
Contents

5 Statistical Thermodynamics 1
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
5.2 Microcanonical Ensemble and the Energy Representation of Thermodynamics 3

5.2.1 Extensive and Intensive Variables; Fundamental Potential . . . . . . 3
5.2.2 Intensive Variables Identified Using Measuring Devices; First Law of

Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2.3 Euler’s Equation and Form of the Fundamental Potential . . . . . . . 8
5.2.4 Everything Deducible from First Law; Maxwell Relations . . . . . . . 8
5.2.5 Mechanism of Entropy Increase When Energy is Injected . . . . . . . 9
5.2.6 Representations of Thermodynamics . . . . . . . . . . . . . . . . . . 10

5.3 Grand Canonical Ensemble and the Grand Potential Representation of Ther-
modynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.1 The Grand Potential Representation, and Computation of Thermody-

namic Properties as a Grand Canonical Sum . . . . . . . . . . . . . . 11
5.3.2 Nonrelativistic van der Waals Gas . . . . . . . . . . . . . . . . . . . . 15

5.4 Canonical Ensemble and the Physical-Free-Energy Representation of Ther-
modynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.1 Experimental Meaning of Physical Free Energy . . . . . . . . . . . . 22
5.4.2 Ideal Gas with Internal Degrees of Freedom . . . . . . . . . . . . . . 23

5.5 The Gibbs Representation of Thermodynamics; Phase Transitions and Chem-
ical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5.1 Minimum Principles for Gibbs and Other Fundamental Thermody-

namic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5.2 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5.3 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 Fluctuations of Systems in Statistical Equilibrium . . . . . . . . . . . . . . . 39
5.7 T2 Renormalization Group Methods for The Ising Model of a Ferromagnetic

Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.8 T2 Monte Carlo Methods for the Ising Model . . . . . . . . . . . . . . . . 52

i



Chapter 5

Statistical Thermodynamics

Version 1105.3.K, 16 October 2011
Please send comments, suggestions, and errata via email to kip@caltech.edu, or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 5.1
Reader’s Guide

• Relativity enters into portions of this chapter solely via the relativistic energies and
momenta of high-speed particles (Sec. 1.10.)

• This chapter relies in crucial ways on Secs. 3.2 and 3.3 of Chap. 3 and on Secs. 4.2–
4.8 of Chap. 4.

• Portions of Chap. 6 rely on Sec. 5.6 of this chapter. Portions of Part V (Fluid
Mechanics) rely on elementary thermodynamic concepts and equations of state
treated in this chapter, but most readers will already have met these in a course
on elementary thermodynamics.

• Other chapters do not depend strongly on this one.

5.1 Overview

In Chap. 4, we introduced the concept of statistical equilibrium and studied, briefly, some
of the properties of equilibrated systems. In this chapter we shall develop the theory of
statistical equilibrium in a more thorough way. The title of this chapter, “Statistical Ther-
modynamics,” emphasizes two aspects of the theory of statistical equilibrium. The term
thermodynamics is an ancient one that predates statistical mechanics. It refers to a study of
the macroscopic properties of systems that are in or near equilibrium, such as their energy
and entropy. Despite paying no attention to the microphysics, classical thermodynamics is
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a very powerful theory for deriving general relationships between macroscopic properties.
Microphysics influences the macroscopic world in a statistical manner and so, in the late
nineteenth century, Willard Gibbs and others developed statistical mechanics and showed
that it provides a powerful conceptual underpinning for classical thermodynamics. The
resulting synthesis, statistical thermodynamics, adds greater power to thermodynamics by
augmenting to it the statistical tools of ensembles and distribution functions.

In our study of statistical thermodynamics we shall restrict attention to an ensemble of
large systems that are in statistical equilibrium. By “large” is meant a system that can be
broken into a large number Nss of subsystems that are all macroscopically identical to the
full system except for having 1/Nss as many particles, 1/Nss as much volume, 1/Nss as much
energy, 1/Nss as much entropy, . . . . (Note that this constrains the energy of interaction
between the subsystems to be negligible.) Examples are one kilogram of plasma in the center
of the sun and a one kilogram sapphire crystal.

The equilibrium thermodynamic properties of any type of large system (e.g. a monatomic
gas) can be derived using any one of the statistical equilibrium ensembles of the last chapter
(microcanonical, canonical, grand canonical, Gibbs). For example, each of these ensembles
will predict the same equation of state P = (N/V )kBT for an ideal monatomic gas, even
though in one ensemble each system’s number of particles N is precisely fixed, while in
another ensemble N can fluctuate so that strictly speaking one should write the equation
of state as P = (N̄/V )kBT with N̄ the ensemble average of N . (Here and throughout this
chapter, for compactness we use bars rather than brackets to denote ensemble averages, i.e.
N̄ rather than 〈N〉)

The equations of state are the same to very high accuracy because the fractional fluctu-
ations of N are so extremely small, ∆N/N ∼ 1/

√
N̄ ; cf. Ex. 5.10. Although the thermody-

namic properties are independent of the equilibrium ensemble, specific properties are often
derived most quickly, and the most insight usually accrues, from that ensemble which most
closely matches the physical situation being studied.

In Secs. 5.2–5.5, we shall use the microcanonical, grand canonical, canonical and Gibbs
ensembles to derive many useful results from statistical thermodynamics: fundamental po-
tentials expressed as statistical sums over microstates, variants of the first law of thermody-
namics, equations of state, Maxwell relations, Euler’s equation, ... . Table 5.1 summarizes
the most important of those statistical-equilibrium results and some generalizations of them.
Readers may wish to delay studying this table until they have read further into the chapter.

As we saw in Chap. 4, when systems are out of statistical equilibrium, their evolution
toward equilibrium is driven by the law of entropy increase—the second law of thermo-
dynamics. In Sec. 5.5 we formulate the fundamental potential (Gibbs potential) for an
out-of-equilibrium ensemble that interacts with a heat and volume bath, we discover a sim-
ple relationship between that fundamental potential and the entropy of system plus bath,
and from that relationship we learn that the second law, in this case, is equivalent to a law
of decrease of the Gibbs potential. As applications, we learn how chemical potentials drive
chemical reactions and phase transitions. In Sec. 5.6 we study spontaneous fluctuations of a
system away from equilibrium, when it is coupled to a heat and particle bath, and discover
how the fundamental potential (in this case Gibbs potential) can be used to compute the
probabilities of such fluctuations. These out-of-equilibrium aspects of statistical mechanics
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Representation Distribution
& Ensemble First Law Bath Function ρ
Energy & Microcanonical dE = TdS + µ̃dN − PdV none const = e−S/kB

(Secs. 4.5 and 5.2) E const in δE
Enthalpy dH = TdS + µ̃dN + V dP V & E const = e−S/kB

(Exs. 5.5 and 5.13) dE = −PdV Hconst
Physical-Free-Energy & Can- dF = −SdT + µ̃dN − PdV E e(F−E)/kBT

onical (Secs. 4.4.1 and 5.4)
Gibbs dG = −SdT + µ̃dN + V dP E & V e(G−E−PV )/kBT

(Secs. 4.4.2 and 5.5)
Grand Canonical dΩ = −SdT − Ndµ̃ − PdV E & N e(Ω−E+µ̃N)/kBT

(Secs. 4.4.2 and 5.3)

Table 5.1: Representations and Ensembles for Statistical Equilibrium; cf. Table 5.2.

(evolution toward equilibrium and fluctuations away from equilibrium) are summarized in
Table 5.2, not just for heat and volume baths, but for a wide variety of other baths. Again,
readers may wish to delay studying the table until they have read further into the chapter.

Although the conceptual basis of statistical thermodynamics should be quite clear, de-
riving quantitative results for real systems from their microscopic statistical properties can
be formidably difficult. In a macroscopic sample, there is a huge number of possible micro-
scopic arrangements (quantum states) and these all have to be taken into consideration via
statistical sums if we want to understand the macroscopic properties of the most frequently
occurring configurations. Direct summation over states is hopelessly impractical for most
real systems. We meet an example in Sec. 5.3.2: a derivation of the van der Waal’s equa-
tion of state for a dilute high-temperature gas, where the interaction energy between gas
molecules is a weak perturbation. Even here, at leading order in perturbation theory, the
derivation by a statistical sum over grand canonically distributed quantum states is some-
what complex and tricky. When the interactions are stronger, straightforward methods can
become prohibitively difficult.

However, in recent years a number of powerful approximation techniques have been de-
vised for performing the statistical sums. In Secs. 5.7 and 5.8 we give the reader the flavor of
two of these techniques: the renormalization group and Monte Carlo methods. We illustrate
and compare these techniques by using them to study a phase transition in a simple model
for ferromagnetism called the Ising model.

5.2 Microcanonical Ensemble and the Energy Repre-
sentation of Thermodynamics

5.2.1 Extensive and Intensive Variables; Fundamental Potential

Consider a microcanonical ensemble of large, closed systems that have attained statistical
equilibrium. We can describe the ensemble macroscopically using a set of thermodynamic
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variables. These variables can be divided into two classes: extensive variables (Sec. 4.4.1)
which double if one doubles the system’s size (volume, mass, . . .), and intensive variables
whose magnitudes are independent of the system’s size. Examples of extensive variables are
a system’s total energy E , entropy S, volume V , magnetization M, and number of conserved
particles of various species NI . Examples of intensive variables are temperature T , pressure
P , the magnetic field strength H imposed on the system from the outside, and the chemical
potentials µ̃I for various species of particles.

For a large, closed system, there is a complete set of extensive variables that we can
specify independently — usually its volume V , total energy E or entropy S, and number NI

of particles of each species I. The values of the other extrinsic variables and all the intrinsic
variables are determined in terms of this complete set by methods that we shall derive.

The particle species I in the complete set must only include those whose particles are
conserved on the timescales of interest. For example, if photons can be emitted and absorbed,
then one must not specify Nγ, the number of photons; rather, Nγ will come to an equilibrium
value that is governed by the values of the other extensive variables. Also, one must omit
from the set {I} any conserved particle species whose numbers are automatically determined
by the numbers of other, included species. For example, gas inside the sun is always charge
neutral to very high precision, and therefore the number of electrons Ne in a sample of gas
is always determined by the number of protons Np and the number of Helium nuclei (alpha
particles) Nα: Ne = Np + 2Nα. Therefore, if one includes Np and Nα in one’s complete set
of extensive variables, one must omit Ne.

As in Chap. 4, we shall formulate the theory relativistically correctly, but shall formulate
it solely in the mean rest frames of the systems and baths being studied. Correspondingly, in
our formulation we shall generally include the particle rest masses mI in the total energy E
and in the chemical potentials µ̃I . For very nonrelativistic systems, however, we shall usually
replace E by the nonrelativistic energy E ≡ E −

∑
I NImIc2, and µ̃I by the nonrelativistic

chemical potential µI ≡ µ̃I−mIc2 (though, as we shall see in Sec. 5.5 when studying chemical
reactions, the identification of the appropriate rest mass mI to subtract is occasionally a
delicate issue.)

For simplicity, we shall temporarily specialize to a microcanonical ensemble of unmag-
netized one-species systems, which all have identically the same values of a complete set of
three extrinsic variables: the energy E ,1 number of particles N , and volume V . Suppose that
the microscopic nature of the ensemble’s systems is known. Then, at least in principle and
often in practice, one can identify from that microscopic nature the quantum states that are
available to the system (given its constrained values of E , N , and V ), one can count those
quantum states, and from their total number Nstates one can compute the ensemble’s total
entropy S = kB ln Nstates [cf Eq. (4.34)]. The resulting entropy can be regarded as a function
of the complete set of extensive variables,

S = S(E , N, V ) , (5.1)

and this equation can then be inverted to give the total energy in terms of the entropy and

1In practice, as was illustrated in Ex. 4.7, one must allow E to fall in some tiny but finite range δE rather
than constraining it precisely, and one must then check to be sure that the results of one’s analysis are
independent of δE .



5

the other extensive variables
E = E(S, N, V ) . (5.2)

We call the energy E , viewed as a function of S, N , and V , the fundamental thermodynamic
potential for the microcanonical ensemble. When using this fundamental potential, we regard
S, N and V as our complete set of extensive variables rather than E , N and V . From the
fundamental potential, as we shall see, one can deduce all other thermodynamic properties
of the system.

5.2.2 Intensive Variables Identified Using Measuring Devices; First
Law of Thermodynamics

In Sec. 4.4.1, we used kinetic theory considerations to identify the thermodynamic tempera-
ture T of the canonical ensemble [Eq. (4.19)]. It is instructive to discuss how this temperature
arises in the microcanonical ensemble. Our discussion makes use of an idealized thermometer
consisting of an idealized atom that has only two states, |0〉 and |1〉 with energies E0 and
E1 = E0 + ∆E . The atom, initially in its ground state, is brought into thermal contact with
one of the large systems of our microcanonical ensemble and then monitored over time as it
is stochastically excited and de-excited. The ergodic hypothesis (Sec. 4.5) guarantees that
the atom traces out a history of excitation and deexcitation that is governed statistically
by the canonical ensemble for a collection of such atoms exchanging energy (heat) with our
large system (the heat bath). More specifically, if T is the (unknown) temperature of our
system, then the fraction of the time the atom spends in its excited state, divided by the
fraction spent in its ground state, is equal to the canonical distribution’s probability ratio

ρ1

ρ0
=

e−E1/kBT

e−E0/kBT
= e−∆E/kBT . (5.3a)

This ratio can also be computed from the properties of the full system augmented by the
two-state atom. This augmented system is microcanonical with a total energy E + E0, since
the atom was in the ground state when first attached to the full system. Of all the quantum
states available to this augmented system, the ones in which the atom is in the ground state
constitute a total number N0 = eS(E,N,V )/kB ; and those with the atom in the excited state
constitute a total number N1 = eS(E−∆E,N,V )/kB . Here we have used the fact that the number
of states available to the augmented system is equal to that of the original, huge system
(since the atom, in each of the two cases, is forced to be in a unique state); and we have
expressed that number of states of the original system, for each of the two cases, in terms of
the original system’s entropy function, Eq. (5.1). The ratio of the number of states N1/N0

is (by the ergodic hypothesis) the ratio of the time that the augmented system spends with
the atom excited, to the time spent with the atom in its ground state; i.e., it is equal to
ρ1/ρ0

ρ1

ρ0
=

N1

N0
=

eS(E−∆E,N,V )/kB

eS(E,N,V )/kB
= exp

[
−∆E

kB

(
∂S

∂E

)

N,V

]
. (5.3b)
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By equating Eqs. (5.3a) and (5.3b), we obtain an expression for the original system’s temper-
ature T in terms of the partial derivative (∂E/∂S)N,V of its fundamental potential E(S, N, V )

T =
1

(∂S/∂E)N,V
=

(
∂E
∂S

)

N,V

, (5.3c)

where we have used Eq. (1) of Box 5.2.

Box 5.2
Two Useful Relations between Partial Derivatives

Expand a differential increment in the energy E(S, N, V ) in terms of differentials of
its arguments S, N, V

dE(S, N, V ) =

(
∂E
∂S

)

N,V

dS +

(
∂E
∂N

)

V,S

dN +

(
∂E
∂V

)

S,N

dV .

Next expand the entropy S(E , N, V ) similarly and substitute the resulting expression for
dS into the above equation to obtain

dE =

(
∂E
∂S

)

N,V

(
∂S

∂E

)

N,V

dE +

[(
∂E
∂S

)

N,V

(
∂S

∂N

)

E,V

+

(
∂E
∂N

)

S,V

]
dN

+

[(
∂E
∂S

)

N,V

(
∂S

∂V

)

N,E

+

(
∂E
∂V

)

S,N

]
dV ,

Noting that this relation must be satisfied for all values of dE , dN , and dV , we conclude
that (

∂E
∂S

)

N,V

=
1

(∂S/∂E)N,V
, (1)

(
∂E
∂N

)

S,V

= −
(
∂E
∂S

)

N,V

(
∂S

∂N

)

E,V

, (2)

etc.; and similar for other pairs and triples of partial derivatives.

These equations, and their generalization to other variables, are useful in manipu-
lations of thermodynamic equations.

