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Chapter 12

Elastodynamics

Version 1112.2.K, 16 January 2012 . Differs from 1112.1.K solely by fixing cross references
to earlier chapters.
Please send comments, suggestions, and errata via email to kip@caltech.edu, or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 12.1
Reader’s Guide

• This chapter is a companion to Chap. 10 (Elastostatics) and relies heavily on it.

• This chapter also relies rather heavily on geometric-optics concepts and formalism,
as developed in Secs. 7.2 and 7.3, especially: phase velocity, group velocity, dis-
persion relation, rays and the propagation of waves, information and energy along
them, the role of the dispersion relation as a Hamiltonian for the rays, and ray
tracing.

• The discussion of continuum-mechanics wave equations in Box 12.2 underlies this
book’s treatment of waves in fluids (Part IV), especially in Plasmas (Part V), and
in general relativity (Part VI).

• The experience that the reader gains in this chapter with waves in solids will be
useful when we encounter much more complicated waves in plasmas in Part V.

• No other portions of this chapter are of great importance for subsequent Parts of
this book.

12.1 Overview

In the previous chapter we considered elastostatic equilibria in which the forces acting on
elements of an elastic solid were balanced so that the solid remained at rest. When this
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equilibrium is disturbed, the solid will undergo accelerations. This is the subject of this
chapter — Elastodynamics.

In Sec. 12.2, we derive the equations of motion for elastic media, paying particular at-
tention to the underlying conservation laws and focusing especially on elastodynamic waves.
We show that there are two distinct wave modes that propagate in a uniform, isotropic
solid, longitudinal waves and shear waves, and both are nondispersive (their phase speeds
are independent of frequency).

A major use of elastodynamics is in structural engineering, where one encounters vi-
brations (usually standing waves) on the beams that support buildings and bridges. In
Sec. 12.3 we discuss the types of waves that propagate on bars, rods and beams and find
that the boundary conditions at the free transverse surfaces make the waves dispersive. We
also return briefly to the problem of bifurcation of equilibria (treated in Sec. 11.8) and show
how, by changing the parameters controlling an equilibrium, a linear wave can be made to
grow exponentially in time, thereby rendering the equilibrium unstable.

A second application of elastodynamics is to seismology (Sec. 12.4). The earth is mostly
a solid body through which waves can propagate. The waves can be excited naturally by
earthquakes or artificially using man-made explosions. Understanding how waves propagate
through the earth is important for locating the sources of earthquakes, for diagnosing the
nature of an explosion (was it an illicit nuclear bomb test?) and for analyzing the structure
of the earth. We briefly describe some of the wave modes that propagate through the
earth and some of the inferences about the earth’s structure that have been drawn from
studying their propagation. In the process, we gain some experience in applying the tools of
geometric optics to new types of waves, and we learn how rich can be the Green’s function
for elastodynamic waves, even when the medium is as simple as a homogeneous half space.

Finally (Sec. 12.5), we return to physics to consider the quantum theory of elastodynamic
waves. We compare the classical theory with the quantum theory, specializing to quantised
vibrations in an elastic solid: phonons.

12.2 Basic Equations of Elastodynamics; Waves in a
Homogeneous Medium

In subsection 12.2.1 of this section, we shall derive a vectorial equation that governs the dy-
namical displacement ξ(x, t) of a dynamically disturbed elastic medium. We shall then spe-
cialize to monochromatic plane waves in a homogeneous medium (Subsec. 12.2.2) and shall
show how the monochromatic plane-wave equation can be converted into two wave equations,
one for “longitudinal” waves (Subsec. 12.2.3) and the other for “transverse” waves (Subsec.
12.2.4). From those two wave equations we shall deduce the waves’ dispersion relations,
which act as Hamiltonians for geometric-optics wave propagation through inhomogeneous
media. Our method of analysis is a special case of a very general approach to deriving wave
equations in continuum mechanics. That general approach is sketched in Box 12.2. We shall
follow that approach not only here, for elastic waves, but also in Part IV for waves in fluids,
Part V for waves in plasmas and Part VI for general relativistic gravitational waves. We shall
conclude this section in Subsec. 12.2.5 with a discussion of the energy density and energy
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flux of these waves, and in Ex. 12.4 we shall explore the relationship of this energy density
and flux to a Lagrangian for elastodynamic waves.

12.2.1 Equation of Motion for a Strained Elastic Medium

In Chap. 10, we learned that, when an elastic medium undergoes a displacement ξ(x), it
builds up a strain S = ∇ξ, which in turn produces an internal stress T = −KΘg − 2µΣ,
where Θ ≡ ∇ · ξ is the expansion and Σ ≡(the symmetric trace-free part of S) is the shear;
see Eqs. (11.5) and (11.18). The stress T produces an elastic force per unit volume

f = −∇ · T =

(
K +

1

3
µ

)
∇(∇ · ξ) + µ∇2ξ (12.1)

[Eq. (11.19)], where K and µ are the bulk and shear moduli.
In Chap. 10, we restricted ourselves to elastic media that are in elastostatic equilibrium,

so they are static. This equilibrium required that the net force per unit volume acting on
the medium vanish. If the only force is elastic, then f must vanish. If the pull of gravity
is also significant, then f + ρg vanishes, where ρ is the medium’s mass density and g the
acceleration of gravity.

In this chapter we shall focus on dynamical situations, in which an unbalanced force per
unit volume causes the medium to move — with the motion, in this chapter, taking the form
of an elastodynamic wave. For simplicity, we shall assume that the only significant force is
elastic; i.e., that the gravitational force is negligible by comparison. In Ex. 12.2 we shall show
that this is the case for elastodynamic waves in most media on Earth whenever the wave
frequency ω/2π is higher than about 0.001 Hz (which is usually the case in practice). Stated
more precisely, in a homogeneous medium we can ignore the gravitational force whenever the
elastodynamic wave’s angular frequency ω is much larger than g/c, where g is the acceleration
of gravity and c is the wave’s propagation speed.

Consider, then, a dynamical, strained medium with elastic force per unit volume (12.1)
and no other significant force (negligible gravity), and with velocity

v =
∂ξ

∂t
. (12.2a)

The law of momentum conservation states that the force per unit volume f , if nonzero, must
produce a rate of change of momentum per unit volume ρv according to the equation1

∂(ρv)

∂t
= f = −∇ · T =

(
K +

1

3
µ

)
∇(∇ · ξ) + µ∇2ξ . (12.2b)

1In Sec. 13.5 of the next chapter we shall learn that the motion of the medium produces a stress ρv ⊗ v
that must be included in this equation if the velocities are large. However, this subtle dynamical stress
is always negligible in elastodynamic waves because the displacements and hence velocities v are tiny and
ρv ⊗ v is second order in the displacement. For this reason we shall delay studying this subtle nonlinear
effect until Chap. 12.
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Notice that when rewritten in the form

∂(ρv)

∂t
+ ∇ · T = 0 ,

this is the version of the law of momentum conservation discussed in Chap. 1 [Eq. (2.39)], and
it has the standard form for a conservation law (time derivative of density of something, plus
divergence of flux of that something, vanishes; Sec. ??); ρv is the density of momentum, and
the stress tensor T is by definition the flux of momentum. Equations (12.2a) and (12.2b),
together with the law of mass conservation [the obvious analog of Eqs. (1.30) for conservation
of charge and particle number],

∂ρ

∂t
+ ∇ · (ρv) = 0 (12.2c)

are a complete set of equations for the evolution of the displacement ξ(x, t), the velocity
v(x, t) and the density ρ(x, t).

The elastodynamic equations (12.2) are nonlinear because of the ρv terms (see below).
From them we shall derive a linear wave equation for the displacement vector ξ(x, t). Our
derivation provides us with a simple (almost trivial) example of the general procedure dis-
cussed in Box 12.2.

To derive a linear wave equation, we must find some small parameter in which to expand.
The obvious choice in elastodynamics is the strain S = ∇ξ and its components, which are
all dimensionless and must be less than about 10−3 to remain within the non-yielding, non-
breaking, linear elastic regime (Sec. 11.2.1). Equally well, we can regard the displacement ξ
itself as our small parameter.

If the medium’s equilibrium state were homogeneous, the linearization would be trivial.
However, we wish to be able to treat perturbations of inhomogeneous equilibria such as
seismic waves in the Earth, or perturbations of slowly changing equilibria such as vibrations
of a pipe or mirror that is gradually changing temperature. In almost all situations the
lengthscale L and timescale T on which the medium’s equilibrium properties (ρ, K, µ) vary
are extremely large compared to the lengthscale and timescale of the dynamical perturbations
(their reduced wavelength λ̄ =wavelength/2π and 1/ω =period/2π). This permits us to
perform a two-lengthscale expansion (like the one that underlies geometric optics, Sec. 7.3)
alongside our small-strain expansion.

In analyzing a dynamical perturbation of an equilibrium state, we use ξ(x, t) to denote
the dynamical displacement (i.e., we omit from it the equilibrium’s static displacement, and
similarly we omit from ∇ξ the equilibrium strain). We write the density as ρ+δρ, where ρ(x)
is the equilibrium density distribution and δρ(x, t) is the dynamical density perturbation,
which is first-order in the dynamical displacement ξ. Inserting these into the equation of
mass conservation (12.2c), we obtain ∂δρ/∂t + ∇ · [(ρ + δρ)v] = 0. Because v = ∂ξ/∂t is
first order, the term (δρ)v is second order and can be dropped, resulting in the linearized
equation ∂δρ/∂t + ∇ · (ρv) = 0. Because ρ varies on a much longer lengthscale than v (L
vs. λ̄), we can pull ρ out of the derivative; setting v = ∂ξ/∂t and interchanging the time
derivative and divergence, we then obtain ∂δρ/∂t + ρ∂(∇ · ξ)/∂t = 0. Noting that ρ varies
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Box 12.2
Wave Equations in Continuum Mechanics

In this box, we make an investment for future chapters by considering wave equations
in some generality.

Most wave equations arise as approximations to the full set of equations that govern
a dynamical physical system. It is usually possible to arrange those full equations as a
set of first order partial differential equations that describe the dynamical evolution of a
set of n physical quantities, VA, with A = 1, 2, ..., n: i.e.

∂VA

∂t
+ FA(VB) = 0 . (1)

[For elastodynamics there are n = 7 quantities VA: {ρ, ρvx, ρvy, ρvz, ξx, ξy, ξz} (in Carte-
sian coordinates); and the seven equations (1) are mass conservation, momentum con-
servation, and ∂ξj/∂t = vj; Eqs. (12.2).]

