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Chapter 10

Nonlinear Optics

Version 1110.1.K, 29 Nov 2011 Please send comments, suggestions, and errata via email to
kip@caltech.edu or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 10.1
Reader’s Guide

• This chapter depends substantially on Secs. 7.2, 7.3 and 7.6.1 of Chap. 7, Geometric
Optics.

• Sec. 10.5, on wave-wave mixing, is an important foundation for Chap. 22 on the
nonlinear dynamics of plasmas, and (to a lesser extent) for the discussions of solitary
waves (solitons) in Chaps. 16 and 22. Nothing else in this book relies substantially
on this chapter.

10.1 Overview

Communication technology is undergoing a revolution, and computer technology may do
so soon — a revolution in which the key devices used (e.g., switches and communication
lines) are changing from radio and microwave frequency devices to optical frequencies. This
revolution has been made possible by the invention and development of lasers (most especially
semiconductor diode lasers) and other technology developments such as dielectric crystals
whose polarization Pi is a nonlinear function of the applied electric field, Pi = ε0(χijEj +
χijkEjEk +χijklEjEkEl + · · · ). In this chapter we shall study lasers, nonlinear crystals, and
various nonlinear optics applications that are based on them.

Most courses in elementary physics idealize the world as linear. From the simple har-
monic oscillator to Maxwell’s equations to the Schrödinger equation, most all the elementary
physical laws one studies are linear, and most all the applications one studies make use of
this linearity. In the real world, however, nonlinearities abound, creating such phenomena
as avalanches, breaking ocean waves, holograms, optical switches, and neural networks; and
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in the past three decades nonlinearities and their applications have become major themes
in physics research, both basic and applied. This chapter, with its exploration of nonlinear
effects in optics, serves as a first introduction to some fundamental nonlinear phenomena
and their present and future applications. In later chapters we shall revisit some of these
phenomena and shall meet others, in the context of fluids (Chaps. 16 and 17), plasmas
(Chap. 22), and spacetime curvature (Chaps. 24–27).

Since highly coherent and monochromatic laser light is one of the key foundations on
which modern nonlinear optics has been built, we shall begin in Sec. 10.2 with a review of
the basic physics principles that underlie the laser: the pumping of an active medium to
produce a molecular population inversion, and the stimulated emission of radiation from the
inverted population of molecules. Then we shall describe the details of how a number of
different lasers are pumped and the characteristics of the light they emit. Most important
among these characteristics are high frequency stability and high power.

In Sec. 10.3 we shall meet our first example of an application of nonlinear optics: holog-
raphy. In holography a three-dimensional, monochromatic image of an object is produced
by a two step process: recording a hologram, and then passing coherent light through the
hologram.

Holography differs from more modern nonlinear optics applications in not being a real-
time process. Real-time processes have been made possible by nonlinear crystals and other
new technologies. In Sec. 10.4 we study an example of a real-time, nonlinear-optics pro-
cess: phase conjugation of light by a phase-conjugating mirror; and we see how such phase
conjugation can be used to prevent distortion of images and signals carried in an optical
fiber.

In Sec. 10.5 we study the wave-wave mixing in nonlinear crystals that makes possible
phase conjugation, frequency doubling and other nonlinear optical processes, and we analyze,
as an important example, frequency doubling. In Sec. 10.6 we discuss several applications
of wave-wave mixing: frequency doubling (practical aspects of the process analyzed in the
preceding section), optical parametric amplification, the generation of squeezed light, and
phase conjugation achieved via 4-wave mixing.

10.2 Lasers

10.2.1 Basic Principles of the Laser

In quantum mechanics one identifies three different types of interaction of light with material
systems (atoms, molecules, atomic nuclei, electrons, . . .): (i) Spontaneous emission, in which
a material system in an excited state spontaneously drops into a state of lesser excitation and
emits a photon in the process. (ii) Absorption, in which an incoming photon is absorbed
by a material system, exciting it. (iii) Stimulated emission, in which a material system,
initially in some excited state, is “tickled” by passing photons and this tickling stimulates it
to emit a photon of the same sort (in the same state) as the photons that tickled it.

As peculiar as stimulated emission may seem at first sight, it in fact is easily understood
and analyzed classically. It is nothing but “negative absorption:” In classical physics, when
a light beam with electric field E = ![Aei(kz−ωt+ϕ)] travels through an absorbing medium,
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Fig. 10.1: (a) Photon Absorption: A photon with energy !ω = E2 − E1 excites a molecule from
its ground state, with energy E1 to an excited state with energy E2 (as depicted by an energy-level
diagram). (b) Stimulated Emission: The molecule is initially in its excited state, and the incoming
photon stimulates it to deexcite into its ground state, emitting a photon identical to the incoming
one.

its real amplitude A decays exponentially with the distance propagated, A ∝ e−µz/2 (corre-
sponding to an intensity decay I ∝ e−µz), while its frequency ω, wave number k, and phase
ϕ remain very nearly constant. For normal materials, the absorption rate µ = I−1dI/dz is
positive and the energy lost goes ultimately into heat. However, one can imagine a material
with an internally stored energy that amplifies a passing light beam. Such a material would
have a negative absorption rate, µ < 0, and correspondingly the amplitude of the passing
light would grow with the distance traveled, A ∝ e+|µ|z/2, while its frequency, wave num-
ber, and phase would remain very nearly constant. Such materials do exist; they are called
“active media” and their amplification of passing waves is called “stimulated emission.”

This elementary, classical description of stimulated emission is equivalent to the quantum
mechanical description in the domain where the stimulated emission is strong: the domain
of large photon occupation numbers (which, as we learned in Chaps. 3 and 4, is the domain
of classical waves).

The classical description of stimulated emission takes for granted the existence of an
active medium. To understand the nature of such a medium, we must turn to quantum
mechanics:

As a first step toward such understanding, consider a beam of monochromatic light with
frequency ω that impinges on a collection of molecules (or atoms or charged particles) that
are all in the same quantum mechanical state |1〉. Suppose the molecules have a second
state |2〉 with energy E2 = E1 +!ω. Then the light will resonantly excite the molecules from
their initial state |1〉 to the higher state |2〉, and in the process photons will be absorbed
[Fig. 10.1a]. The strength of the interaction is proportional to the beam’s energy flux F
(which we shall call the “intensity” for short in this chapter1). Stated more precisely, the
rate of absorption of photons is proportional to the number flux of photons in the beam
dn/dAdt = F/!ω, in accord with the classical description of absorption.

Suppose, next, that when the light beam first arrives, the atoms are all in the higher
state |2〉 rather than the lower state |1〉. There will still be a resonant interaction, but this
time the interaction will deexcite the atoms, with an accompanying emission of photons
[Fig. 10.1b]. As in the absorption case, the strength of the interaction is proportional to
the intensity of the incoming beam, i.e., the rate of emission of new photons is proportional

1This is the same terminology as in Chap 8, but not Chap. 9 where “intensity” was reserved for energy
flux per unit solid angle.
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to the number flux of photons that the beam already has. A quantum mechanical analysis
shows that the photons from this stimulated emission come out in the same quantum state as
is occupied by the photons of the incoming beam (Bose-Einstein statistics: photons, being
bosons, like to congregate in the same state). Correspondingly, when viewed classically,
the beam’s intensity will be amplified at a rate proportional to its initial intensity, with no
change of its frequency, wave number, or phase.

In Nature molecules usually have their energy levels populated in accord with the laws
of statistical (thermodynamic) equilibrium. Such thermalized populations, as we saw in
Chap. 4, entail a ratio N2/N1 = exp[−(E2 − E1)/kBT ] < 1 for the number N2 of molecules
in state |2〉 to the number N1 in state |1〉. Here T is the molecular temperature, and for
simplicity it is assumed that the states are nondegenerate. Since there are more molecules
in the lower state |1〉 than the higher one |2〉, an incoming light beam will experience more
absorption than stimulated emission.

On the other hand, occasionally in Nature and often in the laboratory a collection of
molecules develops a “population inversion” in which N2 > N1. The two states can then be
thought of as having a negative temperature with respect to each other. Light propagating
through population-inverted molecules will experience more stimulated emission than ab-
sorption; i.e., it will be amplified. The result is “light amplification by stimulated emission,”
or “laser” action.

This basic principle underlying the laser has been known since the early years of quantum
mechanics, but only in the 1950s did physicists succeed in designing, constructing, and
operating real lasers. The first proposals for practical devices were made, independently, in
the U.S. by Weber (1953) and Gordon, Zeiger, and Townes (1954), and in Russia by Basov
and Prokhorov (1954, 1955). The first successful construction and operation of a laser was by
Gordon, Zeiger, and Townes (1954, 1955), and soon thereafter by Basov and Prokhorov [KIP
CHECK] —though these first lasers actually used radiation not at optical frequencies but
rather at microwave frequencies (based on a population inversion of ammonia molecules2)
and thus was called a maser . The first optical frequency laser, one based on a population
inversion of chromium ions in a ruby crystal, was constructed and operated by Maiman
(1960).

The key to laser action is the population inversion. Population inversions are incompatible
with thermodynamic equilibrium; thus, to achieve them, one must manipulate the molecules
in a nonequilibrium way. This is usually done by some concrete variant of the process shown
in the energy level diagram of Fig. 10.2. Some sort of pump mechanism (to be discussed
in the next section) rapidly excites molecules from the ground state into some group of
“absorption” states. The molecules then decay rapidly from the absorption states into the
state |2〉, which is metastable (i.e., has a long lifetime against spontaneous decay). The laser
transition is from state |2〉 into state |1〉. Once a molecule has decayed into state |1〉, it
quickly decays on down to the ground state and then may be quickly pumped back up into
the absorption states.

If the pump acts suddenly and briefly, this process will produce a temporary population
inversion of states |2〉 and |1〉, with which an incoming, weak burst of “seed” light can

2For the basic principles of the ammonia maser, see, e.g., Chap. 9 of The Feynman Lectures on Physics
(Feynman, Leighton, and Sands 1965).
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Fig. 10.2: The mechanism for creating the population inversion that underlies laser action. The
horizontal lines and band represent energy levels of a molecule, and the arrows represent transitions
in which the molecules are excited by pumping or decay by emission of photons.

interact to produce a burst of amplification. The result is a pulsed laser. If the pump acts
continually, the result may be a permanently maintained population inversion with which
continuous seed light can interact to produce continuous-wave laser light.

As the laser beam travels through the active medium (the population-inverted molecules),
its intensity I builds up with distance z as dI/dz = I/%o, so I(z) = Ioez/#o. Here Io is
the initial intensity, and %o ≡ 1/|µ|, the e-folding length, depends on the strength of
the population inversion and the strength of the coupling between the light and the active
medium. Typically %o is so long that strong lasing action cannot be achieved by a single pass
through the active medium. In this case, the lasing action is enhanced by placing the active
medium inside a Fabry-Perot cavity (Fig. 10.3). The length L of the cavity is adjusted so
the lasing transition frequency ω = (E2 − E1)/! is an eigenfrequency of the cavity. The
lasing action then excites a standing wave mode of the cavity, from which the light leaks out
through one or both cavity mirrors. If F is the cavity’s finesse [approximately the average
number of times a photon bounces back and forth inside the cavity before escaping through
a mirror; cf. Eq. (9.34b)], then the cavity increases the distance that typical photons travel
through the active medium by a factor ∼ F , thereby increasing the intensity of the light
output by a factor ∼ eFL/#o . In addition, oblique optical elements are often added at the
ends of laser, that transmit only a single polarization state.

