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Chapter 15

Turbulence

Version 1115.1.K, 6 February 2012
Please send comments, suggestions, and errata via email to kip@caltech.edu, or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 15.1
Reader’s Guide

• This chapter relies heavily on Chaps. 13 and 14.

• The remaining chapters on fluid mechanics and magnetohydrodynamics (Chaps.
16–18) do not rely significantly on this chapter, nor do any of the remaining chapters
in this book.

15.1 Overview

In Sec. 13.7.6, we derived the Poiseuille formula for the flow of a viscous fluid down a pipe
by assuming that the flow is laminar, i.e. that it has a velocity parallel to the pipe wall. We
showed how balancing the stress across a cylindrical surface led to a parabolic velocity profile
and a rate of flow proportional to the fourth power of the pipe diameter, d. We also defined
the Reynolds number; for pipe flow it is Red ≡ v̄d/ν, where v̄ is the mean speed in the pipe.
Now, it turns out experimentally that the pipe flow only remains laminar up to a critical
Reynolds number that has a value in the range ∼ 103 − 105 depending on the smoothness of
the pipe’s entrance and roughness of its walls. If the pressure gradient is increased further
(and thence the mean speed v̄ and Reynolds number Red are increased), then the velocity
field in the pipe becomes irregular both temporally and spatially, a condition known as
turbulence.

Turbulence is common in high Reynolds number flows. Much of our experience of flu-
ids involves air or water for which the kinematic viscosities are ∼ 10−5 and 10−6 m2 s−1

respectively. For a typical everyday flow with a characteristic speed of v ∼ 10 m s−1 and a
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characteristic length of d ∼ 1m, the Reynolds number is huge: Red = vd/ν ∼ 106 − 107. It
is therefore not surprising that we see turbulent flows all around us. Smoke in a smokestack,
a cumulus cloud and the wake of a ship are three examples.

In Sec. 15.2 we shall illustrate the phenomenology of the transition to turbulence as Red

increases using a particularly simple example, the flow of a fluid past a circular cylinder
oriented perpendicular to the line of sight. We shall see how the flow pattern is dictated by
the Reynolds number and how the velocity changes from steady creeping flow at low Red to
fully-developed turbulence at high Red.

What is turbulence? Fluid dynamicists can certainly recognize it but they have a hard
time defining it precisely,1 and an even harder time describing it quantitatively. So typically
for a definition they rely on empirical, qualitative descriptions of its physical properties (Sec.
15.3). Closely related to this description is the crucial role of vorticity in driving turbulent
energy from large scales to small (Sec. 15.3.1).

At first glance, a quantitative description of turbulence appears straightforward. De-
compose the velocity field into Fourier components just like the electromagnetic field when
analyzing electromagnetic radiation. Then recognize that the equations of fluid dynamics
are nonlinear, so there will be coupling between different modes (akin to wave-wave cou-
pling between optical modes in a nonlinear crystal, discussed in Chap. 10). Analyze that
coupling perturbatively. The resulting weak-turbulence formalism (some of which we sketch
in Secs. 15.4.1 and 15.4.2, and Ex. 15.4) is useful when the turbulence is not too strong.2

However, most turbulent flows come under the heading of fully developed or strong tur-
bulence, and cannot be well described in the weak-turbulence manner. Part of the problem
is that the (v · ∇)v term in the Navier-Stokes equation is a strong nonlinearity, not a weak
coupling between linear modes. As a consequence, eddies of size " persist for typically no
more than one turnover timescale ∼ "/v before they are broken up, and so do not behave
like weakly coupled normal modes.

In the absence of a decent quantitative theory of strong turbulence, fluid dynamicists
sometimes simply push the weak-turbulence formalism into the strong-turbulence regime,
and use it there to gain qualitative or semi-quantitative insights (e.g. Fig. 15.7 and associ-
ated discussion in the text). A simple alternative (which we will explore in Sec. 15.4.3 in
the context of wakes and jets, and in Sec. 15.5 for turbulent boundary layers) is intuitive,
qualitative and semiquantitative approaches to the physical description of turbulence. We
emphasize, the adjective physical, because our goal is not just to produce empirical descrip-
tions of the consequences of turbulence, but rather to comprehend the underlying physical
character of turbulence, going beyond purely empirical rules on one hand and uninstructive
mathematical expansions on the other. This means that the reader must be prepared to
settle for order-of-magnitude scaling relations based on comparing the relative magnitudes
of individual terms in the governing fluid dynamical equations. At first, this will seem quite
unsatisfactory. However, much contemporary physics has to proceed with this methodology.
It is simply too hard, in turbulence and some other phenomena, to discover elegant mathe-
matical counterparts to the Kepler problem or the solution of the Schrödinger equation for

1The analogy to Justice Potter Stewart’s definition of pornography should be resisted.
2Another weak-turbulence formalism which is developed along similar lines is the quasi-linear theory of

nonlinear plasma interactions, which we shall develop in Chap. 22.
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the hydrogen atom.
One triumph of this approach (Sec. 15.4.4) is the Kolmogorov analysis of the shape of

the time-averaged turbulent energy spectrum (the turbulent energy per unit wave number,
as a function of wave number), in a stationary turbulent flow. If the turbulence extends over
several octaves of wave number (as it almost always does), then scaling arguments dictate
with confidence the spectrum’s shape: the famous Kolmogorov spectrum for turbulence. This
spectrum has been verified experimentally under many different conditions.

In the context of wakes and jets (Sec. 15.4.3), this simple, physical, approach to turbulence
will elucidate some remarkable phenomena: voracious entrainment of non-turbulent ambient
fluid into turbulent wakes and jets; the crucial role that large eddies play in this entrainment;
the the resulting highly irregular boundaries of wakes and jets and resulting intermittency
of their flow; and the Coanda effect, in which voracious entrainment sucks turbulent wakes
and jets toward solid walls and makes them stick.

In the context of turbulent boundary layers, our physical approach will reveal semi-
quantitatively the structures of such boundary layers (Sec. 15.5.1), and it will explain why
turbulent boundary layers generally exert more shear stress on a surface than laminar bound-
ary layers, but nevertheless usually produce less total drag (Sec. 15.5.2): it is because they
are less prone to separation from the surface when subjected to an adverse pressure gradient
(a variant of the Coanda effect). For this reason, turbulence is often induced artificially in
boundary layers, e.g. those going over the top of an airplane wing, or those on one face of
a ball. In Sec. 15.5.3 we shall briefly discuss how turbulence can arise through instability
of a laminar boundary layer; and in Sec. 15.5.4 we shall examine some applications to balls
moving through the air (golf balls, cricket balls, baseballs, ...).