Now, most dynamical systems are intrinsically nonlinear (Maxwell’s equations in
vacuo being a conspicuous exception) and it is usually quite hard to find nonlinear
solutions. However, it is generally possible to make a perturbation expansion in some
small physical quantity about a time-independent equilibrium and just retain terms that
are linear in this quantity. We then have a set of n linear partial differential equations
that are much easier to solve than the nonlinear ones—and that usually turn out to
have the character of wave equations (i.e., to be “hyperbolic”). Of course the solutions
will only be a good approximation for small amplitude waves. [In elastodynamics, we
justify linearization by requiring that the strains be below the elastic limit, we linearize in
the strain or displacement of the dynamical perturbation, and the resulting linear wave
equation is ρ∂2ξ/∂t2 = (K + 1

3µ)∇(∇ · ξ) + µ∇2ξ; Eq. (12.4b).]

Boundary Conditions

In some problems, e.g. determining the normal modes of vibration of a building
during an earthquake, or analyzing the sound from a violin or the vibrations of a finite-
length rod, the boundary conditions are intricate and have to be incorporated as well as
possible, to have any hope of modeling the problem. The situation is rather similar to
that familiar from elementary quantum mechanics. The waves are often localised within
some region of space, like bound states, in such a way that the eigenfrequencies are
discrete, for example, standing wave modes of a plucked string. In other problems the
volume in which the wave propagates is essentially infinite, as happens with unbound
states (e.g. waves on the surface of the ocean or seismic waves propagating through the
earth). Then the only boundary condition is essentially that the wave amplitude remain
finite at large distances. In this case, the wave spectrum is usually continuous.
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Box 12.2, Continued

Geometric Optics Limit and Dispersion Relations

The solutions to the wave equation will reflect the properties of the medium through
which the wave is propagating, as well as its boundaries. If the medium and boundaries
have a finite number of discontinuities but are otherwise smoothly varying, there is a
simple limiting case: waves of short enough wavelength and high enough frequency that
they can be analyzed in the geometric optics approximation (Chap. 6).

The key to geometric optics is the dispersion relation, which (as we learned in Sec.
7.3) acts as a Hamiltonian for the propagation. Recall from Chap. 6 that, although
the medium may actually be inhomogeneous and might even be changing with time,
when deriving the dispersion relation we can approximate it as precisely homogeneous
and time-independent, and can resolve the waves into plane-wave modes, i.e. modes in
which the perturbations vary ∝ exp i(k · x − ωt). Here k is the wave vector and ω is
the angular frequency. This allows us to remove all the temporal and spatial derivatives
and converts our set of partial differential equations into a set of homogeneous, linear
algebraic equations. When we do this, we say that our normal modes are local. If,
instead, we were to go to the trouble of solving the partial differential wave equation
with its attendant boundary conditions, the modes would be referred to as global.

The linear algebraic equations for a local problem can be written in the form
MABVB = 0, where VA is the vector of n dependent variables and the elements MAB

of the n × n matrix ||MAB|| depend on k and ω as well as on parameters pα that de-
scribe the local conditions of the medium. This set of equations can be solved in the
usual manner by requiring that the determinant of ‖MAB‖ vanish. Carrying through
this procedure yields a polynomial, usually of n’th order, for ω(k, pα). This polynomial
is the dispersion relation. It can be solved (analytically in simple cases and numerically
in general) to yield a number of complex solutions for ω, with k regarded as real. (Of
course, we might just as well treat the wave vector as a complex number, but for the
moment we will regard it as real.) Armed with these solutions, we can solve for the
associated eigenvectors. The eigenfrequencies fully characterize the solution of the local
problem, and can be used to solve for the waves’ temporal evolution from some given
initial conditions in the usual manner. (As we shall see several times, especially when we
discuss Landau damping in Chap. 21, there are some subtleties that can arise.)

What does a complex value of the angular frequency ω mean? We have posited
that all small quantities vary ∝ exp[i(k · x − ωt)]. If ω has a positive imaginary part,
then the small perturbation quantities will grow exponentially with time. Conversely, if
it has a negative imaginary part, they will decay. Now, polynomial equations with real
coefficients have complex conjugate solutions. Therefore if there is a decaying mode there
must also be a growing mode. Growing modes correspond to instability, a topic that we
shall encounter often.
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on a timescale T long compared to that 1/ω of ξ and δρ, we can integrate this to obtain the
linear relation

δρ

ρ
= −∇ · ξ . (12.3)

This linearized equation for the fractional perturbation of density could equally well have
been derived by considering a small volume V of the medium that contains mass M = ρV ,
and by noting that the dynamical perturbations lead to a volume change δV/V = Θ = ∇ · ξ
[Eq. (11.8)], so conservation of mass requires 0 = δM = δ(ρV ) = V δρ+ρδV = V δρ+ρV ∇·ξ,
which implies δρ/ρ = −∇ · ξ. This is the same as Eq. (12.3).

The equation of momentum conservation (12.2b) can be handled similarly. By lineariz-
ing and pulling the slowly varying density out from under the time derivative, we convert
∂(ρv)/∂t into ρ∂v/∂t = ρ∂2ξ/∂t2. Inserting this into Eq. (12.2b), we obtain the linear wave
equation

ρ
∂2ξ

∂t2
= −∇ · Tel (12.4a)

i.e.,

ρ
∂2ξ

∂t2
= (K +

1

3
µ)∇(∇ · ξ) + µ∇2ξ . (12.4b)

In this equation, terms involving a derivative of K or µ have been omitted because the
two-lengthscale assumption L ( λ̄ makes them negligible compared to the terms we have
kept.

Equation (12.4b) is the first of many wave equations we shall encounter in elastodynamics,
fluid mechanics, and plasma physics.

12.2.2 Elastodynamic Waves

Continuing to follow our general procedure for deriving and analyzing wave equations as
outlined in Box 12.2, we next derive dispersion relations for two types of waves (longitudinal
and transverse) that are jointly incorporated into the general elastodynamic wave equation
(12.4b).

Recall from Chap. 6 that, although a dispersion relation can be used as a Hamiltonian
for computing wave propagation through an inhomogeneous medium, one can derive the
dispersion relation most easily by specializing to monochromatic plane waves propagating
through a medium that is precisely homogeneous. Therefore, we seek a plane-wave solution,
i.e. a solution of the form

ξ(x, t) ∝ ei(k·x−ωt) , (12.5)

to the wave equation (12.4b) with ρ, K and µ regarded as homogeneous (constant). (To
deal with more complicated perturbations of a homogeneous medium, we can think of this
wave as being an individual Fourier component and linearly superpose many such waves
as a Fourier integral.) Since our wave is planar and monochromatic, we can remove the
derivatives in Eq. (12.4b) by making the substitutions ∇ → ik and ∂/∂t → −iω (the first of
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which implies ∇2 → −k2, ∇· → ik·, ∇× → ik×.) We thereby reduce the partial differential
equation (12.4b) to a vectorial algebraic equation:

ρω2ξ = (K +
1

3
µ)k(k · ξ) + µk2ξ . (12.6)

(This reduction is only possible because the medium is uniform, or in the geometric op-
tics limit of near uniformity; otherwise, we must solve the second order partial differential
equation (12.4b) using standard techniques.)

How do we solve this equation? The sure way is to write it as a 3 × 3 matrix equation
Mijξj = 0 for the vector ξ and set the determinant of Mij to zero (Box 12.2 and Ex.
12.3). This is not hard for small or sparse matrices. However, some wave equations are
more complicated and it often pays to think about the waves in a geometric, coordinate-
independent way before resorting to brute force.

The quantity that oscillates in the elastodynamic waves (12.6) is the vector field ξ. The
nature of its oscillations is influenced by the scalar constants ρ, µ, K, ω and by just one
quantity that has directionality: the constant vector k. It seems reasonable to expect the
description (12.6) of the oscillations to simplify, then, if we resolve the oscillations into a
“longitudinal” component (or “mode”) along k and a “transverse” component (or “mode”)
perpendicular to k, as shown in Fig. 12.1:

ξ = ξL + ξT , ξL = ξLk̂ , ξT · k̂ = 0 . (12.7a)

Here k̂ ≡ k/k is the unit vector along the propagation direction. It is easy to see that
the longitudinal mode ξL has nonzero expansion Θ ≡ ∇ · ξL *= 0 but vanishing rotation
φ = 1

2∇ × ξL = 0, and can therefore be written as the gradient of a scalar potential,

ξL = ∇ψ . (12.7b)

By contrast, the transverse mode has zero expansion but nonzero rotation and can thus be
written as the curl of a vector potential,

ξT = ∇ × A ; (12.7c)

cf. Ex. 12.1.

12.2.3 Longitudinal Sound Waves

For the longitudinal mode the algebraic wave equation (12.6) reduces to the following simple
relation [as one can easily see by inserting ξ ≡ ξL = ξLk̂ into Eq. (12.6) , or, alternatively,
by taking the divergence of (12.6), which is equivalent to taking the scalar product with k]:

ω2 =
K + 4

3µ

ρ
k2 ; i.e. ω = Ω(k) =

(
K + 4

3µ

ρ
k2

)1/2

. (12.8)

This relation between ω and k is the longitudinal mode’s dispersion relation.
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k k

(a) (b)

Fig. 12.1: Displacements in an isotropic, elastic solid, perturbed by a) a longitudinal mode, b) a
transverse mode.

From the geometric-optics analysis in Sec. 7.3 we infer that, if K, µ and ρ vary spatially
on an inhomogeneity lengthscale L large compared to 1/k = λ̄, and vary temporally on a
timescale T large compared to 1/ω, then the dispersion relation (12.8), with Ω now depending
on x and t through K, µ, and ρ, serves as a Hamiltonian for the wave propagation. In Sec.
12.4 and Fig. 12.6 below we shall use this to deduce details of the propagation of seismic
waves through the Earth’s inhomogeneous interior.

As we discussed in great detail in Sec. 7.2, associated with any wave mode is its phase
velocity, Vph = (ω/k)k̂ and its phase speed Vph = ω/k. The dispersion relation (12.8) implies
that for longitudinal elastodynamic modes, the phase speed is

CL =
ω

k
=

(
K + 4

3µ

ρ

)1/2

. (12.9a)

As this does not depend on the wave number k ≡ |k|, the mode is non-dispersive, and as it
does not depend on the direction k̂ of propagation through the medium, the phase speed is
also isotropic, naturally enough, and the group velocity Vg j = ∂Ω/∂kj is equal to the phase
velocity:

Vg = Vph = CLk̂ . (12.9b)

Elastodynamic longitudinal modes are similar to sound waves in a fluid. However, in a
fluid, as we shall see in Eq. (16.48d), the sound waves travel with phase speed Vph = (K/ρ)1/2

[the limit of Eq. (12.9a) when the shear modulus vanishes].2 This fluid sound speed is lower
than the CL of a solid with the same bulk modulus because the longitudinal displacement
necessarily entails shear (note that in Fig. 12.1a the motions are not an isotropic expansion),
and in a solid there is a restoring shear stress (proportional to µ) that is absent in a fluid.