A similar thought experiment, using a highly idealized measuring device that can ex-
change one particle ∆N = 1 with the system but cannot exchange any energy with it, gives
for the fraction of the time spent with the extra particle in the measuring device (“state 1”)
and in the system (“state 0”):

ρ1

ρ0
= eµ̃∆N/kBT

=
eS(E,N−∆N,V )/kB

eS(E,N,V )/kB
= exp

[
−∆N

kB

(
∂S

∂N

)

E,V

]
. (5.4a)
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Here the first expression is computed from the viewpoint of the measuring device’s equilib-
rium ensemble,2 and the second from the viewpoint of the combined system’s microcanonical
ensemble. Equating these two expressions, we obtain

µ̃ = −T

(
∂S

∂N

)

E,V

=

(
∂E
∂N

)

S,V

. (5.4b)

In the last step we have used Eq. (5.3c) and Eq. (4) of Box 5.2. The reader should be able to
construct a similar thought experiment involving an idealized pressure transducer (Ex. 5.1),
which yields the following expression for the system’s pressure:

P = −
(
∂E
∂V

)

S,N

. (5.5)

Having identifed the three intensive variables T , µ̃, and P as partial derivatives [Eqs. (5.3c),
(5.4b), (5.5)], we now see that the fundamental potential’s differential relation

dE(S, N, V ) =

(
∂E
∂S

)

N,V

dS +

(
∂E
∂N

)

V,S

dN +

(
∂E
∂V

)

S,N

dV . (5.6)

is nothing more nor less than the ordinary first law of thermodynamics

dE = TdS + µ̃dN − PdV ; (5.7)

cf. Table 5.1 above.
Notice the “pairing” of intensive and extensive variables in this first law: Temperature

T is paired with entropy S; chemical potential µ̃ is paired with number of particles N ; and
pressure P is paired with volume V . We can think of each intensive variable as a “generalized
force” acting upon its corresponding extensive variable to change the energy of the system.
We can add additional pairs of intensive and extensive variables if appropriate, calling them
XA, YA (for example the externally imposed magnetic field H and the magnetization M). We
can also generalize to a multi-component system, i.e. one that has several types of conserved
particles with numbers NI and associated chemical potentials µ̃I . We can also convert to
nonrelativistic language by subtracting off the rest-mass contributions (switching from E to
E ≡ E −

∑
NImIc2 and from µ̃I to µI = µ̃I − mIc2). The result is the nonrelativistic,

extended first law

dE = TdS +
∑

I

µIdNI − PdV +
∑

A

XAdYA (5.8)

(e.g., Sec. 18 of Kittel 1958).

2an ensemble with ρ = constant e−µ̃N/kBT , since only particles can be exchanged with the device’s heat
bath (our system).
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5.2.3 Euler’s Equation and Form of the Fundamental Potential

We can integrate the differential form of the first law to obtain a remarkable, though essen-
tially trivial relation known as Euler’s equation. Specifically, we decompose our system into
a large number of subsystems in equilibrium with each other. As they are in equilibrium,
they will all have the same values of the intensive variables T, µ̃, P ; and therefore, if we add
up all their energies dE to obtain E , their entropies dS to obtain S, etc., we obtain from the
first law (5.7) 3

E = TS + µ̃N − PV . (5.9a)

Since the energy E is itself extensive, Euler’s equation (5.9a) must be expressible as

E = Nf(V/N, S/N) (5.9b)

for some function f . This is a useful functional form for the fundamental potential E(N, V, S).
For example, for a monatomic ideal gas, the Sackur-Tetrode equation (4.41) can be solved
for E to get the following form of the fundamental potential:

E(V, S, N) = N

(
3h2

4πm

)(
V

N

)−2/3

exp

(
2

3kB

S

N
− 5

3

)
. (5.9c)

Here m is the mass of an atom and h is Planck’s constant.

5.2.4 Everything Deducible from First Law; Maxwell Relations

There is no need to memorize a lot of thermodynamic relations; most all relations can be
deduced almost trivially from the functional form of the first law of thermodynamics — the
main formula shown on the first line of Table 5.1.

For example, in the case of our simple one-species system, the first law dE = TdS +
µ̃dN − PdV tells us that the system energy E should be regarded as a function of the
things that appear as differentials on the right hand side: S, N and V ; i.e., the fundamental
potential must have the form E = E(S, N, V ). By thinking about building up our system
from smaller systems by adding entropy dS, particles dN and volume dV at fixed values
of the intensive variables, we immediately deduce, from the first law, the Euler equation
E = TS + µ̃N − PV . By writing out the differential relation (5.6), which is just elementary
calculus, and comparing with the first law, we immediately read off the intensive variables
in terms of partial derivatives of the fundamental potential:

T =

(
∂E
∂S

)

V,N

, µ =

(
∂E
∂N

)

V,S

, P = −
(
∂E
∂V

)

S,N

. (5.10a)

3There are a few (very few!) systems for which some of the thermodynamic laws, including Euler’s
equation, take on forms different from those presented in this chapter. A black hole is an example (cf Sec.
4.10.2). A black hole cannot be divided up into subsystems, so the above derivation of Euler’s equation fails.
Instead of increasing linearly with the mass MH of the hole, the hole’s extensive variables SH = (entropy)
and JH = (spin angular momentum) increase quadratically with MH ; and instead of being independent of
the hole’s mass, the intensive variables TH = (temperature) and ΩH = (angular velocity) scale as 1/MH . See,
e.g., Tranah & Landsberg (1980) and see Sec. 4.10.2 for some other aspects of black-hole thermodynamics.
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We can then go on to notice that the resulting P (V, S, N), T (V, S, N), and µ(V, S, N) are not
all independent. The equality of mixed partial derivatives (e.g., ∂2E/∂V ∂S = ∂2E/∂S∂V )
together with Eqs. (5.10a) implies that they must satisfy the following Maxwell relations :

(
∂T

∂N

)

S,V

=

(
∂µ

∂S

)

N,V

, −
(
∂P

∂S

)

V,N

=

(
∂T

∂V

)

S,N

,

(
∂µ

∂V

)

N,S

= −
(
∂P

∂N

)

V,S

.

(5.10b)
Additional relations can be generated using the types of identities proved in Box 5.2 —
or they can be generated more easily by applying the above procedure to the fundamental
potentials associated with other ensembles; see Secs. 5.3, 5.4 and 5.5. All equations of
state, i.e. all relations between intensive and extensive variables, must satisfy the Maxwell
relations. For our simple example of a nonrelativistic, monatomic gas, we can substitute our
fundamental potential E [Eq. (5.9c)] into Eqs. (5.10a) to obtain

P (V, S, N) =

(
h2

2πm

) (
N

V

)5/3

exp

(
2S

3kBN
− 5

3

)
,

T (V, S, N) =

(
h2

2πmkB

) (
N

V

)2/3

exp

(
2S

3kBN
− 5

3

)
,

µ(V, S, N) =

(
h2

4πm

) (
N

V

)2/3 (
5 − 2

S

kBN

)
exp

(
2S

3kBN
− 5

3

)
(5.11)

[Ex. 5.2]. These clearly do satisfy the Maxwell relations.

5.2.5 Mechanism of Entropy Increase When Energy is Injected

Turn, now, from formalism to a simple thought experiment that gives insight into entropy.
Consider a single, large, closed system (not an ensemble), which has evolved for a time
far longer than τint and thereby has reached statistical equilibrium. Let T (V, S, N) be
the temperature that characterizes this system’s grand-canonically-distributed subsystems.
Now add a small amount ∆Q of thermal energy (heat) to the system, without changing its
volume V or its number of conserved particles N . The added heat, being on an equal footing
with any other kind of energy in the law of energy conservation, must appear in the first law
as a ∆E = ∆Q; and correspondingly, according to the first law (5.7), the added heat must
increase the system’s entropy by an amount

∆S =
∆Q

T
. (5.12)

This can be generalized: The energy need not be inserted into the system in the form of
heat. Rather, one can add the energy mechanically, e.g., if the system is a liquid by stirring
it; or one can add it optically by shining a laser beam into it and letting a few of the system’s
atoms absorb the laser light. In either case the system, immediately after energy insertion,
will be far from statistical equilibrium; i.e., its macroscopic properties such as the number of
atoms with energies far higher than the mean (i.e. it’s macrostate) will be highly improbable
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according to the microcanonical distribution.4 However, if one waits long enough (∆t ' τint)
after the energy addition, the system will thermalize; i.e., it will evolve into a macrostate
that is rather probable according to the microcanonical distribution, and thereafter it will
wander ergodically through system quantum states that correspond, more or less, to this
macrostate. This final, thermalized macrostate and the initial macrostate, before energy
insertion, both have the same volume V and the same number of conserved particles N ; but
they differ in energy by the amount ∆E that was inserted. Correspondingly, they also differ
in entropy by

∆S =
∆E
T

. (5.13)

Where did this entropy come from? Suppose that the energy was injected by a laser. Then
initially the energy went into those specific atoms that absorbed the photons. Subsequently,
however, those atoms randomly exchanged and shared the energy with other atoms. This
exchange and sharing is a variant of the phase mixing of Sec. 4.7, and it is responsible for
the thermal equilibration and the entropy increase.

5.2.6 Representations of Thermodynamics

The treatment of thermodynamics given in this section is called the energy representation
because it is based on the fundamental potential E(S, V, N) in which the energy is expressed
as a function of the complete set of extensive variables {S, V, N}. This energy represen-
tation, as we have seen, is intimately related to the microcanonical ensemble. In Sec. 5.3,
we shall meet the grand-potential representation for thermodynamics, which is intimately
related to the grand canonical ensemble for systems of volume V in equilibrium with a heat
and particle bath that has temperature T and chemical potential µ̃. Then in Secs. 5.4 and
5.5, we shall meet the two representations of thermodynamics that are intimately related
to the canonical and Gibbs ensembles, and shall discover their special power at handling
certain special issues. And in Ex. 5.5 we shall meet a representation and ensemble based on
enthalpy. These five representations and their ensembles are summarized in Table 5.1 above.

****************************

EXERCISES

Exercise 5.1 Problem: Pressure-Measuring Device
For the microcanonical ensemble considered in Sec. 5.2, derive Eq. (5.5) for the pressure
using a thought experiment involving a pressure-measuring device.

Exercise 5.2 Derivation: Energy Representation for a Nonrelativistic Monatomic Gas

(a) Use the fundamental potential E(V, S, N) for the nonrelativistic, monatomic gas [Eq.
5.9c] to derive Eq. (5.11) for the the pressure, temperature, and chemical potential.

4We use the word “macrostate” to distinguish clearly from the quantum states available to the system as
a whole, which in equilibrium are all equally likely. The probability for a macrostate is proportional to the
number of system quantum states that correspond to it.
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(b) Show that these equations of state satisfy the Maxwell relations (5.10b).

(c) Combine these equations of state to obtain the perfect-gas equation of state

P =
N

V
kBT , (5.14)

which we derived in Ex. 3.7 using kinetic theory

****************************

5.3 Grand Canonical Ensemble and the Grand Poten-
tial Representation of Thermodynamics

We now turn to the grand canonical ensemble, and its associated grand-potential representa-
tion of thermodynamics, for a semi-closed system that can exchange heat and particles with
an enveloping bath. For simplicity, we shall assume that all the particles are identical (just
one particle species), but we shall allow them to be relativistic (speeds comparable to the
speed of light) or not, and allow them to have nontrivial internal degrees of freedom (e.g.,
vibrations or rotations), and allow them to exert forces on each other via an interaction
potential that appears in their Hamiltonian (e.g. van der Waals forces; Sec. 5.3.2 and Ex.
5.12). We shall refer to these particles as a gas, though our analysis is more general than
gases.

We shall begin in Subsec. 5.3.1 by deducing the grand-potential representation of thermo-
dynamics from the grand canonical ensemble, and by deducing a method for computing the
thermodynamic properties of our gas from a grand-canonical sum over the quantum states
available to the system. In Ex. 5.3, the reader will apply this grand canonical formalism
to an ideal gas of noninteracting particles, thereby deriving explicit equations for the gas’s
thermodynamic properties. In Subsec. 5.3.2 of the text, we shall apply the formalism to a
nonrelativistic gas of particles that interact via van der Waals forces, and we shall thereby de-
rive the van der Waals equation of state, which is surprisingly accurate for many non-ionized
gases.

5.3.1 The Grand Potential Representation, and Computation of
Thermodynamic Properties as a Grand Canonical Sum

Figure 5.1 illustrates the ensemble of systems that we are studying, and its bath. Each
system is a cell of fixed volume V , with imaginary walls, inside a huge thermal bath of
identical particles. Since the cells’ walls are imaginary, the cells can and do exchange energy
and particles with the bath. The bath is characterized by a chemical potential µ̃ for these
particles and by a temperature T . Since we allow the particles to be relativistic, we include
the rest mass in the chemical potential µ̃.
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We presume that our ensemble of cells has reached statistical equilibrium with the bath,
so its probabilistic distribution function has the grand canonical form (4.24c):

ρn =
1

Z
exp

(
−En + µ̃Nn

kBT

)
= exp

(
Ω − En + µ̃Nn

kBT

)
. (5.15)

Here the index n labels the quantum state |n〉 of a cell, Nn is the number of particles in
that quantum state, En is the total energy of that quantum state (including each particle’s
rest mass, its energy of translational motion, its internal energy if it has internal vibrations
or rotations or other internal excitations, and its energy of interaction with other particles),
and 1/Z ≡ eΩ/kBT is the normalization constant that guarantees

∑
n ρn = 1; i.e.,

Z ≡ exp

(
−Ω

kBT

)
≡

∑

n

exp

(
−En + µ̃Nn

kBT

)
. (5.16)

This normalization constant, whether embodied in Z or in Ω, is a function of the bath’s
temperature T and chemical potential µ̃, and also of the cells’ common volume V (which
influences the set of available states |n〉). When regarded as a function of T , µ̃, and V ,
the quantity Z(V, µ̃, T ) is called the gas’s grand partition function, and Ω(T, µ̃, V ) is called
its grand potential. The following general argument shows that, once one has computed the
explicit functional form for the grand potential

Ω(V, µ̃, T ) , (5.17)

or equally well for the grand partition function Z(V, µ̃, T ), one can then derive from it all the
thermodynamic properties of the thermally equilibrated system. The argument is so general
that it applies to every grand canonical ensemble of systems, not just to our chosen gas of
identical particles.

We introduce, as key quantities in the argument, the mean energy and mean number of
particles in the ensemble’s systems (cells of Fig. 5.1):

E ≡
∑

n

ρnEn , and N ≡
∑

n

ρnNn . (5.18)

(We denote these with bars Ē rather than brackets 〈E〉 for ease of notation.) We now ask
how the grand potential will change if the temperature T and chemical potential µ̃ of the

Fig. 5.1: An ensemble of gas cells, each with volume V , inside a heat and particle bath.
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bath and therefore of the ensemble are slowly altered, with the common volume V of the cells
held fixed. The answer for the change dΩ produced by changes dT and dµ̃ can be derived
from the normalization equation (5.16), which we rewrite as

1 =
∑

n

ρn =
∑

n

exp

(
Ω − En + µ̃Nn

kBT

)
. (5.19a)

Since the normalization condition must continue to hold as T and µ̃ change, the sum in
Eq. (5.19a) must be left unchanged, which means that

0 =
∑

n

(
dΩ + Nndµ̃ − (Ω − En + µ̃Nn)T−1dT

kBT

)
ρn . (5.19b)

Using
∑

n ρn = 1 and expressions (5.18) for the mean energy and the mean number of
particles, and rearranging terms, we obtain

dΩ = −Ndµ̃ + (Ω − E + µ̃N)T−1dT . (5.19c)

This change can be reexpressed in a more useful form by introducing the ensemble’s en-
tropy. Inserting expression (5.15) for ρn into the log term in the definition of entropy
S = −k

∑
n ρn ln ρn, we obtain

S = −k
∑

n

ρn ln ρn = −k
∑

n

ρn

(
Ω − En + µ̃Nn

kBT

)
= −Ω − E + µ̃N

T
; (5.19d)

or, equivalently

Ω = E − TS − µ̃N . (5.20)

This equation can be regarded as a Legendre transformation that leads from the energy
representation of thermodynamics to the grand-potential representation. (Legendre trans-
formations are a common tool, e.g., in classical mechanics5, for switching from one set of
independent variables to another.)

By inserting expression (5.20) into Eq. (5.19c), we obtain

dΩ = −Ndµ̃ − SdT . (5.21)

Equation (5.21) is the First Law of Thermodynamics in disguise. To see this, insert
expression (5.20) for Ω into (5.21), thereby bringing it into the form

dE = µ̃dN + TdS, (5.22)

which is the familiar form of the first law of thermodynamics, but with the “−PdV ” work,
associated with a change in a cell’s volume, omitted because the cells have fixed volume V .
If we (momentarily) pass from our original grand canonical ensemble, all of whose cells have
the same V , µ̃, and T , to another grand canonical ensemble whose cells have the same µ̃

5For example, Goldstein (1980).
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and T as before, but have slightly larger volumes, V + dV , then according to Eq. (5.20)
with µ̃ and T fixed, Ω will change by dΩ = dE − TdS − µ̃dN (where dS and dN are the
changes of entropy and mean number of particles induced by the volume change). Then by
the elementary first law of thermodynamics (5.7), rewritten in the form appropriate for a
grand canonical ensemble (E → Ē , N → N̄),

dE = −PdV + µ̃dN + TdS , (5.23)

this change of Ω at fixed µ̃ and T is simply −PdV . Combining with Eq. (5.21), this gives
for the change of Ω when all of µ̃, T , and V change:

dΩ = −PdV − Ndµ̃ − SdT . (5.24)

Equation (5.24) contains the same information as the first law of thermodynamics and can
be thought of as the first law rewritten in the grand-potential representation. The quantities
P , N̄ , S paired with the independent variables V , µ̃, and T can be thought of as generalized
forces that push on the independent variables as they change, to produce changes of the
grand potential.

From this version of the first law (the key grand-canonical equation listed in the last
line of Table 5.1), we can easily deduce almost all other equations of the grand-potential
representation of thermodynamics. We just follow the same procedure as we used for the
energy representation (Sec. 5.2.4):

The grand-potential representation’s complete set of independent variables is those that
appear as differentials on the right side of the first law (5.24): V , µ̃, and T . From the form
(5.24) of the first law we see that Ω is being regarded as a function of these three independent
variables Ω = Ω(V, µ̃, T ). This is the fundamental potential.