For an ideal laser (one, e.g., with a perfectly steady pump maintaining a perfectly steady
population inversion that in turn maintains perfectly steady lasing), the light comes out
in the most perfectly classical state that quantum mechanics allows. This state, called a
quantum mechanical coherent state, has a perfectly sinusoidally oscillating electric field on

Active
Medium

Escaping
Laser
Light

Fig. 10.3: The use of a Fabry-Perot cavity to enhance the interaction of the light in a laser with
its active medium.
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which is superimposed the smallest amount of noise (the smallest wandering of phase and
amplitude) allowed by quantum mechanics: the noise of quantum electrodynamical vacuum
fluctuations. The value of the oscillations’ well defined phase is determined by the phase
of the seed field from which the coherent state was built up by lasing. Real lasers have
additional noise due to a variety of practical factors, but nevertheless, their outputs are
usually highly coherent, with long coherence times.

10.2.2 T2 Types of Pumping and Types of Lasers

Lasers can be pumped radiatively, collisionally, chemically, electrically, and even by nuclear
explosions; and each method of pumping produces a laser with special properties that have
special uses. In this section we shall describe a few examples. [WARNING: THIS SECTION
NEEDS UPDATING; IT IS OUT OF DATE BY ABOUT 15 YEARS.]

Radiative pumping : In radiative pumping a burst of “pump” photons excites the active
medium’s molecules from their ground state to a group of absorption states. The pump
photons are typically produced by a flash tube which surrounds the active medium, or whose
light is focussed onto the active medium by mirrors. This was the type of pumping used
by Maiman in his first ruby maser. The strongest pulsed lasers now available (Neodymium
glass lasers) use a variant of this called Q-switching . In Q-switching, the resonant interaction
between the laser light and the active medium is temporarily turned off (e.g., by removing
the Fabry-Perot cavity from around the active medium) while the medium is radiatively
pumped. Thereby a very strong population inversion is built up, and when the resonance
is turned back on, an enormous but very brief pulse of laser light is produced—as much as
100 J in a picosecond. Even shorter pulses, with durations ∼ 10 − 100 fs, can be produced.
These enable investigations of fast chemical reactions - a discipline called “femtochemistry”.

Collisional pumping : The continuous-wave helium-neon laser uses collisional pumping.
A mixture of helium and neon gas (roughly 10 helium atoms for each neon atom) is subjected
to a continuous electrical discharge. The electrons in the discharge collide with the many
helium atoms, exciting them into absorption states that then decay rapidly into a long-lived
metastable state. The resulting population inversion of the helium atoms, however, is not
used directly for laser action. Rather, the many excited helium atoms collide with the fewer
ground-state neon atoms, resonantly exciting them into a metastable neon state that has
nearly the same energy as that of helium. The resulting population inversion of neon then
acts as the laser’s active medium. [There actually are several metastable states of neon that
get population inverted in this way, and the helium-neon laser thereby can lase at several
different wavelengths: 0.6328 microns (in the red), 1.15 and 3.39 microns (in the infrared),
and others.]

Chemical pumping : In chemical pumping a nonequilibrium chemical reaction creates
products in excited, metastable states that then lase. An example is the reaction H + F →
HF , which leaves the hydrogen flouride molecule in a metastable, lasing state.

Electrical pumping : In electrical pumping, electric fields and associated currents are used
to produce population inversions. Two important examples are semiconductor diode lasers
and free electron lasers. In semiconductor diode lasers, the flows of electrons and holes,3 in

3A “hole” is the absence of an electron in a “degenerate Fermi sea;” i.e., it is an empty single-particle
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response to an electrical bias, populate a portion of the conduction band and depopulate
a portion of the valence band in a thin layer of a semiconductor (e.g., a 0.2 micron thick
layer of Gallium Arsenide that is sandwiched between one material that injects conduction-
band electrons into the Gallium Arsenide and another that injects holes). A weak beam of
light passing along the thin layer stimulates electrons or holes to drop out of the conduction
band into the valence band, thereby emitting photons that amplify the light. The resulting
continuous-wave laser is easily modulated at frequencies as high as 10’s of GHz by modulating
the bias voltage. This and the diode’s tiny size makes such lasers ideally suited for optical
communication.

In the free electron laser , a nearly monoenergetic beam of electrons, created by a particle
accelerator, is sent through a static, transverse, spatially alternating magnetic field. The
magnetic field is called an “undulator” because of its diffraction-grating-like undulations.
The field’s alternating Lorentz force causes the moving electrons to oscillate back and forth
transversely and radiate. These electron oscillations resonate with the light they emit; the
light moves forward, relative to each electron, by one optical wavelength while the electron
undergoes one oscillation. In this device the electrons’ population-inverted energy distribu-
tion (many high-speed electrons, fewer lower-speed electrons) is produced electrically, by the
particle accelerator, and the photon emission drives the electrons from their initial, strongly
populated states of high kinetic energy to more sparsely populated states of lower kinetic
energy. In recent years, there has been a drive to push free electron lasers into the X-ray
band using high current beams from particle accelerators like DESY in Germany. These can
produce picosecond pulses which are useful for studying biological specimens.

Nuclear-explosion pumping . A device much ballyhooed in America during the reign of
Ronald Reagan, but never built, was a futuristic, super-powerful X-ray laser pumped by a
nuclear explosion. As part of Reagan’s Strategic Defense Initiative (“Star Wars”), this laser
was supposed to shoot down Soviet missiles. In Ex. 10.1 the reader is invited to speculate
about the design of such a laser.

Discussion: As the above examples show, lasers come in a wide variety of configura-
tions, and the light they produce can have a wide variety of properties. Pulsed lasers can
achieve very high instantaneous powers (100 J in a picosecond, corresponding to 1014 Watts).
Continous-wave lasers can also achieve large powers; for example CO2 lasers putting out as
much as 109 Watts can have their light concentrated into regions with transverse dimensions
as small as one wavelength (a micron, but no smaller because of diffraction), thereby yielding
a local energy flux of 1021 W m−2. Let us translate this energy flux into field amplitudes.
The rms magnetic field strength in the wave is ∼ 3 kT and the corresponding electric field
is ∼ 1 TV m−1. The electrical potential difference across a wavelength (∼ 1µm) is then
∼ 1 MeV. It is then not surprising that high power lasers are able to create electron-positron
pair plasmas.

For many applications large power is irrelevant or undesireable, but high frequency stabil-
ity (a long coherence time) is crucial. By locking the frequencies of lasers to optical cavities
or to molecular transitions, one can suppress the wandering of the phase of the laser light
and thereby achieve frequency stabilities as high as ∆f ∼ 1 mHz, corresponding to coherence

state (mode) of the electron field, in a distribution function for which, up to some momentum, most all the
other electron states are occupied.
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times of ∼ 1000 sec and coherence lengths of ∼ 3 × 108 km.
When first invented, lasers were called “a solution looking for a problem.” Now they

permeate everyday life as well as high technology. Examples are supermarket bar-code
readers, laser pointers, CD players, eye surgery, laser printers, laser gyroscopes (which are
now standard on commercial aircraft), laser-based surveying, Raman spectroscopy, laser
fusion, optical communication, optically based computers, holography, maser amplifiers, and
hydrogen-maser clocks.

****************************

EXERCISES

Exercise 10.1 Challenge: Nuclear Powered X-Ray Laser

Motivated by Ronald Reagan’s “Star Wars” dreams, how would you design a nuclear
powered X-ray laser? The energy for the pump comes from a nuclear explosion that
you set off in space above the earth. You want to use that energy to create a population
inversion in an active medium that will lase at X-ray wavelengths; and you want to
focus the resulting X-ray beam onto an intercontinental ballistic missile that is rising
out of the earth’s atmosphere. What would you use for the active medium? How
would you guarantee that a population inversion is created in the active medium?
How would you focus the resulting X-ray beam? (Note: This is a highly nontrivial
exercise, intended more as a stimulus for thought than as a test of one’s understanding
of things taught in this book.)

****************************

10.3 Holography

Thus far in this book, our study of optics has focused on situations where waves propa-
gate linearly, i.e., where they superpose linearly (additively). In the 1970’s and 1980’s the
technology of lasers and of “nonlinear crystals” began to make possible processes in which
light waves interact with each other nonlinearly (Sec. 10.5 below). The resulting nonlinear
optics has promising applications in such diverse areas as computers, communication, optical
astronomy, gravitational-wave detection, spectroscopy, holography, . . . .

Holography is an old and well-explored example of nonlinear optics—an example in which
the nonlinear interaction of light with itself is produced not in real time, but rather by means
of a recording followed by a later readout.4

Holography is to be contrasted with ordinary photography. Ordinary photography (Fig.
10.4) produces a colored, 2-dimensional image of 3-dimensional objects. Holography (Figs.

4Holography is discussed and analyzed in most standard optics textbooks; e.g., Chapter 8 of Ghatak and
Thyagarajan (1978). A number of practical applications of holography are discussed by Iizuka (1987) and
by Cathey (1974).
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10.5 and 10.7 below) produces a monochromatic 3-dimensional image of 3-dimensional ob-
jects. Note that, roughly speaking, the two processes contain the same amount of informa-
tion: two items of information at each location in the image. The two items in an ordinary
photograph are the intensity and the color; the two items in a holographic photograph (holo-
gram) are the intensity and the phase of the monochromatic light. It is the phase of the light,
lost from an ordinary photograph but preserved in a hologram, that contains the information
about the third dimension: Our brain deduces the distance to a point on an object from the
difference in the directions of propagation of the point’s light as it arrives at our two eyes.
Those propagation directions are encoded in the light as variations of the light’s phase with
transverse location [see, e.g., the point-spread function for a thin lens, Eq. (8.29)]. Thus,
the transverse variations in phase contain the three-dimensional information. It is those
transverse phase variations that are preserved in a hologram.

In an ordinary photograph (Fig. 10.4), white light scatters off an object, with different
colors scattering with different strengths. The resulting colored light is focused through a
lens to form a colored image on a photographic plate or layer of “photoresist”. The plate
records the color and intensity of the light at each point in the focal plane, thereby producing
the ordinary photograph.

In holography one records a hologram (Fig. 10.5 below), and one then uses the hologram
to reconstruct the holographic image (Fig. 10.7 below).

10.3.1 Recording a Hologram

Consider, first, the recording of the hologram. Monochromatic, linearly polarized plane-wave
light with electric field

E = ![ψ(x, y, z)e−iωt] , (10.1)

angular frequency ω and wave number k = ω/c, illuminates the object and also a mirror
as shown in Fig. 10.5. The light must be spatially coherent over the entire region of mirror
plus object. The propagation vector k of the illuminating light lies in the y–z plane, at
some angle θo to the z axis, and the mirror lies in the x–y plane. The mirror reflects the

Illu
minatin

g

Light

Object

Lens Photographic
Plate

Fig. 10.4: Ordinary photography.
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Fig. 10.5: Recording a hologram.

illuminating light, producing a so-called reference beam, which we shall call the mirror wave:

ψmirror = Meik(z cos θo−y sin θo) , (10.2)

where M is a real constant. The object scatters the illuminating light, producing a wave
propagating toward the photographic plate (z direction) that we shall call the object wave
and shall denote

ψobject = O(x, y, z)eikz . (10.3)

It is the slowly varying complex amplitude O(x, y, z) of this object wave that carries the
three-dimensional, but monochromatic, information about the object’s appearance, and it
thus is this O(x, y, z) that will be reconstructed in the second step of holography.