Because the longitudinal phase velocity is independent of frequency, we can write down
general planar longitudinal-wave solutions to the elastodynamic wave equation (12.4b) in

2Eq. (16.48d) says the fluid sound speed is C =
√

(∂P/∂ρ)s, i.e. the square root of the derivative of the
fluid pressure with respect to density at fixed entropy. In the language of elasticity theory, the fractional
change of density is related to the expansion Θ by δρ/ρ = −Θ [Eq. (12.3)], and the accompanying change of
pressure is δP = −KΘ [paragraph preceding Eq. (11.18)], i.e. δP = K(δρ/ρ). Therefore the fluid mechanical
sound speed is C =

√
δP/δρ =

√
K/ρ.
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the following form:
ξ = ξLk̂ = F (k̂ · x − CLt)k̂ , (12.10)

where F (x) is an arbitrary function. This describes a wave propagating in the (arbitrary)
direction k̂ with an arbitrary profile determined by the function F .

12.2.4 Transverse Shear Waves

To derive the dispersion relation for a transverse wave we can simply make use of the transver-
sality condition k · ξT = 0 in Eq. (12.6); or, equally well, we can take the curl of Eq. (12.6)
(multiply it by ik×), thereby projecting out the transverse piece, since the longitudinal part
of ξ has vanishing curl. The result is

ω2 =
µ

ρ
k2 ; i.e. ω = Ω(k) ≡

(
µ

ρ
k2

)1/2

. (12.11)

This dispersion relation ω = Ω(k) serves as a geometric-optics Hamiltonian for wave prop-
agation when µ and ρ vary slowly with x and/or t, and it also implies that the transverse
waves propagate with a phase speed CT and phase and group velocities given by

CT =

(
µ

ρ

)1/2

; (12.12a)

Vph = Vg = CT k̂ . (12.12b)

As K > 0, the shear wave speed CT is always less than the speed CL of longitudinal waves
[Eq. (12.9a)].

These transverse modes are known as shear waves because they are driven by the shear
stress; cf. Fig. 12.1b. There is no expansion and therefore no change in volume associated
with shear waves. They do not exist in fluids, but they are close analogs of the transverse
vibrations of a string.

Longitudinal waves can be thought of as scalar waves, since they are fully describable
by a single component ξL of the displacement ξ: that along k̂. Shear waves, by contrast,
are inherently vectorial. Their displacement ξT can point in any direction orthogonal to k.
Since the directions orthogonal to k form a two-dimensional space, once k has been chosen,
there are two independent states of polarization for the shear wave. These two polarization
states, together with the single one for the scalar, longitudinal wave, make up the three
independent degrees of freedom in the displacement ξ.

In Ex. 12.3 we deduce these properties of ξ using matrix techniques.

12.2.5 Energy of Elastodynamic Waves

Elastodynamic waves transport energy, just like waves on a string. The waves’ kinetic energy

density is obviously 1
2ρv

2 = 1
2ρξ̇

2
, where the dot means ∂/∂t. The elastic energy density is
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given by Eq. (11.27), so the total energy density is

U =
1

2
ρξ̇

2
+

1

2
KΘ2 + µΣijΣij . (12.13a)

In Ex. 12.4 we show that (as one might expect) the elastodynamic wave equation (12.4b)
can be derived from an action whose Lagrangian density is the kinetic energy density minus
the elastic energy density. We also show that associated with the waves is an energy flux F
(not to be confused with a force for which we use the same notation) given by

Fi = −KΘξ̇i − 2µΣij ξ̇j . (12.13b)

As the waves propagate, energy sloshes back and forth between the kinetic part and the
elastic part, with the time averaged kinetic energy being equal to the time averaged elastic
energy (equipartion of energy). For the planar, monochromatic, longitudinal mode, the time
averaged energy density and flux are

UL = ρ〈ξ̇2L〉 , FL = ULCLk̂ , (12.14)

where 〈...〉 denotes an average over one period or wavelength of the wave. Similarly, for the
planar, monochromatic, transverse mode, the time averaged density and flux of energy are

UT = ρ〈ξ̇2

T 〉 , , FT = UT CT k̂ (12.15)

[Ex. 12.4]. Thus, elastodynamic waves transport energy at the same speed cL,T as the waves
propagate, and in the same direction k̂. This is the same behavior as electromagnetic waves
in vacuum, whose Poynting flux and energy density are related by FEM = UEMck̂ with c the
speed of light, and the same as all forms of dispersion-free scalar waves (e.g. sound waves
in a medium), cf. Eq. (7.31). Actually, this is the dispersion-free limit of the more general
result that the energy of any wave, in the geometric-optics limit, is transported with the
wave’s group velocity, Vg; see Sec. 7.2.2.

****************************

EXERCISES

Exercise 12.1 Example: Scalar and Vector Potentials for Elastic Waves in a Homogeneous
Solid
Just as in electromagnetic theory, it is sometimes useful to write the displacement ξ in terms
of scalar and vector potentials,

ξ = ∇ψ + ∇ × A . (12.16)

(The vector potential A is, as usual, only defined up to a gauge transformation, A → A+∇ϕ,
where ϕ is an arbitrary scalar field.) By inserting Eq. (12.16) into the general elastodynamic
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wave equation (12.4b), show that the scalar and vector potentials satisfy the following wave
equations in a homogeneous solid:

∂2ψ

∂t2
= c2

L∇2ψ ,
∂2A

∂t2
= c2

T∇2A . (12.17)

Thus, the scalar potential ψ generates longitudinal waves, while the vector potential A
generates transverse waves.

Exercise 12.2 *** Problem: Influence of gravity on wave speed
Modify the wave equation (12.4b) to include the effect of gravity. Assume that the medium is
homogeneous and the gravitational field is constant. By comparing the orders of magnitude
of the terms in the wave equation verify that the gravitational terms can be ignored for
high-enough frequency elastodynamic modes: ω ( g/cL,T . For wave speeds ∼ 3 km/s, this
says ω/2π( 0.0005 Hz. Seismic waves are generally in this regime.

Exercise 12.3 Example: Solving the Algebraic Wave Equation by Matrix Techniques
By using the matrix techniques discussed in the next-to-the-last paragraph of Box 12.2,
deduce that the general solution to the algebraic wave equation (12.6) is the sum of a
longitudinal mode with the properties deduced in Sec. 12.2.3, and two transverse modes
with the properties deduced in Sec. 12.2.4. [Note: This matrix technique is necessary and
powerful when the algebraic dispersion relation is complicated, e.g. for plasma waves; Secs.
20.3.2 and 20.4.1. Elastodynamic waves are simple enough that we did not need this matrix
technique in the text.] Guidelines for solution:

(a) Rewrite the algebraic wave equation in the matrix form Mijξj = 0, obtaining thereby
an explicit form for the matrix ||Mij|| in terms of ρ, K, µ, ω and the components of k.

(b) This matrix equation has a solution if and only if the determinant of the matrix ||Mij ||
vanishes. (Why?) Show that det||Mij|| = 0 is a cubic equation for ω2 in terms of k2,
and that one root of this cubic equation is ω = CLk, while the other two roots are
ω = CT k with CL and CT given by Eqs. (12.9a) and (12.12a).

(c) Orient Cartesian axes so that k points in the z direction. Then show that when
ω = CLk, the solution to Mijξj = 0 is a longitudinal wave, i.e., a wave with ξ pointing
in the z direction, the same direction as k.

(d) Show that when ω = CT k, there are two linearly independent solutions to Mijξj = 0,
one with ξ pointing in the x direction (transverse to k) and the other in the y direction
(also transverse to k).

Exercise 12.4 Example: Lagrangian and Energy for Elastodynamic Waves
Derive the energy-density, energy-flux, and Lagrangian properties of elastodynamic waves
that are stated in Sec. 12.2.5. Guidelines:
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(a) For ease of calculation (and for greater generality), consider an elastodynamic wave in
a possibly anisotropic medium, for which

Tij = −Yijklξk;l (12.18)

with Yijkl the tensorial modulus of elasticity, which is symmetric under interchange
of the first two indices ij, and under interchange of the last two indices kl, and un-
der interchange of the first pair ij with the last pair kl [Eq. (11.17) and associated
discussion]. Show that for an isotropic medium

Yijkl =

(
K − 2

3
µ

)
gijgkl + µ(gikgjl + gilgjk) . (12.19)

(Recall that in the orthonormal bases to which we confine ourselves, the components
of the metric are gij = δij, i.e. the Kronecker delta.)

(b) For these waves the elastic energy density is 1
2Yijklξi;jξk;l [Eq. (11.28)]. Show that the

kinetic energy density minus the elastic energy density

L =
1

2
ρ ξ̇iξ̇i −

1

2
Yijklξi;jξk;l (12.20)

is a Lagrangian density for the waves; i.e., show that the vanishing of its variational
derivative δL/δξj = 0 is equivalent to the elastodynamic equations ρξ̈ = −∇ · T.

(c) The waves’ energy density and flux can be constructed by the vector-wave analog of
the canonical procedure of Eq. (7.35c):

U =
∂L
∂ξ̇i
ξ̇i − L =

1

2
ρ ξ̇iξ̇i +

1

2
Yijklξi;jξk;l ,

Fj =
∂L
∂ξi;j

ξ̇i = −Yijklξ̇iξk;l . (12.21)

Verify that these density and flux satisfy the energy conservation law, ∂U/∂t+∇·F = 0.
It is straightforward algebra to verify, using Eq. (12.19), that for an isotropic medium
expressions (12.21) for the energy density and flux become the expressions (12.13)
given in the text.

(d) Show that, in general (for an arbitrary mixture of wave modes), the time average of
the total kinetic energy in some huge volume is equal to that of the total elastic energy.
Show further that, for an individual longitudinal or transverse, planar, monochromatic,
mode, the time averaged kinetic energy density and time averaged elastic energy density
are both independent of spatial location. Combining these results, infer that for a single
mode, the time averaged kinetic and elastic energy densities are equal, and therefore
the time averaged total energy density is equal to twice the time averaged kinetic
energy density. Show that this total time averaged energy density is given by the first
of Eqs. (12.14) and (12.15).
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(e) Show that the time average of the energy flux (12.13b) for the longitudinal and trans-
verse modes is given by the second of Eqs. (12.14) and (12.15), so the energy propagates
with the same speed and direction as the waves themselves.