The Euler equation of this representation is deduced by building up a system from small
pieces that all have the same values of the intensive variables µ̃, T and P . The first law
(5.24) tells us that this buildup will produce

Ω = −PV . (5.25)

Thus, if we happen to know P as a function of this representation’s independent variables
P (V, µ̃, T ) (actually, P it cannot depend on V because µ̃ and T are intensive, and there is
nothing to divide V by so as to produce an intensive P ), then we can simply multiply by V
to get the functional form of the Grand potential: Ω(V, µ̃, T ) = P (µ̃, T )V ; see Eqs. (5.44)
and (5.45) below as a concrete example.

By comparing the grand-potential version of the first law (5.24) with the elementary
calculus equation dΩ = (∂Ω/∂V )dV + (∂Ω/∂µ̃)dµ̃ + (∂Ω/∂T )dT , we infer equations for the
system’s “generalized forces”, the pressure P , mean number of particles N̄ , and entropy S:

N = −
(
∂Ω

∂µ̃

)

V,T

, S = −
(
∂Ω

∂T

)

V,µ̃

, P = −
(
∂Ω

∂V

)

µ̃,T

. (5.26)

By differentiating these relations and equating mixed partial derivatives, we can derive
Maxwell relations analogous to those, (5.10b), of the energy representation; for example,
(∂N̄/∂T )V,µ̃ = (∂S/∂µ̃)V,T . Equations of state are constrained by these Maxwell relations.
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If we had begun with a specific functional form of the fundamental potential as a function
of this representation’s complete set of independent variables Ω(V, T, µ̃) [e.g. Eq. (5.44)
below], then Eqs. (5.26) would tell us the functional forms of almost all the other dependent
thermodynamic variables. The only one we are missing is the mean energy Ē(V, µ̃, T ) in a
cell. If we have forgotten Eq. (5.20) (the Legendre transformation) for that quantity, we can
easily rederive it from the grand canonical distribution function ρ = exp[(Ω−E + µ̃N)/kBT ]
(the other key equation, besides the first law, on the last line of Table 5.1), via the definition
of entropy as S = −kB

∑
n ρn ln ρn = −kBln ρ, as we did in Eq. (5.19d) above.

This illustrates the power of the sparse information in Table 5.1. From it and little
else we can deduce all of the thermodynamic equations for each of the representations of
thermodynamics.

5.3.2 Nonrelativistic van der Waals Gas

The statistical sum Z ≡ e−Ω/kBT =
∑

n e(−En+µ̃Nn)/kBT is a powerful method for computing
the grand potential Ω(V, µ̃, T ), a method often used in condensed matter physics. In this
section we shall present a non-trivial example: a nonrelativistic, monatomic gas made of
atoms or molecules (we shall call them particles) that interact with so-called van der Waals
forces. In Ex. 5.3, the reader will explore a simpler example: an ideal gas (no interaction
forces) that can be relativistic or nonrelativistic.

We shall assume that the heat and particle bath that bathes the cells of Fig. 5.1 has
sufficiently low temperature that the gas’s particles are not ionized (and therefore that they
are also nonrelativistic, kBT ) mc2), and that the bath has a sufficiently low chemical
potential that the mean occupation number η of the particles’ quantum states is small
compared to unity, so they behave classically, µ ≡ µ̃ − mc2 ) −kBT [Eq. (3.22d)].

The orbital electron clouds attached to each of the particles repel each other when the
distance r between the particles’ centers of mass is smaller than about the diameter of the
particles. At larger separations, the particles’ electric dipoles (intrinsic or induced) attract
each other weakly. The interaction energy (potential energy) u(r) associated with these
forces has a form well approximated by the “Lennard-Jones” potential

u(r) = εo

[(ro

r

)12

−
(ro

r

)6
]

, (5.27a)

where (when a gradient is taken) the first term gives rise to the small-r repulsive force and
the second to the larger-r attactive force. For simplicity of analytic calculations, we shall
use the cruder approximation

u(r) = ∞ for r < ro , u(r) = −εo(ro/r)
6 for r > ro , (5.27b)

which has an infinitely sharp repulsion at r = ro (a hard wall). For simplicity, we shall
assume that the mean interparticle separation is much larger than ro (dilute gas) so it is
highly unlikely that three or more particles are close enough together simultaneously, r ∼ ro,
to interact; i.e., we shall confine ourselves to 2-particle interactions.

We shall compute the grand potential Ω(V, µ, T ) for an ensemble of cells embedded in a
bath of these particles (Fig. 5.1), and from Ω(V, µ, T ) we shall compute how the particles’
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interaction energy u(r) alters the gas’s equation of state from the form P = (N̄/V )kBT for
an ideal, interaction-free gas [Eq. (3.37b)]. Since this is our objective, any internal degrees
of freedom that the particles might have are irrelevant and we shall ignore them.

For this ensemble, the nonrelativistic grand partition function Z =
∑

n exp[(−En +
µNn)/kBT ] is

Z =
∞∑

N=0

eµN/kBT

N !

∫
d3Nxd3Np

h3N
exp

[
−

N∑

i=1

p2
i

2mkBT
− 1

2

N∑

i=1

N∑

j=i+1

uij

kBT

]
. (5.28)

Here we have used Eq. (4.8b) for the sum over states
∑

n (with M = N !, W = 3N and
dΓW = d3Nxd3Np; cf. Ex. 5.3), and we have written En as the sum over the kinetic energies
of the N particles in the cell and the interaction energies

uij ≡ u(rij), rij ≡ |xi − xj | (5.29)

of the 1
2N(N − 1) pairs of particles. In Eq. (5.28) the momentum integrals and the space

integrals separate, and the N momentum integrals are identical, so Z takes the form

Z =
∞∑

N=0

eµN/kBT

N !h3N

[
exp

(
−

∫ ∞

0

4πp4dp

2mkBT

)]N

JN

=
∞∑

N=0

(ζ/λ3)N

N !
JN , (5.30)

where

ζ ≡ eµ/kBT , λ ≡ h

(2πmkBT )1/2
(5.31)

(the particles’ thermal deBroglie wavelength), and JN is the space integral

JN =

∫
d3Nx exp

[
−

N∑

i=1

N∑

j=i+1

uij

kBT

]
. (5.32)

The Boltzmann factor e−uij/kBT for the interaction energy is unity for large interparticle
separations rij ' ro, so we write

e−uij/kBT ≡ 1 + fij , (5.33)

where fij is zero except when rij ! ro. Using this definition and rewriting the exponential
of a sum as the products of exponentials, we bring Eq. (5.32) into the form

JN =

∫
d3Nx

N∏

i=1

N∏

j=i+1

(1 + fij) . (5.34)

The product contains (i) terms linear in fij that represent the influence of pairs of particles
that are close enough (rij ! ro) to interact, plus (ii) quadratic terms such as f14f27 that are
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nonzero only if particles 1 and 4 are near each other and 2 and 7 are near each other (there
are so many of these terms that we cannot neglect them!), plus (iii) quadratic terms such
as f14f47 that are nonzero only if particles 1, 4, and 7 are all within a distance ∼ ro of each
other (because our gas is dilute, it turns out these three-particle terms can be neglected),
plus (iv) cubic and higher-order terms. At all orders * (linear, quadratic, cubic, quartic, ...)
for our dilute gas, we can ignore terms that require three or more particles to be near each
other, so we shall focus only on terms fijfmn...fpq where all indices are different. Eq. (33)
then becomes

JN =

∫
d3Nx[1 + (f12 + f13 + ...)︸ ︷︷ ︸

n1 terms

+ (f12f34 + f13f24 + ...)︸ ︷︷ ︸
n2 terms

+ (f12f34f56 + f13f24f56 + ...)︸ ︷︷ ︸
n3 terms

...] ,

(5.35)
where n# is the number of terms of order * with all 2* particles different. Denoting

Vo ≡
∫

f(r)d3r ∼ r3
o , (5.36)

and performing the integrals, we bring Eq. (5.35) into the form

JN =
∞∑

#=0

nlV
N−#V #

o . (5.37)

At order * the number of unordered sets of 2* particles that are all different is N(N −
1) · · · (N − 2* + 1)/*!. The number of ways that these 2* particles can be assembled into
unordered pairs is (2*− 1)(2*− 3)(2*− 5) · · ·1 ≡ (2*− 1)!!. Therefore, the number of terms
of order * that appear in Eq. (5.37) is

n# =
N(N − 1) · · · (N − 2*+ 1)

*!
(2*− 1)!! =

N(N − 1) · · · (N − 2*+ 1)

2#*!
. (5.38)

Inserting Eqs. (5.37) and (5.38) into Eq. (5.30) for the partition function, we obtain

Z =
∞∑

N=0

(ζ/λ3)N

N !

[N/2]∑

#=0

N(N − 1) · · · (N − 2*+ 1)

2#*!
V N−#V #

o , (5.39)

where [N/2] means the largest integer less than or equal to N/2. Performing a little algebra
and then reversing the order of the summations, we obtain

Z =
∞∑

#=0

∞∑

N=2#

1

(N − 2*)!

(
ζV

λ3

)N−2# 1

*!

(
ζV

λ3

ζVo

2λ3

)#

. (5.40)

By changing the summation index from N to N ′ = N−2*, we decouple the two summations.
Each of sums is equal to an exponential, giving

Z = e−Ω/kBT = exp

(
ζV

λ3

)
exp

(
ζV

λ3

ζVo

λ3

)
= exp

[
ζV

λ3

(
1 +

ζVo

2λ3

)]
. (5.41)
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Therefore, the grand potential for our van der Waals gas is

Ω =
−kBTζV

λ3

(
1 +

ζVo

2λ3

)
. (5.42)

From kinetic theory [Eq. (3.37a)] we know that for an ideal monatomic gas, the mean
number density is N̄/V = ζ/λ3, and this will be a good first approximation also for our van
der Waals gas, which differs from an ideal gas only by the weakly perturbative interaction
energy u(r). This means that ζVo/2λ3 is equal to 1

2Vo/(mean volume per particle), which
is ) 1 by our dilute-gas assumption. If we had kept three-particle interaction terms such
as f14f47, they would have given rise to fractional corrections of order (ζVo/λ3)2, which are
much smaller than the leading-order fractional correction ζVo/2λ3 that we have computed
[Eq. (5.44)]. The higher-order corrections are derived in statistical mechanics textbooks such
as Pathria (1972, Chap. 9) and Kardar (2007, Chap. 5) using a technique called the cluster
expansion.

For the “hard-wall” potential (5.27b), f is −1 at r < ro, and assuming that the tem-
perature is high enough that εo/kBT ) 1, then at r > ro, f is very nearly −u/kBT =
(εo/kBT )(ro/r)6; therefore

Vo

2
≡ 1

2

∫
f(r)d3r =

a

kBT
− b , where b =

2πr3
o

3
, a = bεo . (5.43)

Inserting this expression for Vo/2 and Eqs. (5.31) for ζ and λ into Eq. (5.44), we find the
following explicit form for the grand potential of a van der Waals gas:

Ω = −kBTV
(2πmkBT )3/2

h3
eµ/kBT

[
1 +

(2πmkBT )3/2

h3
eµ/kBT

(
a

kBT
− b

)]
. (5.44)

By differentiating this grand potential, we obtain the following expressions for the pressure
P and mean number of particles N̄ in a volume-V cell:

P = −
(
∂Ω

∂V

)

µ,T

= −kBT
(2πmkBT )3/2

h3
eµ/kBT

[
1 +

(2πmkBT )3/2

h3
eµ/kBT

(
a

kBT
− b

)]
,

N̄ = −
(
∂Ω

∂µ

)

V,T

= V
(2πmkBT )3/2

h3
eµ/kBT

[
1 + 2

(2πmkBT )3/2

h3
eµ/kBT

(
a

kBT
− b

)]
.(5.45)

Notice that, when the interaction energy is turned off so a = b = 0, the second equation gives
our standard ideal-gas particle density N̄/V = (2πmkBT )3/2eµ/kBT /h3 = ζ/λ3. Inserting this
into the square bracketed expression in Eqs. (5.45), taking the ratio of expressions (5.45)
and multiplying by V and expanding to first order in a/kBT − b, we obtain PV/N̄ =
kBT [1 + (N̄/V )(b− a/kBT )]. Bringing the a term to the left side, multiplying both sides by
[1 − (N̄/V )b] and linearizing in b, we obtain the standard van der Waals equation of state

(
P +

a

(V/N̄)2

)
(V/N̄ − b) = kBT . (5.46)

The quantity V/N̄ is called the specific volume (volume per particle).
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We shall study this van der Waals equation of state in Ex. 5.12 below, focusing on the
phase transition that it predicts and on fluctuations of thermodynamic quantities associated
with that phase transition.

In this section we have presented the grand-canonical analysis for a van der Waals gas
not because such a gas is important (though it is), but rather as a concrete example of how
one uses the formalism of statistical mechanics to explore the behavior of realistic systems
made of interacting particles.

****************************

EXERCISES

Exercise 5.3 Derivation and Example: Grand Canonical Ensemble for a Relativistic Ideal
Gas
Consider cells of ideal, classical gas (particles with no internal degrees of freedom and no
interaction energies) that reside in the heat and particle bath of Fig. 5.1. Each cell has
the same volume V and imaginary walls. Assume that the bath’s temperature T has an
arbitrary magnitude relative to the rest mass-energy mc2 of the particles, so the thermalized
particles might have relativistic velocities, but require kBT ) −µ so all the particles behave
classically. Ignore the particles’ spin degrees of freedom, if any.

(a) The number of particles in a chosen cell can be anything from N = 0 to N = ∞.
Restrict attention, for the moment, to a situation in which the cell contains a precise
number of particles, N . Explain why the multiplicity is M = N ! even though the
density is so low that the particles’ wave functions do not overlap, and they are behaving
classically; cf. Ex. 4.8 above.

(b) Still holding fixed the number of particles in the cell, show that the number of degrees
of freedom W , the number density of states in phase space Nstates and the energy EN

in the cell are

W = 3N , Nstates =
1

N !h3N
, EN =

N∑

j=1

(pj
2 + m2)

1
2 , (5.47a)

where pj is the momentum of classical particle number j.

(c) Using Eq. (4.8b) to translate from the formal sum over states
∑

n to a sum over
W = 3N and an integral over phase space, show that the sum over states (5.16) for
the grand partition function becomes

Z = e−Ω/kBT =
∞∑

N=0

V N

N !h3N
eµ̃N/kBT

[∫ ∞

0

exp

(
−(p2 + m2)

1
2

kBT

)
4πp2dp

]N

. (5.47b)

(d) Evaluate the momentum integral in the nonrelativistic limit, and thereby show that

Ω(T, µ, V ) = −kBTV
(2πmkBT )3/2

h3
eµ/kBT , (5.48a)
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where µ = µ̃ − m is the nonrelativistic chemical potential. This is the interaction-free
limit Vo = a = b = 0 of our grand potential (5.44) for a van der Waals gas.

(e) Show that in the extreme relativistic limit, Eq. (5.47b) gives

Ω(T, µ̃, V ) = − 8πV (kBT )4

h3
eµ̃/kBT . (5.48b)

(f) For the extreme relativistic limit use your result (5.48b) for the grand potential Ω(V, T, µ̃)
to derive the mean number of particles N , the pressure P , the entropy S, and the mean
energy E as functions of V , µ̃, and T . Note that for a photon gas, because of the spin
degree of freedom, the correct values of N , E and S will be twice as large as you obtain
in this calculation. Show that E/V = 3P (a relation valid for any ultrarelativistic gas);
and that E/N = 3kBT (which is higher than the 2.70 . . . kBT for black-body radiation,
as derived in Ex. 2.5, because in the classical regime of η ) 1 photons don’t cluster in
the same states at low frequency; that clustering lowers the mean photon energy for
black-body radiation.)

****************************

5.4 Canonical Ensemble and the Physical-Free-Energy
Representation of Thermodynamics

In this section we turn to an ensemble of systems that can exchange energy but nothing
else with a heat bath at temperature T . The systems thus have variable total energy E ,
but they all have the same, fixed values of the two remaining extensive variables N and V .
(Generalization to additional particle species and additional means of performing work on
the system, e.g. magnetic coupling, is straightforward.) We presume that the ensemble has
reached statistical equilibrium, so it is canonical with distribution function (probability of
occupying any quantum state of energy E) given by Eq. (4.19)

ρn =
1

z
e−En/kBT ≡ e(F−En)/kBT . (5.49)

Here, as in the grand canonical ensemble [Eq. (5.15)], we have introduced special notations
for the normalization constant: 1/z = eF/kBT , where z (the partition function) and F (the
physical free energy or Helmholtz free energy) are functions of the systems’ fixed N and V
and the bath’s temperature T . Once the microscopic configurations (quantum states |n〉) of
fixed N and V but variable E have been identified, the functions z(N, V, T ) and F (N, V, T )
can be computed from the normalization relation

∑
n ρn = 1:

e−F/kBT ≡ z(T, N, V ) =
∑

n

e−En/kBT . (5.50)



21

This canonical sum over states, like the grand canonical sum (5.16) that we used for the
van der Waals gas, is a powerful tool in statistical mechanics. As an example, in Secs. 5.7
and 5.8 we shall use the canonical sum to evaluate the physical free energy F for a model
of ferromagnetism, and we shall then use the resulting F to explore a ferromagnetic phase
transition.

