(c) If P1 and P2 are two events with a timelike separation, then there exists an inertial
reference frame in which they occur at the same spatial location; and in that frame the
time lapse between them is equal to the square root of the negative of their invariant
interval, ∆t = ∆τ ≡

√

−(∆s)2.

(d) If P1 and P2 are two events with a spacelike separation, then there exists an inertial
reference frame in which they are simultaneous; and in that frame the spatial distance
between them is equal to the square root of their invariant interval,

√

gij∆xi∆xj =

∆s ≡
√

(∆s)2.

(e) If the inertial frame F̄ moves with speed β relative to the frame F , then a clock at
rest in F̄ ticks more slowly as viewed from F than as viewed from F̄—more slowly by
a factor γ−1 = (1− β2)

1

2 . This is called relativistic time dilation.

(f) If the inertial frame F̄ moves with velocity ~v = β~ex relative to the frame F and the
two frames are related by a pure boost, then an object at rest in F̄ as studied in F
appears shortened by a factor γ−1 = (1 − β2)

1

2 along the x direction, but its length
along the y and z directions is unchanged. This is called Lorentz contraction.

Exercise 2.15 Problem: Allowed and Forbidden Electron-Photon Reactions
Show, using spacetime diagrams and also using frame-independent calculations, that the law
of conservation of 4-momentum forbids a photon to be absorbed by an electron, e + γ →
e and also forbids an electron and a positron to annihilate and produce a single photon
e+ + e− → γ (in the absence of any other particles to take up some of the 4-momentum);
but the annihilation to form two photons, e+ + e− → 2γ, is permitted.

****************************
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2.9 Time Travel

Time dilation is one facet of a more general phenomenon: Time, as measured by ideal
clocks, is a “personal thing,” different for different observers who move through spacetime
on different world lines. This is well illustrated by the infamous “twins paradox,” in which
one twin, Methuselah, remains forever at rest in an inertial frame and the other, Florence,
makes a spacecraft journey at high speed and then returns to rest beside Methuselah.

The twins’ world lines are depicted in Fig. 2.9a, a spacetime diagram whose axes are
those of Methuselah’s inertial frame. The time measured by an ideal clock that Methuselah
carries is the coordinate time t of his inertial frame; and its total time lapse, from Florence’s
departure to her return, is treturn − tdeparture ≡ TMethuselah. By contrast, the time measured by
an ideal clock that Florence carries is the proper time τ , i.e. the square root of the invariant
interval (2.5), along her world line; and thus her total time lapse from departure to return is

TFlorence =

∫

dτ =

∫

√

dt2 − δijdxidxj =

∫ TMethuselah

0

√
1− v2dt . (2.41)

Here (t, xi) are the time and space coordinates of Methuselah’s inertial frame, and v is
Florence’s ordinary speed, v =

√

δij(dxi/dt)(dxj/dt), relative to Methuselah’s frame. Obvi-
ously, Eq. (2.41) predicts that TFlorence is less than TMethuselah. In fact (cf. Exercise 2.16), even
if Florence’s acceleration is kept no larger than one Earth gravity throughout her trip, and
her trip lasts only TFlorence = (a few tens of years), TMethuselah can be hundreds or thousands
or millions or billions of years.

Does this mean that Methuselah actually “experiences” a far longer time lapse, and
actually ages far more than Florence? Yes! The time experienced by humans and the aging
of the human body are governed by chemical processes, which in turn are governed by the
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Fig. 2.9: (a) Spacetime diagram depicting the so-called “twins paradox”. Marked along the two
world lines are intervals of proper time as measured by the two twins. (b) Spacetime diagram
depicting the motions of the two mouths of a wormhole. Marked along the mouths’ world tubes are
intervals of proper time τc as measured by the single clock that sits on the common mouths.
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natural oscillation rates of molecules, rates that are constant to high accuracy when measured
in terms of ideal time (or, equivalently, proper time τ). Therefore, a human’s experiential
time and aging time are the same as the human’s proper time—so long as the human is not
subjected to such high accelerations as to damage her body.

In effect, then, Florence’s spacecraft has functioned as a time machine to carry her far
into Methuselah’s future, with only a modest lapse of her own proper time (ideal time;
experiential time; aging time).

Is it also possible, at least in principle, for Florence to construct a time machine that
carries her into Methuselah’s past—and also her own past? At first sight, the answer would
seem to be Yes. Figure 2.9(b) shows one possible method, using a wormhole. [Papers on
other methods are cited in Thorne (1993) and Friedman and Higuchi (2006).]

Wormholes are hypothetical “handles” in the topology of space. A simple model of a
wormhole can be obtained by taking a flat 3-dimensional space, removing from it the interiors
of two identical spheres, and identifying the spheres’ surfaces so that if one enters the surface
of one of the spheres, one immediately finds oneself exiting through the surface of the other.
When this is done, there is a bit of strongly localized spatial curvature at the spheres’ common
surface, so to analyze such a wormhole properly, one must use general relativity rather than
special relativity. In particular, it is the laws of general relativity, combined with the laws
of quantum field theory, that tell one how to construct such a wormhole and what kinds of
materials are required to hold it open, so things can pass through it. Unfortunately, despite
considerable effort, theoretical physicists have not yet deduced definitively whether those
laws permit such wormholes to exist and stay open, though indications are pessimistic.4 On
the other hand, assuming such wormholes can exist, the following special relativistic analysis
shows how one might be used to construct a machine for backward time travel.5

The two identified spherical surfaces are called the wormhole’s mouths. Ask Methuselah
to keep one mouth with himself, forever at rest in his inertial frame, and ask Florence to
take the other mouth with herself on her high-speed journey. The two mouths’ world tubes
(analogs of world lines for a 3-dimensional object) then have the forms shown in Fig. 2.9b.
Suppose that a single ideal clock sits on the wormhole’s identified mouths, so that from
the external Universe one sees it both on Methuselah’s wormhole mouth and on Florence’s.
As seen on Methuselah’s mouth, the clock measures his proper time, which is equal to the
coordinate time t [see tick marks along the left world tube in Fig. 2.9b]. As seen on Florence’s
mouth, the clock measures her proper time, Eq. (2.41) [see tick marks along the right world
tube in Fig. 2.9b]. The result should be obvious, if surprising: When Florence returns to
rest beside Methuselah, the wormhole has become a time machine. If she travels through the
wormhole when the clock reads τc = 7, she goes backward in time as seen in Methuselah’s
(or anyone else’s) inertial frame; and then, in fact, traveling along the everywhere timelike,
dashed world line, she is able to meet her younger self before she entered the wormhole.

This scenario is profoundly disturbing to most physicists because of the dangers of science-
fiction-type paradoxes (e.g., the older Florence might kill her younger self, thereby preventing
herself from making the trip through the wormhole and killing herself). Fortunately per-
haps, it seems likely (though not certain) that vacuum fluctuations of quantum fields will

4See, e.g., Morris and Thorne (1987), Everett and Roman (2011), and references therein.
5Morris, Thorne, and Yurtsever (1988).
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destroy the wormhole at the moment when its mouths’ motion first makes backward time
travel possible; and it may be that this mechanism will always prevent the construction
of backward-travel time machines, no matter what tools one uses for their construction.6

Whether this is so we likely will not know until the laws of quantum gravity have been
mastered.