Whether or not a flow becomes turbulent can have a major influence on how fast chemical
reactions occur in liquids and gases; this is another motivation for artificially inducing or
surpressing turbulence.

One can gain additional insight into turbulence by a technique that is often useful when
struggling to understand complex physical phenomena: Replace the system being studied by
a highly idealized model system that is much simpler than the original one, both conceptually
and mathematically, but that retains at least one central feature of the original system. Then
analyze the model system completely, with the hope that the quantitative insight so gained
will be useful in understanding the original problem. This approach has been central, e.g., to
research in quantum cosmology, where one tries to understand how the initial conditions for
the expansion of the universe were set, and to do so one works with model universes that have
only a few degrees of freedom. Similarly, since the 1970s new insights into turbulence have
come from studying idealized dynamical systems that have very small numbers of degrees
of freedom, but have the same kinds of nonlinearities as produce turbulence in fluids. We
shall examine several such low-dimensional dynamical systems and the insights they give in
Sec. 15.6.

The most useful of those insights deal with the onset of weak turbulence, and the fact
that it seems to have much in common with the onset of chaos (irregular and unpredictable
dynamical behavior) in a wide variety of other dynamical systems — e.g., coupled pendula,
electric circuits, and planets, asteroids, satellites and rings in the solar system. A great
discovery of modern classical physics/mathematics has been that there exist organizational
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principles that govern the behavior of these seemingly quite different chaotic physical sys-
tems. In Sec. 15.6 we shall discuss some very simple models for the onset of chaos and shall
outline the relationship of those models to the behavior of turbulent fluids.

Despite these elegant modern insights, those features of turbulence that are important in
practical situations, e.g. in aeronautical or marine engineering, are still described today only
qualitatively and empirically. This is an indication of how far we are from a satisfactory,
physical theory of turbulence.

In parallel with studying this chapter, in order to build up physical intuition the reader
is urged to watch movies and study photographs that deal with turbulence; see Box 15.2.

Box 15.2
Movies and Photographs on Turbulence

We strongly recommend that the reader view the following movies that deal with
turbulence:

• Turbulence, by Robert W. Stewart (1968), film in the series by the National Com-
mittee for Fluid Mechanics Films, available in 2012 at http://web.mit.edu/hml/
ncfmf.html .

• Laminar and Turbulent Flow, by Hunter Rouse (ca 1963), available
in 2012 at http://www.iihr.uiowa.edu/research/publications-and-media/
films-by-hunter-rouse/ .

Also useful are photographs of turbulence, e.g. in Van Dyke (1982).

15.2 The Transition to Turbulence - Flow Past a Cylin-
der

We shall illustrate qualitatively how a flow (and especially its transition to turbulence)
depends on its Reynolds number by considering a specific problem, the flow of a uniformly
moving fluid past a cylinder oriented transverse to the line of sight (Fig. 15.1). We assume
that the flow velocity is very small compared with the speed of sound, so the effects of
compressibility can be ignored. Let the cylinder diameter be d and choose this as the
characteristic length in the problem. Similarly, let the velocity far upstream be V and
choose this as the characteristic velocity, so the Reynolds number is

Red =
V d

ν
. (15.1)

We assume, initially, that the flow is stationary (no turbulence) as well as incompress-
ible, and the effects of gravity are negligible. Then the equations governing the flow are
incompressibility,

∇ · v = 0 , (15.2a)
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Fig. 15.1: Schematic depiction of flow past a cylinder for steadily increasing values of the Reynolds
number Red = V d/ν as labeled. There are many photographs, drawings, and simulations of this
flow on the web, perhaps best found by Googling “von Karman vortex street”.

and the time-independent Navier-Stokes equation (13.65) with ∂v/∂t = 0:

v · ∇v = −∇P

ρ
+ ν∇2v . (15.2b)

These four equations (one incompressibility, three components of Navier-Stokes) can be
solved for the pressure and the three components of velocity subject to the velocity vanishing
on the surface of the cylinder and becoming uniform far upstream.

From the parameters of the flow (the cylinder’s diameter d, the fluid’s incoming velocity
V and its density ρ and kinematic viscosity ν) we can construct only one dimensionless
number, the Reynolds number Red = V d/ν. (If the flow speed were high enough that
incompressibility fails, then the sound speed cs would also be a relevant parameter and there
would be a second dimensionless number, the Mach number M = V/cs; Chap. 17). With Red

the only dimensionless number, we are guaranteed on dimensional grounds that the solution
to the flow equations can be expressed as

v/V = U(x/d, Red) . (15.3)
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Here U is a dimensionless function of the dimensionless x/d, and it can take wildly different
forms depending on the value of the Reynolds number Red; cf. Fig. 15.1, which we shall
discuss below.

The functional form (15.3) of v has important implications. If we compute the flow
for specific values of the upstream velocity V , the cylinder’s diameter d and the kinematic
viscosity ν and then double V and d and quadruple ν so Red is unchanged, then the new
solution will be similar to the original solution. It can be produced from the original by
rescaling the flow velocity to the new upstream velocity and the distance to the new cylinder
diameter. [For this reason, Eq. (15.3) is sometimes called a scaling relation.] On the other
hand, if we had only doubled the kinematic viscosity, the Reynolds number would have also
doubled and we could be dealing with a qualitatively different flow.

In discussing the flow past the cylinder, a useful concept is the stagnation pressure in
the upstream flow. This is the pressure the fluid would have, according to the Bernoulli
Principle v2/2 + u + P/ρ = const, if it were brought to rest at the leading edge of the
cylinder without significant action of viscosity. Ignoring the effects of compressibility (so u
and ρ are constant), this stagnation pressure is

Pstag = P0 +
1

2
ρV 2 ; , (15.4)

where P0 is the upstream pressure. Suppose that this stagnation pressure were to act over
the whole front face of the cylinder, while the pressure P0 acted on the downstream face.
The net force on the cylinder per unit length, FD, would then be 1

2ρV
2d. This is a first rough

estimate for the drag force. It is conventional to define a drag coefficient as the ratio of the
actual drag force per unit length to this rough estimate:

CD ≡ FD
1
2ρV

2d
. (15.5)

This drag coefficient, being a dimensionless feature of the flow (15.3), can depend only
on the dimensionless Reynolds number Red: CD = CD(Red); see Fig. 15.2. Similarly for flow

0.1
0.1

1 10 100 103

1

10

100

104 105 106

Boundary layerbecomesturbulent

Red

CD

CD ~ 6/Red

Fig. 15.2: Drag coefficient CD for flow past a cylinder as a function of Reynolds number
Red = V d/ν. This graph, adapted from Fig. 3.14 of Tritton (1977), is based on experimental
measurements.
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past a body with cross sectional area A perpendicular to the flow and with any other shape,
the drag coefficient

CD ≡ Fdrag
1
2 ρV 2A

(15.6)

will be a function only of Re. However, the specific functional form of CD(Re) will depend
on the body’s shape.