Having evaluated z(T, N, V ) or equivalently F (T, N, V ), one can then proceed as follows
to determine other thermodynamic properties of the ensemble’s systems: The entropy S can
be computed from the standard expression S = −kB

∑
n ρn ln ρn = −kBln ρ, together with

Eq. (5.49) for ρn:

S =
Ē − F

T
, (5.51a)

It is helpful to rewrite Eq. (5.51a) as an equation for the physical free energy F

F = Ē − TS . (5.51b)

This is the Legendre transformation that leads from the energy representation of thermody-
namics to the physical-free-energy representation:

Suppose that the canonical ensemble’s parameters T, N, V are changed slightly. By how
much will the physical free energy change? Equation (5.51b) tells us that

dF = dĒ − TdS − SdT . (5.51c)

Because macroscopic thermodynamics is independent of the statistical ensemble being stud-
ied, we can evaluate dĒ using the first law of thermodynamics (5.7) with the microcanonical
exact energy E replaced by the canonical mean energy Ē . The result is

dF = −SdT + µ̃dN − PdV . (5.52)

Equation (5.52) contains the same information as the first law of thermodynamics and
can be thought of as the first law rewritten in the physical-free-energy representation. From
this form of the first law, we can deduce the other equations of the physical-free-energy
representation, by the same procedure as we used for the energy representation in Sec. 5.2.4
and the grand-potential representation in Sec. 5.3.1:

If we have forgotten our representation’s independent variables, we read them off the first
law (5.52); they appear as differentials on the right hand side: T , N and P . The fundamental
potential is the quantity that appears on the left side of the first law: F (T, N, P ). By building
up a full system from small subsystems that all have the same intensive variables T, µ̃, P ,
we deduce from the first law the Euler relation for this representation:

F = µ̃N − PV . (5.53)

Note that the temperature is present in this relation only implicitly, through the dependence
of F , P , and µ̃ on the representation’s independent variables T, N, V . By comparing the first
law with the elementary calculus relation dV = (∂F/∂T )dT + (∂F/∂N)dN + (∂F/∂V )dV ,
we obtain equations for this representation’s generalized forces

−P =

(
∂F

∂V

)

T,N

, −S =

(
∂F

∂T

)

V,N

, µ̃ =

(
∂F

∂N

)

V,T

; (5.54)
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PistonGasHeat
Bath

Fig. 5.2: Origin of the name physical free energy for F (V, T,N).

These plus the Legendre transformation (5.51b) for Ē (derivable from the canonical distri-
bution function ρ = exp(−E/kBT ) via the definition of entropy, S = −kBln ρ), give us all
the thermodynamic quantities of interest as functions of the independent variables. Maxwell
relations can be derived from the equality of mixed partial derivatives in Eqs. (5.54); for
example, (∂P/∂T )V,N = (∂S/∂V )T,N .

Thus, as for the energy and grand-potential representations, all the equations of the
physical-free-energy representation are easily deducible from the minimal information in
Table 5.1: this representation’s first law of thermodynamics, and its equilibrium distribution
function.

5.4.1 Experimental Meaning of Physical Free Energy

The name physical free energy for F can be understood using the idealized experiment shown
in Fig. 5.2. Gas is placed in a chamber, one wall of which is a piston; and the chamber comes
into thermal equilibrium with a heat bath, with which it can exchange heat but not particles.
The volume of the chamber has some initial value Vi; and correspondingly, the gas has some
initial physical free energy F (Vi, T, N). The gas is then allowed to push the piston to the
right sufficiently slowly for the gas to remain always in thermal equilibrium with the heat
bath, at the bath’s temperature T . When the chamber has reached its final volume Vf , the
total work done on the piston by the gas, i.e., the total energy extracted by the piston from
this “engine”, is

Eextracted =

∫ Vf

Vi

−PdV . (5.55a)

Using the first law dF = −SdT + µ̃dN − PdV and remembering that T and N are kept
constant, Eq. (5.55a) becomes

Eextracted = F (Vf , T, N) − F (Vi, T, N) ≡ ∆F . (5.55b)

Thus, F is the energy that is “free to be extracted” in an isothermal, physical expansion of
the gas.6

If the expansion had been done in a chamber that was perfectly thermally insulated, so
no heat could flow in or out of it, Eq. (5.12) tells us that there would have been no entropy
change. Correspondingly, with S and N held fixed but V changing during the expansion,

6More generally, the phrase “free energy” means the energy that can be extracted in a process that occurs
in contact with some sort of environment. The nature of the free energy depends on the nature of the contact.
We will meet “chemical free energy” in the next section.



23

the natural way to analyze the expansion would have been in the energy representation; and
that representation’s first law dE = −PdV + TdS + µ̃dN would have told us that the total
energy extracted,

∫
−PdV , was the change ∆E of the gas’s total energy. Such a process,

which occurs without any heat flow or entropy increase, is called adiabatic. Thus, the energy
E (or in the nonrelativistic regime E) measures the amount of energy that can be extracted
from an adiabatic engine, by contrast with F which measures the energy extracted from an
isothermal engine.

5.4.2 Ideal Gas with Internal Degrees of Freedom

As an example of the canonical distribution, we shall explore the influence of internal molec-
ular degrees of freedom on the properties of a nonrelativistic, ideal gas. This example is
complementary to the van der Waals gas that we analyzed in Sec. 5.3.2 using the grand
canonical distribution. There we assumed no internal degrees of freedom, but we allowed
each pair of particles to interact via an interaction potential u(r) that depended on the par-
ticles’ separation r. Here, because the gas is ideal, there are no interactions, but we allow
for internal degrees of freedom — rotational, vibrational, and electron excitations.

(We have previously studied internal degrees of freedom in Sec. 4.4.4, where we proved the
equipartition theorem for those whose generalized coordinates and/or momenta are quadratic
in the Hamiltonian and are classically excited, e.g. the vibrations and rotations of a diatomic
molecule. Here we allow the internal degrees of freedom to have any form whatsoever and
to be excited or nonexcited arbitrarily.)

Our gas is confined to a fixed volume V , it has a fixed number of molecules N , it is in
contact with a heat bath with temperature T , and its equilibrium distribution is therefore
grand canonical, ρn = e(F−En)/kBT . The quantum states |n〉 available to the gas can be
characterized by the locations {xi,pi} in phase space of each of the molecules i = 1, ..., N ,
and by the state |Ki〉 of each molecule’s internal degrees of freedom. Correspondingly, the
partition function and physical free energy are given by

z = e−F/kBT =
gs

N !

∫
d3Nxd3Np

h3N

∑

K1,K2,...KN

exp

[

−
N∑

i=1

(
p2

i

2mkBT
+

EKi

kBT

)]

. (5.56)

It is instructive to compare this with Eq. (5.28) for the grand partition function of the van
der Waals gas. Here there is no sum over N and no eµN/kBT because because N is fixed,
and there is no interaction energy uij between molecules. However, we now have sums over
the internal states Ki of each of the molecules, and a factor gs to allow for the molecules’ gs

different spin states in the multiplicity
Because there are no interactions between molecules, the partition function can be split

up into products of independent contributions from each of the molecules; and because there
are no interactions between a molecule’s internal and translational degrees of freedom, the
partition function can be split into a product of tranlational and internal terms; and because
the molecules are all identical, their contributions are all identical, leading to

z = e−F/kBT =
gs

N !

[∫
d3xd3p

h3
e−p2/kBT

]N
[
∑

K

e−EK/kBT

]N

. (5.57)
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The
∫

d3xd3p h−3e−p2/kBT integral is the same as we encountered in the grand-canonical anal-
ysis; it gives V/λ3 where λ = 2πmkBT/h. The sum over internal states gives a contribution
that is some function of temperature,

f(T ) ≡
∑

K

e−EK/kBT . (5.58)

Correspondingly [using Stirling’s approximation N ! + 2πN1/2(N/e)N ] the physical free en-
ergy becomes

F (N, V, T ) = NkBT ln

[
N

e

h3

(2πmkBT )3V

]
− NkBT ln f(T ) . (5.59)

Note that because the molecules’ translational and internal degrees of freedom are decoupled,
their contributions to the free energy are additive We could have computed them separately,
and then simply added their free energies.

Notice that, because the contribution of the internal degrees of freedom depends only on
temperature and not on volume, the ideal gas’s pressure

P = −(∂F/∂V )N,T = (N/V )kBT (5.60)

is unaffected by the internal degrees of freedom. By contrast, the entropy and the total
energy in the box do have internal contributions, which depend on temperature but not on
the gas’s volume and thence not on its density N/V :

S = − (∂F/∂T )N,V = Stranslational + NkB(ln f + d ln f/d lnT ) , (5.61)

where the entropy Stranslational can straightforwardly be shown to be equivalent to the Sackur-
Tetrode formula (4.41)7; and

Ē = F + TS = NkBT

(
3

2
+

d ln f

d ln T

)
. (5.62)

For degrees of freedom that are classical and quadratic, the internal contribution NkBTd ln f/d lnT
gives 1

2kBT for each quadratic term in the Hamiltonian, in accord with the equipartition the-
orem (Sec. 4.4.4).

If there is more than one particle species present (e.g. electrons and protons at high
temperatures so hydrogen is ionized), then the contributions of the species to F , P , S, and
E simply add, just as the contributions of internal and translational degrees of freedom
added in Eq. (5.59) above.

****************************

EXERCISES
7except that the factor gs in that formula is an internal-degree-of-freedom factor and so appears in f .
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Exercise 5.4 Example and Derivation: Adiabatic Index for Ideal Gas

In Part V, when studying fluid dynamics, we shall encounter an adiabatic index

γ ≡ −
(
∂ ln p

∂ ln V

)

S

(5.63)

that describes how the pressure p of a fluid changes when it is compressed adiabatically, i.e.
compressed at fixed entropy (with no heat being added or removed). Derive an expression
for γ for an ideal gas that may have internal degrees of freedom, e.g., the Earth’s atmosphere.
More specifically:

(a) Consider a fluid element (a small sample of the fluid) that contains N molecules.
These molecules can be of various species; all species contribute equally to the ideal
gas’s pressure P = (N/V )kBT and contribute additively to its energy. Define the fluid
element’s specific heat at fixed volume to be the amount of heat TdS that must be
inserted to raise its temperature by an amount dT while the volume V is held fixed:

CV ≡ T (∂S/∂T )V,N = (∂E/∂T )V,N . (5.64)

Deduce the second equality from the first law of thermodynamics. Show that in an
adiabatic expansion the temperature T drops at a rate given by CV dT = −pdV . [Hint:
use the first law of thermodynamics and the fact that for an ideal fluid the energy of a
fluid element depends only on its temperature and not on its volume (or density), Eq.
(5.62).]

(b) Combine the temperature change dT = (−p/CV )dV for an adiabatic expansion with
the equation of state PV = NkBT to obtain γ = (CV + NkB)/CV .

(c) To interpret the numerator CV + NkB, imagine adding heat to a fluid element while
holding its pressure fixed (which requires a simultaneous volume change). Show that
in this case the ratio of heat added to temperature change is

Cp ≡ T (∂S/∂T )p,N = CV + NkB . (5.65)

Combining with (b), conclude that the adiabatic index for an ideal fluid is given by

γ = Cp/CV , (5.66)

a standard result in elementary thermodynamics.

Exercise 5.5 **Example: The Enthalpy Representation of Thermodynamics

(a) Enthalpy H is a macroscopic thermodynamic variable defined by

H ≡ E + PV . (5.67)

Show that this definition can be regarded as a Legendre transformation that converts
from the energy representation of thermodynamics with E(V, S, N) as the fundamental



26

potential, to an enthalpy representation with H(P, S, N) as the fundamental potential.
More specifically, show that the first law, reexpressed in terms of H , takes the form

dH = V dP + TdS + µ̃dN ; (5.68)

and then explain why this first law dictates that H(P, S, N) be taken as the funda-
mental potential.

(b) There is an equilibrium statistical mechanics ensemble associated with the enthalpy
representation. Show that each system of this ensemble (fluctuationally) exchanges
volume and energy with a surrounding bath but does not exchange heat or particles, so
the exchanged energy is solely that associated with the exchanged volume, dE = −PdV ,
and the enthalpy H does not fluctuate.

(c) Show that this ensemble’s distribution function is ρ = e−S/kB =constant for those states
in phase space that have a specified number of particles N and a specified enthalpy H .
Why do we not need to allow for a small range δH of H , by analogy with the small
range E for the microcanonical ensemble (Sec. 4.5 and Ex. 4.7).

(d) What equations of state can be read off from the enthalpy first law? What are the
Maxwell relations between these equations of state?

(e) What is the Euler equation for H in terms of a sum of products of extensive and
intensive variables?

(f) Show that the system’s enthalpy is equal to its total inertial mass (multiplied by the
speed of light squared); cf. Exs. 2.26 and 2.27.

(g) As another interpretation of the enthalpy, think of the system as enclosed in an imper-
meable box of volume V . You are asked to inject into the box a “sample” of additional
material of the same sort as is already there. (It may be helpful to think of the material
as a gas.) The sample is to be put into the same thermodynamic state, i.e. macrostate,
as that of the box’s material; i.e., it is to be given the same values of temperature T ,
pressure P , and chemical potential µ̃. Thus, the sample’s material is indistinguishable
in its thermodynamic properties from the material already in the box, except that its
extensive variables (denoted by ∆’s) are far smaller: ∆V/V = ∆E/E = ∆S/S ) 1.
Perform the injection by opening up a hole in one of the box’s walls, pushing aside
the box’s material enough to make a little cavity of volume ∆V equal to that of the
sample, inserting the sample into the cavity, and then closing the hole in the wall.
The box now has the same volume V as before, but its energy has changed. Show
that the energy change, i.e., the energy required to create the sample and perform the
injection, is equal to the enthalpy ∆H of the sample. Thus, enthalpy has the physical
interpretation of “energy of injection at fixed volume V ”.

****************************
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5.5 The Gibbs Representation of Thermodynamics; Phase
Transitions and Chemical Reactions

Turn attention, next, to the most important of the various representations of thermodynam-
ics: the one appropriate to systems in which the temperature T and pressure P are both being
controlled by an external environment (bath) and thus are treated as independent variables
in the fundamental potential. This is the situation in most laboratory experiments.

Each of the systems, in this case, has a fixed number of particles NI for the various
independent species I NI , and it can exchange heat and volume with its surroundings. (We
shall explicitly allow for more than one particle species because a major application of the
Gibbs representation will be to chemical reactions.) There might be a membrane separating
each system from its bath — a membrane impermeable to particles but through which heat
can pass, and with negligible surface tension so the system and the bath can buffet each
other freely, causing fluctuations in the system’s volume. This is the case, e.g., for a so-
called “constant-pressure balloon” of the type used to lift scientific payloads into the upper
atmosphere. Usually, however, there is no membrane between system and bath. Instead,
gravity might hold the system together because it has higher density than the bath (e.g. a
liquid in a container), or solid-state forces might hold the system together (e.g. a crystal),
or we might just introduce a conceptual, imaginary boundary around the system of interest
— one that comoves with some set of particles.

The equilibrium ensemble, for this type of system, is that of Gibbs, with distribution
function

ρ = eG/kBT e−(E+PV )/kBT , (5.69)

[Eq. (4.24b) to which we have added the normalization constant eG/kBT ]. As for the canonical
and grand canonical distributions, the quantity G in the normalization constant becomes
the fundamental potential for the Gibbs representation of thermodynamics. It is called the
Gibbs potential, and it is a function of the systems’ fixed numbers of particles NI and of
the bath’s temperature T and pressure P , which appear in the Gibbs distribution function:
G = G(NI , T, P ).

The Gibbs potential can be evaluated by a sum over quantum states that follows from∑
n ρn = 1:

e−G/kBT =
∑

n

e−(En+PVn)/kBT . (5.70)

See Ex. 5.6 for an example. This sum has proved to be less useful than the canonical
and grand canonical sums, so in most statistical mechanics textbooks there is little or no
discussion of the Gibbs ensemble. By contrast, the Gibbs representation of thermodynamics
is extremely useful as we shall see, so textbooks pay a lot of attention to it.

We can deduce the equations of the Gibbs representation by the same method as we used
for the canonical and grand canonical representations:

We begin by writing down a Legendre transformation that takes us from the energy
representation to the Gibbs representation. As for the canonical and grand canonical cases,
that Legendre transformation can be inferred from the equilibrium ensemble’s entropy, S =
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−kBln ρ = −(G − Ē + P V̄ )/T [cf. Eq. (5.69) for ρ]. Solving for G, we get

G = Ē + P V̄ − TS . (5.71)

Once we are in the thermodynamic domain (as opposed to statistical mechanics), we can
abandon the distinction between expectation values of quantities and fixed values, i.e. we
can remove the bars and write this Legendre transformation as G = E − TS + PV .

Differentiating this Legendre transformation and combining with the energy representa-
tion’s first law (5.8), we obtain the first law in the Gibbs representation:

dG = V dP − SdT +
∑

I

µ̃IdNI . (5.72)

From this first law we read out the independent variables of the Gibbs representation, namely
{P, T, NI} (in case we have forgotten them!) and the values of its generalized forces

V =

(
∂G

∂P

)

T,NI

, S = −
(
∂G

∂T

)

P,NI

, µ̃I =

(
∂G

∂NI

)

P,T

; (5.73)

and from the equality of mixed partial derivatives, we read off Maxwell relations. By imagin-
ing building up a large system from many tiny subsystems (all with the same, fixed, intensive
variables P , T and µ̃I) and applying the first law (5.72) to this buildup, we obtain the Euler
relation

G =
∑

I

µ̃INI . (5.74)

This Euler relation will be very useful in Sec. 5.5.3, when we discuss chemical reactions.