****************************

EXERCISES

Exercise 2.16 Example: Twins Paradox

(a) The 4-acceleration of a particle or other object is defined by ~a ≡ d~u/dτ , where ~u is its
4-velocity and τ is proper time along its world line. Show that, if an observer carries an
accelerometer, the magnitude |a| of the 3-dimensional acceleration a measured by the
accelerometer will always be equal to the magnitude of the observer’s 4-acceleration,
|a| = |~a| ≡

√
~a · ~a.

(b) In the twins paradox of Fig. 2.9a, suppose that Florence begins at rest beside Methuse-
lah, then accelerates in Methuselah’s x-direction with an acceleration a equal to one
Earth gravity, “1g”, for a time TFlorence/4 as measured by her, then accelerates in the
−x-direction at 1g for a time TFlorence/2 thereby reversing her motion, and then accel-
erates in the +x-direction at 1g for a time TFlorence/4 thereby returning to rest beside
Methuselah. (This is the type of motion shown in the figure.) Show that the total time
lapse as measured by Methuselah is

TMethuselah =
4

g
sinh

(

gTFlorence
4

)

. (2.42)

(c) Show that in the geometrized units used here, Florence’s acceleration (equal to ac-
celetion of gravity at the surface of the Earth) is g = 1.033/yr. Plot TMethuselah as a
function of TFlorence, and from your plot deduce that, if TFlorence is several tens of years,
then TMethuselah can be hundreds or thousands or millions or even billions of years.

Exercise 2.17 Challenge: Around the World on TWA
In a long-ago era when an airline named Trans World Airlines (TWA) flew around the world,
J. C. Hafele and R. E. Keating carried out a real live twins paradox experiment: They
synchronized two atomic clocks, and then flew one around the world eastward on TWA,
and on a separate trip, around the world westward, while the other clock remained at home
at the Naval Research Laboratory near Washington D.C. When the clocks were compared
after each trip, they were found to have aged differently. Making reasonable estimates for
the airplane routing and speeds, compute the difference in aging, and compare your result

6Kim and Thorne (1991), Hawking (1992), Kay, Radzikowski and Wald (1997). But see also contrary
indications in research reviewed by Friedman and Higuchi (2006).
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with the experimental data (Hafele and Keating, 1972). [Note: The rotation of the Earth
is important, as is the general relativistic gravitational redshift associated with the clocks’
altitudes; but the gravitational redshift drops out of the difference in aging, if the time spent
at high altitude is the same eastward as westward.]

****************************

2.10 Directional Derivatives, Gradients, Levi-Civita

Tensor

Derivatives of vectors and tensors in Minkowski spacetime are defined precisely the same
way as in Euclidean space; see Sec. 1.7. Any reader who has not studied that section should
do so now. In particular (in extreme brevity, as the explanations and justifications are the
same as in Euclidean space):

The directional derivative of a tensor T along a vector ~A is ∇ ~AT ≡ limǫ→0(1/ǫ)[T(~xP +

ǫ ~A)−T(~xP)]; and the gradient ~∇T is the tensor that produces the directional derivative when

one inserts ~A into its last slot: ∇ ~AT = ~∇T( , , , ~A). In slot-naming index notation (or in
components on a basis), the gradient is denoted Tαβγ;µ. In a Lorentz basis (the basis vectors
associated with an inertial reference frame), the components of the gradient are simply the
partial derivatives of the tensor, Tαβγ;δ = ∂Tαβγ/∂x

µ ≡ Tαβγ,µ. (The comma always means
partial derivative.)

The gradient and the directional derivative obey all the familiar rules for differentiation
of products, e.g. ∇A(S ⊗ T) = (∇AS)⊗ T + S ⊗∇AT. The gradient of the metric vanishes,

gαβ;µ = 0. The divergence of a vector is the contraction of its gradient, ~∇ · ~A = Aα;βg
αβ =

Aα
;α.
Recall that the divergence of the gradient of a tensor in Euclidean space is the Laplacian:

Tabc;jkgjk = Tabc,jkδjk = ∂2Tabc∂x
j∂xj . By contrast, in Minkowskii spacetime, because g00 =

−1 and gjk = δjk in a Lorentz frame, the divergence of the gradient is the wave operator
(also called the d’Alembertian):

Tαβγ;µνg
µν = Tαβγ,µνg

µν = −∂
2Tαβγ
∂t2

+
∂2Tαβγ
∂xj∂xk

δjk = �Tαβγ . (2.43)

When one sets this to zero, one gets the wave equation.
As in Euclidean space, so also in Minkowski spacetime there are two tensors that embody

the space’s geometry: the metric tensor g and the Levi-Civita tensor ǫ. The Levi-Civita
tensor in Minkowski spacetime is the tensor that is completely antisymmetric in all its slots
and has value +1 when evaluated on a right-handed Lorentz basis:

ǫ(~e0, ~e1, ~e2, ~e3) = ǫ0123 = +1 . (2.44a)

The basis is defined to be right handed if {~e1, ~e2, ~e3} is right handed and ~e0 points to the
future. (In a left-handed basis, ǫ0123 = −1.) Equation (2.44a) and the antisymmetry of ǫ
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imply that in a right-handed Lorentz basis, the only nonzero components of ǫ are

ǫαβγδ = +1 if α, β, γ, δ is an even permutation of 0, 1, 2, 3

= −1 if α, β, γ, δ is an odd permutation of 0, 1, 2, 3

= 0 if α, β, γ, δ are not all different. (2.44b)

When one uses the metric to raise a time (0) index, g00 = −1 causes the sign to flip, but
when one raises a space (1,2, or 3) index, the sign does not flip. Therefore, ǫ0123 is -1 by
contrast with ǫ0123 which is +1.

2.11 Nature of Electric and Magnetic Fields; Maxwell’s

Equations

Now that we have introduced the gradient and the Levi-Civita tensor, we can study the
relationship of the relativistic version of electrodynamics to the nonrelativistic (“Newtonian”)
version.

Consider a particle with charge q, rest mass m and 4-velocity ~u interacting with an
electromagnetic field F( , ). In index notation, the electromagnetic 4-force acting on the
particle [Eq. (2.21)] is

dpα/dτ = qF αβuβ . (2.45)

Let us examine this 4-force in some arbitrary inertial reference frame in which particle’s
ordinary-velocity components are vj = vj and its 4-velocity components are u0 = γ, uj = γvj

[Eqs. (2.26c)]. Anticipating the connection with the nonrelativistic viewpoint, we introduce
the following notation for the contravariant components of the antisymmetric electromagnetic
field tensor:

F 0j = −F j0 = +Fj0 = −F0j = Ej , F ij = Fij = ǫijkBk . (2.46)

Inserting these components of F and ~u into Eq. (2.45) and using the relationship dt/dτ =
u0 = γ between t and τ derivatives, we obtain for the components of the 4-force dpj/dτ =
γdpj/dt = q(Fj0u

0+Fjku
k) = qu0(Fj0+Fjkv

k) = qγ(Ej + ǫijkvjBk) and dp0/dτ = γdp0/dt =
qF 0juj = qγEjvj . Dividing by γ, converting into 3-space index notation, and denoting the
particle’s energy by E = p0, we bring these into the familiar Lorentz-force form

dp/dt = q(E+ v ×B) , dE/dt = qv · E . (2.47)

Evidently E is the electric field and B the magnetic field as measured in our chosen Lorentz
frame.