****************************

12.3 Waves in Rods, Strings and Beams

Let us now illustrate some of these ideas using the types of waves that can arise in some
practical applications. In particular we discuss how the waves get modified when the medium
through which they propagate is not uniform but instead is bounded. Despite this situation
being formally “global” in the sense of Box 12.2, elementary considerations enable us to
derive the relevant dispersion relations without much effort.

12.3.1 Compression waves

First consider a longitudinal wave propagating along a light (negligible gravity), thin, un-
stressed rod. Introduce a Cartesian coordinate system with the x-axis parallel to the rod.
When there is a small displacement ξx independent of y and z, the restoring stress is given
by Txx = −E∂ξx/∂x, where E is Young’s modulus (cf. end of Sec. 11.3). Hence the restoring
force density f = −∇ · T is fx = E∂2ξx/∂x2. The wave equation then becomes

∂2ξx
∂t2

=

(
E

ρ

)
∂2ξx
∂x2

, (12.22)

and so the sound speed for compression waves in a long straight rod is

CC =

(
E

ρ

) 1
2

. (12.23)

Referring to Table 11.1 (in Chap. 10), we see that a typical value of Young’s modulus in a
solid is ∼ 100 GPa. If we adopt a typical density ∼ 3 × 103 kg m−3, then we estimate the
compressional sound speed to be ∼ 5 km s−1. This is roughly 15 times the sound speed in
air.

12.3.2 Torsion waves

Next consider a wire with circular cross section of radius a subjected to a twisting force
(Fig. 12.2). Let us introduce an angular displacement ∆φ ≡ ϕ that depends on x. The
only nonzero component of the displacement vector is then ξφ = +ϕ. We can calculate the
total torque by integating over a circular cross section. For small twists, there will be no
expansion and the only components of the shear tensor are

Σφx = Σxφ =
1

2
ξφ,x =

+

2

∂φ

∂x
. (12.24)
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x
a

dx

Fig. 12.2: When a wire of circular cross section is twisted, there will be a restoring torque.

The torque contributed by an annular ring of radius + and thickness d+ is + · Tφx · 2π+d+
and we substitute Tφx = −2µΣφx to obtain the total torque

N =

∫ a

0

2πµ+3d+
∂ϕ

∂x
. (12.25)

Now the moment of inertia per unit length is

I =
π

2
ρa4 , (12.26)

so equating the net torque per unit length to the rate of change of angular momentum, also
per unit length, we obtain

∂N

∂x
= I

∂2ϕ

∂t2
, (12.27)

or
∂2ϕ

∂x2
=

(
ρ

µ

)
∂2ϕ

∂t2
. (12.28)

The speed of torsional waves is thus

CT =

(
µ

ρ

) 1
2

. (12.29)

Note that this is the same speed as that of shear waves in a uniform medium. This might
have been anticipated as there is no change in volume in a torsional oscillation and so only
the shear stress acts to produce a restoring force.

12.3.3 Waves on Strings

This example is surely all too familiar. When a string under a tension force T (not force
per unit area) is plucked, there will be a restoring force proportional to the curvature of the



17

string. If ξx ≡ η is the transverse displacement (in the same notation as we used for rods in
Secs. 11.7 and 11.8), then the wave equation will be

T
∂2η

∂x2
= Λ

∂2η

∂t2
, (12.30)

where Λ is the mass per unit length. The wave speed is thus

CS =

(
T

Λ

)1/2

. (12.31)

12.3.4 Flexural Waves on a Beam

Now consider the small amplitude displacement of a rod or beam that can be flexed. In
Sec. 11.7 we showed that such a flexural displacement produces a net elastic restoring force
per unit length given by D∂4η/∂x4, and we considered a situation where that force was
balanced by the beam’s weight per unit length, W = Λg [Eq. (11.87)]. Here

D =
1

12
Ewh3 (12.32)

is the flexural rigidity [Eq. (11.82)], h is the beam’s thickness in the direction of bend, w is
its width, η = ξz is the transverse displacement of the neutral surface from the horizontal, Λ
is the mass per unit length, and g is the earth’s acceleration of gravity. The solution of the
resulting force-balance equation, −D∂4η/∂x4 = W = Λg, was the quartic (11.88a), which
described the equilibrium beam shape.

When gravity is absent and the beam is allowed to move, the acceleration of gravity g
gets replaced by a dynamical acceleration of the beam, ∂2η/∂t2; the result is a wave equation
for flexural waves on the beam:

−D
∂4η

∂x4
= Λ

∂2η

∂t2
. (12.33)

[This derivation of the wave equation is an elementary illustration of the Principle of Equiv-
alence—the equivalence of gravitational and inertial forces, or gravitational and inertial
accelerations—which underlies Einstein’s general relativity theory (Chap. 24).]

The wave equations we have encountered so far in this chapter have all described non-
dispersive waves, for which the wave speed is independent of the frequency. Flexural waves,
by contrast, are dispersive. We can see this by assuming that η ∝ exp[i(kx−ωt)] and thereby
deducing from Eq. (12.33) the dispersion relation

ω =
√

D/Λ k2 . (12.34)

Before considering the implications of this dispersion, we shall complicate the equilibrium
a little. Let us suppose that, in addition to the net shearing force per unit length −D∂4η/∂x4,
the beam is also held under a tension force T as well. We can then combine the two wave
equations (12.30), (12.33) to obtain

−D
∂4η

∂x4
+ T

∂2η

∂x2
= Λ

∂2η

∂t2
, (12.35)
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for which the dispersion relation is

ω2 = C2
Sk2

(
1 +

k2

k2
c

)
, (12.36)

where CS =
√

T/Λ is the wave speed when the flexural rigidity D is negligible so the beam
is string-like, and

kc =
√

T/D (12.37)

is a critical wave number. If the average strain induced by the tension is ε = ξx,x = T/Ewh,
then kc = (12ε)1/2h−1, where h is the thickness of the beam and w is its width. [Notice
that kc is also of order 1/λ, where λ is the lengthscale on which a pendulum’s support wire
(“beam”) bends as discussed in Ex. 11.18.] For short wavelengths k ( kc, the shearing force
dominates and the beam behaves like a tension-free beam; for long wavelengths k . kc, it
behaves like a string.

A consequence of dispersion is that waves with different wave numbers k propagate with
different speeds, and correspondingly the group velocity Vg = dω/dk with which wave packets
propagate differs from the phase velocity Vph = ω/k with which a wave’s crests and troughs
move (see Sec. 7.2.2). For the dispersion relation (12.36), the phase and group velocities are

Vph ≡ ω/k = CS(1 + k2/k2
c )

1/2 ,

Vg ≡ dω/dk = CS(1 + 2k2/k2
c )(1 + k2/k2

c )
−1/2 . (12.38)

As we discussed in detail in Sec. 7.2.2 and Ex. 7.2, for dispersive waves such as this one,
the fact that different Fourier components in the wave packet propagate with different speeds
causes the packet to gradually spread; we explore this quantitatively for longitudinal waves
on a beam in Ex. 12.5.

12.3.5 Bifurcation of Equilibria and Buckling (once more)

We conclude this discussion by returning to the problem of buckling, which we introduced in
Sec. 11.8. The example we discussed there was a playing card compressed until it wants to
buckle. We can analyze small dynamical perturbations of the card, η(x, t), by treating the
tension T of the previous section as negative, T = −F where F is the compressional force
applied to the card’s two ends in Fig. 11.13. Then the equation of motion (12.35) becomes

−D
∂4η

∂x4
− F

∂2η

∂x2
= Λ

∂2η

∂t2
. (12.39)

We seek solutions for which the ends of the playing card are held fixed (as shown in Fig.
11.13), η = 0 at x = 0 and x = .. Solving Eq. (12.39) by separation of variables, we see that

η = ηn sin
(nπ

.
x
)

e−iωnt . (12.40)

Here n = 1, 2, 3, ... labels the card’s modes of oscillation, n − 1 is the number of nodes in
the card’s sinusoidal shape for mode n, ηn is the amplitude of deformation for mode n, and
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the mode’s eigenfrequency ωn (of course) satisfies the same dispersion relation (12.36) as for
waves on a long, stretched beam, with T → −F and k → nπ/.:

ω2
n =

1

Λ

(nπ

.

)2
[(nπ

.

)2
D − F

]
. (12.41)

Consider the lowest normal mode, n = 1, for which the playing card is bent in the
single-arch manner of Fig. 11.13 as it oscillates. When the compressional force F is small,
ω2

1 is positive, so ω1 is real and the normal mode oscillates sinusoidally, stably. But for
F > Fcrit = π2D/.2, ω2

1 is negative, so ω1 is imaginary and there are two normal-mode
solutions, one decaying exponentially with time, η ∝ exp(−|ω1|t), and the other increasing
exponentially with time, η ∝ exp(+|ω1|t), signifying an instability against buckling.

Notice that the onset of instability occurs at identically the same compressional force,
F = Fcrit ≡ π2D/.2, as the bifurcation of equilibria [Eq. (11.96)], at which a new, bent,
equilibrium state for the playing card comes into existence. Notice, moreover, that the card’s
n = 1 normal mode has zero frequency, ω1 = 0, at this onset of instability and bifurcation of
equilibria; the card can bend by an amount that grows linearly in time, η = A sin(πx/.) t,
with no restoring force or exponential growth. This zero-frequency motion leads the card
from its original, straight equilibrium shape, to its new, bent equilibrium shape. [For a
free-energy-based analysis of the onset of this instability, see Ex. 12.8.]

This is an example of a very general phenomenon, which we shall meet again in fluid
mechanics (Sec. 15.5): For mechanical systems without dissipation (no energy losses to
friction or viscosity or radiation or ...), as one gradually changes some “control parameter”
(in this case the compressional force F ), there can occur bifurcation of equilibria. At each
bifurcation point, a normal mode of the original equilibrium becomes unstable, and at its
onset of instability the mode has zero frequency and represents a motion from the original
equilibrium (which is becoming unstable) to the new, stable equilibrium.

In our simple playing-card example, we see this phenomenon repeated again and again
as the control parameter F is increased: One after another the modes n = 1, n = 2, n = 3,
... become unstable. At each onset of instability, ωn vanishes, and the zero-frequency mode
(with n − 1 nodes in its eigenfunction) leads from the original, straight-card equilibrium to
the new, stable, (n − 1)-noded, bent equilibrium.