****************************

EXERCISES

Exercise 5.6 Problem and Practice: Ideal Gas Equation of State from Gibbs Ensemble
For a nonrelativistic monatomic ideal gas (non interactions between particles), evaluate the
statistical sum (5.70) to obtain G(P,T,N), and from it deduce the standard formula for the
ideal-gas equation of state P V̄ = NkBT .

****************************

5.5.1 Minimum Principles for Gibbs and Other Fundamental Ther-
modynamic Potentials

Despite its lack of usefulness in computing G, the Gibbs ensemble plays an important con-
ceptual role in a minimum principle for the Gibbs potential, which we shall now derive.
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Consider an ensemble of systems, each of which is immersed in an identical heat and
volume bath, and assume that the ensemble begins with some arbitrary distribution function,
one that is not in equilibrium with the baths. As time passes, each system will interact with
its bath and will evolve in response to that interaction; and correspondingly the ensemble’s
distribution function ρ will evolve. At any moment of time the ensemble’s systems will have
some mean (ensemble-averaged) energy Ē ≡

∑
n ρnEn and volume V̄ ≡

∑
n ρnVn, and the

ensemble will have some entropy S = −kB

∑
n ρn ln ρn. From these quantities (which are

well defined even though the ensemble may be very far from statistical equilibrium), we can
compute a Gibbs potential G for the ensemble. This out-of-equilibrium G is defined by the
analog of the equilibrium definition (5.71)

G ≡ Ē + P V̄ − TS , (5.75)

where P and T are the pressure and temperature of the identical baths with which the
ensemble’s systems are interacting.8 Now, as the evolution proceeds, the total entropy of
the baths’ ensemble plus the systems’ ensemble will continually increase, until equilibrium is
reached. Suppose that during a short stretch of evolution the systems’ mean energy changes
by ∆Ē , their mean volume changes by ∆V̄ , and the entropy of the ensemble changes by
∆S. Then, by conservation of energy and volume, the baths’ mean energy and volume must
change by

∆Ēbath = −∆Ē , ∆V̄bath = −∆V̄ . (5.76a)

Because the baths (by contrast with the systems) are in statistical equilibrium, we can apply
to them the first law of thermodynamics for equilibrated systems

∆Ēbath = −P∆V̄bath + T∆Sbath + µ̃∆Nbath . (5.76b)

Since Nbath is not changing (the systems cannot exchange particles with their baths) and
since the changes of bath energy and volume are given by Eqs. (5.76a), Eq. (5.76b) tells us
that the baths’ entropy changes by

∆Sbath =
−∆Ē − P∆V̄

T
. (5.76c)

Correspondingly, the sum of the baths’ entropy and the systems’ entropy changes by the
following amount, which cannot be negative:

∆Sbath + ∆S =
−∆Ē − P∆V̄ + T∆S

T
≥ 0 . (5.76d)

Because the baths’ pressure P and temperature T are not changing (the systems are so tiny
compared to the baths that the energy and volume they exchange with the baths cannot have

8Notice that, because the number N of particles in the system is fixed as is the bath temperature T , the
evolving Gibbs potential is proportional to

g ≡ G

NkBT
=

Ē

NkBT
+

P V̄

NkBT
− S

NkB
.

This quantity is dimensionless and generally of order unity. Note that the last term is the dimensionless
entropy per particle [Eq. (4.43) and associated discussion].
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any significant effect on the baths’ intensive variables), the numerator of expression (5.76d) is
equal to the evolutionary change in the ensemble’s out-of-equilibrium Gibbs potential (5.75):

∆Sbath + ∆S =
−∆G

T
≥ 0 . (5.77)

Thus, the second law of thermodynamics for an ensemble of arbitrary systems in contact
with identical heat and volume baths is equivalent to the law that the systems’ out-of-
equilibrium Gibbs potential can never increase. As the evolution proceeds and the
entropy of baths plus systems continually increases, the Gibbs potential G will be driven
smaller and smaller, until ultimately, when statistical equilibrium with the baths is reached,
G will stop at its final, minimum value.

The ergodic hypothesis guarantees that this minimum principle applies not only to an
ensemble of systems, but also to a single, individual system when that system is averaged
over times long compared to its internal timescales τint (but times that might be very short
compared to the timescale for interaction with the heat and volume bath): The system’s
time-averaged energy Ē and volume V̄ , and its entropy S (as computed, e.g., by examining the
temporal wandering of its state on timescales ∼ τint), combine with the bath’s temperature
T and pressure P to give an out-of-equilibrium Gibbs potential G = Ē + P V̄ − TS. This G
evolves on times long compared to the averaging time used to define it; and that evolution
must be one of continually decreasing G. Ultimately, when the system reaches equilibrium
with the bath, G achieves its minimum value.

At this point we might ask about the other thermodynamic potentials. Not surpris-
ingly, associated with each of them there is an extremum principle analogous to “minimum
G”: (i) For the energy potential E(V, S, N), one focuses on closed systems and switches to
S(V, E , N); and the extremum principle is then the standard second law of thermodynam-
ics: An ensemble of closed systems of fixed E , V , N must evolve always toward increasing
entropy S; and when it ultimately reaches equilibrium, the ensemble will be microcanonical
and will have maximum entropy. (ii) For the physical free energy F (T, V, N) one can derive,
in a manner perfectly analogous to the Gibbs derivation, the following minimum principle:
For an ensemble of systems interacting with a heat bath, the out-of-equilibrium physical free
energy F = Ē − TS will always decrease, ultimately reaching a minimum when the ensem-
ble reaches its final, equilibrium, canonical distribution. (iii) The grand-potential Ω(V, T, µ̃)
(Sec. 5.3) satisfies the analogous minimum principle: For an ensemble of systems interacting
with a heat and particle bath, the out-of-equilibrium grand potential Ω = Ē − µ̃N̄ − TS will
always decrease, ultimately reaching a minimum when the ensemble reaches its final, equilib-
rium, grand-canonical distribution. (iv) For the enthalpy H(P, S, N) (Ex. 5.5) the analogous
extremum principle is a bit more tricky; see Ex. 5.13: For an ensemble of systems interacting
with a volume bath, as for an ensemble of closed systems, the bath’s entropy remains con-
stant, so the systems’ entropy S will always increase, ultimately reaching a maximum when
the ensemble reaches its final equilibrium distribution.

In Table 5.2 we summarize these extremum principles. The first column lists the quanti-
ties that a system exchanges with its bath. The second column shows the out-of-equilibrium
fundamental potential for the system, which depends on the bath variables and the system’s
out-of-equilibrium distribution function ρ (shown explicitly) and also on whatever quanti-
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Fundamental Total Entropy Second Fluctuational
Bath Potential S + Sb Law Probability
None S(ρ) with E const S+ const dS ≥ 0 ∝ eS/kB

V & E with S(P ; ρ) S+ const dS ≥ 0 ∝ eS/kB

dE = −PdV with H = E + PV const (see Ex. 5.13)

Heat F (T ; ρ) = Ē − TS −F/T + const dF ≤ 0 ∝ e−F/kBT

Heat & Volume G(T, P ; ρ) = Ē + P V̄ − TS −G/T+ const dG ≤ 0 ∝ e−G/kBT

Heat & Particle Ω(T, µ̃, ρ) = Ē − µ̃N̄ − TS −Ω/T + const dΩ ≤ 0 ∝ e−Ω/kBT

Table 5.2: Deviations from Statistical Equilibrium; cf. Table 5.1.

Gc

G

T

solid

liquidsolid

liquid
Tc

Fig. 5.3: The Gibbs potential G(T, P,N) for H2O as a function of temperature T with fixed P
and N , near the freezing point 273K. The solid curves correspond to the actual path traversed by
the H2O if the phase transition is allowed to go. The dotted curves correspond to superheated solid
ice and supercooled liquid water that are unstable against the phase transition because their Gibbs
potentials are higher than those of the other phase. Note that G tends to decrease with increasing
temperature. This is caused by the −TS term in G = E + PV − TS.

ties are fixed for the system (e.g. its volume V and/or number of particles N ; not shown
explicitly). The third column expresses the total entropy of system plus bath in terms of the
bath’s out-of-equilibrium fundamental potential. The fourth column expresses the second
law of thermodynamics for bath plus system in terms of the fundamental potential. We shall
discuss the fifth column when we study fluctuations away from equilibrium, in Sec. 5.6.

5.5.2 Phase Transitions

The minimum principle for the Gibbs potential G is a powerful tool in understanding phase
transitions : “Phase” in the phrase “phase transitions” refers to a specific pattern into which
the atoms or molecules of a substance organize themselves. For the substance H2O there are
three familiar phases: water vapor, liquid water, and solid ice. Over one range of pressure P
and temperature T , the H2O molecules prefer to organize themselves into the vapor phase;
over another, the liquid phase; and over another, the solid ice phase. It is the Gibbs potential
that governs their preference.

To understand this role of the Gibbs potential, consider a cup of water in a refrigerator
(and because the water molecules are highly nonrelativistic, adopt the nonrelativistic view-
point with the molecules’ rest masses removed from their energy E and chemical potential
µH2O and also from their Gibbs potential). The refrigerator’s air forms a heat and volume
bath for the water in the cup (the system). There is no membrane between the air and the
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Fig. 5.4: The changes of volume (plotted rightward) with increasing Gibbs function (plotted
upward) at fixed P and N for a first-order phase transition [diagram (a)] and a second-order phase
transition [diagram (b)]. Gc is the critical value of the Gibbs potential at which the transition
occurs.

water, but none is needed. Gravity, together with the density difference between water and
air, serves to keep the water molecules in the cup and the air above the water’s surface, for
all relevant purposes. Allow the water to reach thermal and pressure equilibrium with the
refrigerator’s air; then turn down the refrigerator’s temperature slightly and wait for the
water to reach equilibrium again; and then repeat the process. Pretend that you are clever
enough to compute from first-principles the Gibbs potential G for the H2O at each step of
the cooling, using two alternative assumptions: that the H2O molecules organize themselves
into the liquid water phase; and that they organize themselves into the solid ice phase. Your
calculations will produce curves for G as a function of temperature T at fixed (atmospheric)
pressure that are shown in Fig. 5.3. At temperatures T > 273K the liquid phase has the
lower Gibbs potential G, and at T < 273K the solid phase has the lower G. Correspondingly,
when the cup’s temperature sinks slightly below 273K, the H2O molecules have a statistical
preference for reorganizing themselves into the solid phase. The water freezes, forming ice.

It is a familiar fact that ice floats on water, i.e. ice is less dense than water, even
when they are both precisely at the phase-transition temperature of 273K. Correspondingly,
when our sample of water freezes, its volume increases discontinuously by some amount ∆V ;
i.e., when viewed as a function of the Gibbs potential G, the volume V of the statistically
preferred phase is discontinous at the phase-transition point; see Fig. 5.4(a). It is also a
familiar fact that when water freezes, it releases heat into its surroundings. This is why the
freezing requires a moderately long time: the solidifying water can remain at or below its
freezing point and continue to solidify only if the surroundings carry away the released heat,
and the surroundings typically cannot carry it away quickly. The heat ∆Q released during
the freezing (the latent heat) and the volume change ∆V are related to each other in a simple
way; see Ex. 5.7, which focuses on the latent heat per unit mass ∆q and the density change
∆ρ instead of on ∆Q and ∆V .

Phase transitions with finite volume jumps ∆V /= 0 and finite latent heat ∆Q /= 0 are
called first-order. Less familiar, but also important, are second-order phase transitions. In
such transitions the volumes V of the two phases are the same at the transition point, but
their rates of change with decreasing G are different (and this is so whether one holds P fixed
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(b)(a)

Barium

Oxygen

Titanium

Fig. 5.5: (a) The unit cell for a BaTiO3 crystal at relatively high temperatures. (b) The dis-
placements of the titanium and oxygen ions relative to the corners of the unit cell, that occur
in this crystal with falling temperature when it undergoes its second-order phase transition. The
magnitudes of the displacements are proportional to the amount Tc − T by which the temperature
T drops below the critical temperature Tc, for small Tc − T .

as G decreases or holds T fixed or holds some combination of P and T fixed); see Fig. 5.4(b).
Crystals provide examples of both first-order and second-order phase transition. A crys-

tal can be characterized as a 3-dimensional repetition of a “unit cell”, in which ions are
distributed in some fixed way. For example, Fig. 5.5(a) shows the unit cell for a BaTiO3

crystal at relatively high temperatures. This unit cell has a cubic symmetry. The full crystal
can be regarded as made up of such cells stacked side by side and one upon another. A
first-order phase transition occurs when, with decreasing temperature, the Gibbs potential
G of some other ionic arrangement, with a distinctly different unit cell, drops below the G
of the original arrangement. Then the crystal can spontaneously rearrange itself, converting
from the old unit cell to the new one with some accompanying release of heat and some
discontinuous change in volume.

BaTiO3 does not behave in this way. Rather, as the temperature falls a bit below a critical
value, all the Titanium and Oxygen ions get displaced a bit in their unit cells parallel to
one of the original crystal axes; see Fig. 5.5(b). If the temperature is only a tiny bit below
critical, they are displaced by only a tiny amount. When the temperature falls further, their
displacements increase. If the temperature is raised back up above critical, the ions return
to the standard, rigidly fixed positions shown in Fig. 5.5(a). The result is a discontinuity,
at the critical temperature, in the rate of change of volume dV/dG [Fig. 5.4(b)], but no
discontinuous jump of volume and no latent heat.

This BaTiO3 example illustrates a frequent feature of phase transitions: When the transi-
tion occurs, i.e., when the titanium and oxygen atoms start to move, the cubic symmetry gets
broken. The crystal switches, discontinuously, to a “lower” type of symmetry, a “tetragonal”
one. Such symmetry breaking is a common occurence in phase transitions.

Bose-Einstein condensation of a bosonic atomic gas in a magnetic trap is another example
of a second-order phase transition; see Sec. 4.9. As we saw in Ex. 4.12, for Bose condensation
the specific heat of the atoms changes discontinuously (in the limit of an arbitrarily large
number of atoms) at the critical temperature.
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5.5.3 Chemical Reactions

A second important application of the Gibbs potential is to the study of chemical reactions .
Under the term “chemical reactions” we include any change in the constituent particles of
the material being studied, including the joining of atoms to make molecules, the liberation
of electrons from atoms in an ionization process, the joining of two atomic nuclei to make a
third kind of nucleus, the decay of a free neutron to produce an electron and a proton, ... .
In other words, the “chemical” of chemical reactions encompasses the reactions studied by
nuclear physicists and elementary particle physicists as well as those studied by chemists.
The Gibbs representation is the appropriate one for discussing chemical reactions, because
such reactions generally occur in an environment (“bath”) of fixed temperature and pressure.

As a specific example, consider in the earth’s atmosphere the breakup of two molecules
of water vapor to form two hydrogen molecules and one oxygen molecule, 2H2O → 2H2 +O2.
The inverse reaction 2H2+O2 → 2H2O also occurs in the atmosphere, and it is conventional
to write down the two reactions simultaneously in the form

2H2O ↔ 2H2 + O2 . (5.78)

A chosen (but arbitrary) portion of the atmosphere, with idealized walls to keep all its
molecules in, can be regarded as a “system”. (The walls are unimportant in practice, but
are pedagogically useful.) The kinetic motions of this system’s molecules reach and maintain
statistical equilibrium, at fixed temperature T and pressure P , far more rapidly than chemical
reactions can occur. Accordingly, if we view this system on timescales short compared to
that τreact for the reactions (5.78) but long compared to the kinetic relaxation time, then
we can regard the system as in partial statistical equilibrium, with fixed numbers of water
molecules NH2O, hydrogen molecules NH2 , and oxygen molecules NO2 , and with a Gibbs
potential whose value is given by the Euler relation (5.74)

G = µ̃H2ONH2O + µ̃H2NH2 + µ̃O2NO2 . (5.79)

(Here, even though the Earth’s atmosphere is highly nonrelativistic, we include rest masses
in the chemical potentials and in the Gibbs potential; the reason will become evident at the
end of this section.)