Now, turn to the details of the flow around a cylinder as described in Figs. 15.1 and
15.2. At low Reynolds number, Red % 1, there is creeping flow (Fig. 15.1a) just like that
analyzed in detail for a spherical obstacle in Sec. 14.3.2. As you might have surmised by
tackling Ex. 14.6, the details of low-Reynolds-number flow past a long object such as a
cylinder are subtly different from those of flow past a short one such as a sphere. This is
because, for a cylinder, inertial forces become comparable with viscous and pressure forces
at distances ∼ d/Red where the flow is still significantly perturbed from uniform motion,
while for short objects inertial forces become significant only at much larger radii, where
the flow is little perturbed by the object’s presence. Despite this, the flow streamlines
around a cylinder at Red % 1 are similar to those for a sphere and are approximately
symmetric between upstream and downstream. The fluid is decelerated by viscous stresses
as it moves past the cylinder along these streamlines and the pressure is higher on the
cylinder’s front face than on its back. Both effects contribute to the net drag force acting on
the cylinder. The momentum removed from the flow is added to the cylinder. At cylindrical
radius % % d/Red the viscous stress dominates over the fluid’s inertial stress, and the fluid
momentum therefore is being transferred largely to the cylinder, at a rate per unit area
∼ ρV 2, while at % ! d/Red the viscous and inertial stresses are comparable and balance
each other, and the flow’s momentum is not being transferred substantially to the cylinder.
This implies that the effective cross sectional width over which the cylinder extracts the
fluid momentum is ∼ d/Red, and correspondingly the net drag force per unit length is
F ∼ ρV 2d/Red, which implies [cf. Eq. (15.5)] a drag coefficient ∼ 1/Red at low Reynolds
numbers Red % 1. A more careful analysis gives CD ∼ 6/Red, as shown experimentally in
Fig. 15.2.

As the Reynolds number is increased to ∼ 1 [Fig. 15.1b], the effective cross section
gets reduced to roughly the cylinder’s geometrical width d, and correspondingly the drag
coefficient decreases to CD ∼ 1. At this Reynolds number, Red ∼ 1, the velocity field begins
to appear asymmetric from front to back.

With a further increase in Red, a laminar boundary layer of thickness δ ∼ d/
√

Red starts
to form. The viscous force per unit length due to this boundary layer is F ∼ ρV 2d/

√
Red

[Eqs. (14.46)–(14.48) divided by w, with " ∼ d and vo = V ]. It might therefore be thought
that the drag would continue to decrease as CD ∼ 1/

√
Red, when Red increases substantially

above unity making the boundary layer thin and making the external flow start to resemble
potential flow. However, this does not happen. Instead, at Red ∼ 5, the flow begins
to separate from the back side of the cylinder and is there replaced by two retrograde
eddies (Fig. 15.1c). As described in Sec. 14.4.3, this separation occurs because an adverse
pressure gradient (v · ∇)P > 0 develops outside the boundary layer, near the cylinder’s
downstream face, and causes the separated boundary layer to be replaced by these two
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counter-rotating eddies. The pressure in these eddies, and thus also on the cylinder’s back
face, is of order the flow’s incoming pressure P0 and is significantly less than the stagnation
pressure Pstag = P0 + 1

2ρV
2 at the cylinder’s front face, so the drag coefficient stabilizes at

CD ∼ 1.
As the Reynolds number increases above Red ∼ 5, the size of the two eddies increases

until, at Red ∼ 100, the eddies are shed dynamically, and the flow becomes non-stationary.
The eddies tend to be shed alternately in time, first one and then the other, producing
a beautiful pattern of alternating vortices downstream known as a Karman vortex street
(Fig. 15.1d).

When Red ∼ 1000, the downstream vortices are no longer visible and the wake behind
the cylinder contains a velocity field irregular on all scales (Fig. 15.1e). This downstream
flow has become turbulent. Finally, at Red ∼ 3 × 105, the boundary layer, which has been
laminar up to this point, itself becomes turbulent (Fig. 15.1f), reducing noticeably the drag
coefficient (Fig. 15.2). We shall explore the cause of this reduction below. [The physically
relevant Reynolds number for onset of turbulence in the boundary layer is that computed
not from the cylinder diameter d, Red = V d/ν, but rather from the boundary layer thickness

δ ∼ d/Re1/2
d :

Reδ =
V δ

ν
∼ V dRe−1/2

d

ν
=

√
Red . (15.7)

The onset of boundary-layer turbulence is at Reδ ∼
√

3 × 105 ∼ 500, about the same as the
Red ∼ 1000 for onset of turbulence in the wake.]

An important feature of this changing flow pattern is the fact that at Red % 1000
(Figs. 15.1a–d), before any turbulence sets in, the flow (whether steady or dynamical) is
translation symmetric; i.e., it is independent of distance z down the cylinder; i.e., it is two-
dimensional. This is true even of the Karman vortex street. By contrast, the turbulent
velocity field at Red ! 1000 is fully three-dimensional. At these large Reynolds numbers,
small, non-translation-symmetric perturbations of the translation-symmetric flow grow into
vigorous, three-dimensional turbulence. This is a manifestation of the fact (which we shall
explore below) that two-dimensional flows cannot exhibit true turbulence. True turbulence
requires chaotic motions in all three dimensions.

The most important feature of this family of flows, a feature that is characteristic of most
such families, is that there is a critical Reynolds number for the onset of turbulence. That
critical number can range from ∼ 30 to ∼ 105, depending on the geometry of the flow and
on precisely what length and speed are used to define the Reynolds number.

****************************

EXERCISES

Exercise 15.1 ***Example: The 2-Dimensional Laminar Wake Behind a Cylinder
In Ex. 15.5 below, we shall explore the structure of the wake behind the cylinder when
the Reynolds number is high enough that the flow is turbulent. For comparison, we here
compute the wake’s structure at lower Reynolds numbers, when the wake is laminar. This
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Fig. 15.3: The two-dimensional laminar wake behind an infinite cylinder. ambient fluid.

computation is instructive: it illustrates using order of magnitude estimates first, followed
by detailed calculations, it illustrates the power of momentum conservation, and it is our
first encounter with the velocity field in a wake.