Buckling is a serious issue in engineering. Whenever one has a vertical beam supporting
a heavy weight (e.g. in the construction of a tall building), one must make sure that the
beam has a large enough flexural rigidity D to be stable against buckling. The reason is that,
although there is a new, stable equilibrium if F is only slightly larger than Fcrit, the bend
in that equilibrium increases rapidly with increasing F [Eq. (11.97)] and becomes so large,
when F is only moderately larger than Fcrit, that the beam breaks. A large enough flexural
rigidity D to protect against this is generally achieved not by making the beam uniformly
thick, but rather by fashioning its cross section into an H shape or I shape (with cross bars).

Whenever one has a long pipe exposed to night-to-day cooling-to-heating transitions (e.g.
an oil or natural gas pipe, or the long vacuum tubes of a laser interferometer gravitational
wave detector), one must make sure the pipe has enough flexural rigidity to avoid buckling in
the heat of the day, when it wants to expand in length.3 It can be overly expensive to make

3Much of the thermal expansion is dealt with by bellows.
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the pipe walls thick enough to achieve the required flexural rigidity, so instead of thickening
the walls everywhere, engineers weld “stiffening rings” onto the outside of the pipe to increase
its rigidity. Notice, in Eq. (12.41), that the longer is the length . of the beam or pipe, the
larger must be the flexural rigidity D to avoid buckling; the required rigidity scales as the
square of the length.

****************************

EXERCISES

Exercise 12.5 Derivation: Dispersion of Flexural Waves
Verify Eqs. (12.36) and (12.38). Sketch the dispersion-induced evolution of a Gaussian wave
packet as it propagates along a stretched beam.

Exercise 12.6 Problem: Speeds of Elastic Waves
Show that the sound speeds for the following types of elastic waves in an isotropic material

are in the ratio 1 : (1− ν2)−1/2 :
(

1−ν
(1+ν)(1−2ν)

)1/2
: [2(1+ ν)]−1/2 : [2(1+ ν)]−1/2. Longitudinal

waves along a rod, longitudinal waves along a sheet, longitudinal waves along a rod embedded
in an incompressible fluid, shear waves in an extended solid, torsional waves along a rod.
[Note: Here and elsewhere in this book, if you encounter grungy algebra (e.g. frequent
conversions from {K, µ} to {E, ν}), do not hesitate to use Mathematica or Maple or other
symbolic manipulation software to do the algebra!]

Exercise 12.7 Problem: Xylophones
Consider a beam of length ., whose weight is neglible in the elasticity equations, supported
freely at both ends (so the slope of the beam is unconstrained at the ends). Show that the
frequencies of standing flexural waves satisfy

ω =
(nπ

.

)2
(

D

ρA

)1/2

,

where A is the cross-sectional area and n is an integer. Now repeat the exercise when the
ends are clamped. Hence explain why xylophones don’t have clamped ends.

Exercise 12.8 ***Example: Free-Energy Analysis of Buckling Instability
In this exercise you will explore the relationship of the onset of the buckling instability to the
concept of free energy, which we introduced in Chap. 4 in our study of statistical mechanics
and phase transitions.

(a) Consider a rod with flexural rigidity D and with a compressional force F applied at
each end, as in Sec. 12.3.5. Show that, if the rod gets bent slightly, with a transverse
displacement η(x), its elastic energy increases by an amount

E =

∫
1

2
E(ξx,x)

2dxdydz =
1

2
D

∫ %

0

(
∂2η

∂x2

)2

dx . (12.42)

Here ξx is the longitudinal displacement inside the rod, ξx,x is the longitudinal strain,
and the first integral is over the entire interior of the rod. [Hint: recall the first few
steps in the dimensional-reduction analysis for such a rod in Sec. 11.7.]
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(b) If the compressional force F were absent, then the most stable equilibrium shape would
be the one that minimizes this elastic energy subject to the boundary conditions that
η(x) = 0 at x = 0 and x = .: i.e. the unbent shape η = 0. However, when the force F
is present and is held fixed as the rod deforms, the deformation causes the rod’s right
end to move inward relative to the left end by an amount δ. = −

∫ %
0

1
2(∂η/∂x)2dx.

[Prove this using the Pythagorean theorem.] As the rod moves inward, the force on its
right end does an amount of work −F δ. on the rod. Correspondingly, the amount of
free energy that the rod has (the amount of energy adjusted for the energy −F δ. that
gets exchanged with the force F when the rod bends) is

H = E + F δ. =
1

2

∫ %

0

[
D

(
∂2η

∂x2

)2

− F

(
∂η

∂x

)2
]

dx . (12.43)

(c) Think of the constant force F as arising from a “volume bath” with pressure P , that
the rod’s ends (with cross sectional area hw) are in contact with. Show that the free
energy (12.43) can be reexpressed as H = E+P δV , where −δV = −hwδ. is the change
in the bath’s volume as a result of the rod’s ends moving when it bends. This is the
enthalpy of the rod, associated with the bending (Ex. 5.5), and the laws of statistical
mechanics for any system in contact with a volume bath tell us that the system’s most
stable state is the one with minimum enthalpy, i.e. minimum free energy (Ex. ??).
This minimum-free-energy state η(x) must be stationary under small changes δη(x)
of the rod’s shape, subject to δη(0) = δη(.) = 0. Show that this stationarity implies
η satisfies the equation of elastostatic equilibrium, Eq. (12.39) with ∂2η/∂t2 = 0,
and therefore must have the shape η = ηo sin(nπx/.), i.e. the shape of one of the
normal-mode eigenfunctions. [KIP: THERE IS SOME DELICACY OF BOUNDARY
CONDITIONS THAT NEEDS TO BE SORTED OUT. PH136 STUDENTS: CAN
YOU HELP?]

(d) Compare the free energy H1 for the n = 1 bent shape (no nodes) with that H0 of the
straight rod by performing the integral (12.43). Your result should be

H1 − H0 =
(πη1

2.

)2
.(Fcrit − F ) , (12.44)

where Fcrit = π2D/.2 is the critical force at which the bifurcation of equilibria occurs
and the straight rod becomes unstable, and η1 is the amplitude of the bend.

(e) Comment: When one includes higher order corrections in ηo, the difference in free
energies between the straight rod and the n = 1 shape turns out to be

H1 − H0 = H1 − H0 =
(πη1

2.

)2

.

{
Fcrit

[
1 +

(πη1
2.

)2
]
− F

}
. (12.45)

This free-energy difference is plotted in Fig. 12.3, as a function of η1 (the amplitude
of the rod’s deformation) for various applied forces F . For F < Fcrit there is only one
extremum: a minimum at η1 = 0, so the only equilibrium state is that of the straight
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-

H1-H0

η1

F=0 F=Fcrit

F=1.1Fcrit

F=1.2Fcrit

Fig. 12.3: The difference in free energy H1−H0 between a rod bent in the n = 1 shape with bend
amplitude η1 and the unbent rod.

rod, and that equilibrium is stable. As F increases past Fcrit the minimum at η = 0
becomes a maximum, and two new minima are created, at η = ±

√
(2.2/π2)(F − Fcrit).

This is the bifurcation of equilibria, with the straight rod becoming unstable and the
upward or downward bent rod, in the n = 1 shape, being stable.

****************************

12.4 Body Waves and Surface Waves — Seismology

In Sec. 12.2 we derived the dispersion relations ω = CLk and ω = CT k for elastodynamic
waves in uniform media. We now consider how the waves are modified in an inhomogeneous,
finite body, the earth. The earth is well approximated as a sphere of radius R ∼ 6000 km and
mean density ρ̄ ∼ 6000 kg m−3. The outer crust comprising rocks of high tensile strength
rests on a denser but more malleable mantle, the two regions being separated by the famous
Moho discontinuity. Underlying the mantle is an outer core mainly comprised of liquid iron,
which itself surrounds a denser, solid inner core; see Table 12.1 and Fig.12.6 below.

The pressure in the Earth’s interior is much larger than atmospheric and the rocks are
therefore quite compressed. Their atomic structure cannot be regarded as a small perturba-
tion from their structure in vacuo. Nevertheless, we can still use linear elasticity theory to
discuss small perturbations about this equilibrium. This is because the crystal lattice has
had plenty of time to re-establish a new equilibrium with a much smaller lattice spacing (Fig-
ure 12.4). The density of lattice defects and dislocations will probably not differ appreciably
from the density on the earth’s surface. The linear stress-strain relation should still apply
below the elastic limit, though the elastic moduli are much greater than those measured at
atmospheric pressure.

We can estimate the magnitude of the pressure P in the Earth’s interior by idealizing
the earth as an isotropic medium with negligible shear stress so its stress tensor is like that
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(a) (b)

r0
r r

V V

r0

Fig. 12.4: Potential energy curves (dashed) for nearest neighbors in a crystal lattice. (a) At atmo-
spheric (effectively zero) pressure, the equilibrium spacing is set by the minimum in the potential
energy which is a combination of hard electrostatic repulsion by the nearest neighbors (upper solid
curve) and a softer overall attraction associated with all the nearby ions (lower solid curve). (b)
At much higher pressure, the softer, attractive component is moved inward and the equilibrium
spacing is greatly reduced. The bulk modulus is proportional to the curvature of the potential
energy curve at its minimum, and is considerably increased.

of a fluid, T = Pg (where g is the metric tensor). Then the equation of static equilibrium
takes the form

dP

dr
= −gρ , (12.46)

where ρ is density and g(r) is the acceleration of gravity at radius r. This equation can be
approximated by

P ∼ ρ̄gR ∼ 300GPa ∼ 3 × 106atmospheres , (12.47)

where g is now the acceleration of gravity at the earth’s surface r = R, and ρ̄ is the earth’s
mean density. This agrees well numerically with the accurate value of 360GPa at the earth’s
center. The bulk modulus produces the isotropic pressure P = −KΘ [Eq. (12.29)]; and since
Θ = −δρ/ρ [Eq. (11.18)], the bulk modulus can be expressed as

K =
dP

d ln ρ
. (12.48)

[Strictly speaking, we should distinguish between adiabatic and isothermal variations in
Eq. (12.48), but the distinction is small for solids; see the passage following Eq. (11.71). It is
significant for gases.] Typically, the bulk modulus inside the earth is 4-5 times the pressure
and the shear modulus in the crust and mantle is about half the bulk modulus.