When one views the sample over a longer timescale, ∆t ∼ τreact, one discovers that
these molecules are not inviolate; they can change into one another via the reactions (5.78),
thereby changing the value of the Gibbs potential (5.79). The changes of G are more readily
computed from the Gibbs representation of the first law dG = V dP −SdT +

∑
I µ̃IdNI than

from the Euler relation (5.79); taking account of the constancy of P and T and the fact that
the reactions entail transforming two water molecules into two hydrogen molecules and one
oxygen molecule (or conversely) so

dNH2 = −dNH2O , dNO2 = −1

2
dNH2O , (5.80a)

we obtain

dG = (2µ̃H2O − 2µ̃H2 − µ̃O2)
1

2
dNH2O . (5.80b)
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The reactions (5.78) proceed in both directions, but statistically there is a preference for
one direction over the other. The preferred direction, of course, is the one that reduces the
Gibbs potential (i.e., increases the entropy of the molecules and their bath). Thus, if 2µ̃H2O

is larger than 2µ̃H2 + µ̃O2, then water molecules preferentially break up to form hydrogen
plus oxygen; but if 2µ̃H2O is less than 2µ̃H2 + µ̃O2 , then oxygen and hydrogen preferentially
combine to form water. As the reactions proceed, the changing N ’s produce changes in the
chemical potentials µ̃I . [Recall the intimate connection

NI =
(2πmIkBT )3/2

h3
eµI/kBT V (5.81)

between µI = µ̃I − mIc2 and NI for a gas in the nonrelativistic regime]. These changes
in the NI ’s and µ̃I ’s lead ultimately to a macrostate (thermodynamic state) of minimum
Gibbs potential G—a state in which the reactions (5.78) can no longer reduce G. In this
final state of full statistical equilibrium, the dG of expression (5.80b) must be zero; and
correspondingly, the combination of chemical potentials appearing in it must vanish:

2µ̃H2O = 2µ̃H2 + µ̃O2 . (5.82)

The above analysis shows that the “driving force” for the chemical reactions is the com-
bination of chemical potentials in the dG of Eq. (5.80b). Notice that this combination has
coefficients in front of the µ̃I ’s that are identical to the coefficients in the reactions (5.78)
themselves; and the equilibrium relation (5.82) also has the same coefficients as the reac-
tions (5.80b). It is easy to convince oneself that this is true in general:

Consider any chemical reaction. Write the reaction in the form

∑

j

νL
j AL

j ↔
∑

j

νR
j AR

j . (5.83)

Here the superscripts L and R denote the “left” and “right” sides of the reaction, the Aj’s
are the names of the species of particle or atomic nucleus or atom or molecule involved in
the reaction, and the νj ’s are the number of such particles (or nuclei or atoms or molecules)
involved. Suppose that this reaction is occurring in an environment of fixed temperature and
pressure. Then to determine the direction in which the reaction preferentially goes, examine
the chemical-potential sums for the two sides of the reaction,

∑

j

νL
j µ̃L

j ,
∑

j

νR
j µ̃R

j . (5.84)

The reaction will proceed from the side with the larger chemical-potential sum to the side
with the smaller; and ultimately the reaction will bring the two sides into equality. That final
equality is the state of full statistical equilibrium. Exercises 5.8 and 5.9 illustrate this.

When dealing with chemical reactions between highly nonrelativistic molecules and atoms—
e.g. water formation and destruction in the Earth’s atmosphere—one might wish to omit rest
masses from the chemical potentials. If one does so, and if one wishes to preserve the crite-
rion that the reaction goes in the direction of decreasing dG = (2µH2O − 2µH2 −µO2)

1
2dNH2O
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Fig. 5.6: Phase diagram for H2O.

[Eq. (5.80b) with tildes removed], then one must choose as the “rest masses” to be subtracted
values that do not include chemical binding energies; i.e. one must define the rest masses
in such a way that 2mH2O = 2mH2 + mO2 . One can avoid this delicacy by simply using the
relativistic chemical potentials. The derivation of the Saha equation (Ex. 5.9) is an example.

****************************

EXERCISES

Exercise 5.7 Example: Latent Heat and the Clausius-Clapeyron Equation

(a) Consider H2O in contact with a heat and volume bath of temperature T and pressure
P . For certain values of T and P the H2O will be water; for others, ice; for others,
water vapor—and for certain values it may be a two- or three-phase mixture of water,
ice, and/or vapor. Show, using the Gibbs potential, that if two phases a and b are
present and in statistical equilibrium with each other, then their chemical potentials
must be equal : µa = µb. Explain why, for any phase a, µa is a unique function of T and
P . Explain why the condition µa = µb for two phases to be present implies that the
two-phase regions of the T − P plane are lines and the three-phase regions are points;
see Fig.5.6. The three-phase region is called the “triple point”. The volume V of the
two- or three-phase system will vary depending on how much of each phase is present,
since the density of each phase (at fixed T and P ) is different.

(b) Show that the slope of the ice-water interface curve in Fig. 5.6 (the “melting curve”)
is given by the “Clausius-Clapeyron equation”

(
dP

dT

)

melt

=
∆qmelt

T

(
ρice ρwater

ρice − ρwater

)
, (5.85a)

where ρ is density (mass per unit volume) and ∆qmelt is the latent heat per unit mass
for melting (or freezing), i.e., the amount of heat required to melt a unit mass of ice, or
the amount released when a unit mass of water freezes. Notice that, because ice is less
dense than water, the slope of the melting curve is negative. [Hint : compute dP/dT
by differentiating µa = µb, and then use the thermodynamic properties of Ga = µaNa

and Gb = µbNb.]
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(c) Suppose that a small amount of water is put into a closed container of much larger
volume than the water. Initially there is vacuum above the water’s surface, but as
time passes some of the H2O evaporates to give vapor-water equilibrium. The vapor
pressure will vary with temperature in accord with the Clausius-Clapeyron equation

dPvapor

dT
=

∆qevaporate

T

(
ρwater ρvapor

ρwater − ρvapor

)
. (5.85b)

Now, suppose that a foreign gas (not water vapor) is slowly injected into the container.
Assume that this gas does not dissolve in the liquid water. Show that, as the pressure
Pgas of the foreign gas gradually increases, it does not squeeze water vapor into the
water, but rather it induces more water to vaporize:

(
dPvapor

dPtotal

)

T fixed

=
ρvapor

ρwater
> 0 , (5.85c)

where Ptotal = Pvapor + Pgas.

Exercise 5.8 Example: Electron-Positron Equilibrium at “Low” Temperatures

Consider hydrogen gas in statistical equilibrium at a temperature T ) mec2/kB +
6 × 109 K. Electrons at the high-energy end of the Boltzmann energy distribution can
produce electron-positron pairs by scattering off protons

e− + p → e− + p + e− + e+ . (5.86)

[There are many other ways of producing pairs, but in analyzing statistical equilibrium
we get all the information we need (a relation among the chemical potentials) by
considering just one way.]

(a) In statistical equilibrium the above reaction and its inverse must proceed at the same
rate, on average. What does this imply about the relative magnitudes of the electron
and positron chemical potentials µ̃− and µ̃+ (with rest masses included)?

(b) Although these reactions require an e− that is relativistic in energy, almost all the
electrons and positrons will have kinetic energies of magnitude E −mc2 ∼ kBT ) mc2,
and thus will have E + mc2 + p2/2m. What are the densities in phase space N± =
dN±/d3xd3p for positrons and electrons in terms of p, µ̃±, and T ? Explain why for a
hydrogen gas we must have µ̃− > 0 and µ̃+ < 0.

(c) Assume that the gas is very dilute so that η ) 1 for both electrons and positrons.
Then integrate over momenta to obtain the following formula for the number densities
in physical space of electrons and positrons

n± =
2

h3
(2πmkBT )3/2 exp

(
µ̃± − mc2

kBT

)
. (5.87)

In cgs units, what does the dilute-gas assumption η ) 1 correspond to in terms of n±?
What region of hydrogen mass density ρ and temperature T is the dilute-gas region?
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Fig. 5.7: The temperature Tp at which electron-positron pairs form in a dilute hydrogen
plasma, plotted as a function of density ρ. This is the correct upper limit (upper dashed curve
in Fig. 3.7) on the region where the plasma can be considered fully nonrelativistic. Above
this curve, although T may be ) mec2/kB + 6 × 109 K, a proliferation of electron-positron
pairs radically changes the properties of the plasma.

(d) Let n be the number density of protons. Then by charge neutrality n = n− − n+

will also be the number density of “ionization electrons” (i.e., of electrons that have
been ionized off of hydrogen). Show that the ratio of positrons (and hence of pairs) to
ionization electrons is given by

n+

n
=

1

2y[y + (1 + y2)
1
2 ]

(5.88a)

where

y ≡ 1

4
nλ3emc2/kBT , and λ ≡ h√

2πmkBT
(5.88b)

is the thermal deBroglie wavelength of the electrons. Fig. 5.7 shows the temperature
Tp at which, according to this formula, n+ = n (and y = 0.354), as a function of mass
density ρ + mprotonn. This Tp can be thought of as the “temperature at which pairs
form” in a dilute plasma. Somewhat below Tp there are hardly any pairs; somewhat
above, the pairs are profuse.

(e) Note that at low densities pairs form at temperatures T ∼ 108 K + 0.02mec2/kB.
Explain in terms of “available phase space” why the formation temperature is so low.

Exercise 5.9 Example: Saha Equation for Ionization Equilibrium

Consider an optically thick hydrogen gas in statistical equilibrium at temperature T .
(By “optically thick” is meant that photons can travel only a distance small compared
to the size of the system before being absorbed, so they are confined by the hydrogen
and kept in statistical equilibrium with it.) Among the reactions that are in statistical
equilibrium are H + γ ↔ e + p [ionization and recombination of Hydrogen H, with
the H in its ground state] and e + p ↔ e + p + γ [emission and absorption of photons
by “bremsstrahlung”, i.e., by the coulomb-force-induced acceleration of electrons as
they fly past protons]. Let µ̃γ , µ̃H, µ̃e, and µ̃p be the chemical potentials including
rest mass-energies; let mH, me, mp be the rest masses; denote by I ≡ (13.6 electron
volts) the ionization energy of hydrogen, so that mHc2 = mec2 + mpc2 − I; denote
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µj ≡ µ̃j − mjc2; and assume that T ) mec2/kB + 6 × 109 K, and that the density
is low enough that the electrons, protons, and Hydrogen atoms can be regarded as
nondegenerate (i.e., as distinguishable, classical particles).

(a) What relationships hold between the chemical potentials µ̃γ, µ̃H, µ̃e, and µ̃p?

(b) What are the number densities nH, ne, and np expressed in terms of T and µ̃H, µ̃e,
µ̃p—taking account of the fact that the electron and proton both have spin 1

2 , and
including in H all possible electron and nuclear spin states?

(c) Derive the Saha equation for ionization equilibrium

nenp

nH
=

(2πmekBT )3/2

h3
e−I/kBT . (5.89)

This equation is widely used in astrophysics and elsewhere.

****************************

5.6 Fluctuations of Systems in Statistical Equilibrium

As we saw in Chap. 4, statistical mechanics is built on a distribution function ρ that is equal
to the probability of finding a chosen system in a quantum state at some chosen location in
the system’s phase space. For systems in statistical equilibrium, this probability is given by
the microcanonical or canonical or grand canonical or Gibbs or . . . distribution, depending
on the nature of the system’s interactions with its surroundings. Classical thermodynamics
makes use of only a tiny portion of the information in this probability distribution: the
mean values of a few macroscopic parameters (energy, entropy, volume, pressure, . . .). Also
contained in the distribution function, but ignored by classical thermodynamics, is detailed
information about fluctuations of a system away from its mean values.

As a simple example, consider fluctuations of the number of particles in one of the cells
with volume V depicted in Fig. 5.1. The cell has imaginary walls and is immersed in a bath
of identical, nonrelativistic, noninteracting, classical particles (ideal gas) with temperature T
and chemical potential µ. We want to know the probability pN that the cell has N particles
in it.

That probablility can be deduced from the cell’s grand canonical distribution function
ρn = exp[(Ω − En − µNn)/kBT ]. All we need to do is identify those quantum states for the
cell that have precisely N particles, and then sum ρn over those states. This is easy. Our
standard expression for summing ρn over all states |n〉,

1 =
∑

n

ρn =
1

exp(−Ω/kBT )

∞∑

N=0

1

N !

∫
d3Nxd3Np

h3N
exp

[
−En − µNn

kBT

]
, (5.90)

is already broken down explicitly into contributions from states with fixed numbers N of
particles in the cell. The portion with fixed N is the probability we seek. It is instructive to
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write that portion of the sum in the following form:

pN =
exp[−Ω(N ; V, T, µ)/kBT )]

exp[−Ω(V, T, µ)/kBT ]
, (5.91a)

where

exp

[
−Ω(N ; V, T, µ)

kBT

]
≡ 1

N !

∫
d3Nxd3Np

h3N
exp

[
−En − µNn

kBT

]
(5.91b)

is the N-particle portion of the statistical sum (5.16) by which we compute exp[−Ω(V, T, µ)/kBT ].
The quantity Ω(N ; V, T, µ), in fact, is the out-of-equilibrium grand potential discussed

briefly in Sec. 5.5.1 and summarized on the bottom line of Table 5.2. As indicated in that
table (bottom row, third entry), the total entropy of the bath plus our cell, when our cell
is known to contain N particles and we view the bath plus cell to be a closed system, is
Stot

N = −Ω(N ; V, T, µ)/T , aside from an additive constant. By the relationship p ∝ eS/kB

between probability and entropy for closed systems, eStot
N /kB ∝ e−Ω(N ;V,T,µ)/kBT must be

proportional to the probability pN that our cell contains N particles. This is a second way
to understand Eq. (5.91a).

The last entry in Table 5.2 summarizes the general form of this result: For any sys-
tem in contact with a heat and particle bath, the probability of some fluctuation away from
equilibrium is proportional to e−Ω/kBT , where Ω is the out-of-equilibrium grand potential for
the system, in that out-of-equilibrium macrostate, e.g., in the macrostate where there are N
particles in our cell.

For our cell immersed in a heat and particle bath, the probability pN [Eqs. (5.91)] is
evaluated explicitly in Ex. 5.10, with the result that pN is a Poisson distribution:

pN = e−N̄ N̄N

N !
. (5.92a)

The mean N̄ of this distribution is equal to the number predicted by thermodynamics or
kinetic theory, N̄/V = P/kBT = expression (3.37a), and its root-mean-square fluctuation
away from the mean (i.e., the square root of its variance) σN , is equal to

√
N̄ .

When N̄ is huge, as it is for all the systems studied in this chapter, the Poisson distri-
bution (5.92a) is extremely well approximated by a Gaussian. To convert to that Gaussian,
take the logarithm of Eq. (5.92a), use Stirling’s formula N ! +

√
2πN(N/e)N , and expand in

powers of N − N̄ keeping only terms up through quadratic order. The result, after exponen-
tiating, is

pN =
1√
2πN̄

exp

[
−(N − N̄)2

2N̄

]
. (5.92b)

In the next chapter (Sec. 5.2) we shall learn that the probability distribution (5.92a) had to
be very nearly Gaussian: Any probability distribution that is produced by a superposition of
the influences of many independent, random variables (in this case the independent, random
motions of many gas particles) must be Gaussian to very high precision.

As another example of fluctuations away from statistical equilibrium, consider a micro-
canonical ensemble of boxes, each with volume V and each containing precisely N identical,
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dilute (η ) 1), nonrelativistic gas particles and containing energy (excluding rest mass)
between E and E + δE, where δE ) E. (Remember the “kludge” that was necessary in
Ex. 4.7). Focus attention on a set of quantities yj that characterize these boxes of gas and
that are not fixed by the set E, V, N . For example, y1 might be the total number NR of
particles in the right half of a box, and y2 might be the total energy ER in the right half.
We seek a joint probability distribution for these yj’s.

If the yj’s can take on only discrete values (e.g., y1 = NR), then the total number of
quantum states that correspond to specific values of the yj’s is related to the entropy S by
the standard microcanonical relation

Nstates(yj; E, V, N) = exp[S(yj; E, V, N)/kB] ; (5.93)

and correspondingly, since all states are equally probable in the microcanonical ensemble,
the probability of finding a system of the ensemble to have the specific values yj is

p(yj; E, V, N) =
Nstates(yj; E, V, N)∑
yj

Nstates(yj; E, V, N)
= const × exp

[
S(yj; E, V, N)

kB

]
. (5.94a)

Similarly, if the yj take on a continuous range of values (e.g., y2 = ER), then the probability
of finding yj in some tiny, fixed range dyj is proportional to exp[S(yj; E, V, N)/kB], and
correspondingly the probability per unit yj interval of finding a system to have specific
values is

dp(yj; E, V, N)

dy1dy2 . . . dyr
= const × exp

[
S(yj; E, V, N)

kB

]
. (5.94b)

In expressions (5.94a) and (5.94b), the entropy S(yj; E, V, N) is to be computed via statistical
mechanics (or, when possible, via thermodynamics) not for the original ensemble of boxes
in which the yj were allowed to vary, but rather for an ensemble in which the yj’s are fixed
at the chosen values.

The probability distributions (5.94a) and (5.94b), though “exact,” are not terribly in-
structive. To get better insight we expand S in powers of the deviation of yj from its mean.
Denote by ȳj the value of yj that maximizes the entropy (this will turn out also to be the
mean of the distribution). Then for small |yj − ȳj|, Eq. (5.94a) and Eq. (5.94b) become

p(yj; E, V, N) or
dp(yj; E, V, N)

dy1dy2 . . . dyr
= const × exp

[
1

2kB

(
∂2S

∂yj∂yk

)
(yj − ȳj)(yk − ȳk)

]
. (5.94c)

Here the second partial derivative of the entropy is to be evaluated at the maximum-entropy
location, where yj = ȳj for all j. Expression (5.94c) is a (multidimensional) Gaussian
probability distribution, as expected. Moreover, for this distribution the values ȳj that were
defined to give maximal entropy (i.e., the “most probable” values) are also the means.