In the first step [Fig. 10.5 and Eq. (10.3)], the object wave propagates along the z-
direction to the photographic plate at z = 0, where it interferes with the mirror wave to
produce a transverse intensity1 pattern

F (x, y) ∝ |O + Me−iky sin θo |2

= M2 + |O(x, y, z = 0)|2 + O(x, y, z = 0)Meiky sin θo + O∗(x, y, z = 0)Me−iky sin θo .

(10.4)

(Here and throughout this chapter a ∗ denotes complex conjugation.) The plate is blackened
at each point in proportion to this intensity. The plate is then developed and a positive
or negative print (it doesn’t matter which because of Babinet’s principle) is made on a
transparent sheet of plastic or glass. This print, the hologram, has a transmissivity as a
function of x and y that is proportional to the intensity distribution (10.4):

t(x, y) ∝ M2 + |O(x, y, z = 0)|2 + MO(x, y, z = 0)eiky sin θo + MO∗(x, y, z = 0)e−iky sin θo .
(10.5)

In this transmissivity we meet our first example of nonlinearity: t(x, y) is a nonlinear super-
position of the mirror wave and the object wave. Stated more precisely, the superposition is
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Fig. 10.6: (a) Ordinary photograph of an object. (b) Hologram of the same object. (c) Enlarge-
ment of the hologram. [Adapted from Fig. 8.3 of Ghatak and Thyagarajan, 1978.]

not a linear sum of wave fields, but instead is a sum of products of one wave field with the
complex conjugate of another wave field. A further nonlinearity will arise in the reconstruc-
tion of the holographic image, Eq. (10.7) below.

Figure 10.6 shows an example. Figure 10.6a is an ordinary photograph of an object, 10.6b
is a hologram of the same object, and 10.6c is a blow-up of a portion of that hologram. The
object is not at all recognizable in the hologram because the object wave O was not focused
to form an image at the plane of the photographic plate. Rather, light from each region of the
object was scattered to and recorded by all regions of the photographic plate. Nevertheless,
the plate contains the full details of the scattered light O(x, y, z = 0), including its phase.
That information is recorded in the piece M(Oeiky sin θo + O∗e−iky sin θo) = 2M !(Oeiky sin θo)
of the hologram’s transmissivity. This piece oscillates sinusoidally in the y direction with
wavelength 2π/k sin θo; and the amplitude and phase of its oscillations are modulated by the
object wave O(x, y, z = 0). Those modulated oscillations show up clearly when one magnifies
the hologram (Fig. 10.6c); they make the hologram into a sort of diffraction grating, with
the object wave O(x, y, z = 0) encoded as variations of the darkness and spacings of the
grating lines.

What about the other pieces of the transmissivity (10.5), which superpose linearly on the
diffraction grating? One piece, t ∝ M2, is spatially uniform and thus has no effect except
to make the lightest parts of the hologram slightly grey rather than leaving it absolutely
transparent (since this hologram is a negative rather than a positive). The other piece,
t ∝ |O|2, is the intensity of the object’s unfocussed, scattered light. It produces a greying
and whitening of the hologram (Fig. 10.6b) that varies on lengthscales long compared to the
grating’s wavelength 2π/k sin θo, and that thus blots out the diffraction grating a bit here
and there, but does not change the amplitude or phase of the grating’s modulation.

10.3.2 Reconstructing the 3-Dimensional Image from a Hologram

To reconstruct the object’s 3-dimensional wave, O(x, y, z)eikz, one sends through the holo-
gram monochromatic, plane-wave light identical to the mirror light used in making the
hologram; cf. Fig. 10.7. If, for pedagogical simplicity, we place the hologram at the same
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Fig. 10.7: Reconstructing the holographic image from the hologram. Note that sin θs = 2 sin θo.

location z = 0 as was previously occupied by the photographic plate, then the incoming
light has the same form (10.2) as the original mirror wave, but with an amplitude that we
shall denote as R corresponding to the phrase reference beam that is used to describe this
incoming light:

ψreference = Reik(z cos θo−y sin θo) . (10.6)

In passing through the hologram at z = 0, this reference beam is partially absorbed and
partially transmitted. The result, immediately upon exiting from the hologram, is a “recon-
structed” light-wave field whose value ψreconstructed = R(x, y, z = 0) and normal derivative
ψreconstructed ,z = Z(x, y, z = 0) are given by [cf. Eq. (10.5)]

ψreconstructed

∣∣∣
z=0

≡ R(x, y, z = 0) = t(x, y)Re−iky sin θo

=
[
M2 + |O(x, y, z = 0)|2

]
Re−iky sin θo

+ MRO(x, y, z = 0)

+ MRO∗(x, y, z = 0)e−i2ky sin θo ;

ψreconstructed ,z

∣∣∣
z=0

≡ Z(x, y, z = 0) = ik cos θoR(x, y, z = 0). (10.7)

This field and normal derivative act as initial data for the subsequent evolution of the
reconstructed wave. Note that the field and derivative, and thus also the reconstructed wave,
are triply nonlinear: each term in Eq. (10.7) is a product of (i) the original mirror wave M
used to construct the hologram or the original object wave O, times (ii) O∗ or M∗ = M ,
times (iii) the reference wave R that is being used in the holographic reconstruction.
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The evolution of the reconstructed wave beyond the hologram (at z > 0) can be computed
by combining the initial data (10.7) for ψreconstructed and ψreconstructed ,z at z = 0 with the
Helmholtz-Kirchhoff formula (8.4); see Exs. 10.2 and 10.4. From the four terms in the
initial data, Eq. (10.7) [which arise from the four terms in the hologram’s transmissivity
t(x, y), Eq. (10.5)], the reconstruction produces four wave fields; see Fig. 10.7. The direction
of propagation of each of these waves can easily be inferred from the vertical spacing of
its phase fronts along the outgoing face of the hologram, or equivalently from the relation
∂ψreconstructed/∂y = ikyψreconstructed = −ik sin θψ, where θ is the angle of propagation relative
to the horizontal z direction. Since, immediately in front of the hologram, ψreconstructed = R,
the propagation angle is

sin θ =
∂R/∂y

−ikR . (10.8)

Comparing with Eqs. (10.5) and (10.7), we see that the first two, slowly spatially varying
terms in the transmissivity, t ∝ M2 and T ∝ |O|2, both produce waves that propagate in
the same direction as the reference wave, θ = θo. This combined wave has an uninteresting,
smoothly and slowly varying intensity pattern.

The two diffraction-grating terms in the hologram’s transmissivity produce two interesting
waves. One, arising from t ∝ O(x, y, z = 0)Meiky sin θo [and produced by the MRO term
of the initial conditions (10.7)], is precisely the same object wave ψobject = O(x, y, z)eikz

(aside from overall amplitude) as one would have seen while making the hologram if one had
replaced the photographic plate by a window and looked through it. This object wave, carrying
[encoded in O(x, y, z)] the famous holographic image with full 3-dimensionality, propagates
in the z-direction, θ = 0.

The transmissivity’s second diffraction-grating term, t ∝ O∗(x, y, z = 0)Me−iky sin θo ,
acting via the MRO∗ term of the initial conditions (10.7), gives rise to a secondary wave
which [according to Eq. (10.8)] propagates at an angle θs to the z-axis, where

sin θs = 2 sin θo . (10.9)

(If θo > 30o, then 2 sin θo > 1 which means θs cannot be a real angle, and there will be no
secondary wave.) This secondary wave, if it exists, carries an image that is encoded in the
complex conjugate O∗(x, y, z = 0) of the transverse (i.e., x, y) part of the original object
wave. Since complex conjugation of an oscillatory wave just reverses the sign of the wave’s
phase, this wave in some sense is a “phase conjugate” of the original object wave.

When one recalls that the electric and magnetic fields that make up an electromagnetic
wave are actually real rather than complex, and that we are using complex wave fields to
describe electromagnetic waves only for mathematical convenience, one then realizes that
this phase conjugation of the object wave is actually a highly nonlinear process. There
is no way, by linear manipulations of the real electric and magnetic fields, to produce the
phase-conjugated wave from the original object wave.

In Sec. 10.4 we shall develop in detail the theory of phase-conjugated waves, and in
Ex. 10.4, we shall relate our holographically constructed secondary wave to that theory.
As we shall see, our secondary wave is not quite the same as the “phase-conjugated object
wave,” but it is the same aside from some distortion along the y direction and a change
in propagation direction. More specifically: If one looks into the object wave with one’s
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eyes (i.e. if one focuses it onto one’s retinas), one sees the original object in all its three-
dimensional glory, though single colored, sitting behind the hologram at the object’s original
position. Because the image one sees is behind the hologram, it is called a virtual image. If,
instead, one looks into the secondary wave with one’s eyes (i.e. if one focuses it onto one’s
retinas), one sees the original three-dimensional object, sitting in front of the hologram but
turned inside out and distorted; for example, if the object is a human face, the secondary
image looks like the interior of a mask made from that human face, with some distortion
along the y direction. Because this secondary image appears to be in front of the hologram,
it is called a real image—even though one can pass one’s hands through it and feel nothing
but thin air.

There are many variants on the basic holographic technique that we have described in
Figs. 10.5–10.7. In one, called volume holography, the hologram is a number of wavelengths
deep rather than being just two-dimensional. For example, it could be made from a pho-
tographic emulsion a number of wavelengths thick, in which the absorption length for light
(before developing) is longer than the thickness. Such a hologram has a three-dimensional
grating structure (grating “surfaces” rather than grating “lines”), and when one reconstructs
the holographic image from it in the manner of Fig. 10.7, the third dimension of the grating
suppresses the phase-conjugated wave while enhancing the (desired) object wave. In another
variant, one reflects light off the hologram instead of transmitting light through it; in such
reflection holography, the hologram’s diffraction grating produces a three-dimensional holo-
graphic image by the same process as in transmission.

Other variants are optimized for reconstructing the holographic image with white light
(light that has a broad range of frequencies). Even for the simple two-dimensional hologram
of Fig. 10.7, if one sends in white light at the angle θo, one will get a three-dimensional
object wave: The hologram’s grating will diffract various wavelengths in various directions.
In the direction of the original object wave (the horizontal direction in Fig. 10.7), one will
get a 3-dimensional reconstructed image of the same color as was used when constructing the
hologram. When one moves vertically away from that direction (as shown in Fig. 10.7), one
will see the color of the 3-dimensional image continuously change. A white-light hologram of
this type (though one relying on reflection rather than transmission) is used on many credit
cards as an impediment to counterfeiting, and has even been used on postage stamps.

Holograms are much used in everyday life and technology. Examples are credit cards
and holographic lenses in supermarket checkouts. Other examples, that are still in the
developmental stage but that may become widespread in a few years, are volume holograms
used for three-dimensional movies, and volume holograms for storage of large amounts of
data — up to terabytes cm−3. [KIP: UPDATE THIS]

Just as one can draw two-dimensional pictures numerically, pixel-by-pixel, so one can
also create and modify holograms numerically.

****************************

EXERCISES

Exercise 10.2 Derivation: The Holographically Reconstructed Wave
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(a) Use the Helmholtz-Kirchhoff integral (8.4) to compute all four pieces of the holograph-
ically reconstructed wave field. Show that the piece generated by

t ∝ O(x, y, z = 0)Meiky sin θo

is the same (aside from overall amplitude) as the field ψobject = O(x, y, z)e−iωt that
would have resulted, when making the hologram (Fig. 10.5), had the mirror wave been
absent and the photographic plate been replaced by a window. Show that the other
pieces have the forms and propagation directions indicated heuristically in Fig. 10.7.