12.4.1 Body Waves

Virtually all our direct information about the internal structure of the earth comes from
measurements of the propagation times of elastic waves generated by earthquakes. There
are two fundamental kinds of body waves: the longitudinal and shear modes of Sec. 12.2.
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Fig. 12.5: An incident shear wave polarized in the vertical direction (SVi), incident from above on
a boundary, produces both a longitudinal (P) wave and a SV wave in reflection and in transmission.
If the wave speeds increase across the boundary (the case shown), then the transmitted waves, SVt,
Pt, will be refracted away from the vertical. A shear mode, SVr, will be reflected at the same angle
as the incident wave. However, the reflected P mode, Pr, will be reflected at a greater angle to the
vertical as it is has a greater speed.

These are known in seismology as P-modes and S-modes respectively. The two polarizations
of the shear waves are designated SH and SV, where H and V stand for “horizontal” and
“vertical” displacements, i.e., displacements orthogonal to k that are fully horizontal, or that
are obtained by projecting the vertical direction ez orthogonal to k̂.

We shall first be concerned with what seismologists call high-frequency (of order 1Hz)
modes. This leads to three related simplifications. As typical wave speeds lie in the range
3–14 km s−1, the wavelengths lie in the range ∼ 1−10 km which is generally small compared
with the distance over which gravity causes the pressure to change significantly – the pressure
scale height. It turns out that we then can ignore the effects of gravity on the propagation
of small perturbations. In addition, we can regard the medium as effectively homogeneous
and infinite and use the local dispersion relations ω = cL,Tk, Finally, as the wavelengths are
short we can trace rays through the earth using geometrical optics (Sec. 7.3).

Zone R ρ K µ CP CS

103km 103kg m−3 GPa GPa km s−1 km s−1

Inner Core 1.2 13 1400 160 11 2
Outer Core 3.5 10-12 600-1300 - 8-10 -
Mantle 6.35 3-5 100-600 70-250 8-14 5-7
Crust 6.37 3 50 30 6-7 3-4
Ocean 6.37 1 2 - 1.5 -

Table 12.1: Typical outer radii (R), densities (ρ), bulk moduli (K), shear moduli(µ),
P-wave speeds and S-wave speeds within different zones of the earth. Note the absence of shear
waves in the fluid regions. (Adapted from Stacey 1977.)

Despite these simplifications, the earth is quite inhomogeneous and the sound speeds vary
significantly with radius; see Table 12.1. Two types of variation can be distinguished, the
abrupt and the gradual. To a fair approximation, the earth is horizontally stratified below
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the outer crust. However, there are several abrupt changes in composition in the crust and
mantle (including the Moho discontinuity) where the density, pressure and elastic constants
apparently change over distances short compared with a wavelength. Seismic waves incident
on these discontinuities behave like light incident on the surface of a glass plate; they can
be reflected and refracted. In addition, as there are now two different waves with different
phase speeds, it is possible to generate SV waves from pure P waves and vice versa at a
discontinuity (Fig. 12.5). However, this wave-wave mixing is confined to SV and P; the SH
waves do not mix with SV or P.

The junction conditions that control this wave mixing and all other details of the waves’
behavior at a discontinuity are: (i) the displacement ξ must be continuous across the bound-
ary (otherwise there would be infinite strain and infinite stress there); and (ii) the net force
acting on an element of surface must be zero (otherwise the surface, having no mass, would
have infinite acceleration), so the force per unit area acting from the front face of the bound-
ary to the back must be balanced by that acting from the back to the front. If we take the
unit normal to the horizontal boundary to be ez, then these boundary conditions become

[ξj] = [Tjz] = 0 , (12.49)

where the notation [X] signifies the difference in X across the boundary and the j is a vector
index. (For an alternative, more formal derivation of [Tjz] = 0, see Ex. 12.9.)

One consequence of these boundary conditions is Snell’s law for the directions of propaga-
tion of the waves: Since these continuity conditions must be satisfied all along the boundary
and at all times, the phase φ = k ·x−ωt of the wave must be continuous across the boundary
at all locations x on it and all times, which means that the phase φ must be the same on the
boundary for all transmitted waves and all reflected waves as for the incident waves. This is
possible only if the frequency ω, the horizontal wave number kH = k sinα, and the horizontal
phase speed cH = ω/kH = ω/(k sinα), are the same for all the waves. (Here kH = k sinα
is the magnitude of the horizontal component of a wave’s propagation vector and α is the
angle between its propagation direction and the vertical; cf. Fig. 12.5.) Thus, we arrive at
Snell’s law: For every reflected or transmitted wave J , the horizontal phase speed must be
the same as for the incident wave:

cJ

sinαJ
= cH is the same for all J. (12.50)

It is straightforward though tedious to compute the reflection and transmission coeffi-
cients (e.g. the strength of transmitted P-wave produced by an incident SV wave) for the
general case using the boundary conditions (12.49); see, e.g., Eringen and Suhubi (1975).
The analysis is straightforward but algebraically complex. For the very simplest of examples,
see Ex. 12.10.

Gradual variation in the wave speeds, due to gradual variations of the elastic moduli and
density inside the earth, can be handled using geometrical optics:

In the regions between the discontinuities, the pressures and consequently the elastic
moduli increase steadily, over many wavelengths, with depth. The elastic moduli generally
increase more rapidly than the density so the wave speeds generally also increase with depth,
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i.e. dc/dr < 0. This radial variation in c causes the rays along which the waves propagate
to bend. The details of this bending are governed by Hamilton’s equations, with the Hamil-
tonian Ω(x,k) determined by the simple nondispersive dispersion relation Ω = c(x)k (Sec.
7.3.1). Hamilton’s equations in this case reduce to the simple ray equation (7.48), which
(since the index of refraction is ∝ 1/c) can be rewritten as

d

ds

(
1

c

dx

ds

)
= ∇

(
1

c

)
. (12.51)

Here s is distance along the ray, so dx/ds = n is the unit vector tangent to the ray. This
ray equation can be reexpressed in the following form:

dn/ds = −(∇ ln c)⊥ , (12.52)

where the subscript ⊥ means “projected perpendicular to the ray;” and this in turn means
that the ray bends away from the direction in which c increases (i.e., it bends upward inside
the earth since c increases downward) with the radius of curvature of the bend given by

R =
1

|(∇ ln c)⊥|
=

1

|(d ln c/dr) sinα| . (12.53)

Here α is the angle between the ray and the radial direction; see the bending rays in Fig. 12.6.
Figure 12.6 shows schematically the propagation of seismic waves through the earth. At

each discontinuity in the earth’s material, Snell’s law governs the directions of the reflected
and transmitted waves. As an example, note from Eq. (12.50) that an SV mode incident on
a boundary cannot generate any P mode when its angle of incidence exceeds sin−1(cT i/cLt).
(Here we use the standard notation CT for the phase speed of an S wave and CL for that of
a P wave.) This is what happens at points b and c in Fig. 12.6.

12.4.2 Edge Waves

One phenomenon that is important in seismology but is absent for many other types of wave
motion is the existence of “edge waves”, i.e., waves that propagate along a discontinuity
in the elastic medium. An important example is surface waves, which propagate along the
surface of a medium (e.g., the earth) and that decay exponentially with depth. Waves with
such exponential decay are sometimes called evanescent.

The simplest type of surface wave is called a Rayleigh wave. We shall now analyze
Rayleigh waves for the idealisation of a plane semi-infinite solid. This discussion must be
modified to allow for both the density stratification and the surface curvature when it is
applied to the earth. However, the qualitative character of the mode is unchanged.

Rayleigh waves are an intertwined mixture of P and SV waves; and, in analyzing them,
it is useful to resolve their displacement vector ξ into a sum of a (longitudinal) P-wave
component, ξL, and a (transverse) S-wave component, ξT .

Consider a semi-infinite elastic medium and introduce a local Cartesian coordinate system
with ez normal to the surface, with ex lying in the surface, and with the propagation vector k
in the ez-ex plane. The propagation vector will have a real component along the horizontal,
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Fig. 12.6: Seismic wave propagation in a schematic earth model. A SV wave made by an earth-
quake, E, propagates to the crust-mantle boundary at a where it generates two transmitted waves
(SV and P) and two reflected waves (SV and P). The transmitted SV wave propagates along rays
that bend upward a bit (geometric optics bending) and hits the mantle-outer-core boundary at
b. There can be no transmitted SV wave at b because the outer core is fluid; there can be no
transmitted or reflected P wave because the angle of incidence of the SV wave is too great; so the
SV wave is perfectly reflected. It then travels along an upward curving ray, to the crust-mantle
interface at d, where it generates four waves, two of which hit the earth’s surface. The earthquake
E also generates an SV wave traveling almost radially inward, through the crust-mantle interface
at q, to the mantle-outer-core interface at r. Because the outer core is liquid, it cannot support
an SV wave, so only a P wave is transmitted into the outer core at r. That P wave propagates
to the interface with the inner core at s, where it regenerates an SV wave (shown) along with
the transmitted and reflected P waves. The SV wave refracts back upward in the inner core, and
generates a P wave at the interface with the outer core t; that P wave propagates through the
liquid outer core to u where it generates an SV wave along with its transmitted and reflected P
waves; that SV wave travels nearly radially outward, through v to the earth’s surface.
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Fig. 12.7: Rayleigh waves in a semi-infinite elastic medium.

ex direction, corresponding to true propagation, and an imaginary component along the ez

direction, corresponding to an exponential decay of the amplitude as one goes downward
into the medium. In order for the longitudinal (P-wave) and transverse (SV-wave) parts of
the wave to remain in phase with each other as they propagate along the boundary, they
must have the same values of the frequency ω and horizontal wave number kx. However,
there is no reason why their vertical e-folding lengths should be the same, i.e. why their
imaginary kz’s should be the same. We therefore shall denote their imaginary kz’s by −iqL

for the longitudinal (P-wave) component and −iqT for the transverse (S-wave) component,
and we shall denote kx by k.