This may be familiar from standard electrodynamics textbooks, e.g. Jackson (1999). Not
so familiar, but very important, is the following geometric interpretation of E and B:

The electric and magnetic fields E and B are spatial vectors as measured in the chosen
inertial frame. We can also regard them as 4-vectors that lie in the 3-surface of simultaneity
t = const of the chosen frame, i.e. that are orthogonal to the 4-velocity (denote it ~w) of the
frame’s observers (cf. Figs. 2.8 and 2.10). We shall denote this 4-vector version of E and B
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Fig. 2.10: The electric and magnetic fields measured by an observer with 4-velocity ~w, shown as 4-
vectors ~E~w and ~B~w that lie in the observer’s 3-surface of simultaneity (stippled 3-surface orthogonal
to ~w).

by ~E~w and ~B~w, where the subscript ~w identifies the 4-velocity of the observer who measures
these fields. These fields are depicted in Fig. 2.10.

In the rest frame of the observer ~w, the components of ~E~w are E0
~w = 0, Ej

~w = Ej = Fj0

[the Ej appearing in Eqs. (2.46)], and similarly for ~B~w; and the components of ~w are w0 = 1,
wj = 0. Therefore, in this frame Eqs. (2.46) can be rewritten as

Eα
~w = F αβwβ , Bβ

~w =
1

2
ǫαβγδFγδwα . (2.48a)

(To verify this, insert the above components of F and ~w into these equations and, after some
algebra, recover Eqs. (2.46) along with E0

~w = B0
~w = 0.) Equations (2.48a) say that in one

special reference frame, that of the observer ~w, the components of the 4-vectors on the left and
on the right are equal. This implies that in every Lorentz frame the components of these
4-vectors will be equal; i.e., it implies that Eqs. (2.48a) are true when one regards them
as geometric, frame-independent equations written in slot-naming index notation. These
equations enable one to compute the electric and magnetic fields measured by an observer
(viewed as 4-vectors in the observer’s 3-surface of simultaneity) from the observer’s 4-velocity
and the electromagnetic field tensor, without the aid of any basis or reference frame.

Equations (2.48a) embody explicitly the following important fact: Although the electro-
magnetic field tensor F is a geometric, frame-independent quantity, the electric and magnetic
fields ~E~w and ~B~w individually depend for their existence on a specific choice of observer (with
4-velocity ~w), i.e., a specific choice of inertial reference frame, i.e., a specific choice of the
split of spacetime into a 3-space (the 3-surface of simultaneity orthogonal to the observer’s
4-velocity ~w) and corresponding time (the Lorentz time of the observer’s reference frame).
Only after making such an observer-dependent “3+1 split” of spacetime into space plus time
do the electric field and the magnetic field come into existence as separate entities. Different
observers with different 4-velocities ~w make this spacetime split in different ways, thereby
resolving the frame-independent F into different electric and magnetic fields ~E~w and ~B~w.

By the same procedure as we used to derive Eqs. (2.48a), one can derive the inverse
relationship, the following expression for the electromagnetic field tensor in terms of the
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(4-vector) electric and magnetic fields measured by some observer:

F αβ = wαEβ
~w − Eα

~ww
β + ǫαβγδw

γBδ
~w . (2.48b)

Maxwell’s equations in geometric, frame-independent form are

F αβ
;β =

{

4πJα in Gaussian units
Jα/ǫo = µoJ

α in SI units ,

ǫαβγδFγδ;β = 0 ; i.e. Fαβ;γ + Fβγ;α + Fγα;β = 0 . (2.49)

(Since we are setting the speed of light to unity, ǫo = 1/µo.) Here ~J is the charge-current
4-vector, which in any inertial frame has components

J0 = ρe = (charge density) , J i = ji = (current density). (2.50)

Exercise 2.19 describes how to think about this charge density and current density as geo-
metric objects determined by the observer’s 4-velocity or 3+1 split of spacetime into space
plus time. Exercise 2.20 shows how the frame-independent Maxwell equations (2.49) reduce
to the more familiar ones in terms of E and B. Exercise 2.21 explores potentials for the
electromagnetic field in geometric, frame-independent language and the 3+1 split.

****************************

EXERCISES

Exercise 2.18 Derivation and Practice: Reconstruction of F

Derive Eq. (2.48b) by the same method as was used to derive (2.48a). Then show, by a
geometric, frame-independent calculation, that Eq. (2.48b) implies Eq. (2.48a).

Exercise 2.19 Problem: 3+1 Split of Charge-Current 4-Vector
Just as the electric and magnetic fields measured by some observer can be regarded as 4-
vectors ~E~w and ~B~w that live in the observer’s 3-space of simultaneity, so also the charge
density and current density that the observer measures can be regarded as a scalar ρ~w and
4-vector ~j~w that live in the 3-space of simultaneity. Derive geometric, frame-independent
equations for ρ~w and ~j~w in terms of the charge-current 4-vector ~J and the observer’s 4-
velocity ~w, and derive a geometric expression for ~J in terms of ρ~w, ~j~w, and ~w.

Exercise 2.20 Problem: Frame-Dependent Version of Maxwell’s Equations
From the geometric version of Maxwell’s equations (2.49), derive the elementary, frame-
dependent version

∇ · E =

{

4πρe in Gaussian units
ρe/ǫo in SI units,

∇×B− ∂E

∂t
=

{

4πj in Gaussian units
µoj in SI units,

∇ ·B = 0 , ∇× E+
∂B

∂t
= 0 . (2.51)
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Exercise 2.21 Problem: Potentials for the Electromagnetic Field

(a) Express the electromagnetic field tensor as an antisymmetrized gradient of a 4-vector
potential: in slot-naming index notation

Fαβ = Aβ;α − Aα;β . (2.52a)

Show that, whatever may be the 4-vector potential ~A, the second of the Maxwell
equations (2.49) is automatically satisfied. Show further that the electromagnetic field
tensor is unaffected by a gauge change of the form

~Anew = ~Aold + ~∇ψ , (2.52b)

where ψ is a scalar field (the generator of the gauge change). Show, finally, that it is
possible to find a gauge-change generator that enforces “Lorenz gauge”

~∇ · ~A = 0 (2.52c)

on the new 4-vector potential, and show that in this gauge, the first of the Maxwell
equations (2.49) becomes

� ~A = 4π ~J ; i.e. Aα;µ
µ = 4πJα . (2.52d)

(b) Introduce an inertial reference frame, and in that frame split F into the electric and

magnetic fields E and B, split ~J into the charge and current densities ρe and j, and
split the vector potential into a scalar potential and a 3-vector potential

φ ≡ A0 , A = spatial part of ~A . (2.52e)

Deduce the 3+1 splits of Eqs. (2.52a)–(2.52d) and show that they take the form given
in standard textbooks on electrodynamics.