(a) Begin with an order of magnitude estimate. Characterize the wake by its width w(x)
at distance x downstream from the cylinder, and by the reduction in the flow velocity
(the “velocity deficit”), uo(x) ≡ V − vx(x), at the center of the wake; see Fig. 15.3.
From diffusion of vorticity show that w ( 2

√
νx/V .

(b) Explain why momentum conservation says the force per unit length on the cylinder,
FD = CD

1
2ρV

2d [Eq. (15.6)], is equal to the transverse integral
∫

Txxdy of the fluid’s
kinetic stress Txx = ρvxvx before the fluid reaches the sphere, minus that integral at
distance x after the sphere. Use this to show that the fractional velocity deficit at the
center of the wake is uo/V ( CDd/w ( Cd

√
d Red/16x.

(c) For a more accurate description of the flow, solve the Navier Stokes equation to obtain
the profile of the velocity deficit, u(x, y) ≡ V − vx(x, y). [Hint: the Navier Stokes
should reduce to the one dimensional diffusion equation, which we have met several
times previously in this book.] Your answer should be

u = uoe
−(2y/w)2 , where w = 4

(νx
V

)1/2
and

uo

V
= CD

(
d Red

16πx

)1/2

(15.8)

are more accurate values of the wake’s width and its central velocity deficit.

Exercise 15.2 Problem: The 3-dimensional Laminar Wake behind a Sphere

Repeat Ex. 15.1 for the 3-dimensional laminar wake behind a sphere.
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Fig. 15.4: Two-dimensional laminar jet. As the jet widens, it entrains ambient fluid.

Exercise 15.3 Example: Structure of a 2-Dimensional Laminar Jet, and Entrainment
Consider a narrow, two-dimensional, incompressible (i.e. subsonic) jet emerging from a two-
dimensional nozzle into ambient fluid of the same composition and pressure, at rest. (By
two-dimensional we mean that the nozzle and jet are translation symmetric in the third
dimension.) Let the Reynolds number be low enough for the flow to be laminar; we shall
study the turbulent regime in Ex. 15.6 below. We want to understand how rapidly this
laminar jet spreads.

(a) Show that the pressure forces far downstream from the nozzle are likely to be much
smaller than the viscous forces and can therefore be ignored.

(b) Let the jet’s thrust per unit length (i.e. the momentum per unit time per unit length
flowing through the nozzle) be F . Introduce cartesian coordinates x, y, with x parallel
to and y perpendicular to the jet (cf. Fig. 15.4). As in Ex. 15.1, use vorticity diffusion
(or the Navier Stokes equation) and momentum conservation to estimate the speed vx

of the jet and its width w as functions of distance x downstream.

(c) Use these scalings to modify the self-similarity analysis of the Navier Stokes equation,
that we used for the laminar boundary layer in Sec. 14.4, and thereby obtain the
following approximate solution for the jet’s velocity profile:

vx =

(
3F2

32ρ2νx

)1/3

sech2

([
F

48ρν2x2

]1/3

y

)

. (15.9)

(d) Equation (15.9) shows that the jet width w increases downstream as x2/3. As the jet
widens, it scoops up (entrains) ambient fluid as depicted in Fig. 15.4. This entrainment
actually involves pulling fluid inward in a manner described by the y component of
velocity, vy. Solve the incompressiblity equation ∇ · v = 0 to obtain the following
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expression for vy:

vy = − 1

3x

(
3F2

32ρ2νx

)1/3

(15.10)

×
{(

48ρν2x2

F

)1/3

tanh

([
F

48ρν2x2

]1/3

y

)

− 2y sech2

([
F

48ρν2x2

]1/3

y

)}

( −
(

1

6

Fν

ρx2

)1/3

sign(y) at |y| ) w(x) =

(
48ρν2x2

F

)1/3

.

Thus, ambient fluid is pulled inward from both sides to satisfy the jet’s entrainment
appetite.

****************************

15.3 Empirical Description of Turbulence

Empirical studies of turbulent flows have revealed a number of universal properties that
are best comprehended through movies (Box 15.2). Here we shall simply list the most
important of them, and comment on them briefly. We shall revisit most of them in more
detail in the remainder of the chapter. Throughout, we shall restrict ourselves to turbulence
with velocities that are very subsonic and thus incompressible.

Turbulence is characterized by:

• Disorder, irreproducible in detail but with rich, non-random structure. This disorder
is intrinsic to the flow. It appears to arise from a variety of instabilities. No forcing
by external agents is required to produce it. If we try to resolve the flow into modes,
however, we find that the phases of the modes are not fully random, either spatially or
temporally. There are strong correlations. Correspondingly, if we look at a snapshot
of a turbulent flow, we frequently observe large, well-defined coherent structures like
eddies and jets, which suggests that the flow is more organized than a purely random
superposition of modes, just as the light reflected from the surface of a painting differs
from that emitted by a black body. if we monitor the time variation of some fluid
variable, such as one component of the velocity at a given point in the flow, we observe
intermittency – the irregular starting and ceasing of strong turbulence. Again, this is
such a marked effect that there is more than a random-mode superposition at work,
reminiscent of the distinction between noise and music (at least some music). [A major
consequence that we shall have to face is this: Strong turbulence is not well treated
by perturbation theory. Alternative, semi-quantitative techniques of analysis must be
devised.]

• A wide range of interacting scales. When the fluid velocity and pressure are Fourier
analyzed, one finds them varying strongly over many decades of wave number and
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frequency. We can think of these variations as due to eddies with a huge range of
sizes. These eddies interact strongly. Typically, large eddies appear to feed their
energy to smaller eddies, which in turn feed energy to still smaller eddies, and so forth.
Occasionally, amazingly, the flow of energy appears to reverse: small-scale turbulent
structures give rise to large-scale structures, resulting in intermittency. A region of
the flow that appears to have calmed down may suddenly and unexpectedly become
excited again.

• Vorticity, irregularly distributed in three dimensions. This vorticity varies in magnitude
and direction over the same wide range of scales as the fluid velocity. It appears to
play a central role in coupling large scales to small; see the next subsection.

• Large dissipation: Typically, turbulent energy is fed from large scales to small in
just one turnover time of a large eddy. This is extremely fast. The energy cascades
downward to smaller and smaller scales until it reaches eddies so small that their shear,
coupled to molecular viscosity, converts the turbulent energy into heat.