(b) We shall examine the secondary wave, generated by t ∝ MO∗e−iky sin θo , in Ex. 10.4.

(c) Suppose that plane-parallel white light is used in the holographic reconstruction of
Fig. 10.7. Derive an expression for the direction in which one sees the object’s three-
dimensional image have a given color (or equivalently wave number). Assume that the
original hologram was made with green light and θo = 45 degrees. What are the angles
at which one sees the image as green and as red?

Exercise 10.3 *** Problem: Compact Disks, DVDs and Blue Ray Disks

Information on compact disks (CDs), on DVDs and on Blue Ray disks (BDs) is recorded
and read out using holographic lenses. In each successive generation, the laser light
has been pushed to a shorter wavelength (λ = 760 nm for CDs, 650 nm for DVDs,
405nm for BDs), and in each generation, the efficiency of the information storage has
been improved. In CDs, the information is stored in a single holographic layer on the
surface of the disk; in DVDs and BDs, it is usually stored in a single layer, but can also
be stored in two layers, one above the other, though with some price in access time.

(a) Explain why one can expect to record in a disk’s recording layer, at the very most,
(close to) one bit of information per square wavelength of the recording light.

(b) The actual storage capacities are up to 900 MB for CDs, 4.7GB for DVDs, and 25
GB for Blue Ray Disks. How efficient are each of these technologies relative to the
maximum of part (a)?

(c) Estimate the number of volumes of the Encyclopedia Britannica that can be recorded
on a CD, on a DVD and on a BD.

****************************

10.4 Phase-Conjugate Optics

Nonlinear optical techniques make it possible to phase conjugate an optical wave in real time,
by contrast with holography where the phase conjugation requires recording a hologram and
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then reconstructing the wave later. In this section we shall explore the properties of phase
conjugated waves of any sort (light, sound, plasma waves, ...), and in the next section we
shall discuss the technology by which real-time phase conjugation is achieved for light.

The basic ideas and foundations for phase conjugation of waves were laid in Moscow,
Russia by Boris Yakovovich Zel’dovich5 and his colleagues (1972) and at Caltech by Amnon
Yariv (1977).

Phase conjugation is the process of taking a monchromatic wave

ΨO = ![ψ(x, y, z)e−iωt] =
1

2
(ψe−iωt + ψ∗e+iωt) , (10.10a)

and from it constructing the wave

ΨPC = ![ψ∗(x, y, z)e−iωt] =
1

2
(ψ∗e−iωt + ψe+iωt) . (10.10b)

Notice that the phase conjugated wave ΨPC is obtainable from the original wave ΨO by
time reversal , t → −t. This has a number of important consequences. One is that ΨPC

propagates in the opposite direction to ΨO. Others are explained most clearly with the help
of a phase-conjugating mirror :

Consider a wave ΨO with spatial modulation (i.e., a wave that carries a picture or a
signal of some sort). Let the wave propagate in the z-direction (rightward in Fig. 10.8), so

ψ = A(x, y, z)ei(kz−ωt) , where A = Aeiϕ (10.11)

is a complex amplitude whose modulus A and phase ϕ change slowly in x, y, z (slowly com-
pared to the wave’s wavelength λ = 2π/k). Suppose that this wave propagates through a
time-independent medium with slowly varying physical properties (e.g. a dielectric medium
with slowly varying index of refraction n(x, y, z)). These slow variations will distort the
wave’s complex amplitude as it propagates. The wave equation for the real, classical field
Ψ = ![ψe−iωt] will have the form LΨ−∂2Ψ/∂t2 = 0, where L is a real spatial differential op-
erator that depends on the medium’s slowly varying physical properties. This wave equation
implies that the complex field ψ satisfies

Lψ + ω2ψ = 0 . (10.12)

This is the evolution equation for the wave’s complex amplitude.
Let the distorted, rightward propagating wave ΨO reflect off a mirror located at z = 0.

If the mirror is a phase-conjugating one, then very near it (at z near zero) the reflected wave
will have the form

ΨPC = ![A∗(x, y, z = 0)ei(−kz−ωt)] , (10.13)

while if it is an ordinary mirror, then the reflected wave will be

ΨR = ![±A(x, y, z = 0)ei(−kz−ωt)] . (10.14)

5Zel’dovich is the famous son of a famous Russian/Jewish physicist, Yakov Borisovich Zel’dovich, who with
Andrei Dmitrievich Sakharov fathered the Soviet hydrogen bomb and then went on to become a dominant
figure internationally in astrophysics and cosmology.
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Fig. 10.8: A rightward propagating wave and the reflected wave produced by (a) an ordinary
mirror and (b) a phase-conjugating mirror. In both cases the waves propagate through a medium
with spatially variable properties, which distorts their phase fronts. In case (a) the distortion is
reinforced by the second passage through the variable medium; in case (b) the distortion is removed
by the second passage.

(Here the sign, + or −, depends on the physics of the wave; for example, if Ψ is the transverse
electric field of an electromagnetic wave and the mirror is a perfect conductor, the sign will be
− to guarantee that the total electric field—original plus reflected—vanishes at the mirror’s
surface.)

These two waves, the phase-conjugated one ΨPC and the ordinary reflected one ΨR, have
very different surfaces of constant phase (phase fronts): The phase of the incoming wave ΨO

[Eq. (10.11)] as it nears the mirror (z = 0) is ϕ + kz, so (taking account of the fact that ϕ
is slowly varying), the surfaces of constant phase are z = −ϕ(x, y, z = 0)/k. Similarly, the
phase of the wave ΨR [Eq. (10.14)] reflected from the ordinary mirror is ϕ−kz, so its surfaces
of constant phase near the mirror are z = +ϕ(x, y, z = 0)/k, which are reversed from those
of the incoming wave as shown in the upper right of Fig. 10.8. Finally, the phase of the wave
ΨPC [Eq. (10.13)] reflected from the phase-conjugating mirror is −ϕ− kz, so its surfaces of
constant phase near the mirror are z = −ϕ(x, y, z = 0)/k, which are the same as those of
the incoming wave (lower right of Fig. 10.8), even though the two waves are propagating in
opposite directions.

The phase fronts of the original incoming wave and the phase conjugated wave are the
same not only near the phase conjugating mirror; they are the same everywhere. More
specifically, as the phase-conjugated wave ΨPC propagates away from the mirror [near which
it is described by Eq. (10.13)], the propagation equation (10.12) forces it to evolve in such a
way as to remain always the phase conjugate of the incoming wave:

ΨPC = ![A∗(x, y, z)e−ikze−iωt] . (10.15)
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Fig. 10.9: The use of a phase-conjugating mirror in an optical transmission line to prevent the
fiber from distorting an optical image. The distortions put onto the image as it propagates through
the first segment of fiber are removed during propagation through the second segment.

This should be obvious from the fact that, because the differential operator L in the prop-
agation equation (10.12) for ψ(x, y, z) = Aeikz is real, ψ∗(x, y, z) = A∗e−ikz will satisfy this
propagation equation whenever ψ(x, y, z) does.

This fact that the reflected wave ΨPC remains always the phase conjugate of the in-
coming wave ΨO means that the distortions put onto the incoming wave, as it propagates
rightward through the inhomogeneous medium, get removed from the phase conjugated wave
as it propagates back leftward; see Fig. 10.8.

This removal of distortions has a number of important applications. One is for image
transmission in optical fibers. Normally when an optical fiber is used to transmit an optical
image, the transverse spatial variations n(x, y) of the fiber’s index of refraction (which are
required to hold the light in the fiber; Ex. 7.8) distort the image somewhat. The distortions
can be eliminated by using a sequence of identical segments of optical fibers separated by
phase-conjugating mirrors (Fig. 10.9). A few other applications include (i) real time hologra-
phy, (ii) removal of phase distortions in Fabry-Perot cavities by making one of the mirrors a
phase conjugating one, with a resulting improvement in the shape of the beam that emerges
from the cavity, (iii) devices that can memorize an optical image and compare it to other
images, (iv) the production of squeezed light (Ex. 10.13), and (v) focusing of laser light for
laser fusion (Part V of this book). [KIP: SUPPLY REFERENCES]

As we shall see in the next section, phase conjugating mirrors rely crucially on the sinu-
soidal time evolution of the wave field; they integrate up that sinusoidal evolution coherently
over some timescale τ̂ (typically microseconds to nanoseconds) in order to produce the phase
conjugated wave. Correspondingly, if an incoming wave varies on timescales τ long compared
to this τ̂ (e.g., if it carries a temporal modulation with bandwidth ∆ω ∼ 1/τ small com-
pared to 1/τ̂ ), then the wave’s temporal modulations will not get time reversed by the phase
conjugating mirror. For example, if the wave impinging on a phase conjugating mirror has a
frequency that is ωa initially, and then gradually, over a time τ , increases to ωb = ωa +2π/τ ,
then the phase conjugated wave will not emerge from the mirror with frequency ωb first and
ωa later. Rather, it will emerge with ωa first and ωb later (same order as for the original
wave). When the incoming wave’s temporal variations are fast compared to the mirror’s
integration time, τ ) τ̂ , the mirror encounters a variety of frequencies during its integration
time, and ceases to function properly. Thus, even though phase conjugation is equivalent to
time reversal in a formal sense, a phase conjugating mirror cannot time reverse a temporal
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signal. It only time reverses monochromatic waves (which might carry a spatial signal).

****************************

EXERCISES

Exercise 10.4 Derivation: The Secondary Wave in Holography

Consider the secondary wave generated by t ∝ MO∗e−iky sin θo in the holographic reconstruc-
tion process of Fig. 10.7, Eqs. 10.7 and Ex. 10.2. Assume, for simplicity, that the mirror
and reference waves propagate nearly perpendicular to the hologram, so θo ) 90o and
θs * 2θo ) 90o; but assume that θs is still large enough that fairly far from the hologram
the object wave and secondary waves separate cleanly from each other. Then, taking account
of the fact that the object wave field has the form O(x, y, z)eikz, show that the secondary
wave is the phase conjugated object wave defined in Sec. 10.4, except that it is propagating
in the +z direction rather than −z, i.e. it has been reflected through the z = 0 plane. Then
use this, and the discussion of phase conjugation in Sec. 10.4, to show that the secondary
wave carries an image that resides in front of the hologram and is turned inside out, as
discussed near the end of Sec. 10.3. Show, further, that if θo is not ) 90o degrees (but is
< 30o, so θs is a real angle and the secondary image actually exists), then the secondary
image is changed by a distortion along the y direction. What is the nature of the distortion,
a squashing or a stretch?