****************************

2.12 Volumes, Integration, and Conservation Laws

2.12.1 Spacetime Volumes and Integration

In Minkowski spacetime as in Euclidean 3-space (Sec. 1.8), the Levi-Civita tensor is the tool
by which one constructs volumes: The 4-dimensional parallelopiped whose legs are the four
vectors ~A, ~B, ~C, ~D has a 4-dimensional volume given by the analog of Eqs. (1.26) and (1.27):

4-Volume = ǫαβγδA
αBβCγDδ = ǫ( ~A, ~B, ~C, ~D) = det









A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3









. (2.53)
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Note that this 4-volume is positive if the set of vectors { ~A, ~B, ~C, ~D} is right-handed and
negative if left-handed.

Equation (2.53) provides us a way to perform volume integrals over 4-dimensional Min-
kowski spacetime: To integrate a tensor field T over some 4-dimensional region V of spacetime,
we need only divide V up into tiny parallelopipeds, multiply the 4-volume dΣ of each paral-
lelopiped by the value of T at its center, and add. In any right-handed Lorentz coordinate
system, the 4-volume of a tiny parallelopiped whose edges are dxα along the four orthogo-
nal coordinate axes is dΣ = ǫ(dt~e0, dx~ex, dy ~ey, dz ~ez) = ǫ0123 dt dx dy dz = dt dx dy dz (the
analog of dV = dx dy dz). Correspondingly the integral of T over V can be expressed as

∫

V

T αβγdΣ =

∫

V

T αβγdt dx dy dz . (2.54)

By analogy with the vectorial area (1.28) of a parallelogram in 3-space, any 3-dimensional

parallelopiped in spacetime with legs ~A, ~B, ~C has a vectorial 3-volume ~Σ (not to be confused
with the scalar 4-volume Σ) defined by

~Σ( ) = ǫ( , ~A, ~B, ~C) ; Σµ = ǫµαβγA
αBβCγ . (2.55)

Here we have written the 3-volume vector both in abstract notation and in slot-naming index
notation. This 3-volume vector has one empty slot, ready and waiting for a fourth vector
(“leg”) to be inserted, so as to compute the 4-volume Σ of a 4-dimensional parallelopiped.

Notice that the 3-volume vector ~Σ is orthogonal to each of its three legs (because of the

antisymmetry of ǫ), and thus (unless it is null) it can be written as ~Σ = V ~n where V is the
magnitude of the 3-volume and ~n is the unit normal to the three legs.

Interchanging any two legs of the parallelopiped reverses the 3-volume’s sign. Conse-
quently, the 3-volume is characterized not only by its legs but also by the order of its legs,
or equally well, in two other ways: (i) by the direction of the vector ~Σ (reverse the order of

the legs, and the direction of ~Σ will reverse); and (ii) by the sense of the 3-volume, defined
as follows. Just as a 2-volume (i.e., a segment of a plane) in 3-dimensional space has two

sides, so a 3-volume in 4-dimensional spacetime has two sides; cf. Fig. 2.11. Every vector ~D
for which ~Σ · ~D > 0 points out of one side of the 3-volume ~Σ. We shall call that side the
“positive side” of ~Σ; and we shall call the other side, the one out of which point vectors ~D
with ~Σ · ~D < 0, its “negative side”. When something moves through or reaches through or
points through the 3-volume from its negative side to its positive side, we say that this thing
is moving or reaching or pointing in the “positive sense”; and similarly for “negative sense”.
The examples shown in Fig. 2.11 should make this more clear.

Figure 2.11a shows two of the three legs of the volume vector ~Σ = ǫ( ,∆x~ex,∆y~ey,
∆z~ez), where x, y, z are the spatial coordinates of a specific Lorentz frame. It is easy to show

that this vector can also be written as ~Σ = −∆V ~e0, where ∆V is the ordinary volume of the
parallelopiped as measured by an observer in the chosen Lorentz frame, ∆V = ∆x∆y∆z.
Thus, the direction of the vector ~Σ is toward the past (direction of decreasing Lorentz time
t). From this, and the fact that timelike vectors have negative squared length, it is easy to

infer that ~Σ · ~D > 0 if and only if the vector ~D points out of the “future” side of the 3-volume
(the side of increasing Lorentz time t); therefore, the positive side of ~Σ is the future side.

This means that the vector ~Σ points in the negative sense of its own 3-volume.
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Fig. 2.11: Spacetime diagrams depicting 3-volumes in 4-dimensional spacetime, with one spatial
dimension (that along the z-direction) suppressed.

Figure 2.11b shows two of the three legs of the volume vector ~Σ = ǫ( ,∆t~et,∆y~ey, ∆z~ez)

= −∆t∆A~ex (with ∆A = ∆y∆z). In this case, ~Σ points in its own positive sense.
This peculiar behavior is completely general: When the normal to a 3-volume is timelike,

its volume vector ~Σ points in the negative sense; when the normal is spacelike, ~Σ points
in the positive sense; and—it turns out—when the normal is null, ~Σ lies in the 3-volume
(parallel to its one null leg) and thus points neither in the positive sense nor the negative.7

Note the physical interpretations of the 3-volumes of Fig. 2.11: That in Fig. 2.11a is an
instantaneous snapshot of an ordinary, spatial, parallelopiped, while that in Fig. 2.11b is the
3-dimensional region in spacetime swept out during time ∆t by the parallelogram with legs
∆y~ey, ∆z~ez and with area ∆A = ∆y∆z.

Vectorial 3-volume elements can be used to construct integrals over 3-dimensional volumes
(also called 3-dimensional surfaces) in spacetime, e.g.

∫

V3

~A · d~Σ. More specifically: Let
(a, b, c) be (possibly curvilinear) coordinates in the 3-surface (3-volume) V3, and denote by
~x(a, b, c) the spacetime point P on V3 whose coordinate values are (a, b, c). Then (∂~x/∂a)da,
(∂~x/∂b)db, (∂~x/∂c)dc are the vectorial legs of the elementary parallelopiped whose corners are
at (a, b, c), (a+da, b, c), (a, b+db, c), etc; and the spacetime components of these vectorial legs
are (∂xα/∂a)da, (∂xα/∂b)db, (∂xα/∂c)dc. The 3-volume of this elementary parallelopiped is

d~Σ = ǫ

(

, (∂~x/∂a)da, (∂~x/∂b)db, (∂~x/∂c)dc
)

, which has spacetime components

dΣµ = ǫµαβγ
∂xα

∂a

∂xβ

∂b

∂xγ

∂c
dadbdc . (2.56)

This is the integration element to be used when evaluating

∫

V3

~A · d~Σ =

∫

∂V3

AµdΣµ . (2.57)

See Ex. 2.22 for an example.
Just as there are Gauss and Stokes theorems (1.29a) and (1.29b) for integrals in Euclidean

3-space, so also there are Gauss and Stokes theorems in spacetime. The Gauss theorem has

7This peculiar behavior gets replaced by a simpler description if one uses one-forms rather than vectors
to describe 3-volumes; see, e.g., Box 5.2 of Misner, Thorne, and Wheeler (1973).
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the obvious form
∫

V4

(~∇ · ~A)dΣ =

∫

∂V4

~A · d~Σ , (2.58)

where the first integral is over a 4-dimensional region V4 in spacetime, and the second is over
the 3-dimensional boundary ∂V4 of V4, with the boundary’s positive sense pointing outward,
away from V4 (just as in the 3-dimensional case). We shall not write down the 4-dimensional
Stokes theorem because it is complicated to formulate with the tools we have developed thus
far; easy formulation requires differential forms, which we shall not introduce in this book.