• Efficient mixing and transport of most everything that can be transported: momentum,
heat, salt, chemicals, ... .

15.3.1 The Role of Vorticity in Turbulence

Turbulent flows contain tangled vorticity. As we discussed in Sec. 14.2.2, when viscosity is
unimportant, vortex lines are frozen into the fluid and can be stretched by the action of
neighboring vortex lines. As a bundle of vortex lines is stretched and twisted (Fig. 15.5),
the incompressibility of the fluid causes the bundle’s cross section to decrease and corre-
spondingly causes the magnitude of its vorticity to increase, and the lengthscale on which
the vorticity changes to decrease (cf. Sec. 14.2). The continuous lengthening and twisting of
the fluid therefore creates vorticity on progressively smaller length scales.

(b)(a) (c)

Fig. 15.5: Schematic illustration of the propagation of turbulence by the stretching of vortex lines.
The tube of vortex lines in (a) gets stretched and thereby is forced into a reduced cross section
by the turbulent evolution from (a) to (b) to (c). The reduced cross section means an enhanced
vorticity on smaller scales.



13

Note that, when the flow is two-dimensional (i.e. translation symmetric), there is no
stretching of the vortex lines and thus no inexorable driving of the turbulent energy to
smaller and smaller length scales. This is one reason why true turbulence does not occur in
two dimensions, only in three.

On the other hand, something akin to turbulence, but with much less richness and small
scale structure, does occur in two dimensions, as one sees, e.g., in two-dimensional simulations
of the Kelvin-Helmholtz instability, Box 15.3. However, in the real world, once the Kelvin-
Helmholtz instability gets well developed, three-dimensional instabilities grow strong, vortex-
line stretching grows strong, and the flow develops full three-dimensional turbulence. The
same happens in other ostensibly two-dimensional flow, e.g. the “two-dimensional” wake
behind a long circular cylinder and “two-dimensional” jets and boundary layers(Secs. 15.4.3
and 15.5).

Box 15.3
Consequences of the Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability arises when two fluids, with nearly the same density,
are in uniform motion past each other (Sec. 14.6). Their interface (a vortex sheet) devel-
ops corrugations that grow (Figs. 14.17 and 14.18). That growth bends the corrugations
more and more sharply. Along the corrugated interface the fluids on the two sides are still
sliding past each other, so the instability arises again, on this smaller scale — and again
and again: somewhat like the cascade of turbulent energy from large scales to small.

In the real world, three-dimensional instabilities also arise and the flow becomes fully
turbulent. However, much insight is gained into the difference between two-dimensional
and three-dimensional flow by artificially constraining the Kelvin-Helmholtz flow to re-
main two-dimensional. This is easily done in numerical simulations. Movies of such
simulations abound on the web, e.g. in 2012 on the Wikipedia web page for the Kelvin-
Helmholtz instability. The following picture is a still from that movie:

Although the structures in this simulation are rich, they are much less rich than those
that appear in full, three-dimensional turbulence — perhaps largely due to the absence
of stretching and twisting of vortex lines, when the flow is confined to two dimensions.
[Note: Not surprisingly, the structures in this simulation resemble some in Jupiter’s
atmosphere, which also arise from a Kelvin-Helmholtz instability.]
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15.4 Semi-Quantitative Analysis of Turbulence

In this section we shall develop a semi-quantititative mathematical analysis of turbulence
and explore a few applications. This analysis is fairly good for so-called weak turbulence.
However for the much more common strong turbulence, it is at best semi-quantitative — but
nonetheless is widely used for lack of anything simple that is much better.

15.4.1 Weak Turbulence Formalism

The meaning of weak turbulence can be explained in terms of interacting eddies (a concept
we shall exploit in Sec. 15.4.4 when studying the flow of turbulent energy from large scales
to small). One can regard turbulence as weak if the timescale τ∗ for a big eddy to feed
most of its energy to smaller eddies is long compared to the big eddy’s turnover time τ , i.e.,
its “rotation period”. The weak-turbulence formalism (model) that we shall sketch in this
subsection can be thought of as an expansion in τ/τ∗.

Unfortunately, for most turbulence seen in fluids, the large eddies’ energy loss time is of
order its turnover time, τ/τ∗ ∼ 1, which means the eddy loses its identity in roughly one
turnover time, and the turbulence is strong. In this case, the weak-turbulence formalism
that we shall sketch here is only semiquantitatively accurate.

Our formalism for weak turbulence (with gravity negligible and the flow very subsonic
so it can be regarded as incompressible) is based on the standard incompressibility equation
and the time-dependent Navier-Stokes equation, which we write in the following forms:

∇ · v = 0 , (15.11a)

ρ
∂v

∂t
+ ∇ · (ρv ⊗ v) = −∇P + ρν∇2v . (15.11b)

[Eq. (15.11b) is equivalent to (15.2b) with ∂v/∂t added because of the time dependence,
and with the inertial force term rewritten via ∇ · (ρv ⊗ v) = ρ(v · ∇)v, or equivalently in
index notation, (ρvivj);i = ρ,ivivj + ρ(vi;ivj + vivj;i) = ρvivj;i .] Equations (15.11) are four
scalar equations for four unknowns, P (x, t) and the three components of v(x, t); ρ and ν can
be regarded as constants.

To obtain the weak-turbulence versions of these equations, we split the velocity field
v(x, t) and pressure P (x, t) into steady parts v̄, P̄ , plus fluctuating parts, δv, δP :

v = v̄ + δv , P = P̄ + δP . (15.12)

We can think of (or, in fact, define) v̄ and P̄ as the time averages of v and P , and define δv
and δP as the difference between the exact quantities and the time-averaged quantities.

The time-averaged variables v̄ and P̄ are governed by the time averages of the incom-
pressibility and Navier-Stokes equations (15.11). Because the incompressibility equation is
linear, its time average

∇ · v̄ = 0 (15.13a)

entails no coupling of the steady variables to the fluctuating variables. By contrast, the
nonlinear inertial term ∇·(ρv ⊗ v) in the Navier-Stokes equation gives rise to such a coupling
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in the (time-independent) time-averaged equation:

ρ(v̄ · ∇)v̄ = −∇P̄ + νρ∇2v̄ − ∇ · TR . (15.13b)

Here
TR ≡ ρδv ⊗ δv (15.13c)

is known as the Reynolds stress tensor. It serves as a “driving term” in the time-averaged
Navier-Stokes equation (15.13b) — a term by which the fluctuating part of the flow acts
back on, and influences the time-averaged flow.