****************************

10.5 Wave-Wave Mixing in Nonlinear Crystals

10.5.1 Maxwell’s Equations and Nonlinear Dielectric Susceptibil-
ities

In nonlinear optics one is often concerned with media that that are electrically polarized
with polarization (electric dipole moment per unit volume) P, but that have no free charges
or currents and are unmagnetized. In such a medium, the charge and current densities
associated with the polarization are

ρP = −∇ · P , jP =
∂P

∂t
, (10.16a)

and Maxwell’s equations in SI units take the form

∇ · E =
ρP
ε0

, ∇ · B = 0 , ∇ × E = −∂B
∂t

, ∇ × B = µ0

(
jP + ε0

∂E

∂t

)
, (10.16b)

which should be familiar. When rewritten in terms of the electric displacement vector

D ≡ ε0E + P , (10.17)
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these Maxwell equations take following the alternative form

∇ · D = 0 , ∇ ·B = 0 , ∇ ×E = −∂B
∂t

, ∇ ×B = µ0
∂D

∂t
, (10.18)

which should also be familiar. By taking the curl of the third Maxwell equation (10.16b),
using the relation ∇×∇×E = −∇2E+∇(∇ ·E), and combining with the time derivative
of the fourth Maxwell equation (10.16b) and with ε0µ0 = 1/c2 and jP = ∂P/∂t, we obtain
the following wave equation for the electric field, sourced by the medium’s polarization:

∇2E− ∇(∇ · E) =
1

c2

∂2(E + P/ε0)

∂t2
. (10.19)

If the electric field is sufficiently weak and the medium is isotropic (the case treated in
most textbooks on electromagnetic theory), the polarization P is proportional to the electric
field: P = ε0χ0E, where χ0 is the medium’s electrical susceptibility. In this case the medium
does not introduce any nonlinearities into Maxwell’s equations. In many dielectric media,
however, a strong electric field can produce a polarization that is nonlinear in the field. In
such “nonlinear media,” the general expression for the polarization P in terms of the electric
field is

Pi = ε0(χijEj + χijkEjEk + χijklEjEkEl + . . .) . (10.20)

Here χij , the linear susceptibility, is proportional to the 3-dimensional metric, χij = χ0gij =
χ0δij, if the medium is isotropic (i.e., if all directions in it are equivalent), but otherwise is
more complicated; and the χijk, χijkl, . . . are nonlinear susceptibilities. The normalizations
used for these susceptibilities differ from one researcher to another; sometimes the factor ε0
is omitted in Eq. (10.20); sometimes factors of 2 or 4 or . . . are inserted.

When the nonlinear susceptibilities are important and a monochromatic wave at fre-
quency ω enters the medium, the nonlinearities lead to harmonic generation—i.e., the pro-
duction of secondary waves with frequencies 2ω, 3ω, . . .; see below. As a result, an electric
field in the medium cannot oscillate at just one frequency, and each of the electric fields in
expression (10.20) for the polarization must be a sum of pieces with different frequencies.
Because the susceptibilities can depend on frequency, this means that when using expres-
sion (10.20) one sometimes must break Pi and each Ei up into its frequency components
and use different values of the susceptibility to couple the different frequencies together. For
example, one of the terms in Eq. (10.20) will become

P (1)
i = ε0χ

(1234)
ijkl E(2)

j E(3)
k E(4)

l , (10.21)

where P (1)
i oscillates at frequency ω1, E(A)

j oscillates at frequency ωA, and χ(1234)
ijkl depends

on the four frequencies ω1, . . . , ω4. Although this is complicated in the general case, in
most practical applications resonant couplings (or equivalently energy and momentum con-
servation for photons) guarantee that only a single set of frequencies is important, and the
resulting analysis simplifies substantially. See Sec. 10.5.2 below.

Because all the tensor indices on the susceptibilities except the first index get contracted
into the electric field in expression (10.20), we are free to (and it is conventional to) define
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the susceptibilities as symmetric under interchange of any pair of indices that does not
include the first. When [as has been tacitly assumed in Eq. (10.20)] there is no hysteresis
in the medium’s response to the electric field, the energy density of interaction between the
polarization and the electric field is

U = ε0

(
χijEiEj

2
+
χijkEiEjEk

3
+
χijklEiEjEkEl

4
+ · · ·

)
, (10.22a)

and the polarization is related to this energy of interaction, in Cartesian coordinates, by

Pi =
∂U

∂Ei
, (10.22b)

which agrees with Eq. (10.20) providing the susceptibilities are symmetric under interchange
of all pairs of indices, including the first. We shall assume such symmetry.6 If the crystal is
isotropic (as will be the case if it has cubic symmetry and reflection symmetry), then each
of its tensorial susceptibilities is constructable from the metric gij = δij and a single scalar
susceptibility; see Ex. 10.5:

χij = χ0gij , χijk = 0 , χijkl =
1

3
χ4(gijgkl + gikgjl + gilgjk) , χijklm = 0 , · · · .

(10.23)
A simple model of a crystal which explains how nonlinear susceptibilities can arise is the

following. Imagine each ion in the crystal as having a valence electron that can oscillate
in response to a sinusoidal electric field. The electron can be regarded as residing in a
potential well which, for low-amplitude oscillations, is very nearly harmonic (potential energy
quadratic in displacement; restoring force proportional to displacement; “spring constant”
independent of displacement). However, if the electron’s displacement from equilibrium
becomes a significant fraction of the interionic distance, it will begin to feel the electrostatic
attraction of the neighboring ions, and its spring constant will weaken. This means that
the potential the electron sees is really not that of a harmonic oscillator, but rather that of
an anharmonic oscillator , V (x) = αx2 − βx3 + · · · , where x is the electron’s displacement
from equilibrium. The nonlinearities in this potential cause the electron’s amplitude of
oscillation, when driven by a sinusoidal electric field, to be nonlinear in the field strength,
and that nonlinear displacement causes the crystal’s polarization to be nonlinear.7 For most
crystals, the spatial arrangement of the ions causes the electron’s potential energy V to be
different for displacements in different directions, and this causes the susceptibilities to be
anisotropic.

Because the total energy required to liberate the electron from its lattice site is roughly
one eV and the separation between lattice sites is ∼ 10−10 m, the characteristic electric
field for strong instantaneous nonlinearities is ∼ 1V/10−10m = 1010V m−1. Correspondingly,
since χijk has dimensions 1/(electric field) and χijkl has dimensions 1/(electric field)2, the

6For further details see, e.g., Secs. 16.2–16.4 and 16.7 of Yariv (1989).
7Quantitative details are worked out, e.g., in Sec. 16.3 of Yariv (1989).



22

largest that we can expect their Cartesian components to be is

χijk ∼ 10−10m V−1 , χ4 ∼ χijkl ∼ 10−20m2 V−2 . (10.24)

For comparison, because stronger fields will pull electrons out of solids, the strongest continuous-
wave electric fields that occur in practical applications are E ∼ 106 V m−1 corresponding to
maximum intensities F ∼ 1 kW / mm2. These numbers dictate that, unless the third-order
χijk are suppressed by isotropy, they will produce much larger effects than the fourth-order
χijkl, which in turn will dominate over all higher orders.

Among the dielectric crystals with especially strong nonlinear susceptibilities are bar-
ium titanate (BaTiO3) and lithium niobate (LiNbO3); they have χijk ∼ (1 to 10) × 10−11

(Volt/meter)−1 at optical frequencies; i.e., they get as large as our rough estimate for the
upper limit.

10.5.2 Resonance Conditions for 3-Wave Mixing

The nonlinear susceptibilities produce wave-wave mixing when a beam of light is sent through
a crystal. The mixing produced by χijk is called three-wave mixing because three electric
fields appear in the polarization-induced interaction energy, Eq. (10.22a). The mixing pro-
duced by χijkl is similarly called four-wave mixing. Three-wave mixing dominates in an
anisotropic medium, but is suppressed when the medium is isotropic, leaving four-wave mix-
ing as the leading-order nonlinearity.

Let us examine three-wave mixing in a general anisotropic crystal. Because the nonlinear
susceptibilities are so small (i.e., because the input wave will generally be far weaker than
1010 V m−1), the nonlinearities can be regarded as small perturbations. Suppose that two
waves, labeled n = 1 and n = 2, are injected into the anisotropic crystal, and let their wave
vectors be kn when one ignores the (perturbative) nonlinear susceptibilities but keeps the
large linear χij. Because χij is an anisotropic function of frequency, the dispersion relation for
these waves (ignoring the nonlinearities), Ω(k), will typically be anisotropic. The frequencies
of the two input waves satisfy this dispersion relation, ωn = Ω(kn), and the waves’ forms are

E(n)
j = !

(
A(n)

j ei(kn·x−ωnt)
)

=
1

2

(
A(n)

j ei(kn·x−ωnt) + A(n)∗
j ei(−kn·x+ωnt)

)
, (10.25)

where we have denoted their vectorial complex amplitudes by A(n)
j . We shall adopt the

convention that wave 1 is the one with the larger frequency, so ω1 − ω2 ≥ 0.
These two input waves couple, via the third-order nonlinear susceptibility χijk, to produce

the following contribution to the medium’s polarization vector:

Pi = 2ε0χijkE
(1)
j E(2)

k

= ε0χijk!
(
A(1)

j A(2)
k ei(k1+k2)·xei(ω1+ω2)t + A(1)

j A(2)∗
k ei(k1−k2)·xei(ω1−ω2)t

)
. (10.26)

This sinusoidally oscillating polarization produces source terms in Maxwell’s equations (10.16b)
and the wave equation (10.19): an oscillating, polarization-induced charge density ρP =
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−∇ ·P and current density jP = ∂P/∂t. This polarization charge and current, like P itself
[Eq. (10.26)], consist of two traveling waves, one with frequency and wave vector

ω3 = ω1 + ω2 , k3 = k1 + k2 ; (10.27a)

the other with frequency and wave vector

ω3 = ω1 − ω2 , k3 = k1 − k2 . (10.27b)

If either of these (ω3,k3) satisfies the medium’s dispersion relation ω = Ω(k), then the
charge-current wave will generate an electromagnetic wave that propagates along in resonance
with itself. This new electromagnetic wave, with frequency ω3 and wave vector k3, will grow
as it propagates, with its growth being along the direction of the group velocity V j

g =
(∂Ω/∂kj)k=k3 . The wave will be weakest at the “back” of the crystal (the side where Vg · x
is smallest), and strongest at the “front” (the side where Vg · x is largest).

For most choices of the input waves, i.e. most choices of k1, ω1 = Ω(k1), k2, and ω2 =
Ω(k2), neither of the charge-density waves, (k3 = k1 ± k2, ω3 = ω1 ± ω2) will satisfy the
medium’s dispersion relation, and thus neither will be able to create a third electromagnetic
wave resonantly; the wave-wave coupling is ineffective. However, for certain special choices
of the input waves, resonant coupling will be achieved, and a strong third wave will be
produced.

The resonance conditions (10.27) have simple quantum mechanical interpretations—a
fact that is not at all accidental: quantum mechanics underlies the classical theory that
we are developing. Each classical wave is carried by photons that have discrete energies
En = !ωn and discrete momenta pn = !kn. The input waves are able to produce, resonantly,
waves with ω3 = ω1 ± ω2 and k3 = k1 ± k2, if those waves satisfy the dispersion relation.
Restated in quantum mechanical terms, the condition of resonance with the “+” sign rather
than the “−” is

E3 = E1 + E2 , p3 = p1 + p2 . (10.28a)

This has the quantum mechanical meaning that one photon of energy E1 and momentum p1,
and another of energy E2 and momentum p2 combine together, via the medium’s nonlineari-
ties, and are annihilated (in the language of quantum field theory), and by their annihilation
they create a new photon with energy E3 = E1 + E2 and momentum p3 = p1 +p2. Thus, the
classical condition of resonance is the quantum mechanical condition of energy-momentum
conservation for the sets of photons involved in a quantum annihilation and creation pro-
cess. For this process to proceed, not only must energy-momentum conservation be satisfied,
but all three photons must have energies and momenta that obey the photons’ semiclassical
Hamiltonian relation E = H(p) (i.e., the dispersion relation ω = Ω(k) with H = !Ω, E = !ω,
and p = !k).