Focus attention, first, on the longitudinal part of the wave. Its displacement must have
the form

ξL = AeqLz+i(kx−ωt), z ≤ 0 . (12.54)

Substituting into the general dispersion relation ω2 = C2
Lk

2 for longitudinal waves, we obtain

qL = (k2 − ω2/c2
L)1/2 . (12.55)

Now, the longitudinal displacement field is irrotational (curl-free), so we can write

ξL
x,z = ξL

z,x (12.56)

or

ξL
z =

−iqLξL
x

k
(12.57)

As the transverse component is solenoidal (divergence-free), the expansion of the combined
P-T wave is produced entirely by the P component:

Θ = ∇ · ξL = ik

(
1 − q2

L

k2

)
A . (12.58)

Now turn to the transverse (SV-wave) component. We write

ξT = B expqT z+i(kx−ωt), z ≤ 0 , (12.59)

where (by virtue of the transverse dispersion relation)

qT =

(
k2 − ω

2

c2
T

)1/2

. (12.60)
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As the transverse mode is solenoidal, we obtain

ξT
z =

−ikξT
x

qT
(12.61)

and for the rotation

φy =
1

2
ey · ∇ × ξT = −1

2
qT

(
1 − k2

q2
T

)
B . (12.62)

We must next impose boundary conditions at the surface. Now, as the surface is free,
there will be no force acting upon it, so,

T · ez|z=0 = 0, (12.63)

which is a special case of the general boundary condition (12.49). (Note that we can evaluate
the stress at the unperturbed surface location rather than at the displaced surface as we are
only working to linear order.) The normal stress is

−Tzz = KΘ + 2µ(ξz,z −
1

3
Θ) = 0 , (12.64)

and the tangential stress is
−Txz = 2µ(ξz,x + ξx,z) = 0 . (12.65)

Combining Eqs. (12.58), (12.62), (12.64) and (12.65), we obtain

(k2 + q2
T )2 = 4qLqT k2 . (12.66)

Next we substitute for qL, qT from (12.55) and (12.60) to obtain the dispersion relation

ζ3 − 8ζ2 + 8

(
2 − ν
1 − ν

)
ζ − 8

(1 − ν)
= 0 , (12.67)

where

ζ =

(
ω

CT k

)2

. (12.68)

The dispersion relation (12.67) is a third order polynomial in ω2 with generally just one
positive real root. From Eqs. (12.67) and (12.68), we see that for a Poisson ratio characteristic
of rocks, 0.2 ! ν ! 0.3, the phase speed of a Rayleigh wave is roughly 0.9 times the speed
of a pure shear wave; cf. Fig. 12.8.

Rayleigh waves propagate around the surface of the earth rather than penetrate the
interior. However, our treatment is inadequate because their wavelengths, typically 1–10 km
if generated by an earthquake, are not necessarily small compared with the pressure scale
heights in the outer crust. Our wave equation has to be modified to include these vertical
gradients.

This vertical stratification has an important additional consequence. If, ignoring these
gradients, we attempt to find an orthogonal surface mode just involving SH waves, we find
that we cannot simultaneously satisfy the surface boundary conditions on displacement and
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Fig. 12.8: Solution of the dispersion relation (12.67) for different values of Poisson’s ratio, ν.

stress with a single evanescent wave. We need two modes to do this. However, when we
allow for stratification, the strong refraction allows an SH surface wave to propagate. This
is known as a Love wave. The reason for its practical importance is that seismic waves are
also created by underground nuclear explosions and it is necessary to be able to distinguish
explosion-generated waves from earthquake waves. Now, an earthquake is usually caused
by the transverse slippage of two blocks of crust across a fault line. It is therefore an
efficient generator of shear modes including Love waves. By contrast, explosions involve
radial motions away from the point of explosion and are inefficient emitters of Love waves.
This allows these two sources of seismic disturbance to be distinguished.

12.4.3 Green’s Function for a Homogeneous Half Space

To get insight into the combination of waves generated by a localized source, such as an
explosion or earthquake, it is useful to examine the Green’s function for excitations in a
homogeneous half space. Physicists define the Green’s function Gjk(x, t;x′, t′) to be the
displacement response ξj(x, t) to a unit delta-function force in the ek direction at location x′

and time t′, F = δ(x−x′)δ(t− t′)ek. Geophysicists sometimes find it useful to work, instead,
with the “Heaviside Green’s function,” GH

jk(x, t;x′, t′), which is the displacement response
ξj(x, t) to a unit step-function force (one that turns on to unit strength and remains forever
constant afterwards) at x′ and t′: F = δ(x − x′)H(t − t′)ek. Because δ(t − t′) is the time
derivative of the Heaviside step function H(t − t′), the Heaviside Green’s function is the
time integral of the physicists’ Green’s function. The Heaviside Green’s function has the
advantage that one can easily see, visually, the size of the step functions it contains, by
contrast with the size of the delta functions contained in the physicists’ Green’s function.

It is a rather complicated task to compute the Heaviside Green’s function, and geophysi-
cists have devoted much effort to doing so. We shall not give details of such computations,
but merely show the Green’s function graphically in Fig. 12.9 for an instructive situation:
the displacement produced by a step-function force in a homogeneous half space with the
observer at the surface and the force at two different locations: (a) a point nearly beneath
the observer, and (b) a point close to the surface and some distance away in the x direction.

Several features of this Green’s function deserve note: (i) For the source nearly beneath
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Fig. 12.9: The Heaviside Green’s function (displacement response to a step-function force) in a
homogeneous half space; adapted from Figs. 2 and 4 of Johnson (1974). The observer is at the
surface. The force is applied at a point in the x−z plane, with a direction given by the second index
of GH ; the displacement direction is given by the first index of GH . In (a), the source is nearly
directly beneath the observer so the waves propagate nearly vertically upward; more specifically,
the source is at 10 km depth and 2 km distance along the horizontal x direction. In (b), the
source is close to the surface and the waves propagate nearly horizontally, in the x direction; more
specifically, the source is at 2 km depth and is 10 km distance along the horizontal x direction. The
longitudinal and transverse speeds are cH = 8 km/s and CS = 4.62 km/s, and the density is 3.30
g/cm3. For a force of 1 dyne, a division on the vertical scale is 10−19 cm. The moments of arrival
of the P-wave, S-wave and Rayleigh wave from the moment of force turnon are indicated on the
horizontal axis.
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Fig. 12.10: Surface displacements associated with three simple classes of free oscillation. a)Radial
modes. b) l=2 spheroidal mode. c) Torsional mode.

the observer [graphs (a)], there is no sign of any Rayleigh wave, whereas for the source close
to the surface, the Rayleigh wave is the strongest feature in the x and z (longitudinal and
vertical) displacements but is absent from the y (transverse) displacement. (ii) The y (trans-
verse) component of force produces a transverse displacement that is strongly concentrated
in the S-wave. (iii) The x and z (longitudinal and vertical) components of force produce x
and z displacements that include P-waves, S-waves, and (for the source near the surface)
Rayleigh waves. (iv) The gradually changing displacements that occur between the arrival
of the turn-on P-wave and turn-on S-wave are due to P-waves that hit the surface some
distance from the observer, and from there diffract to the observer as a mixture of P- and
S-waves, and similarly for gradual changes of displacement after the turn-on S-wave.

The complexity of seismic waves arises in part from the richness of features in this
homogeneous-half-space Green’s function, in part from the influences of the earth’s inho-
mogeneities, and in part from the complexity of an earthquake’s or explosion’s forces.

12.4.4 Free Oscillations of Solid Bodies

In computing the dispersion relations for body (P- and S-wave) and surface (Rayleigh-wave)
modes, we have assumed that the wavelength is small compared with the earth’s radius and
therefore can have a continuous frequency spectrum. However, it is also possible to excite
global wave modes in which the whole earth “rings”. If we regard the earth as spherically
symmetric, then we can isolate three fundamental types of oscillation, radial, spheroidal and
torsional.

If we introduce spherical polar coordinates for the displacement, then it is possible to
separate and solve the equations of elastodynamics to find the normal modes just like solving
the Schrodinger equation for a central potential. Each of the three types of modes has a
displacement vector ξ characterized by its own type of spherical harmonic.

The spheroidal modes have radial displacements proportional to Y m
l (θ,φ)er (where θ, φ

are spherical coordinates, Y m
l is the scalar spherical harmonic of order l and m, and er is

the unit radial vector; and they have nonradial components proportional to ∇Y m
l ). These

modes are called “spheroidal” because (when one ignores the tiny nonsphericity of the earth
and ignores Coriolis and centrifugal forces due to the earth’s rotation), their eigenfrequencies
are independent of m, and thus can be studied by specializing to m = 0, in which case the
displacements become

ξr ∝ Pl(cos θ) , ξθ ∝ sin θP ′
l (cos θ). (12.69)

These displacements deform the earth in a spheroidal manner for the special case l = 2. [In
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Eq. (12.69) Pl is the Legendre polynomial and P ′
l is the derivative of Pl with respect to its

argument.] The radial modes are the special case l = 0 of these spheroidal modes. It is often
mistakenly asserted that there are no l = 1 modes because of conservation of momentum. In
fact, l = 1 modes do exist: for example, the central regions of the earth can move up, while
the outer regions move down. The l = 2 spheroidal mode has a period of 53 min. and can
ring for about 1000 periods. (We say that its quality factor is Q ∼ 1000.) This is typical for
solid planets.

Toroidal modes have vanishing radial displacements, and their nonradial displacements
are proportional to the vector spherical harmonic er × ∇Y m

l . As for spheroidal modes,
spherical symmetry of the unperturbed earth guarantees that the eigenfrequencies will be
independent of the azimuthal quantum number m, so m = 0 is representative. For m = 0
the only nonzero component of the vector spherical harmonic er×∇Y m

l is in the φ direction,
and it gives

ξφ ∝ sin θP ′
l (cos θ) . (12.70)

In these modes alternate zones of different latitude oscillate in opposite directions (clockwise
or counterclockwise at some chosen moment of time), in such a way as to conserve total
angular momentum.

When one writes the displacement vector ξ for a general vibration of the earth as a
sum over these various types of normal modes, and inserts that sum into the wave equation
(12.4b) (augmented, for greater realism, by gravitational forces), spherical symmetry of the
unperturbed earth guarantees that the various modes will separate from each other, and
for each mode the wave equation will give a radial wave equation analogous to that for a
hydrogen atom in quantum mechanics. The boundary condition T · er = 0 at the earth’s
surface constrains the solutions of the radial wave equation, for each mode, to be a discrete
set, which one can label by the number n of radial nodes that they possess (just as for the
hydrogen atom). The frequencies of the modes increase with both n and l.

For small values of the quantum numbers, the modes are quite sensitive to the model
assumed for the earth’s structure. For example, they are sensitive to whether one correctly
includes the gravitational restoring force in the wave equation. However, for large l and n,
the spheroidal and toroidal modes become standing combinations of P waves, SV waves, SH
waves, Rayleigh and Love waves, and therefore they are rather insensitive to one’s ignoring
the effects of gravity.