The last entry in the first line of Table 5.2 summarizes the above equations: For a closed
system, the probability of some fluctuation away from equilibrium is proportional to eS/kB ,
where S is the total entropy for the out-of-equilibrium fluctuational macrostate, e.g., the
macrostate with NR particles in the right half box.

For the specific example where y1 ≡ NR =(number of particles in right half of box)
and y2 ≡ ER =(amount of energy in right half of box), and assuming the gas is ideal (no
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interactions between particles), we can infer S(NR, ER; N, E, V ) from Eq. (4.41) as applied
to the two halves of the box and then added:

S(NR, ER; N, E, V ) = kBNR ln

[(
4πm

3h2

)3/2

e5/2 V

2

E3/2
R

N5/2
R

]

+ kB(N − NR) ln

[(
4πm

3h2

)3/2

e5/2 V

2

(E − ER)3/2

(N − NR)5/2

]
. (5.95a)

It is straightforward to compute the values ĒR and N̄R of ER and NR that maximize this
entropy:

ĒR =
E

2
, N̄R =

N

2
. (5.95b)

Thus, in agreement with intuition, the mean values of the energy and particle number in
the right half box are equal to half of the box’s total energy and particle number. It is
also straightforward to compute from expression (5.95a) the second partial derivatives of the
entropy with respect to ER and NR, evaluate them at ER = ĒR and NR = N̄R, and plug
them into the probability distribution (5.94c). The result is

dpNR

dER
= const × exp

(
−(NR − N/2)2

2(N/4)
+

−[(ER − E/2) − (E/N)(NR − N/2)]2

2(N/6)(E/N)2

)
. (5.95c)

[There is no dNR in the denominator of the left side because NR is a discrete variable.] This
Gaussian distribution has the following interpretation: (i) there is a correlation between
the energy ER and the particle number NR in the right half of the box, as one might
have expected: if there is an excess of particles in the right half, then we must expect
an excess of energy there as well. (ii) The quantity that is not correlated with NR is
ER− (E/N)NR, as one might have expected. (iii) For fixed NR, dpNR/dER is Gaussian with
mean ĒR = E/2 + (E/N)(NR − N/2) and with rms fluctuation (square root of variance)
σER = (E/N)

√
N/6. (iv) After integrating over ER, we obtain

pNR = const × exp

[
−(NR − N/2)2

2N/4

]
. (5.95d)

This is Gaussian with mean N̄R = N/2 and rms fluctuation σNR =
√

N/4. By contrast, if
the right half of the box had been in equilibrium with a bath far larger than itself, NR would
have had an rms fluctuation equal to the square root of its mean, σNR =

√
N/2 [the Poisson

distribution (5.11)]. The fact that the “companion” of the right half has only the same size
as the right half, rather than being far larger, has reduced the rms fluctuation of the number
of particles in the right half from

√
N/2 to

√
N/4.

Notice that all the concrete probability distributions we have derived, Eqs. (5.92), (5.95c),
and (5.95d) are exceedingly sharply peaked about their means: Their variances (“half-
widths”) divided by their means, i.e., the magnitude of their fractional fluctuations, are
all of order 1/

√
N̄ , where N̄ is the mean number of particles in a system; and in realistic

situations N̄ is very large. (For example, N̄ is of order 1026 for a cubic meter of the Earth’s
atmosphere, and thus the fractional fluctuations of thermodynamic quantities are of order



43

10−13.) It is this extremely sharp peaking that makes classical thermodynamics insensi-
tive to the choice of type of equilibrium ensemble—i.e., sensitive only to means and not to
fluctuations about the means.

The generalization of our two examples (cell in a heat and particle bath, and closed
box) to other situations should be fairly obvious. The generalization is summarized in Table
5.2. When a system is in some out-of-equilibrium macrostate, the total entropy S + Sb of
the system and any bath with which it may be in contact is, up to an additive constant,
either the system’s entropy S, or the negative of its out-of-equilibrium potential divided by
the bath’s temperature (−F/T+const, −G/T+const, or = −Ω/T+const (column 3 of Table
5.2). Correspondingly, the probability of a fluctuation into this out-of-equilibrium macrostate
is proportional to the exponential of this quantity in units of Boltzmann’s constant (e−S/kB ,
e−F/kBT , e−G/kBT or e−Ω/kBT ; column 5 of Table 5.2). By expanding the quantity in the
exponential around the equilibrium state, to second order in the fluctuations, one obtains a
Gaussian probability distribution for the fluctuations.

In Ex. 5.11, the reader can work out the example of temperature and volume fluctuations
for a system in contact with a heat and volume bath; in this case the starting point (next
to last line in Table 5.2) is a fluctuational probability proportional to e−G/kBT , where G is
the out-of-equilibrium Gibbs function.

****************************

EXERCISES

Exercise 5.10 **Example: Probability Distribution for the Number of Particles in a Cell

Suppose that we make a large number of measurements of the number of atoms in one of
the cells of Fig. 5.1, and that from those measurements we compute the probability pN for
that cell to contain N particles.

(a) How widely spaced in time must the measurements be to guarantee that the measured
probability distribution is the same as that which one computes from the ensemble of
cells at a specific moment of time?

(b) Assume that the measurements are widely enough separated for this criterion to be
satisfied. Use Eqs. (5.91) to show that the probability pN for the cell to contain N
particles is given by the Poisson distribution

pN = e−N̄(N̄N/N !) , (5.96a)

where N̄ is given by the standard equation for the mean number of particles in a cell,
N̄ = (

√
2πmkBT/h)3eµ/kBT V [Eq. (3.37a)].

(c) Show that for the Poisson distribution (5.96a), the expectation value is 〈N〉 = N̄ , and
the root mean square deviation from this is

σN ≡ 〈(N − N̄)2〉 1
2 = N̄

1
2 . (5.96b)
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Exercise 5.11 Example: Fluctuations of Temperature and Volume in an Ideal Gas

Consider a gigantic container of gas made of identical particles that might or might not
interact. Regard this gas as a bath, with temperature Tb and pressure Pb. Pick out at
random a sample of the bath’s gas containing precisely N particles, with N ' 1. Measure
the volume V of the sample and the temperature T inside the sample. Then pick another
sample of N particles and measure its V and T , and repeat over and over again. Thereby
map out a probability distribution dp/dTdV for V and T of N -particle samples inside the
bath.

(a) Explain in detail why

dp

dTdV
= const×exp

[
− 1

2kBTb

(
∂2G

∂V 2
(V −V̄ )2+

∂2G

∂T 2
(T−Tb)

2 + 2
∂2G

∂T∂V
(V −V̄ )(T−Tb)

)]
,

(5.97a)
where G(T, V, N) is the equilibrium Gibbs function for a sample of N particles interact-
ing with this bath, V̄ is the equilibrium volume of the sample when its temperature and
pressure are those of the bath, and the double derivatives in Eq. (5.97a) are evaluated
at the equilibrium temperature Tb and pressure Pb.

(b) Show that the derivatives are given by
(
∂2G

∂T 2

)

V,N

=
CV

Tb
,

(
∂2G

∂V 2

)

T,N

=
1

κ
,

(
∂2G

∂T∂V

)

N

= 0 , (5.97b)

where CV is the gas sample’s specific heat at fixed volume and κ is its compressibility
at fixed temperature:

CV ≡
(
∂E

∂T

)

V,N

, κ ≡ −
(
∂V

∂P

)

T,N

, (5.97c)

both evaluated at temperature Tb and pressure Pb. Thereby conclude that

dp

dTdV
= const × exp

[
−(V − V̄ )2

2kBTbκ
− CV (T − Tb)2

2kBT 2
b

]
. (5.97d)

(d) This probability distribution says that the temperature and volume fluctuations are
uncorrelated. Is this physically reasonable? Why?

(e) What are the rms fluctuations of the sample’s temperature and volume, σT and σV .
Show that these both scale as 1/

√
N , where N is the number of particles in the samples.

Is this physically reasonable? Why?

Exercise 5.12 Example: Fluctuations and Phase Transitions in a van der Waals Gas

Consider the van der Waals gas studied in Sec. 5.3.2, for which the equation of state is
(

P +
a

(V/N)2

)
(V/N − b) = kBT , (5.98)

where a and b are constants [Eq. (5.46)].
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(a) Show that the equation of state has the form depicted in Fig. 5.8a. What is the critical
temperature Tcrit below which the curve in Fig. 5.8a has a local maximum and a local
minimum?

(b) Where along the curves in Fig. 5.8a is the gas stable against volume fluctuations, and
where is it unstable? [Hint, see Ex. 5.11.] For what range of T and P can there be two
different phases that are both stable against volume fluctuations?

(c) Let the temperature T be fixed at T < Tcrit, and gradually increase the density from
zero (decrease the volume from infinity). At low densities the gas will be vaporous, and
at high densities it will be liquid. The phase transition from vapor to liquid involves
a discontinuous jump from some point A in Fig. 5.8b to another point B. Use the
principle of minimum Gibbs potential (Sec. 5.5) to prove that the straight line from A
to B in Fig. 5.8b is horizontal and has a height such that the areas of the two stippled
regions are equal.

(d) At what values of the pressure P and specific volume V/N does the gas exhibit huge
volume fluctuations?

Exercise 5.13 Example: Evolution and Fluctuations of a System in Contact with a Volume
Bath
Exercise 5.5 explored the enthalpy representation of thermodynamics for an equilibrium
ensemble of systems in contact with a volume bath. Here we extend that analysis to an
ensemble out of equilibrium. We denote by Pb the bath pressure.

(a) The systems exchange volume with the bath but not heat or particles. Explain why,
even though the ensemble may be far from equilibrium, any system’s volume change
dV must be accompanied by an energy change dE = −PbdV . This implies that the
system’s enthalpy H = E +PbV is conserved. All systems in the ensemble are assumed
to have the same enthalpy H and the same number of particles N .

(b)(a)

P

V/N

P

V/N

T > T
crit

b

B A

T = T
crit

T<T cri
t

Fig. 5.8: (a) The van der Waals equation of state P (N,V, T ) plotted as pressure P versus specific
volume V/N at fixed temperature T , for various values of the temperature T . (b) The route of a
phase transition in the van der Waals gas. The transition is a discontinuous jump from point A to
point B.
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(b) Using equilibrium considerations for the bath, show that interaction with a system
cannot change the bath’s entropy.

(c) Show that the ensemble will always evolve toward increasing entropy S, and that
when the ensemble finally reaches statistical equilibrium with the bath, its distribution
function will be that of the enthalpy ensemble (Table 5.1): ρ = e−S/kB = const for all
regions of phase space that have the specified particle number N and enthalpy H .

(d) Show that fluctuations away from equilibrium are described by the probability distri-
butions (5.94a) and (5.94b), but with the system energy E replaced by the system
enthalpy H ; cf. Table 5.2.

****************************

5.7 T2 Renormalization Group Methods for The Ising
Model of a Ferromagnetic Phase Transition

In Sec. 5.5.2 we presented a thermodynamic description and classification of phase tran-
sitions. We now seek microphysical insight into them. After a little contemplation, one
discovers that this is an extremely challenging problem because a phase change is an in-
trinsically non-perturbative process. Perhaps for this reason, the statistical mechanics of
phase transitions has inspired some of the most beautiful and broadly applicable methods
in modern theoretical physics. In this section and the next we shall give the flavor of these
methods by two examples: the renormalization group, and Monte Carlo techniques.9

We shall illustrate these methods using the so-called Ising model10 of a second order
ferromagnetic phase transition, which involves spins arranged on a two dimensional square
lattice. Each spin s can take on the discrete values +1 (“up”) and −1 (“down”), and it
is idealized as interacting solely with each of its four nearest neighbors, with an interaction
energy −Jss′ (where J > 0) that is attractive if the spins are aligned (s = s′) and repulsive if
they are opposite (s = −s′). The Ising model does not explicitly include more distant inter-
actions, though they are surely present, because they are unnecessary for a phase transition:
the “knock-on” effect from one spin to the next, as we shall see, introduces an indirect long
range organization that propagates across the lattice when the temperature is reduced below
a critical value, inducing the transition.

The interaction’s proportionality constant J depends on V/N , J = F(V/N), where N is
the total number of spins and V is the lattice’s 2-dimensional volume (i.e. its area), which
are both held constant. (Recall from Sec. 5.5 that the volume does not change at a second
order phase transition.) For later use, we introduce a dimensionless, positive parameter

K ≡ J

kBT
=

F(V/N)

kBT
. (5.99)

9Our presentation is based in part on Maris and Kadanoff (1978) and in part on Chandler (1987).
10After E. Ising, who first investigated it, in 1925.
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The actual functional form of F will be unimportant.
When the temperature is so high that J ) kBT , i.e. when K ) 1, the spins will be

almost randomly aligned and the total interaction energy will be close to zero. Conversely,
at low temperatures, where K ' 1, the strong coupling will make it energetically favorable
for most of the spins to be aligned over large volumes. In the limit, the total interaction
energy approaches −2NJ . At some critical intermediate temperature Tc and corresponding
value Kc of K, there will be a phase transition. We shall compute the critical Kc and the
dependence of the lattice’s specific heat on T near Tc, using renormalization group methods
in this section and Monte Carlo methods in the next; and we shall examine the accuracy of
these methods by comparing our results with an exact solution for the Ising model, derived
in a celebrated paper by Lars Onsager (1944).

The key idea behind the renormalization group approach to the Ising model is to try to
replace the full lattice by a sparser lattice that has similar thermodynamic properties, and
then to iterate, making the lattice more and more sparse; cf Fig. 5.9. In implementing this
procedure, we shall embody all the lattice’s thermodynamic properties in its physical free
energy F (N, V, T ) (the appropriate fundamental potential for our situation of fixed N and
V and interaction with a heat bath); and we shall evaluate F using the canonical-ensemble
sum over states e−F/kBT ≡ z =

∑
n e−En/kBT . For our Ising model with its nearest-neighbor

interaction energies, Eq. (5.99), this sum becomes

z =
∑

{s1=±1,s2=±1,...}

eKΣ1sisj . (5.100a)

Here in the exponential Σ1 means a sum over all pairs of nearest neighbor sites {i, j}.
The first step in the renormalization group method is to rewrite Eq. (5.100a) so that each

of the open-circle spins of Fig. 5.9, e.g. s5, appears in only one term in the exponential, and
then explicitly sum each of those spins over ±1 so they no longer appear in the summations:

1

2 5 4

3

Fig. 5.9: Partition of a square lattice into two interlaced square lattices (solid circles and open
circles). In the renormalization group approach, the open-circle spins are removed from the lattice,
and all their interactions are replaced by modified interactions between the remaining solid-circle
spins. The new lattice is rotated by π/4 with respect to the original lattice and the lattice spacing
increases by a factor

√
2.
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z =
∑

{...,s4=±1,s5=±1,s6=±1,...}

· · · eK(s1+s2+s3+s4)s5 · · ·

=
∑

{...s4=±1,s6=±1...}

· · ·
[
eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

]
· · · . (5.100b)

(This rewriting of z is possible because each open-circle spin interacts only with solid-circle
spins.) The partition function is now a product of terms like those in the square brackets,
one for each open-circle lattice site that we have “removed”. We would like to rewrite
each square bracketed term in a form involving solely nearest-neighbor interactions of the
solid-circle spins, so that we can then iterate our procedure. Such a rewrite, however, is
not possible; after some experimentation, one can verify that the rewrite also requires next-
nearest-neighbor interactions and four-site interactions:

[
eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

]

= f(K)e
1
2K1(s1s2+s2s3+s3s4+s4s1)+K2(s1s3+s2s4)+K3s1s2s3s4 . (5.100c)

We can determine the four functions K1(K), K2(K), K3(K), f(K) by substituting each of
the four possible distinct combinations of {s1, s2, s3, s4}, into Eq. (5.100b). Those four
combinations, arranged in the pattern of the solid circles of Fig. YYY, are ++

++, −+
+−,

++
−−, and ++

+−. [Rotating the pattern or changing all signs leaves both sides of Eq. (5.100c)
unchanged.] By inserting these combinations into Eq. (5.100c)) and performing some algebra,
we obtain

K1 =
1

4
ln cosh(4K) ,

K2 =
1

8
ln cosh(4K) ,

K3 =
1

8
ln cosh(4K) − 1

2
ln cosh(2K) ,

f(K) = 2[cosh(2K)]1/2[cosh(4K)]1/8 . (5.100d)

By inserting expression (5.100c) and the analogous expressions for the other terms into
Eq. (5.100b), we obtain the partition function for our original N -spin lattice of open and
closed circles, expressed as a sum over the N/2-spin lattice of closed circles:

z(N, K) = [f(K)]N/2
∑

e[K1Σ1sisj+K2Σ2sisj+K3Σ3sisjsksl] . (5.100e)

Here the symbol Σ1 still represents a sum over all nearest neighbors but now in the N/2
lattice, Σ2 is a sum over the four next nearest neighbors and Σ3 is a sum over spins located
at the vertices of a unit cell. [The reason we defined K1 with the 1/2 in Eq. (5.100c) was
because each nearest neighbor interaction appears in two adjacent squares of the solid-circle
lattice, thereby converting the 1/2 to a 1 in Eq. (5.100e).]
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So far, what we have done is exact. We now make two drastic approximations that are
designed to simplify the remainder of the calculation and thereby elucidate the renormaliza-
tion group method. First, in evaluating the partition function (5.100e), we drop completely
the quadruple interaction (i.e. we set K3 = 0). This is likely to be decreasingly accurate as
we lower the temperature and the spins become more aligned. Second, we assume that near
the critical point, in some average sense, the degree of alignment of next nearest neighbors (of
which there are as many as nearest neighbors) is “similar” to that of the nearest neighbors,
so that we can set K2 = 0 but increase K1 to

K ′ = K1 + K2 =
3

8
ln cosh(4K). (5.101)

(If we simply ignored K2 we would not get a phase transition.) This substitution ensures
that the energy of a lattice with N/2 aligned spins, and therefore N nearest neighbor and N
next nearest neighbor bonds, namely −(K1 + K2)NkBT , is the same as that of a lattice in
which we just include the nearest neighbor bonds, but strengthen the interaction from K1 to
K ′. Clearly this will be unsatisfactory at high temperature, but we only need it to be true
near the phase transition’s critical temperature.