Similarly, the classical conditions of resonance with the “−” sign rather than the “+”
can be written (after bringing photon 2 to the left-hand side) as

E3 + E2 = E1 , p3 + p2 = p1 . (10.28b)

This has the quantum mechanical meaning that one photon of energy E1 and momentum
p1 gets annihilated, via the medium’s nonlinearities, and from its energy and momentum
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there are created two photons, with energies E2, E3 and momenta p2, p3 that satisfy energy-
momentum conservation.

The quantum processes underlying the resonance conditions (10.28a) and (10.28b) have
rates (number of photon annihilation/creation events per second) that are proportional to the
number of photons (the total energy) in wave 1 because those photons are being absorbed,
and also proportional to the number (the total energy) in wave 2 because those photons are
being absorbed in (10.28a) or created via stimulated emission in (10.28b). Since the photon
fluxes are proportional to |A1|2 and |A2|2, and since the rate of reactions is proportional to
the rate of growth of |A3|2, this quantum rate dependence, rate ∝ |A1|2|A2|2, means that
A3 must grow at a rate proportional to |A1||A2|, which is indeed the case as we shall see in
the next section.

Obviously, for E3 = E1 + E2, as the amplitude of wave 3 grows, the amplitudes of waves
1 and 2 (whose quanta are being annihilated) must decrease; and for E3 = E1 − E2, the
amplitude of wave 1 must decrease while those of waves 3 and 2 increase.

10.5.3 Three-Wave Mixing: Evolution Equations in an Idealized,
Dispersion-Free, Isotropic Medium

Consider, as an example, the simple and idealized case where the linear part of the suscepti-
bility χjk is isotropic and frequency-independent, χjk = χ0gjk. Then the dispersion relation,
ignoring the nonlinearities, takes the simple, nondispersive form (Ex. 10.7 in the isotropic
limit)

ω =
c

n
k, where k = |k|, n =

√
1 + χ0 (10.29)

with n a constant.
Consider three-wave mixing for waves 1, 2, and 3 that all propagate in the same z direction

with wave numbers that satisfy the resonance condition k3 = k1 + k2. The dispersion-free
dispersion relation (10.29) guarantees that the frequencies will also resonate, ω3 = ω1 + ω2.
This resonance guarantees that the amplitude of each of the waves will evolve due to 3-wave
mixing. Specifically:

Making use of the fact that the lengthscale on which each wave changes is long compared
to its wavelength (which is always the case because the fields are always much weaker than
1010 V m−1), the wave equation (10.19) with Pi = ε0Ei − ε0χijkEjEk implies the following
equations for the rates of change of the three waves’ amplitudes (Ex. 10.6):

dA(3)
i

dz
= −2i

k3

n2
χijkA(1)

j A(2)
k at ω3 = ω1 + ω2 , k3 = k1 + k2 ; (10.30a)

dA(1)
i

dz
= −2i

k1

n2
χijkA(3)

j A(2)∗
k at ω1 = ω3 − ω2 , k1 = k3 − k2 ; (10.30b)

dA(2)
i

dz
= −2i

k2

n2
χijkA(3)

j A(1)∗
k at ω2 = ω3 − ω1 , k2 = k3 − k1 . (10.30c)

Therefore, each wave’s amplitude changes with distance z travelled, and its rate of change
is proportional to the product of the field strengths of the two other two waves.
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It is instructive to rewrite the evolution equations (10.30) in terms of renormalized scalar

amplitudes An and unit-normed polarization vectors f (n)
j for the three waves n = 1, 2, 3:

A(n)
j =

√
ckn

n
An f (n)

j =

√
ωn

n
An f (n)

j . (10.31)

This renormalization is motivated by the fact that |An|2 is proportional to the flux of quanta
dNn/dAdt associated with wave n. Specifically: the energy density in wave n is (neglecting
nonlinearities) U = εo(1 + χo)E2 = 1

2εon
2|A(n)|2 (where the bar means time average); the

energy flux is this U times the wave speed c/n:

Fn =
1

2
εonc|A(n)|2 =

1

2
εoc ωn|An|2 ; (10.32)

and the flux of quanta is this Fn divided by the energy En = !ωn of each quantum:
dNn/dAdt = (1/2!)εoc|An|2.

The 3-wave-mixing evolution equations (10.30), rewritten in terms of the renormalized
amplitudes, take the simple form

dA3

dz
= −iκA1A2 ,

dA1

dz
= −iκA3A

∗
2 ,

dA2

dz
= −iκA3A

∗
1 , when ω3 = ω1 + ω2 .

(10.33)
Here the coupling constant is

κ =
2

c

√
ω1ω2ω3

n3
χijk f (1)

i f (2)
j f (3)

k . (10.34)

It is straightforward to verify that these evolution equations guarantee energy conservation
d/dz(F1 + F2 + F + 3) = 0, with Fn given by Eq. (10.32). Therefore, at least one wave will
grow and at least one wave will decay due to three-wave mixing.

10.5.4 Three-Wave Mixing: Resonance Conditions and Evolution
Equation in an Anisotropic, Axisymmetric Medium

In reality, all nonlinear media have frequency-dependent dispersion relations and many are
anisotropic. An example is the crystal KH2PO4, also called “KDP”, which is axisymmetric.
If we orient its symmetry axis along the z direction, then its linear susceptibility χij has as its
only nonzero components χ11 = χ22 and χ33, which we embody in two indices of refraction,

no =
√

1 + χ11 =
√

1 + χ22 , ne =
√

1 + χ33 , (10.35)

that depend on frequency as shown in Fig. 10.10a. The subscript “o” stands for ordinary ;
e, for extraordinary ; see below.

Maxwell’s equations imply that for plane, monochromatic waves propagating in the x−z
plane at an angle θ to the symmetry axis [k = k(sin θex + cos θez)], there are two dispersion
relations corresponding to the two polarizations of the electric field: (i) If E is orthogonal
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Fig. 10.10: (a) The inverse of the index of refraction n−1 (equal to the phase speed in units of
the speed of light) for electromagnetic waves propagating at an angle θ to the symmetry axis of
a KDP crystal, as a function of wave number k in reciprocal microns. See Eq. (10.36a) for lower
curve and Eq. (10.36b) with θ = π/2 for upper curve. For extraordinary waves propagating at an
arbitrary angle θ to the crystal’s symmetry axis, n−1 is a mean [Eq. (10.36b)] of the two plotted
curves. (b) The angle θ to the symmetry axis at which ordinary waves with wave number k1 (e.g.
point A) must propagate in order that 3-wave mixing be able to produce frequency doubled or
phase conjugated extraordinary waves (e.g. point B).

to the symmetry axis, then (as is shown in Ex. 10.7), it must also be orthogonal to the
propagation direction (i.e., must point in the ey direction), and the dispersion relation is

ω/k

c
= (phase speed in units of speed of light) =

1

no
. (10.36a)

These waves are called ordinary, and their phase speed (10.36a) is the lower curve in Fig.
10.10a; at k = 10µm−1 (point A), the phase speed is 0.663c, while at k = 20µm−1, it is
0.649c. (ii) If E is not orthogonal to the symmetry axis, then (Ex. 10.7) it must lie in the
plane formed by k and the symmetry axis (the x − z) plane, with Ex/Ez = −(ne/no)2 cot θ
[which means that E is not orthogonal to the propagation direction unless the crystal is
isotropic, ne = no]; and the dispersion relation is

ω/k

c
=

1

n
=

√
cos2 θ

n2
o

+
sin2 θ

n2
e

. (10.36b)

In this case the waves are called extraordinary. As the propagation direction varies from
parallel to the symmetry axis (cos θ = 1) to perpendicular (sin θ = 1), this extraordinary
phase speed varies from c/no (the lower curve in Fig. 10.10; 0.663c at k = 10µm−1), to c/ne

(the upper curve; 0.681c at k = 10µm−1).
As an example, consider the resonance conditions for a frequency-doubling device (dis-

cussed in greater detail in the next section): one in which the two input waves are identical,
so k1 = k2 and k3 = 2k1 point in the same direction. Let this common propagation direction
be at an angle θ to the symmetry axis. Then the resonance conditions reduce to the demands
that the output wave number be twice the input wave number, k3 = 2k1, and the output
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phase speed be the same as the input phase speed, ω3/k3 = ω1/k1. Now, for waves of the
same type (both ordinary or both extraordinary), the phase speed is a monotonic decreasing
function of wave number [Fig. 10.10 and Eqs. (10.36a), (10.36b)], so there is no choice of
propagation angle θ that enables these resonance conditions to be satisfied. The only way
to satisfy them is by using ordinary input waves and extraordinary output waves, and then
only for a special, frequency-dependent propagation direction.

For example, if the input waves are ordinary, with k = 10µm−1 [point A in Fig. 10.10a],
then the output waves must be extraordinary and must have the same phase speed as the
input waves [same height in Fig. 10.10a; i.e., point B]. This phase speed is between c/ne and
c/no, and thus can be achieved for a special choice of propagation angle: θ = 56.7o [point
A in Fig. 10.10b]. In general, Eqs. (10.36a), (10.36b) imply that the unique propagation
direction θ at which the resonance conditions can be satisfied is the following function of the
input wave number k1:

sin2 θ =
1/n2

o(k1) − 1/n2
o(2k1)

1/n2
e(2k1) − 1/n2

o(2k1)
. (10.37)

This resonance angle is plotted as a function of frequency for KDP in Fig. 10.10b.
This special case of identical input waves illustrates the very general phenomenon, that

at fixed input frequencies, the resonance conditions can be satisfied only for special, discrete
input and output directions.

Also quite generally, once one has found wave vectors and frequencies that satisfy the
resonance conditions, the growth rate of the new waves is governed by equations similar to
Eq. (10.30), but with the growth along the direction of the group velocity of the new, growing
wave; see Ex. 10.8. For example, in any 3-wave process with k3 = k1 +k2 and ω3 = ω1 +ω2,
the rate of change of wave 3 with distance s along its group-velocity direction is (Ex. 10.8)

dA(3)
l

ds
=

(
−2iα

k3

n3
2
χijkA(1)

i A(2)
j f (3)

k

)
f (3)

l , (10.38)

where α is a coefficient of order unity that depends on the dispersion relation, and f (3)
l is a

unit vector pointing along the electric field direction of the wave 3. The evolution of the other
two waves is given by analogous equations, with complex conjugates as in the dispersion-free
case, Eqs. (10.30).

For our frequency doubling example, the extraordinary dispersion relation (10.36b) for
the output wave can be rewritten as

ω =
ck

n
= Ωe(k) = c

√
k2

z

no(k)2
+

k2
x

ne(k)2
, where k =

√
k2

x + k2
z . (10.39)

Correspondingly, the group velocity V j
g = ∂Ω/∂kj for the output waves has components

V x
g = Vph sin θ

(
n2

n2
e

− n2 cos2 θ

n2
o

d ln no

d ln k
− n2 sin2 θ

n2
e

d ln no

d ln k

)
,

V z
g = Vph cos θ

(
n2

n2
o

− n2 cos2 θ

n2
o

d ln no

d ln k
− n2 sin2 θ

n2
e

d ln no

d ln k

)
, (10.40)
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where Vph = ω/k = c/n is the phase velocity. For ordinary input waves with k1 = 10µm−1

(point A) and extraordinary output waves with k3 = 20µm−1 (point B), these formulae
give for the direction of the output group velocity (direction along which the output waves
grow) θg = arctan(V x

g /V z
g ) = 58.4o, compared to the direction of the common input-output

phase velocity θ = 56.7o; and they give for the magnitude of the group velocity Vg = 0.628c,
compared to the common phase velocity vph = 0.663c. Thus, the differences between the
group velocity and the phase velocity are small, but they do differ.