This Reynolds stress TR can be regarded as an additional part of the total stress tensor,
analogous to the gas pressure computed in kinetic theory,3 P = 1

3ρv
2, where v is the molecular

speed. TR will be dominated by the largest eddies present, and it can be anisotropic,
especially when the largest-scale turbulent velocity fluctuations are distorted by interaction
with an averaged shear flow, i.e when σ̄ij = 1

2(v̄i;j + v̄j;i) is large.
If the turbulence is both stationary and homogeneous (a case we shall specialize to below

when studying the “Kolmogorov spectrum”), then the Reynolds stress tensor can be written
in the form TR = PRg, where PR is the Reynolds pressure, which is independent of position,
and g is the metric, so gij = δij. In this case, the turbulence will exert no force density on
the mean flow; i.e., ∇ · TR = ∇PR will vanish in the time-averaged Navier-Stokes equation
(15.13b). By contrast, near the edge of a turbulent region (e.g., near the edge of a turbulent
wake or jet or boundary layer), the turbulence will be inhomogeneous, and thereby (as we
shall see in the next subsection) will exert an important influence on the time-independent,
averaged flow.

Notice that the Reynolds stress tensor is the tensorial correlation function (also called
“autocorrelation function”) of the velocity fluctuation field at zero time delay (multiplied by
density ρ); cf. Secs. 6.4.1 and 6.5.1. Notice also that it involves the temporal cross-correlation
function of components of the velocity fluctuation, e.g. δvx(x, t)δvy(x, t) (Sec. 6.5.1). It is
possible to extend this weak-turbulence formalism so it probes the statistical properties of
turbulence more deeply, with the aid of correlation functions with finite time delays, and
correlation functions of velocity components (or other relevant physical quantities) at two
different points in space simultaneously. (It is relatively straightforward experimentally to
measure these correlation functions.) As we discuss in greater detail below (and as we also
saw for one- and two-dimensional random processes in Secs. 6.4.4 and 6.5.2, and for multidi-
mensional, complex random processes in Ex. 9.7), the Fourier transforms of these correlation
functions give the spatial and temporal spectral densities of the fluctuating quantities.

Just as the structure of the time-averaged flow is governed by the time-averaged incom-
pressibility and Navier-Stokes equations (15.13) (with the fluctuating variables acting on the
time-averaged flow through the Reynolds stress), so also the fluctuating part of the flow is
governed by the fluctuating (difference between exact and time-averaged) incompressibility
and Navier-Stokes equations. For details, see Ex. 15.4. This is an important exercise; it
exhibits the weak-turbulence formalism in action, and underpins the application to spatial
energy flow in a 2-dimensional, turbulent wake in Fig. 15.7 below.

3Deducible from Eq. (3.35c) or from Eqs. (3.37b) and (3.37c) with mean energy per particle Ē = 1
2mv2.
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****************************

EXERCISES

Exercise 15.4 ***Example: Reynolds Stress, and Fluctuating Part of Navier-Stokes Equa-
tion in Weak Turbulence

(a) Derive the time-averaged Navier-Stokes equation (15.13b) from the time-dependent
form of the equation, (15.11b), and thereby infer the definition (15.13c) for the Reynolds
stress. Equation (15.13b) shows how the Reynolds stress affects the evolution of the
mean velocity. However, it does not tell us how the Reynolds stress evolves.

(b) Explain why an equation for the evolution of the Reynolds stress must involve av-
erages of triple products of the velocity fluctuation. Similarly the time evolution of
the averaged triple products will involve averaged quartic products, and so on (cf. the
BBGYK hierarchy of equations in plasma physics, Sec. 21.6). How do you think you
might “close” this sequence of equations, i.e. terminate it at some low order and get
a fully determined system of equations? [Hint: the simplest way is via the turbulent
viscosity of the next Section.]

(c) Show that the fluctuating part of the Navier-Stokes equation (the difference between
the exact Navier-Stokes equation and its time average) takes the following form:

∂δv

∂t
+ (v̄ · ∇)δv + (δv · ∇)v̄ + [(δv · ∇)δv − (δv · ∇)δv] = −1

ρ
∇δP + ν∇2(δv) .

(15.14a)
This equation and the fluctuating part of the incompressibility equation

∇ · δv = 0 (15.14b)

govern the evolution of the fluctuating variables δv and δP . [The challenge, of course,
is to devise ways to solve these equations despite the nonlinearities and the coupling
to the mean flow that show up strongly in Eq. (15.14a).]

(d) By dotting δv into Eq. (15.14a) and then taking its time average, derive the following
law for the spatial evolution of the turbulent energy density 1

2ρδv
2:

v̄ · ∇(
1

2
ρδv2) + ∇ ·

(
1

2
ρδv2δv + δPδv

)
= −T ij

R v̄i,j + νρδv · (∇2δv) . (15.15)

Here T ij
R = ρδviδvj is the Reynolds stress [Eq. (15.13c)]. Interpret each term in this

equation. [The four interpretations will be discussed below, for a 2-dimensional turbu-
lent wake, in connection with Fig. 15.7.]
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(e) Now derive a similar law for the spatial evolution of the energy density of ordered
motion 1

2ρv̄
2. Show that the energy lost by the ordered motion is compensated by the

energy gained by the turbulent energy.

****************************

15.4.2 Turbulent Viscosity

Additional tools that are often introduced in the theory of weak turbulence come from taking
the analogy with the kinetic theory of gases one stage further and defining turbulent transport
coefficients (most importantly a turbulent viscosity that governs the turbulent transport of
momentum). These turbulent transport coefficients are derived by simple analogy with the
kinetic-theory transport coefficients (Sec. 3.7.) Momentum, heat, etc. are transported most
efficiently by the largest turbulent eddies in the flow; therefore, in estimating the transport
coefficients we replace the particle mean free path by the size " of the largest eddies and the
mean particle speed by the magnitude v" of the fluctuations of velocity in the largest eddies.
The result, for momentum transport, is a model turbulent viscosity

νt (
1

3
v"" (15.16)

[cf. Eq. (13.72) for molecular viscosity, with ν = η/ρ]. The Reynolds stress is then approxi-
mated as a turbulent shear stress of the standard form

TR ( −2ρνtσ̄ . (15.17)

Here σ̄ is the rate of shear tensor (13.63b) evaluated using the mean velocity field v̄. Note
that the turbulent kinematic viscosity defined in this manner, νt, is a property of the turbu-
lent flow and not an intrinsic property of the fluid; it differs from molecular viscosity in this
important respect.