12.4.5 Seismic tomography

Observations of all of these types of seismic waves clearly code much information about the
earth’s structure and inverting the measurements to infer this structure has become a highly
sophisticated and numerically intensive branch of geophysics. The travel times of the P and
S body waves can be measured at various points over the earth’s surface and essentially allow
CL and CT and hence K/ρ and µ/ρ to be determined as functions of radius inside the earth.
Travel times are ! 1 hour. Using this type of analysis, seismologists can infer the presence
of hot and cold regions within the mantle and then show how the rocks are circulating under
the crust.
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It is also possible to combine the observed travel times with the the earth’s equation of
elastostic equilibrium

dP

dr
=

K

ρ

dρ

dr
= −g(r)ρ , (12.71)

where the local gravity is given by

g =
4πG

r2

∫ r

0

r′2ρ(r′)dr′ , (12.72)

to determine the distributions of density, pressure and elastic constants. Measurements
of Rayleigh and Love waves can be used to probe the surface layers. The results of this
procedure are then input to obtain free oscillation frequencies which compare well with the
observations. The damping rates for the free oscillations furnish information on the interior
viscosity.

****************************

EXERCISES

Exercise 12.9 Derivation: Junction Condition at a Discontinuity
Derive the junction condition [Tjz] = 0 at a horizontal discontinuity between two media by
the same method as one uses in electrodynamics to show that the normal component of the
magnetic field must be continuous: Integrate the equation of motion ρdv/dt = −∇ ·T over
the volume of an infinitesimally thin “pill box” centered on the boundary, and convert the
volume integral to a surface integral via Gauss’s theorem.

Exercise 12.10 Example: Reflection and Transmission of Normal, Longitudinal Waves at
a Boundary
Consider a longitudinal elastic wave incident normally on the boundary between two media,
labeled 1,2. By matching the displacement and the normal component of stress at the
boundary, show that the ratio of the transmitted wave amplitude to the incident amplitude
is given by

t =
2Z1

Z1 + Z2

where Z1,2 = [ρ1,2(K1,2 +4µ1,2/3)]1/2 is known as the acoustic impedance. (The impedance is
independent of frequency and just a characteristic of the material.) Likewise, evaluate the
amplitude reflection coefficent and verify that wave energy flux is conserved.

Exercise 12.11 Example: Earthquakes
The magnitude M of an earthquake is a quantitative measure of the strength of the seismic
waves it creates. Roughly speaking, the elastic wave energy release can be inferred semi-
empirically from the magnitude using the formula

E = 105.2+1.44MJ
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Fig. 12.11: Earthquake: The region of the fault that slips (solid rectangle), and the volume over
which the strain is relieved, on one side of the fault (dashed region).

The largest earthquakes have magnitude ∼ 8.5.
One type of earthquake is caused by slippage along a fault deep in the crust. Suppose that
most of the seismic power in an earthquake with M ∼ 8.5 is emitted at frequencies ∼ 1Hz
and that the quake lasts for a time T ∼ 100s. If V is an average wave speed, then it is
believed that the stress is relieved over an area of fault of length ∼ V T and a depth of order
one wavelength. By comparing the stored elastic energy with the measured energy release
make an estimate of the minimum strain prior to the earthquake. Is this reasonable? Hence
estimate the typical displacement during the earthquake in the vicinity of the fault.
Make an order of magnitude estimate of the acceleration measurable by a seismometer in
the next state and in the next continent. (Ignore the effects of density stratification, which
are actually quite significant.)

Exercise 12.12 Example: Normal Modes of an Elastic, Homogeneous Sphere
EXERCISE NOT YET WRITTEN.

****************************

12.5 The Relationship of Classical Waves to Quantum
Mechanical Excitations.

In the previous chapter, we explored the limits of the continuum approximation and showed
how we must acknowledge that solids are composed of atoms in order to account for the
magnitude of the elastic constants and to explain why most solids yield under comparatively
small strain. A quite different demonstration of the limits of the continuum approximation
is provided by the normal modes of vibration of a finite sized solid body—e.g., the sphere
treated in Sec. 12.4.4 and Ex. 12.12.

For any such body, one can solve the wave equation (12.4b) [subject to the vanishing-
surface-force boundary condition T ·n = 0, Eq. (11.21)] to find the body’s normal modes, as
we did in Ex. 12.12 for the sphere. We shall label the normal modes by a single index N , and
shall denote the eigenfrequency of mode N by ωN and its (typically complex) eigenfunction
by ξN . Then any general, small-amplitude disturbance in the body can be decomposed into
a linear superposition of these normal modes:

ξ(x, t) = 1
∑

N

aN(t)ξN(x) , aN = AN exp(−iωN t) . (12.73)
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Here 1 means to take the real part, aN is the complex generalized coordinate of mode N ,
and AN is its complex amplitude. It is convenient to normalize the eigenfunctions so that

∫
ρ|ξN |2dV = M , (12.74)

where M is the mass of the body; AN then measures the mean physical displacement in
mode N .

Classical electromagnetic waves in vacuo are described by linear Maxwell equations, and,
after they have been excited, will essentially propagate forever. This is not so for elastic
waves, where the linear wave equation is only an approximation. Nonlinearities, and most
especially impurities and defects in the homogeneous structure of the body’s material, will
cause the different modes to interact weakly so that their complex amplitudes AN change
slowly with time according to a damped simple harmonic oscillator differential equation of
the form

äN + (2/τN)ȧN + ω2
NaN = F ′

N/M . (12.75)

Here the second term on the left hand side is a damping term that will cause the mode to
decay as long as τN > 0, and F ′

N is a fluctuating or stochastic force on mode N caused by
weak coupling to the other modes. Equation (12.75) is the Langevin equation that we studied
in Chap. 5, and the strength and spectrum of the fluctuating force F ′

N is determined by the
fluctuation-dissipation theorem, Eq. (5.111). If the modes are thermalized at temperature
T , then the fluctuating forces maintain an average energy of kT in each one.

Now, what happens quantum mechanically? The ions and electrons in an elastic solid
interact so strongly that it is very difficult to analyze them directly. A quantum mechanical
treatment is much easier if one makes a canonical transformation from the coordinates and
momenta of the individual ions or atoms to new, generalized coordinates x̂N and momenta
p̂N that represent weakly interacting normal modes. These coordinates and momenta are
Hermitian operators, and they are related to the quantum mechanical complex generalized
coordinate ân by

x̂N =
1

2
(âN + â†

N), (12.76a)

p̂N =
MωN

2i
(âN − â†

N ), (12.76b)

where the dagger denotes the Hermitean adjoint. We can transform back to obtain an
expression for the displacement of the i’th ion

x̂i =
1

2
ΣN [âNξN(xi) + â†

Nξ
∗
N(xi)] (12.77)

[a quantum version of Eq. (12.73)].
The Hamiltonian can be written in terms of these coordinates as

Ĥ = ΣN

(
p̂2

N

2M
+

1

2
Mω2

N x̂2
N

)
+ Ĥint , (12.78)
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where the first term is a sum of simple harmonic oscillator Hamiltonians for individual
modes and Ĥint is the perturbative interaction Hamiltonian which takes the place of the
combined damping and stochastic forcing terms in the classical Langevin equation (12.75).
When the various modes are thermalized, the mean energy in mode N takes on the standard
Bose-Einstein form

ĒN = !ωN

[
1

2
+

1

exp(!ωN/kT ) − 1

]
(12.79)

[Eq. (4.27b) with vanishing chemical potential and augmented by a “zero-point energy” of
1
2!ω], which reduces to kT in the classical limit ! → 0.

As the unperturbed Hamiltonian for each mode is identical to that for a particle in a
harmonic oscillator potential well, it is sensible to think of each wave mode in a manner
analogous to such a particle-in-well. Just as the particle-in-well can reside in any one of a
series of discrete energy levels lying above the “zero point” energy of !ω/2, and separated
by !ω, so each wave mode with frequency ωN must have an energy (n + 1/2)!ωN , where n
is an integer. The operator which causes the energy of the mode to decrease by !ωN is the
annihilation operator for mode n

α̂N =

(
MωN

!

)1/2

âN , (12.80)

and the operator which causes an increase in the energy by !ωN is its Hermitian conjugate,
the creation operator α̂†

N . In the case of wave modes, it is useful to think of each increase or
decrease in the energy as the creation or annihilation of an individual quantum or “particle”
of energy, so that when the energy in mode N is (n+1/2)!ωN , there are n quanta (particles)
present. These particles are called phonons. Phonons are not conserved, and because they
can co-exist in the same state (the same mode), they are bosons. They have individual
energies and momenta which must be conserved in their interactions with each other and
with other types of particles, e.g. electrons.

The important question is now, given an elastic solid at finite temperature, do we think
of its thermal agitation as a superposition of classical wave modes or do we regard it as a
gas of quanta? The answer depends upon what we want to do. From a purely fundamen-
tal viewpoint, the quantum mechanical description takes precedence. However, for many
problems where the number of phonons per mode nN ∼ kT/!ωN is large compared to one,
the classical description is amply adequate and much easier to handle. We do not need a
quantum treatment when computing the normal modes of a vibrating building excited by an
earthquake or when trying to understand how to improve the sound quality of a violin. Here
the difficulty is in accommodating the boundary conditions so as to determine the normal
modes. All this was expected. What comes as more of a surprise is that often, for purely
classical problems, where ! is quantitatively irrelevant, the fastest way to procede formally
is to follow the quantum route and then take the limit ! → 0. We shall see this graphically
demonstrated when we discuss nonlinear plasma physics in Chap. 22.
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Box 12.3
Important Concepts in Chapter 12

• Elastodynamic conservation of mass and momentum, Sec. 12.2.1

• Methods of deriving and solving wave equations in continuum mechanics, Box 12.2

• Decomposition of elastodynamic waves into longitudinal and transverse compo-
nents, Sec. 12.2.2 and Ex. 12.1

• Dispersion relation and propagation speeds for longitudinal and transverse waves,
Secs. 12.2.3 and 12.2.4

• Energy density and energy flux of elastodynamic waves, Sec. 12.2.5

• Waves on rods: compression waves, torsion waves, string waves, flexural waves,
Secs. 12.3.1 – 12.3.4

• Edge waves, and Rayleigh waves as an example, Sec. 12.4.2

• Wave mixing in reflections off boundaries, Sec. 12.4.1

– Conservation of tangential phase speed and its implications for directions of
wave propagation, Sec. 12.4.1

– Boundary conditions on stress and displacement, Sec. 12.4.1

• Greens functions for elastodynamic waves; Heaviside vs. physicists’ Greens func-
tions Sec. 12.4.3

• Elastodynamic free oscillations (normal modes), Secs. 12.4.4 and 12.5

• Relation of classical waves to quantum mechanical excitations, Sec. 12.5

• Onset of instability and zero-frequency modes related to bifurcation of equilibria,
Sec. 12.3.5

• Free energy for a system on which a force is acting, and its use to diagnose stability,
Ex. 12.8

Bibliographic Note

For a discussion of textbooks on elasticity theory, including both elastostatics and elastody-
namics, see the Bibliographic note at the end of Chap. 10.
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