2.12.2 Conservation of Charge in Spacetime

We shall use integration over a 3-dimensional region in 4-dimensional spacetime to construct
an elegant, frame-independent formulation of the law of conservation of electric charge:

We begin by examining the geometric meaning of the charge-current 4-vector ~J . We
defined ~J in Eq. (2.50) in terms of its components. The spatial component Jx = Jx = J(~ex)
is equal to the x component of current density jx; i.e. it is the amount Q of charge that flows
across a unit surface area lying in the y-z plane, in a unit time; i.e., the charge that flows
across the unit 3-surface ~Σ = ~ex. In other words, ~J(~Σ) = ~J(~ex) is the total charge Q that

flows across ~Σ = ~ex in ~Σ’s positive sense; and similarly for the other spatial directions. The
temporal component J0 = −J0 = ~J(−~e0) is the charge density ρe; i.e., it is the total charge
Q in a unit spatial volume. This charge is carried by particles that are traveling through
spacetime from past to future, and pass through the unit 3-surface (3-volume) ~Σ = −~e0.
Therefore, ~J(~Σ) = ~J(−~e0) is the total charge Q that flows through ~Σ = −~e0 in its positive

sense. This is the same interpretation as we deduced for the spatial components of ~J .
This makes it plausible, and indeed one can show, that for any small 3-surface ~Σ, ~J(~Σ) ≡

JαΣα is the total charge Q that flows across ~Σ in its positive sense.
This property of the charge-current 4-vector is the foundation for our frame-independent

formulation of the law of charge conservation. Let V be a compact, 4-dimensional region
of spacetime and denote by ∂V its boundary, a closed 3-surface in 4-dimensional spacetime
(Fig. 2.12). The charged media (fluids, solids, particles, ...) present in spacetime carry
electric charge through V, from the past toward the future. The law of charge conservation
says that all the charge that enters V through the past part of its boundary ∂V must exit

t

x y

V

∂V

Fig. 2.12: The 4-dimensional region V in spacetime, and its closed 3-boundary ∂V, used in formu-
lating the law of charge conservation. The dashed lines symbolize, heuristically, the flow of charge
from past toward future.
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through the future part of its boundary. If we choose the positive sense of the boundary’s
3-volume element d~Σ to point out of V (toward the past on the bottom boundary and toward
the future on the top), then this global law of charge conservation can be expressed as

∫

∂V

JαdΣα = 0 . (2.59)

When each tiny charge q enters V through its past boundary, it contributes negatively to the
integral, since it travels through ∂V in the negative sense (from positive side of ∂V toward
negative side); and when that same charge exits V through its future boundary, it contributes
positively. Therefore its net contribution is zero, and similarly for all other charges.

In Ex. 2.23 we show that, when this global law of charge conservation (2.59) is subjected
to a 3+1 split of spacetime into space plus time, it becomes the nonrelativistic integral law
of charge conservation (1.30).

This global conservation law can be converted into a local conservation law with the help
of the 4-dimensional Gauss theorem (2.58),

∫

∂V
JαdΣα =

∫

V
Jα

;αdΣ . Since the left-hand side
vanishes, so must the right-hand side; and in order for this 4-volume integral to vanish for
every choice of V, it is necessary that the integrand vanish everywhere in spacetime:

Jα
;α = 0 ; i.e. ~∇ · ~J = 0 . (2.60)

In a specific but arbitrary Lorentz frame (i.e., in a 3+1 split of spacetime into space plus
time), this becomes the standard differential law of charge conservation (1.31).

2.12.3 Conservation of Particles, Baryons and Rest Mass

Any conserved scalar quantity obeys conservation laws of the same form as those for electric
charge. For example, if the number of particles of some species (e.g. electrons or protons

or photons) is conserved, then we can introduce for that species a number-flux 4-vector ~S

(analog of charge-current 4-vector ~J): In any Lorentz coordinate system S0 is the number

density of particles n and Sj is the particle flux. If ~Σ is a small 3-volume (3-surface) in

spacetime, then ~S(~Σ) = SαΣα is the number of particles that pass through Σ from its
negative side to its positive side. The frame-invariant global and local conservation laws for
these particles take the same form as those for electric charge:

∫

∂V

SαdΣα = 0, where ∂V is any closed 3-surface in spacetime, (2.61a)

Sα
;α = 0 ; i.e. ~∇ · ~S = 0 . (2.61b)

When fundamental particles (e.g. protons and antiprotons) are created and destroyed
by quantum processes, the total baryon number (number of baryons minus number of an-
tibaryons) is still conserved—or, at least this is so to the accuracy of all experiments per-
formed thus far. We shall assume it so in this book. This law of baryon-number conservation
takes the forms (2.61a) and (2.61b), with ~S the number-flux 4-vector for baryons (with an-
tibaryons counted negatively).
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It is useful to express this baryon-number conservation law in Newtonian-like language
by introducing a universally agreed upon mean rest mass per baryon m̄B This m̄B is often
taken to be 1/56 the mass of an 56Fe (iron-56) atomic nucleus, since 56Fe is the nucleus
with the tightest nuclear binding, i.e. the endpoint of thermonuclear evolution in stars. We
multiply the baryon number-flux 4-vector ~S by this mean rest mass per baryon to obtain a
rest-mass-flux 4-vector

~Srm = m̄B
~S , (2.62)

which (since m̄B is, by definition, a constant) satisfies the same conservation laws (2.61a)
and (2.61b) as baryon number.

For media such as fluids and solids, in which the particles travel only short distances
between collisions or strong interactions, it is often useful to resolve the particle number-
flux 4-vector and the rest-mass-flux 4-vector into a 4-velocity of the medium ~u (i.e., the
4-velocity of the frame in which there is a vanishing net spatial flux of particles), and the
particle number density no or rest mass density ρo as measured in the medium’s rest frame:

~S = no~u , ~Srm = ρo~u . (2.63)

See Ex. 2.24.
We shall make use of the conservation laws ~∇ · ~S = 0 and ~∇ · ~Srm = 0 for particles

and rest mass later in this book, e.g. when studying relativistic fluids; and we shall find the
expressions (2.63) for the number-flux 4-vector and rest-mass-flux 4-vector quite useful. See,
e.g., the discussion of relativistic shock waves in Ex. 17.11.

****************************

EXERCISES

Exercise 2.22 Practice and Example: Evaluation of 3-Surface Integral in Spacetime
In Minkowski spacetime the set of all events separated from the origin by a timelike interval
a2 is a 3-surface, the hyperboloid t2 − x2 − y2 − z2 = a2, where {t, x, y, z} are Lorentz
coordinates of some inertial reference frame. On this hyperboloid, introduce coordinates
{χ, θ, φ} such that

t = a coshχ , x = a sinhχ sin θ cosφ , y = a sinhχ sin θ sin φ; , z = a sinhχ cos θ .
(2.64)

Note that χ is a radial coordinate and (θ, φ) are spherical polar coordinates. Denote by V3

the portion of the hyperboloid with radius χ ≤ b.

(a) Verify that for all values of (χ, θ, φ), the points (2.64) do lie on the hyperboloid.