We have previously encountered turbulent viscosity in our study of the physical origin
of the Sargasso-Sea gyre in the north Atlantic Ocean and the gyre’s role in generating the
Gulf Stream (Ex. 14.12). The gyre is produced by water flowing in a wind-driven Ekman
boundary layer at the ocean’s surface. From the measured thickness of that boundary layer,
δE ∼ 30 meters, we deduced that the boundary layer’s viscosity is orders of magnitude larger
than water’s molecular viscosity; it is the turbulent viscosity of Eq. (15.16).

By considerations similar to those above for turbulent viscosity, one can define and es-
timate a turbulent thermal conductivity for the spatial transport of time-averaged heat (cf.
Sec. 3.7.2) and a turbulent diffusion coefficient for the spatial transport of one component of
a time-averaged fluid through another, for example an odor crossing a room (cf. Ex. 3.19).

The turbulent viscosity νt and the other turbulent transport coefficients can be far far
larger than their kinetic-theory values. One example is the Ekman boundary layer that
drives water to pile up in the north-Atlantic Sargasso Sea (discussed above). Another is air
in a room subjected to typical uneven heating and cooling. The air may typically circulate



18

with an average largest eddy velocity of v" ∼ 1 cm s−1 and an associated eddy size of " ∼ 3
m. (This can be estimated by observing the motion of illuminated dust particles.) The
kinematic turbulent viscosity νt — and also the turbulent diffusion coefficient Dt (Ex. 3.19)
— associated with these motions are νt ∼ Dt ∼ 10−2 m2 s−1, some three orders of magnitude
larger than the molecular values.

15.4.3 Turbulent Wakes and Jets; Entrainment, and the Coanda
Effect

As instructive applications of turbulent viscosity and related issues, we shall now explore in
an order-of-magnitude way the structures of turbulent wakes and jets. The more complicated
extension to a turbulent boundary layer will be explored in Sec. 15.5 below. In this section
we focus on the 2-dimensional wake behind a cylinder. In Exs. 15.5, 15.6 and 15.7, we study
the 3-dimensional wake behind a sphere, and 2- and 3-dimensional jets.

Order-of-magnitude Computation of Width and Velocity Deficit for a 2-Dimensional
Turbulent Wake; Entrainment

For the wake behind a cylinder, depicted in Fig. 15.3 above, we begin by deducing the
turbulent viscosity νt ∼ 1

3v"". It is reasonable to expect, and observations confirm, that
the largest eddies in a turbulent wake, at distance x past the cylinder, extend transversely
across nearly the entire width w(x) of the wake, so their size is " ∼ w(x). What is the
largest eddies’ circulation speed v"? Because these eddies’ energies are fed into smaller
eddies in (roughly) one eddy turnover time, these eddies must be continually regenerated
by interaction between the wake and the uniform flow at its transverse boundaries. This
means that the wake’s circulation velocity v" cannot care about the velocity difference V
between the incoming flow and the cylinder, way back upstream; the wake has long since
lost memory of that. The only characteristic speed the wake knows about is the difference
between its own mean downstream speed v̄x and the speed V of the unform flow at its
boundaries. It seems physically reasonable that the interaction between these two flows will
drive the eddy to circulate with that difference speed, the deficit uo depicted in Fig. 15.3, and
observations show this to be true. Thus, v" ∼ uo. This means that the turbulent viscosity is
νt ∼ 1

3v"" ∼ 1
3uo(x)w(x).

Knowing the viscosity, we can compute our two unknowns, the wake’s velocity deficit
uo(x) and its width w(x), from vorticity diffusion and momentum conservation, as we did
for a laminar wake in Ex. 15.1a,b.

Consider, first, momentum conservation. Here, as in Ex. 15.1b, the drag force per unit
length on the cylinder FD = CD

1
2ρV

2d, must be equal to the difference between the momen-
tum per unit length

∫
ρV 2dy in the water impinging on the cylinder, and that

∫
ρv2

xdy at any
chosen distance x behind the cylinder. That difference is easily seen, from Fig. 15.3, to be
∼ ρV uow. Equating this to FD, we obtain the product uow and thence νt ∼ 1

3uow ∼ 1
6CDV d.

Thus, remarkably, the turbulent viscosity is independent of distance x downstream from
the cylinder. This means that the wake’s vorticity (which is contained primarily in its large
eddies) will diffuse transversely in just the manner we have encountered several times before
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[Sec. 14.2.5, Eq. (14.37), Ex. 15.1a], causing its width to grow as w ∼
√
νtx/V . Inserting

νt ∼ 1
6CDV d ∼ 1

3uow from above, we obtain

w ∼
(

CDd

6
x

)1/2

, uo ∼ V

(
3CDd

2x

)1/2

(15.18)

for the width and velocity deficit in the turbulent wake.
In this analysis, our appeal to vorticity diffusion obscures the physical mechanism by

which the turbulent wake widens downstream. That mechanism is entrainment, i.e. capturing
of fluid from outside the wake into the wake (a phenomenon we met for a laminar jet in Ex.
15.3d). The inertia of the largest eddies enables them to sweep outward into the surrounding
flow with a transverse speed that is a sizable fraction of their turnover speed, say 1

6v" (with
the 1/6 to get agreement with the diffusion argument). This means that, moving with the
flow at speed V , the eddy widens via entrainment at a rate dw/dt = V dw/dx ∼ 1

6v" ∼ 1
6uo.

Inserting uo ∼ 1
2V Cdd/w from momentum conservation and solving the resulting differential

equation, we obtain the same wake width w ∼
√

CDd x/6 as we got from our diffusion
argument.

Distribution of Vorticity in the Wake; Irregularity of the Wake’s Edge

The wake’s fluid can be cleanly distinguished from the exterior, ambient fluid by vorticity:
Ambient flow velocity v(x, t) is vorticity-free; the wake has nonzero vorticity. If we look at the
actual flow velocity and refrain from averaging, the only way a fluid element in the wake can
acquire vorticity is via molecular diffusion. Molecular diffusion is so slow, that the boundary
between a region with vorticity and one without (the boundary between the wake fluid and
the ambient fluid) is very sharp. Sharp, yes, but straight, no! The wake’s eddies, little as
well as big, drive the boundary into a very crooked shape (Fig. 15.6). Correspondingly, the
order-of-magnitude wake width w ∼

√
CDd x/6 that we have derived is only the width of a

thoroughly averaged flow and not at all the actual, local width of the wake.