Because the differences are so small, to fairly good accuracy one can describe the evolution
of the three wave amplitudes by the same equations as in the dispersion-free case [Eqs. (10.30)
or (10.33)]. Although the resonance conditions are delicate to satisfy, causing only special
wave triplets to resonate, the delicacies do not much affect the evolution of the waves.

****************************

EXERCISES

Exercise 10.5 Derivation and Example: Nonlinear Susceptibilities for an Isotropic Medium

Explain why the nonlinear susceptibilities for an isotropic medium have the forms
given in Eq. (10.23). [Hint: Use the facts that the χ’s must be symmetric in all their
indices, and that, because the medium is isotropic, the χ’s must be constructable from
the only isotropic tensors available to us, the (symmetric) metric tensor gij and the
(antisymmetric) Levi-Civita tensor εijk.] What are the corresponding forms, in an
isotropic medium, of χijklmn and χijklmnp?

Exercise 10.6 Derivation: Evolution Equations in Idealized Three-Wave Mixing

Use Maxwell’s equations to derive the evolution equations (10.30) for the wave am-
plitudes produced by three-wave mixing under the idealized dispersion-free conditions
described in the text.

Exercise 10.7 *** Example: Dispersion Relation for an Anisotropic Medium

Consider a wave propagating through a dielectric medium that is anisotropic, but not
necessarily—for the moment—axisymmetric. Let the wave be sufficiently weak that
nonlinear effects are unimportant. Define the wave’s displacement vector in the usual
way, Di = ε0Ei + Pi [Eq. (10.17)].

(a) Show that

Di = εoεijEj , where εij ≡ δij + χij ≡ “dielectric tensor”; (10.41)

εo is often absorbed into the dielectric tensor, but we find it more convenient to nor-
malize εij so that in vacuum εij = δij .

(b) Show that the wave equation (10.19) for the electric field takes the form

−∇2E + ∇(∇ · E) = − 1

c2
ε · ∂

2E

∂t2
. (10.42)
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(d) Now specialize to a monochromatic plane wave with angular frequency ω and wave
vector k. Show that the wave equation (10.42) reduces to

LijEj = 0 , where Lij = kikj − k2δij +
ω2

c2
εij . (10.43a)

This equation says that E is an eigenvector of L with vanishing eigenvalue, which is
possible if and only if

det||Lij || = 0 . (10.43b)

This vanishing determinant is the waves’ dispersion relation. We shall use it in Chap.
20 to study waves in an unmagnetized plasma.

(e) Next specialize to an axisymmetric medium and orient the symmetry axis along the z
direction so the only nonvanishing components of εij are ε11 = ε22 and ε33, and let the
wave propagate in a direction k̂ that makes an angle θ to the symmetry axis. Show
that in this case Lij has the form

||Lij || = k2

∣∣∣∣∣∣

∣∣∣∣∣∣

(no/n)2 − cos2 θ 0 sin θ cos θ
0 (no/n)2 − 1 0

sin θ cos θ 0 (ne/n)2 − sin2 θ

∣∣∣∣∣∣

∣∣∣∣∣∣
, (10.44a)

and the dispersion relation (10.43b) reduces to

(
1

n2
− 1

n2
o

) (
1

n2
− cos2 θ

n2
o

− sin2 θ

n2
e

)
= 0 , (10.44b)

where 1/n = ω/kc, no =
√
ε11 =

√
ε22, and ne =

√
ε33, in accord with Eq. (10.35).

(f) Show that this dispersion relation has the two solutions (ordinary and extraordinary)
discussed in the text, Eqs. (10.36a) and (10.36b), and show that the electric fields
associated with these two solutions point in the directions described in the text.

Exercise 10.8 Evolution Equation in Realistic Wave-Wave Mixing

Consider a wave-wave mixing process in which the new wave (without its source)
satisfies a linearized wave equation of the form

Ljk(−i∇, i∂/∂t)Ek = 0 , (10.45)

where Ljk is some function of its indicated arguments. For an anisotropic dielectric
medium, Ljk will have a form that can be read off Eqs. (10.42) and (10.43a). In
this exercise we use the more general form (10.45) for the wave equation so that our
analysis will be valid for waves in a magnetized plasma (Chap. 20) as well as in a
dielectric. Let k, ω, and f be a wave vector, angular frequency, and unit vector such
that Ej = ei(k·x−ωt)fj satisfies this wave equation.
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(a) Suppose that several other waves interact nonlinearly to produce a piece P NL
j of the

polarization that propagates as a plane wave with wave vector, angular frequency and
electric-field direction k, ω and f , i.e., propagates in resonance with the new wave. Show
that this polarization will resonantly generate the new wave in a manner described by
the equation (

∂Ljk

∂ω

∂

∂t
− ∂Ljk

∂kl

∂

∂xl

)
Ek = iµo

∂2

∂t2
PNL

j . (10.46)

Here in the functional form (10.45) of Ljk, −i∇ has been replaced by k and i∂/∂t by
ω.

(b) Orient the axes of a (primed) coordinate system along the eigendirections of Ljk, so its
only nonzero components (when evaluated for the resonant wave vector and frequency)
are L1′1′ = λ1 = 0, L2′2′ = λ2 .= 0, and L3′3′ = λ3 .= 0. (The vanishing of one of the
eigenvalues is demanded by the dispersion relation det||Lab|| = 0.) Show that the
group velocity of the new, resonant wave is given by

V j
g = − ∂λ1/∂ω

∂λ1/∂kj
, (10.47)

and the direction of its electric field vector is f = e1′ .

(c) By a computation in the primed coordinate system, show that the evolution equa-
tion (10.46) for the new wave has the form

d

dt
A1′ =

−iµoω2PNL
1′

∂λ1/∂ω
, (10.48a)

where d/dt is the time derivative moving with the group velocity,

d

dt
=
∂

∂t
+ V j

g

∂

∂xj
. (10.48b)

(d) For 3-wave mixing (e.g., frequency-doubling), show that this evolution equation takes
the form (10.38), and evaluate the coefficient α.

****************************

10.6 Applications of Wave-Wave Mixing: Frequency
Doubling, Phase Conjugation, and Squeezing

10.6.1 Frequency Doubling

Frequency doubling (also called second harmonic generation) is one of the most important
applications of wave-wave mixing. As we have seen in the previous section, it can be achieved
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by passing a single wave (which plays the role of both wave A = 1 and wave A = 2)
through a nonlinear crystal, with the propagation direction chosen to satisfy the resonance
conditions [Eq. (10.37) and Fig. 10.10]. Three-wave mixing produces an output wave A = 3
with ω3 = 2ω1 that grows with distance inside the crystal at a rate given by a variant of
Eq. (10.30a). By doing a sufficiently good job of satisfying the resonance conditions and
choosing the thickness of the crystal appropriately, one can achieve close to 100% conversion
of the input-wave energy into frequency-doubled energy.

As an example, the Neodymium:YAG (Nd3+:YAG) laser, which is based on an Yttrium
Aluminum Garnet crystal with trivalent Neodymium impurities, is the most attractive of
all lasers for a combination of high frequency stability, moderately high power, and high
efficiency. However, this laser operates in the infrared, at a wavelength of 1.0641 microns.
For some purposes one wants optical light. This can be achieved by frequency doubling the
output of the Nd3+:YAG laser. Thereby one can convert nearly all of the laser’s output
power into 0.532 micron (green) light; cf. Ex. 10.9. This is how green laser pointers, used in
lecturing, work.

Frequency doubling also plays a key role in laser fusion, where intense, pulsed laser
beams, focused on a pellet of fusion fuel, compress and heat the pellet to high densities and
temperatures. Because the beam’s energy flux is inversely proportional to the area of its
focussed cross section, and because the larger the wavelength, the more seriously diffraction
impedes making the cross section small, it is important to give the beam a very short
wavelength. This is achieved by multiple frequency doublings.

10.6.2 Optical Parametric Amplification

In optical parametric amplification, the energy of a pump wave is used to amplify an ini-
tially weak signal wave and also amplify an uninteresting idler wave. The waves satisfy the
resonance conditions with ωp = ωs + ωi. The pump wave and signal wave are fed into an
anisotropic nonlinear crystal, propagating in (nearly) the same direction, with renormalized
amplitudes Ap(0) and As(0) at z = 0. The idler wave has Ai(0) = 0 at the entry plane.
Because the pump wave is so strong, it is negligibly influenced by the three-wave mixing;
i.e., Ap remains constant inside the crystal.

The evolution equations for the (renormalized) signal and idler amplitudes are

dAs

dz
= −iκApA

∗
i ,

dAi

dz
= −iκApA

∗
s (10.49)

[Eqs. (10.33)]. For the initial conditions of weak signal wave and no idler wave, the solution
to these equations is

As = As(0) cosh(|γ|z) , Ai =
γ

|γ|A
∗
s(0) sinh(|γ|z) , γ ≡ −iκAp . (10.50)

Thus, the signal field grows exponentially, after an initial pause, with an e-folding length
2/|γ|, which for strong 3-wave nonlinearities is of order a centimeter [Ex. (10.10)].
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10.6.3 Degenerate Optical Parameteric Amplification: Squeezed
Light

Consider optical parametric amplification with the signal and idler frequencies identical, so
the idler field is the same as the signal field and the pump frequency is twice the signal
frequency: ωp = 2ωs. This condition is called degenerate. Adjust the phase of the pump
field so that γ = −iκAp is real and positive. Then the equation of evolution for the signal
field is

dAs/dz = γA∗
s . (10.51)

The resulting evolution is most clearly understood by decomposing As into its real and
imaginary parts: AS = X1 + iX2, so the time evolving field !(Asei(ksz−ωst)) is X1 cos(ksz −
ωst) + X2 sin(ksz − ωst); i.e., X1 is the amplitude of the field’s cosine quadrature and X2

is the amplitude of its sine quadrature. Then equation (10.51) says that dX1/dz = γX1,
dX2/dz = −γX2, so

X1 = X1(0)eγz , X2 = X2(0)e−γz . (10.52)

Therefore, the wave’s cosine quadrature gets amplified as the wave propagates, and its sine
quadrature gets attenuated. This is called squeezing. It is a phenomenon known to children
who swing; see Ex. 10.11.

Squeezing is especially interesting when it is applied to noise. Typically, a wave has equal
amounts of noise in its two quadratures, i.e. the standard deviations ∆X1 and ∆X2 of the
two quadratures are equal. When such a wave is squeezed, its two standard deviations get
squeezed in just such a way that the product of the standard deviations is unchanged:

∆X1 = ∆X1(0)eγz , ∆X2 = ∆X2(0)e−γz , ∆X1∆X2 = constant . (10.53)

In quantum theory, X1 and X2 are complementary observables; they are described by
Hermetian operators that do not commute. The uncertainty principle associated with their
noncommutation implies that their product ∆X1∆X2 has some minimum possible value.
This minimum is achieved by the wave’s vacuum state, which has ∆X1 = ∆X2 with values
corresponding to one half quantum of energy (vacuum fluctuations) in the field mode that
we are studying. When this “quantum electrodynamic vacuum” is fed into a degenerate
optical parametric amplifier, the vacuum noise gets squeezed in the same manner (10.53) as
any other noise.