These approximations bring the partition function (5.100e) into the form

z(N, K) = [f(K)]N/2z(N/2, K ′) , (5.102a)

which relates the partition function for our original Ising lattice of N spins and interaction
constant K to that of a similar lattice with N/2 spins and interaction constant K ′.

As the next key step in the renormalization procedure, we note that because the free
energy, F = −kBT ln z, is an extensive variable, ln z must increase in direct proportion to
the number of spins; i.e, it must have the form

−F/kBT ≡ ln z(N, K) = Ng(K) (5.102b)

for some function g(K). By combining Eqs. (5.102a) and (5.102b), we obtain a relation for
the function g(K) (the free energy, aside from constants) in terms of the function f(K):

g(K ′) = 2g(K) − ln f(K) , where f(K) = 2[cosh(2K)]1/2[cosh(4K)]1/8 (5.103)

[cf. Eq. (5.100d)].
Equations (5.101) and (5.103) are the fundamental equations that allow us to calculate

thermodynamic properties. They are called the renormalization group equations because
their transformations form a mathematical group, and they are a scheme for determining
how the effective coupling parameter K changes (gets renormalized) when one views the
lattice on larger and larger distance scales. Renormalization group equations like these have
been widely applied in elementary particle theory, condensed matter theory, and elsewhere.
Let us examine them in detail.

The iterative map (5.101) expresses the coupling constant K ′ for a lattice of enlarged
physical size and reduced number of particles N/2 in terms of K for the smaller lattice with
N particles. (And the associated map (5.103) expresses the free energy when the lattice is
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viewed on the larger scale in terms of that for a smaller scale.) The map (5.101) has a fixed
point that is obtained by setting K ′ = K; i.e., Kc = 3

8 ln cosh(4Kc), which implies

Kc = 0.507 . (5.104)

This fixed point corresponds to the critical point for the phase transition, with critical
temperature Tc such that Kc = J/kBTc. We can infer that this is the critical point by the
following physical argument: Suppose that T is slightly larger than Tc, so K is slightly smaller
than Kc. Then, when we make successive iterations, because dK ′/dK > 1 at K = Kc, K
decreases with each step, moving farther from Kc; the fixed point is unstable. What this
means is that, when T > Tc, as we look on larger and larger scales, the effective coupling
constant K becomes weaker and weaker, so the lattice becomes more disordered. Conversely,
below the critical temperature (T < Tc and K > Kc), the lattice become more ordered with
increasing scale. Only when K = Kc does the lattice appear to be comparably disordered on
all scales. It is here that the increase of order with length scale changes from outside inward
(at high temperature) to inside outward (at low temperature).

To demonstrate more explicitly that K = Kc is the location of a phase transition, we
shall compute the lattice’s specific heat in the vicinity of Kc. The first step is to compute
the lattice’s entropy, S = −(∂F/∂T )V,N . Recalling that K ∝ 1/T at fixed V, N [Eq. (5.99)]
and using expression (5.102b) for F , we see that

S = −
(
∂F

∂T

)

V,N

= NkB

[
g − K

(
dg

dK

)]
. (5.105a)

The specific heat at constant volume is then, in turn, given by

CV = T

(
∂S

∂T

)

V,N

= NkBK2 d2g

dK2
. (5.105b)

Next we note that, because the iteration (5.101) is unstable near Kc, the inverse iteration

K =
1

4
cosh−1[exp(8K ′/3)] (5.105c)

is stable. The corresponding inverse transformation for the function g(K) is obtained from
Eq. (5.103), with f from (5.100d) and K in that f converted to K ′ using (5.100d):

g(K) =
1

2
g(K ′) +

1

2
ln{2 exp(2K ′/3)[cosh(4K ′/3)]1/4} (5.105d)

Now, we know that at low temperature, T ) Tc and K ' Kc, all the spins are aligned;
correspondingly, in the statistical sum (5.100a) the two terms with all s’s identical dominate,
giving z = e−F/kBT = eNg = 2e2NK , whence g(K) + 2K. Conversely, at high temperature,
there is complete disorder and K → 0. This means that every one of the 2N terms in the
statistical sum (5.100a) is unity, giving z = eNg = 2N , whence g(K) + ln 2. We can therefore
use the iterative map, Eqs. (5.105c), (5.105d), to approach K = Kc from either side starting
with the high temperature and low temperature limits of g(K) and evaluating thermody-
namic quantities at each step. More specifically, at each step, we evaluate g(K), dg/dK
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Fig. 5.10: (a) Iteration map K(K ′) in the vicinity of the critical point. (b) Free energy per spin
(c) Entropy per spin, (d) Specific heat per spin. Recall that J/kBT = K.

and d2g/dK2 numerically, and from them we compute F , S and CV using Eqs. (5.102b),
(5.105a), and (5.105b).

The iterated values of these quantities are plotted as points in Fig. 5.10. Note that the
specific heat [panel (d)] diverges at Kc, as K → Kc from either side, verifying that this is a
second order phase transition.

In order to calculate the explicit form of this divergence, suppose that g(K) is a sum of
an analytic (infinitely differentiable) function and a non-analytic part. Suppose that near
the critical point, the nonanalytic part behaves as g(K) ∼ |K − Kc|2−α for some “critical
exponent” α. This implies that CV diverges ∝ |K − Kc|−α ∝ |T − Tc|−α. Now, from
Eq. (5.105d), we have that

|K ′ − Kc|2−α = 2|K − Kc|2−α, (5.106a)

or equivalently,
dK ′

dK
= 21/(2−α). (5.106b)

Evaluating the derivative at K = Kc from Eq. (5.105c), we obtain

α = 2 − ln 2

ln(dK ′/dK)c
= 0.131 , (5.106c)

which is consistent with the numerical calculation.
The exact Onsager (1944) analysis of the Ising model gives Kc = 0.441 compared to our

Kc = 0.507, and CV ∝ − ln |T − Tc| compared to our CV ∝ |T − Tc|−0.131. Evidently, our
renormalization group approach gives a fair approximation to the correct answers, but not
a good approximation.
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Our approach appears to have a serious problem in that it predicts a negative value
for the entropy in the vicinity of the critical point [panel (c) of Fig. 5.10]. This is surely
unphysical. (The entropy becomes positive further away, on either side of the critical point.)
This is an artificiality associated with our approach’s ansatz [i.e., associated with our setting
K2 = K3 = 0 and K ′ = K1 + K2 in Eq. (5.101)]. It does not seem easy to cure this within a
renormalization group approach. Nonetheless, our calculations exhibit the physical essentials
of the renormalization group approach to phase transitions.

Why did we bother to go through this cumbersome procedure when Onsager has given
us an exact analytical solution to the Ising model? The answer is that it is not possible to
generalize the Onsager solution to more complex and realistic problems. In particular, it
has not even been possible to find an Onsager-like solution to the three-dimensional Ising
model. However, once the machinery of the renormalization group has been mastered, it
can produce approximate answers, with an accuracy that can be estimated, for a variety of
problems. In the following section we shall look at a quite different approach to the same
2D Ising problem with exactly the same motivation in mind.

****************************

EXERCISES

Exercise 5.14 Example: One Dimensional Ising Lattice

(a) Write down the partition function for a one dimensional Ising lattice as a sum over
terms describing all possible spin organisations.

(b) Show that by separating into even and odd numbered spins, it is possible to factorize
the partition function and relate z(N, K) exactly to z(N/2, K ′). Specifically show that

z(N, K) = f(K)N/2z(N/2, K ′) (5.107)

where K ′ = ln[cosh(2K)]/2 and f(K) = 2[cosh(2K)]1/2.

(c) Use these relations to demonstrate that the one dimensional Ising lattice does not
exhibit a second order phase transition.

****************************

5.8 T2 Monte Carlo Methods for the Ising Model

We now turn to our second general method for approximately analyzing phase transitions
(and a much larger class of problems in statistical physics). This is the Monte Carlo ap-
proach.11 It will be instructive to tackle the same two dimensional Ising problem that we
discussed in the last section.

11The name “Monte Carlo” is a laconic reference to the casino whose patrons believe they will profit by
exploiting random processes.
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The Monte Carlo approach is much more straightforward in principle than the renormal-
ization group approach. We set up a square lattice of spins as in Sec. 5.7 and initialize the
spins randomly. (This calculation will be performed numerically and requires a (pseudo)
random number generator. Most programming languages now supply this utility, which is
mostly used uncritically, occasionally with unintended consequences. Defining and testing
randomness is an important topic which, unfortunately, we shall not address. See, for exam-
ple, Press et al 1992.) We imagine that our lattice is in contact with a thermal bath with a
fixed temperature T – it is one member of a canonical ensemble of systems – and we allow
it to approach equilibrium by changing the orientations of its spins in a prescribed, random
manner. Our goal is to compute thermodynamic quantities using X̄ = z−1

∑
n e−En/kBT Xn

where the sum is over all states of the lattice spins. For example we can compute the specific
heat (at constant volume) from

CV =
dĒ

dT
=
∂

∂T

(∑
n e−En/kBT En∑

n e−En/kBT

)
=

E2 − Ē2

kBT 2
.

(Note how a singularity in the specific heat at a phase transition will be associated with
large fluctuations in the energy, as we discussed in Sec. 5.6.)

In order to compute quantities like CV , we replace ensemble averages by averages over
successive configurations |n〉 of the lattice. Clearly, we cannot visit every one of the lattice’s
2N configurations and so we must sample these fairly. How do we prescribe the rules for
changing the spins when going from one configuration in our sample to the next? There are
many answers to this question; we shall just describe and use one of the simplest, due to
Metropolis et al (1953). In order to understand this, we must appreciate that we don’t need
to comprehend the detailed dynamics by which a spin in a lattice actually flips. All that is
required is that the rule we adopt should maintain thermodynamic equilibrium.

Let us label by |n〉 a single lattice state, specified by a matrix whose entries are ±1, and
denote by En its total energy. In addition, let us denote by pnn′ the probability of making
a transition from a state |n〉 to a new state |n′〉. Now, in a steady state, the probability of
transitions into state n〉 is equal to the probability of transitions out of that state:

∑

n′

ρn′pn′n = ρn

∑

n′

pnn′ . (5.108a)

However, we know that in equilibrium,

ρn′ = ρn exp[(En − En′)/kBT ] . (5.108b)

The Metropolis rule is simple:

if En > Em, then pnm = 1; and if En < Em, then pnm = exp[(En − Em)/kBT ]. (5.109)

It is easy to show that this satisfies statistical equilibrium [Eq. (5.108a)] and that it drives
an out of equilibrium system towards equilibrium.

The numerical expression of this procedure is to start with a random lattice and then
choose one spin, at random, to make a trial flip. If the new configuration has a lower energy,
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we always accept the change. If it has a higher energy, we only accept the change with
a probability given by exp[−∆E/kBT ], where ∆E > 0 is the energy change. (Actually,
there is a small subtlety here. The probability of making a given transition is actually the
product of the probability of making the trial flip and of accepting the trial. However, the
probability of making a trial flip is the same for all the spins that we might flip (1/N),
and these trial probabilities cancel, so it is only the ratio of the probabilities of acceptance
that matters.) In this way, we choose a sequence of states that will ultimately have the
equilibrium distribution function, and we can perform our thermodynamic averages using
this sequence in an unweighted fashion. This is a particularly convenient procedure for the
Ising problem because, by changing just one spin at a time, ∆E can only take one of 5 values
(−4,−2, 0, +2, +4 in units of J), and it is possible to change from one state to the next very
quickly. (It also helps to store the two acceptance probabilities e−2J/kBT and e−4J/kBT for
making an energy-gaining transition, so as to avoid evaluating exponentials at every step.)

How big a lattice do we need and how many states should we consider? The lattice size
can be surprisingly small to get qualitatively correct results, if we adopt periodic boundary
conditions. That is to say, we imagine an infinite tiling of our actual lattice and every time
we need to know the spin at a site beyond the last column, we use the corresponding spin
in the first column, and so on. This device minimizes the effects of the boundary on the
final answer. Lattices as small as 32 × 32 can be useful. The length of the computation
depends upon the required accuracy. (In practice, this is usually implemented the other way
round. The time available on a computer of given speed determines the accuracy.) One
thing should be clear. It is necessary that we explore a reasonable volume of state space in
order to be able to sample it fairly and compute meaningful estimates of thermodynamic
quantities. The final lattice should exhibit no vestigial patterns from the configuration when
the computation was half complete. In practice, it is this consideration that limits the size
of the lattice, and it is one drawback of the Metropolis algorithm that the step sizes are
necessarily small. There is a large bag of tricks for Monte Carlo simulation that can be used
for variance reduction and estimation, but we only concern ourselves here with the general
method.

Returning to the Ising problem, we show in Fig. 5.11 typical equilibrium lattices for
three temperatures (measured in units of J/kB). Recall that the critical temperature is
Tc = J/kBKc = 2.268J/kB. Note the increasingly long range order as the temperature is
reduced beyond Tc.

We have concluded this chapter with an examination of a very simple system that can
approach equilibrium according to specified rules and that can exhibit strong fluctuations.
In the following chapter, we shall examine fluctuations more systematically.

****************************

EXERCISES

Exercise 5.15 Practice: Direct Computation of Thermodynamic Integrals
Estimate how long it would take a PC to compute the partition function for a 32× 32 Ising
lattice by evaluating every possible configuration.
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T=1 T=2 T=3

Fig. 5.11: Typical equilibrium Ising lattices for temperatures T = 1, 2, 3 in units of J/kB . The
black regions have spins s = +1; the white, s = −1.

Exercise 5.16 Example: Monte Carlo Approach to Phase Transition
Write a simple computer program to compute the energy and the specific heat of a 2 di-
mensional Ising lattice as described in the text. Examine the accuracy of your answers by
varying the size of the lattice and the number of states sampled. (You might also try to
compute a formal variance estimate.)

Exercise 5.17 Problem: Ising Lattice with an Applied Magnetic Field
It is straightforward to generalize our approach to the problem of a lattice placed in a
uniform magnetic field B. This adds a term ∝ −Bs to the spin energy −Jss′. Modify the
computer program from Ex (5.16) to include this term, and compute the magnetization and
the magnetic susceptibility.

****************************

Bibliographic Note

Most statistical mechanics textbooks include much detail on statistical thermodynamics.
Among those we have found useful are Chandler (2007), Kardar (2007), Pathria (1972), and
Reif (1965). Chandler (2007) gives a particularly nice treatment of phase transitions, on
which Sec. 5.7 is largely based.
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Box 5.3
Important Concepts in Chapter 5

• Representations of thermodynamics and their equilibrium ensembles and
distributions

– Summary: Table 5.1, Sec. 5.2.6
– Thermodynamic concepts: extensive and intensive variables, fundamental po-

tential and its independent variables, Legendre transformations, generalized
forces, Euler’s equation, Maxwell relations, Secs. 5.2–5.5

– Measuring devices for intensive variables, Sec. 5.2.2
– Energy representation and microcanonical distribution, Sec. 5.2
– Grand-potential representation and grand-canonical distribution, Sec. 5.3
– Physical Free-energy representation and canonical distribution, Sec. 5.4
– Gibbs representation and Gibbs distribution, Sec. 5.5
– Enthalpy representation and enthalpy distribution: Ex. 5.5

• Systems out of equilibrium

– Entropy increase ∆S = ∆Q/T when energy is added in arbitrary way to an
equilibrium system, Sec. 5.2.5

– Entropy increase for each ensemble, expressed in terms of out-of-equilibrium
fundamental potential, Table 5.2, Sec. 5.5.1

– Partial statistical equilibrium, Sec. 5.5.3
– Fluctuations away from statistical equilibrium, Table 5.2, Sec. 5.6, Exs. 5.10

and 5.11

• Computational techniques

– most important statistical sums for fundamental potentials, Eqs. (5.19d),
(5.50)

– thermodynamic equations deduced from first law in each representation, Sec.
5.2.4, ends of Secs. 5.3.1, 5.4, 5.5

– renormalization group, Sec. 5.7
– Monte Carlo calculations, Sec. 5.8

• Important applications

– phase transitions; first order and second order, Sec. 5.5.2
– Chemical reactions–the direction they go and their equilibria, Sec. 5.5.3
– Saha equation for ionization equilibrium, Ex. 5.9
– van der Waals gas, Sec. 5.3.2; its fluctuations and phase transition, Ex. 5.12
– Ferromagnetic phase transition, Secs. 5.7, 5.8
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