(b) On a spacetime diagram, draw a picture of V3, the {χ, θ, φ} coordinates, and the

elementary volume element (vector field) d~Σ [Eq. (2.56)].

(c) Set ~A ≡ ~e0 (the temporal basis vector), and express
∫

V3

~A · d~Σ as an integral over
{χ, θ, φ}. Evaluate the integral.
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(d) Consider a closed 3-surface consisting of the segment V3 of the hyperboloid as its top,
the hypercylinder {x2 + y2 + z2 = a2 sinh2 b, 0 < t < a cosh b} as its sides, and the
sphere {x2 + y2 + z2 ≤ a2 sinh2 b , t = 0} as its bottom. Draw a picture of this closed
3-surface on a spacetime diagram. Use Gauss’s theorem, applied to this 3-surface, to
show that

∫

V3

~A · d~Σ is equal to the 3-volume of its spherical base.

Exercise 2.23 Derivation and Example: Global Law of Charge Conservation in an Inertial
Frame
Consider the global law of charge conservation

∫

∂V
JαdΣα = 0 for a special choice of the

closed 3-surface ∂V: The bottom of ∂V is the ball {t = 0, x2 + y2 + z2 ≤ a2}, where
{t, x, y, z} are the Lorentz coordinates of some inertial frame. The sides are the spherical
world tube {0 ≤ t ≤ T, x2 + y2 + z2 = a2}. The top is the ball {t = T, x2 + y2 + z2 ≤ a2}.

(a) Draw this 3-surface in a spacetime diagram.

(b) Show that for this ∂V,
∫

∂V
JαdΣα = 0 is the nonrelativistic integral conservation law

(1.30) for charge.

Exercise 2.24 Example: Rest-mass-flux 4-vector, Lorentz contraction of rest-mass density,
and rest-mass conservation for a fluid
Consider a fluid with 4-velocity ~u, and rest-mass density ρo as measured in the fluid’s rest
frame.

(a) From the physical meanings of ~u, ρo, and the rest-mass-flux 4-vector ~Srm, deduce Eq.
(2.63).

(b) Examine the components of ~Srm in a reference frame where the fluid moves with ordi-
nary velocity v. Show that S0 = ρoγ, S

j = ρoγv
j , where γ = 1/

√
1− v2. Explain the

physical interpretation of these formulas in terms of Lorentz contraction.

(c) Show that the law of conservation of rest-mass ~∇ · ~Srm = 0, takes the form

dρo
dτ

= −ρo ~∇ · ~u , (2.65)

where d/dτ is derivative with respect to proper time moving with the fluid.

(d) Consider a small 3-dimensional volume V of the fluid, whose walls move with the fluid
(so if the fluid expands, V goes up). Explain why the law of rest-mass conservation
must take the form d(ρoV )/dτ = 0. Thereby deduce that

~∇ · ~u = (1/V )(dV/dτ) . (2.66)

****************************



41

2.13 The Stress-energy Tensor and Conservation of

4-Momentum

2.13.1 Stress-Energy Tensor

We conclude this chapter by formulating the law of 4-momentum conservation in ways anal-
ogous to our laws of conservation of charge, particles, baryons and rest mass. This task
is not trivial, since 4-momentum is a vector in spacetime, while charge, particle number,
baryon number, and rest mass are scalar quantities. Correspondingly, the density-flux of
4-momentum must have one more slot than the density-fluxes of charge, baryon number and
rest mass, ~J , ~S and ~Srm; it must be a second-rank tensor. We call it the stress-energy tensor
and denote it T( , ).

Consider a medium or field flowing through 4-dimensional spacetime. As it crosses a
tiny 3-surface ~Σ, it transports a net electric charge ~J(~Σ) from the negative side of ~Σ to

the positive side, and net baryon number ~S(~Σ) and net rest mass ~Srm(~Σ); and similarly, it

transports a net 4-momentum T( , ~Σ) from the negative side to the positive side:

T( , ~Σ) ≡ (total 4-momentum ~P that flows through ~Σ); i.e., T αβΣβ = P α . (2.67)

From this definition of the stress-energy tensor we can read off the physical meanings of
its components on a specific, but arbitrary, Lorentz-coordinate basis: Making use of method
(2.24b) for computing the components of a vector or tensor, we see that in a specific, but

arbitrary, Lorentz frame (where ~Σ = −~e0 is a volume vector representing a parallelopiped
with unit volume ∆V = 1, at rest in that frame, with its positive sense toward the future):

−Tα0 = T(~eα,−~e0) = ~P (~eα) =





α-component of 4-momentum that
flows from past to future across a unit

volume ∆V = 1 in the 3-space t = const





= (α-component of density of 4-momentum ) . (2.68a)

Specializing α to be a time or space component and raising indices, we obtain the specialized
versions of (2.68a)

T 00 = (energy density as measured in the chosen Lorentz frame),

T j0 = (density of j-component of momentum in that frame). (2.68b)

Similarly, the αx component of the stress-energy tensor (also called the α1 component since
x = x1 and ~ex = ~e1) has the meaning

Tα1 ≡ Tαx ≡ T(~eα, ~ex) =









α-component of 4-momentum that crosses
a unit area ∆y∆z = 1 lying in a surface of
constant x, during unit time ∆t, crossing

from the −x side toward the +x side









=

(

α component of flux of 4-momentum
across a surface lying perpendicular to ~ex

)

. (2.68c)
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The specific forms of this for temporal and spatial α are (after raising indices)

T 0x =

(

energy flux across a surface perpendicular to ~ex,
from the −x side to the +x side

)

, (2.68d)

T jx =

(

flux of j-component of momentum across a surface
perpendicular to ~ex, from the −x side to the +x side

)

=

(

jx component
of stress

)

.

(2.68e)

The αy and αz components have the obvious, analogous interpretations.
These interpretations, restated much more briefly, are:

T 00 = (energy density), T j0 = (momentum density), T 0j = (energy flux), T jk = (stress).

(2.68f)
Although it might not be obvious at first sight, the 4-dimensional stress-energy tensor is

always symmetric: in index notation (where indices can be thought of as representing the
names of slots, or equally well components on an arbitrary basis)

T αβ = T βα . (2.69)

This symmetry can be deduced by physical arguments in a specific, but arbitrary, Lorentz
frame: Consider, first, the x0 and 0x components, i.e., the x-components of momentum
density and energy flux. A little thought, symbolized by the following heuristic equation,
reveals that they must be equal

T x0 =

(

momentum
density

)

=
(∆E)dx/dt
∆x∆y∆z

=
∆E

∆y∆z∆t
=

(

energy
flux

)

, (2.70)

and similarly for the other space-time and time-space components: T j0 = T 0j . [In Eq. (2.70),
in the first expression ∆E is the total energy (or equivalently mass) in the volume ∆x∆y∆z,
(∆E)dx/dt is the total momentum, and when divided by the volume we get the momentum
density. The third equality is just elementary algebra, and the resulting expression is obvi-
ously the energy flux.] The space-space components, being equal to the stress tensor, are
also symmetric, T jk = T kj, by the argument embodied in Fig. 1.6 above. Since T 0j = T j0

and T jk = T kj, all components in our chosen Lorentz frame are symmetric, T αβ = T βα.
This means that, if we insert arbitrary vectors into the slots of T and evaluate the resulting
number in our chosen Lorentz frame, we will find