Squeezed light, including the “squeezed vacuum,” has great promise for fundamental
physics experiments and technology. For example, it can be used to reduce the photon shot
noise of an interferometer or a laser below the “standard quantum limit” of ∆N =

√
N

(Poisson statistics), thereby improving the signal to noise ratio in certain communications
devices, and in laser interferometer gravitational-wave detectors.8

We shall explore some properties of squeezed light in Ex. 10.13.

10.6.4 Phase Conjugation

As an example of four-wave mixing, we discuss phase conjugation in an isotropic crystal.
Recall that in such a crystal the third-order nonlinearity χijk vanishes, so the leading order

8For detailed discussions see, e.g., Walls (1983), Wu et al . (1986), and LaPorta et al . (1989).
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nonlinearity is the fourth, which produces four-wave mixing
Our goal is to phase conjugate a wave n = 1 propagating in the +z direction that enters

an isotropic crystal. Wave n = 4 is to be the fully phase conjugated wave, and thus must leave
the crystal moving in the −z direction. Waves n = 2 and 3, used to pump the crystal, are
chosen to have the same frequency as the wave to be conjugated: ω2 = ω3 = ω1 = ω4 ≡ ω.
The pump waves are injected into the crystal moving perpendicular to the incoming wave
n = 1 and in opposite directions, so their wave vectors are k2 = −k3 ⊥ k1. Then the
four-wave-mixing polarization produced by the two pump waves and the incoming wave will
include a term

Pi = ε0!
[
1

3
χ4A(2)

j ei(k2·x−ωt)A(3)
j ei(k3·x−ωt)A(1)∗

i e−i(kz−ωt)

]
, (10.54a)

which generates via Maxwell’s equations the fully phase-conjugated wave

E(4)
i = !

[
const ×A(1)∗

i e−i(kz−ωt)

]
. (10.54b)

See Ex. 10.12 for details.

****************************

EXERCISES

Exercise 10.9 Problem: Efficiency of Frequency Doubling

A Nd+3:YAG laser puts out 10 Watts of linearly polarized light in a Gaussian beam at its
lasing wavelength of 1.0641 microns. It is desired to frequency double a large fraction of this
light by 3-wave mixing, using a Ba2NaNb5O15 crystal for which the relevant component of the
susceptibility has magnitude |χijk| ∼ 4×10−11 (Volts/m)−1. The crystal has a thickness of 1
centimeter. To what diameter do should the laser’s light beam be focused before sending it
through the crystal, in order to guarantee that a large fraction of its power will be frequency
doubled? Show that diffraction effects are small enough that the beam diameter can remain
* do all the way through the crystal. [Hint: Recall the spreading of a Gaussian-shaped
beam, as described by Eqs. (8.39).]

Exercise 10.10 Derivation: e-folding Length for an Optical Parametric Amplifier

Estimate the magnitude of the e-folding length for an optical parametric amplifier that is
based on a strong 3-wave nonlinearity.

Exercise 10.11 *** Example: Squeezing by Children Who Swing

A child, standing in a swing, bends her knees then straightens them twice per swing period,
making the distance % from the swing’s support to her center of mass oscillate as % =
%0 + %1 sin 2ω0t. Here is ω0 =

√
g%0 is the swing’s mean angular frequency.

(a) Show that the swing’s angular displacement from vertical, θ, obeys the equation of
motion

d2θ

dt2
+ ω2

0θ = −ω2
1 sin(2ω0t)θ , (10.55)

where ω1 =
√

g%1.
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(b) Write θ = X1 cosω0t + X2 sinω0t. Assuming that %1 ) %0 so ω1 ) ω0, show that the
child’s knee bending (her “pumping” the swing) squeezes θ:

X1(t) = X1(0)e−(ω2
1/8ωo)t , X2(t) = X2(0)e+(ω2

1/8ωo)t (10.56)

(c) Explain how this squeezing is related to the child’s conscious manipulation of the swing
— i.e., to her strategy for increasing the swing’s amplitude when she starts up, and
her strategy for reducing the amplitude when she wants to quit swinging.

Exercise 10.12 Derivation and Example: Phase Conjugation by Four-Wave Mixing

(a) Consider an idealized crystal which is isotropic and has scalar susceptibilities χ0 and
χ4 that are independent of frequency. Show that Maxwell’s equations in the crystal
imply

−
(

n

c

)2∂2E

∂t2
+ ∇2E = const

[
n2

c2

∂2

∂t2
(E2E) − ∇∇ · (E2E)

]
, (10.57)

where n is the index of refraction and E2 = E · E. What is the constant in terms of
χ4?

(b) Assume (as is always the case) that χ4E2 ) 1. Then Eq. (10.57) can be solved using
perturbation theory. We shall do so, in this exercise, for the physical setup described
at the end of Sec. 10.6.4, which produces a phase-conjugated output. As a concrete
realization of that setup, assume that the incoming (“zero-order”) waves inside the
medium are (i) a signal wave which propagates in the z direction and has a slowly
varying complex amplitude A(1)(x, y, z) containing some sort of picture

E(1) = ![A(1)(x, y, z)ei(kz−ωt)ex] ; (10.58a)

and (ii) two pump waves which propagate in the x and −x directions:

E(2) = ![A(2)ei(kx−ωt)ez ] , E(3) = ![A(3)ei(−kx−ωt)ez ] , (10.58b)

Here |A(1)| ) |A(2)|, |A(1)| ) |A(3)|, and all the frequencies ω and wave numbers
k ≡ (n/c)ω are identical. Give a list of the frequencies of all the new waves E(4) that
are generated from these three waves by four-wave mixing. Among those frequencies
is that of the original three waves, ω. A narrow-band filter is placed on the output of
the crystal to assure that only this frequency, ω, emerges.

(c) When one computes the details of the four-wave mixing using the propagation equa-
tion (10.57), one finds that the only new waves with frequency ω that can be generated
have wave numbers k = (n/c)ω. Explain why. Give a list of all such waves includ-
ing (i) their propagation directions, (ii) their polarization directions, and (iii) their
dependences on A1, A2, and A3.
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Fig. 10.11: Error boxes in the complex amplitude plane for several different waves: (a) The
original wave discussed at the beginning of Ex. 10.13. (b) A wave in a squeezed state with
reduced phase noise. (c) A wave in a squeezed state with reduced amplitude noise.

(d) Show that the only wave which emerges from the crystal propagating in the −z direc-
tion with frequency ω is the phase-conjugated signal wave. Suppose that the crystal
extends along the z direction from z = 0 to z = L. What is the amplitude of this phase
conjugated wave throughout the crystal and emerging from its front face, z = 0?

Exercise 10.13 *** Example: Squeezed Light Produced by Phase Conjugation

Consider a plane electromagnetic wave in which we ignore polarization, and for which
we write the complex amplitude A as X1 + iX2 so

E = ![(X1 + iX2)e
i(kz−ωt)] . (10.59)

This wave is slightly noisy: X1 and X2 are randomly varying functions of t − zn/c,
with means X̄1, X̄2, variances (∆X1)2 = (∆X2)2 ≡ σ2, and correlation time τ∗. One
can describe such waves by an error box in the complex amplitude plane [Fig. 10.11a].
Because (∆X1)2 = (∆X2)2, the error box is round. This plane wave is split into two
parts by a beam splitter, one part is reflected off a phase-conjugating mirror, the other
part is reflected off an ordinary mirror, and the two parts are then recombined at the
beam splitter.

(a) Suppose that the phase-conjugating mirror is a pumped, four-wave-mixing crystal of
the type analyzed in Ex. 10.12, and that its length is L. Suppose, further, that the
incoming wave’s correlation time τ∗ is long compared to the time, 2Ln/c, required for
light to propagate from one end of the crystal to the other and back. Explain why the
phase-conjugating mirror will not time reverse the variations of the wave’s complex
amplitude.

(b) Suppose that the two mirrors (one phase-conjugating, the other ordinary) reflect their
waves with slightly different efficiencies, so the beams that recombine at the beam
splitter have complex amplitudes whose moduli differ by a fractional amount ε )
1. Show that by appropriately adjusting the relative phase delay of the recombining
beams, one can make the recombined light have the form

E = α![(2X1 + iεX2)e
i(kz−ωt)] . (10.60)
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E

t

Fig. 10.12: The error band for the electric field E(t), as measured at a fixed location in
space when squeezed light with reduced phase noise passes by.

Here α is a constant and z is distance along the optic axis. In this recombined light
the mean and the variance of X2 are both reduced drastically (by a factor ε/2) relative
to those of X1. The corresponding error box, shown in Fig. 10.11b, is squeezed along
the X2 direction. Correspondingly, the light itself is said to be in a squeezed state.

(c) By appropriately choosing the initial X̄1, X̄2, and squeeze factor ε, one can produce
light with an error box of the form shown in Fig. 10.11c rather than 10.11b. How
should they be chosen? Explain why the light in Fig. 10.11b is said to have “reduced
phase noise” and that in (c) to have “reduced amplitude noise.”

(d) For the light with reduced phase noise, the electric field E(t) measured at some fixed
location in space lies inside the stippled band shown in Fig. 10.12, with 90 per cent
confidence. Draw similar stippled bands depicting the electric field E(t) for the original,
unsqueezed light and for squeezed light with reduced amplitude noise.

****************************

10.7 Other Methods to Produce Wave-Wave Mixing

10.7.1 Photorefractive Effect

Not yet written

Bibliographic Note

Three excellent textbooks on the topics covered by this chapter are Boyd (1992), Yariv
(1989), and Yariv and Yeh (2006) especially Chap. 8. Also useful for nonlinear optics is
Shen (1984). For in-depth discussions of recent developments in this field, see Yariv and Yeh
(2006); also, though it is somewhat old by now, Agrawal and Boyd (1992).
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Box 10.2
Important Concepts in Chapter 10

• Spontaneous emission, stimulated emission, and absorption, Sec. 10.2.1

• Population inversion and the basic principles underlying a laser, Sec. 10.2.1

• Holography

– Recording a hologram Sec. 10.3.1; Fig 10.5

– Using a hologram to reconstruct a 3D image, Sec. 10.3.2, Fig. 10.7

– Every day applications of holography, Sec. 10.3.2, Ex. 10.3

• Phase conjugation, its relationship to time reversal, and practical applications, Sec. 10.4;
Figs. 10.8, 10.9

– How phase conjugation is achieved via three-way mixing in nonlinear crystals, Sec.
10.6.4

• Nonlinear susceptibilities in a dielectric crystal, Eqs. (10.20), (10.22a)

– their magnitudes, Eqs. (10.24)

– their roles in wave-wave mixing, Sec. 10.5.2

• Resonance conditions for three-wave mixing and their relationship to creation and anni-
hilation of quanta, Sec. 10.5.2

– Why they can only be satisfied for a special and restricted set of waves, Sec. 10.5.4

• Three-wave mixing: general form of evolution equations, Secs. 10.5.3 and 10.5.4

• Applications of wave-wave mixing

– Frequency doubling, Secs. 10.5.3, 10.6.1

– Optical parametric amplification, Sec. 10.6.2

– Squeezed light, and its relationship to degenerate optical parametric amplification,
Sec. 10.6.3

– Phase conjugation, Sec. 10.6.4

– Squeezing by a swinging child, Ex. 10.11
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