T( ~A, ~B) = T αβAαBβ = T βαAαBβ = T( ~B, ~A) ; (2.71)

i.e., T is symmetric under interchange of its slots.
Let us return to the physical meanings (2.68f) of the components of the stress-energy

tensor. With the aid of T’s symmetry, we can restate those meanings in the language of a
3+1 split of spacetime into space plus time: When one chooses a specific reference frame,
that choice splits the stress-energy tensor up into three parts. Its time-time part is the energy
density T 00, Its time-space part T 0j = T j0 is the energy flux or equivalently the momentum
density, and its space-space part T jk is the symmetric stress tensor.
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2.13.2 4-Momentum Conservation

Our interpretation of ~J(~Σ) ≡ JαΣα as the net charge that flows through a small 3-surface ~Σ
from its negative side to its positive side gave rise to the global conservation law for charge,
∫

∂V
JαdΣα = 0 [Eqs. (2.59) and Fig. 2.12]. Similarly the role of T( , ~Σ) [T αβΣβ in slot

naming index notation] as the net 4-momentum that flows through ~Σ from its negative side
to positive gives rise to the following equation for conservation of 4-momentum:

∫

∂V

T αβdΣβ = 0 . (2.72)

This equation says that all the 4-momentum that flows into the 4-volume V of Fig. 2.12
through its 3-surface ∂V must also leave V through ∂V; it gets counted negatively when it
enters (since it is traveling from the positive side of ∂V to the negative), and it gets counted
positively when it leaves, so its net contribution to the integral (2.72) is zero.

This global law of 4-momentum conservation can be converted into a local law (analogous

to ~∇ · ~J = 0 for charge) with the help of the 4-dimensional Gauss’s theorem (2.58). Gauss’s
theorem, generalized in the obvious way from a vectorial integrand to a tensorial one, says:

∫

V

T αβ
;β dΣ =

∫

∂V

T αβdΣβ . (2.73)

Since the right-hand side vanishes, so must the left-hand side; and in order for this 4-volume
integral to vanish for every choice of V, the integrand must vanish everywhere in spacetime:

T αβ
;β = 0 ; i.e. ~∇ · T = 0 . (2.74a)

In the second, index-free version of this local conservation law, the ambiguity about which slot
the divergence is taken on is unimportant, since T is symmetric in its two slots: T αβ

;β = T βα
;β.

In a specific but arbitrary Lorentz frame, the local conservation law (2.74a) for 4-
momentum has as its temporal and spatial parts

∂T 00

∂t
+
∂T 0k

∂xk
= 0 , (2.74b)

i.e., the time derivative of the energy density plus the 3-divergence of the energy flux vanishes;
and

∂T j0

∂t
+
∂T jk

∂xk
= 0 , (2.74c)

i.e., the time derivative of the momentum density plus the 3-divergence of the stress (i.e., of
momentum flux) vanishes. Thus, as one should expect, the geometric, frame-independent law
of 4-momentum conservation includes as special cases both the conservation of energy and
the conservation of momentum; and their differential conservation laws have the standard
form that one expects both in Newtonian physics and in special relativity: time derivative
of density plus divergence of flux vanishes; cf. Eq. (1.36) and associated discussion.
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2.13.3 Stress-Energy Tensors for Perfect Fluid and

Electromagnetic Field

As an important example that illustrates the stress-energy tensor, consider a perfect fluid —
i.e., a medium whose stress-energy tensor, evaluated in its local rest frame (a Lorentz frame
where T j0 = T 0j = 0), has the form

T 00 = ρ , T jk = Pδjk . (2.75a)

Here ρ is a short-hand notation for the energy density T 00 (density of total mass-energy,
including rest mass), as measured in the local rest frame; and the stress tensor T jk in that
frame is an isotropic pressure P [Eq. (1.34)]. From this special form of T αβ in the local rest
frame, one can derive the following geometric, frame-independent expression for the stress-
energy tensor in terms of the 4-velocity ~u of the local rest frame, i.e., of the fluid itself, the
metric tensor of spacetime g, and the rest-frame energy density ρ and pressure P :

T αβ = (ρ+ P )uαuβ + Pgαβ ; i.e., T = (ρ+ P )~u⊗ ~u+ Pg . (2.75b)

See Ex. 2.26, below. In Part V of this book, we shall explore in depth the implications of
this stress-energy tensor, in the Newtonian limit. Notice, as an example, that the Newtonian
limit (P ≪ ρ, u0 ≃ 1, uj ≃ vj) of the stress part of this T αβ is T jk = ρvjvk + Pδjk, which
we met in Ex. 1.12.

Another example of a stress-energy tensor is that for the electromagnetic field, which
takes the following form in Gaussian units [see Exercise 2.28]:

T αβ =
1

4π

(

F αµF β
µ −

1

4
gαβF µνFµν

)

. (2.76)

****************************

EXERCISES

Exercise 2.25 Example: Global Conservation of 4-Momentum in an Inertial Frame
Consider the 4-dimensional parallelopiped V whose legs are ∆t~et, ∆x~ex, ∆y~ey ∆z~ez , where
(t, x, y, z) = (x0, x1, x2, x3) are the coordinates of some inertial frame. The boundary ∂V of
this V has eight 3-dimensional “faces”. Identify these faces, and write the integral

∫

∂V
T 0βdΣβ

as the sum of contributions from each of them. According to the law of energy conservation,
this sum must vanish. Explain the physical interpretation of each of the eight contributions
to this energy conservation law. (See Ex. 2.23 for an analogous interpretation of charge
conservation.)

Exercise 2.26 **Derivation and Example: Stress-Energy Tensor and Energy-Momentum
Conservation for a Perfect Fluid

(a) Derive the frame-independent expression (2.75b) for the perfect fluid stress-energy
tensor from its rest-frame components (2.75a).
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(b) Explain why the projection of ~∇·T = 0 along the fluid 4-velocity, ~u · (~∇·T) = 0, should
represent energy conservation as viewed by the fluid itself. Show that this equation
reduces to

dρ

dτ
= −(ρ+ P )~∇ · ~u . (2.77a)

With the aid of Eq. (2.66), bring this into the form

d(ρV )

dτ
= −P dV

dτ
, (2.77b)

where V is the 3-volume of some small fluid element as measured in the fluid’s local
rest frame. What are the physical interpretations of the left and right sides of this
equation, and how is it related to the first law of thermodynamics?

(c) Read the discussion, in Ex. 2.10, of the tensor P = g + ~u ⊗ ~u that projects into the
3-space of the fluid’s rest frame. Explain why PµαT

αβ
;β = 0 should represent the law of

force balance (momentum conservation) as seen by the fluid. Show that this equation
reduces to

(ρ+ P )~a = −P · ~∇P , (2.77c)

where ~a = d~u/dτ is the fluid’s 4-acceleration. This equation is a relativistic version of
Newton’s “F = ma”. Explain the physical meanings of the left and right hand sides.
Infer that ρ+ P must be the fluid’s inertial mass per unit volume.

Exercise 2.27 **Example: Inertial Mass Per Unit Volume
Suppose that some medium has a rest frame (unprimed frame) in which its energy flux
and momentum density vanish, T 0j = T j0 = 0. Suppose that the medium moves in the x
direction with speed very small compared to light, v ≪ 1, as seen in a (primed) laboratory
frame, and ignore factors of order v2. The “ratio” of the medium’s momentum density T j′0′

as measured in the laboratory frame to its velocity vi = vδix is called its total inertial mass
per unit volume, and is denoted ρinertji :

T j′0′ = ρinertji vi . (2.78)

(a) Show, using a Lorentz transformation from the medium’s (unprimed) rest frame to the
(primed) laboratory frame, that

ρinertji = T 00δji + Tji . (2.79)

(b) Give a physical explanation of the contribution Tjivi to the momentum density.

(c) Show that for a perfect fluid [Eq. (2.75b)] the inertial mass per unit volume is isotropic
and has magnitude ρ + P , where ρ is the mass-energy density and P is the pressure
measured in the fluid’s rest frame:

ρinertji = (ρ+ P )δji . (2.80)

See Ex. 2.26 above for this inertial-mass role of ρ+ P in the law of force balance.
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Exercise 2.28 **Example: Stress-Energy Tensor, and Energy-Momentum Conservation for
the Electromagnetic Field

(a) Compute from Eq. (2.76) the components of the electromagnetic stress-energy tensor
in an inertial reference frame in Gaussian units. Your answer should be the expressions
given in electrodynamics textbooks:

T 00 =
E2 +B2

8π
, T 0jej = T j0ej =

E×B

4π
,

T jk =
1

8π

[

(E2 +B2)δjk − 2(EjEk +BjBk)
]

. (2.81)

See also Ex. 1.13 above for an alternative derivation of the stress tensor Tjk.

(b) Show that for the electromagnetic field,

T αβ
;β = −F αµJµ , (2.82a)

where Jµ is the charge-current 4-vector.

(b) Show that the divergence of the stress-energy tensor (2.76) is given by

T µν
;ν =

1

4π
(F µα

;νF
ν
α + F µαF ν

α;ν −
1

2
Fαβ

;µF αβ) . (2.82b)

(c) Combine this with the Maxwell equations (2.49) to show that

∇ · T = −F( ,J) ; i.e., T αβ
;β = −F αβJβ . (2.82c)

(c) The matter that carries the electric charge and current can exchange energy and mo-
mentum with the electromagnetic field. Explain why Eq. (2.82a) is the rate per unit
volume at which that matter feeds 4-momentum into the electromagnetic field, and
conversely, +F αµJµ is the rate per unit volume at which the electromagnetic field
feeds 4-momentum into the matter. Show, further, that (as viewed in any reference
frame) the time and space components of this quantity are

dEmatter

dtdV
= −F 0jJj = E · j , dpmatter

dtdV
= ρeE+ j×B , (2.82d)

where ρe is charge density and j is current density [Eq. (2.50)]. The first of these
equations is ohmic heating of the matter by the electric field; the second is the Lorentz
force per unit volume on the matter; cf. Ex. 1.13b.

****************************
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Box 2.3

Important Concepts in Chapter 2

• Foundational Concepts

– Inertial reference frame, Sec. 2.2.1.
– Events, and 4-vectors as arrows between events, Sec. 2.2.1

– Invariant interval and how it defines the geometry of spacetime, Sec. 2.2.2.

• Principle of Relativity: Laws of physics are frame-independent geometric rela-
tions between geometric objects (same as Geometric Principal for physical laws in
Newtonian physics), Sec. 2.2.2. Important examples:

– Relativistic particle kinetics, Sec. 2.4.1.

– Lorentz force law (2.21) in terms of the electromagnetic field tensor F, and its
connection to the 3-dimensional version in terms of E and B, Sec. 2.11.

– Conservation of 4-momentum in particle interactions, Eq. (2.16).
– Global and local conservation laws for charge, baryon number, and 4-

momentum, Secs. 2.12.2, 2.12.3, 2.13.2.

• Differential geometry

– Tensor as a linear function of vectors, Sec. 2.3. Important examples: metric
tensor (2.7), Levi-Civita tensor (2.44), Electromagnetic field tensor (2.19) and
stress-energy tensor (2.67).

– Slot-naming index notation, end of Sec. 2.5; all of Sec. 1.5.1.
– Differentiation and integration of tensors, Secs. 2.10 and 2.12.1.

– Gauss’s theorem in Minkowski spacetime (2.58).

– Geometric computations without coordinates or Lorentz transformations (e.g.
derive Lorentz force law, Ex. 2.4.2, derive Dopper shift, Ex. 2.11).

– Lorentz transformations, Sec. 2.7.

• 3+1 Split of spacetime into space plus time induced by choice of inertial
frame, Sec. 2.6, and resulting 3+1 split of physical quantities and laws:

– 4-momentum → energy and momentum, Eqs. (2.27), (2.28), (2.30); Ex. 2.9.
– Electromagnetic tensor → electric field and magnetic field, Sec. 2.11.

– Charge-current 4-vector → charge density and current density, Ex. 2.19.
– 3-vectors as 4-vectors living in observer’s 3-surface of simultaneity, Sec. 2.11

and Fig. 2.10.

• Spacetime diagrams, Secs. 2.2.1 and 2.8; used to understand Lorentz contraction,
time dilation, simultaneity breakdown (Ex. 2.14) and conservation laws (Fig. 2.12).
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Bibliographic Note

For an inspiring taste of the history of special relativity, see the original papers by Einstein,
Lorentz, and Minkowski, translated into English and archived in Einstein et. al. (1923).

Early relativity textbooks [see the bibliography on p. 567 of Jackson (1999)] emphasized
the transformation properties of physical quantities, in going from one inertial frame to
another, rather than their roles as frame-invariant geometric objects. Minkowski (1908)
introduced geometric thinking, but only in recent decades — in large measure due to the
influence of John Wheeler — has the geometric viewpoint gained ascendancy.

In our opinion, the best elementary introduction to special relativity is the first edition
of Taylor and Wheeler (1966); the more ponderous second edition (1992) is also good. Both
adopt the geometric viewpoint. At an intermediate level, most physics students learn rela-
tivity from electrodynamics texts such as Griffiths (1999) and Jackson (1999), or classical
mechanics texts such as Goldstein (1980). Avoid the first and second editions of Jackson
and of Goldstein, which use imaginary time and obscure the geometry of spacetime! Grif-
fiths and Jackson (like old relativity texts) adopt the “transformation” viewpoint on physical
quantities, rather than the geometric viewpoint. Under John Safko’s influence, the third
edition of Goldstein [Goldstein, Poole and Safko (2002)] has become strongly geometric.

For fully geometric treatments of special relativity, analogous to ours, see not only the
third edition of Goldstein, but also the special relativity sections in modern general relativity
texts. Some we like at the undergraduate level are Schutz (1985) and especially Hartle (2002);
and at a more advanced level, Carroll (2004) and the venerable Misner, Thorne and Wheeler
(1973) — often cited as MTW. In Parts II–VI of our book, we minimize, so far as possible,
the proliferation of mathematical concepts (avoiding, e.g., differential forms and dual bases).
By contrast, other advanced treatments (e.g. MTW, Goldstein 3rd edition, and Carroll)
embrace the richer mathematics.
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