Fig. 15.6: Contours of constant magnitude of vorticity |ω| in the 2-dimensional turbulent wake
between and behind a pair of cylinders. The outer edge of the blue region is the edge of the wake.
[From a numerical simulation by the research group of Sanjiva K. Lele at Stanford University,
http://flowgallery.stanford.edu/research.html.]
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Intermittency is one consequence of the wake’s highly irregular edge. If one sits at a
fixed location behind the cylinder, not too close to the wake’s center, one will sometimes
be outside the wake and sometimes inside it. This will show up in one’s measurement of
any flow variable, e.g., vy(t) or ωx(t), or pressure P , at one’s fixed location. When outside
the wake, the measured quantities will be fairly constant; when inside, they will change
rapidly and stochastically. The quiet epochs, with interspersed stochastic epochs are a form
of intermittency.

Averaged Energy Flow in 2-Dimensional Turbulent Wake

The weak-turbulence formalism of Sec. 15.4.1 and Ex. 15.4 can be used to explore the
generation and flow of turbulent energy in the wake behind a cylinder. The formalism, even
when extended, is not good enough to make definitive predictions, but it can be used to
deduce the energy flow from measurements of the mean (time averaged) flow velocity v̄, the
turbulent velocity δv and the turbulent pressure δP . A classic example of this was carried
out long ago by Albert Alan Townsend (1949) and is summarized in Fig. 15.7.

y/w(x)∞

advection by mean flow
production

dissipation
advection by 
turbulent flow

Fig. 15.7: The four terms in the rate of change of the time-averaged turbulent energy density
[Eq. (15.15)] for the 2-dimensional turbulent wake behind a cylinder. Horizontal axis: distance
y across the wake in units of the wake’s mean width w(x). Vertical axis: the numerical value of
each term. For discussion of the four terms, see four bullets in the text. Energy conservation and
stationarity of the averaged flow guarantee that the sum of the four terms vanishes at each y [Eq.
(15.15)]. [Adapted from Fig. 22.10 of Tritton (1977), which is based on measurements and analysis
by Townsend (1949).]
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The time-averaged turbulent energy density changes due to four processes that are
graphed in that figure as a function of distance y across the wake:

• Production: Energy in the organized bulk flow (mean flow) v̄ is converted into tur-
bulent energy by interaction of the mean flow’s shear with the turbulence’s Reynold’s
stress, at a rate per unit volume T ij

R v̄i;j . This production vanishes at the wake’s center
(y = 0) because the shear of the mean flow vanishes there, and it vanishes at the edge
of the wake because both the mean-flow shear and the Reynold’s stress go to zero there.

• Advection by mean flow: Once produced, the turbulent energy gets advected across
the wake by the mean flow. This causes an increase in turbulent energy density in the
center of the wake and a decrease in the wake’s outer parts, at a rate ∇ · (1

2ρδv
2v̄) =

(v̄ · ∇)(1
2ρδv

2).

• Advection by turbulent flow: Once produced, the turbulent energy also gets ad-
vected by the turbulent part of the flow, causing a decrease of turbulent energy density
in the central regions of the wake and an increase in the outer regions, at a rate given
by ∇ · (1

2ρδv
2δv + δPδv).

• Dissipation: The turbulent energy gets converted to heat by molecular viscosity at a
rate per unit volume given by −νρδv · (∇2δv). This dissipation is largest at the wake’s
center and falls off gradually toward the wake’s averaged edge.

Energy conservation, plus stationarity of the averaged flow, guarantees that the sum of
these four terms vanishes at all locations in the wake (all y of Fig. 15.7). This is the physical
content of Eq. (15.15) and is confirmed in Fig. 15.7 by the experimental data.

Entrainment and Coanda Effect

Notice how much wider the (averaged) turbulent wake is than the corresponding laminar
wake of Ex. 15.1. The ratio of their widths [Eqs. (15.18) and (15.8)] is wt/wl ∼

√
CDV d/ν.

For CD ∼ 1 in the turbulent wake, V ∼ 1 m s−1, d ∼ 1 m, and water’s kinematic viscosity
ν ∼ 10−6 m2 s−1, the ratio is wt/wl ∼ 103, independent of distance x downstream. In this
sense, entrainment in the turbulent wake is a thousand times stronger than entrainment in
the laminar wake. Turbulent wakes and jets have voracious appetites for ambient fluid!

Entrainment is central to the Coanda Effect, depicted in Fig. 15.8: Consider a turbulent
flow, e.g. the jet of Fig. 15.8, that is widening by entrainment of surrounding fluid. The jet
normally widens downstream by pulling surrounding fluid into itself, and the inflow toward
the jet extends far beyond the jet’s boundaries (see, e.g., Ex. 15.3d). However, when there
is a solid wall nearby, so there is no place for inflowing ambient fluid to come from, the
jet’s entrainment causes a drop in the pressure of the ambient fluid near the wall, and the
resulting pressure gradient pushes the jet toward the wall as depicted in Fig. 15.8.

Similarly, if a turbulent flow is already close to a wall, and the wall begins to curve away
from the flow, the flow develops a pressure gradient that tries to keep the turbulent region
attached to the wall. In other words, turbulent flows are attracted to solid surfaces and try
to stick to them. This is the Coanda effect.
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Fig. 15.8: The Coanda effect. A turbulent jet emerging from an orfice in the left wall is attracted
by the solid bottom wall.

The Coanda effect also occur for laminar flows, but because entrainment is typically
orders of magnitude weaker in laminar flows than turbulent, the Coanda effect is also orders
of magnitude weaker.

The Coanda effect is important in aeronautics; for example, it is exploited to prevent the
separation of the boundary layer from the upper surface of a wing, thereby improving the
wing’s lift and reducing its drag, as we shall discuss in Sec. 15.5.2 (Fig. 15.11).

****************************

EXERCISES

Exercise 15.5 Problem: Turbulent Wake Behind a Sphere
Compute the width w(x) and velocity deficit uo(x) for the 3-dimensional turbulent wake
behind a sphere.

Exercise 15.6 Problem: Turbulent Jets in 2 and 3 Dimensions
Consider a two-dimensional, turbulent jet emerging into an ambient fluid at rest, and contrast
it to the laminar jet analyzed in Ex. 15.3.

(a) Find how the mean jet velocity and the jet width scale with distance downstream from
the nozzle.

(b) Repeat the exercise for a three-dimensional jet.

Exercise 15.7 Problem: Entrainment and Coanda Effect in a 3-Dimensional Jet

(a) Evaluate the scaling of the rate of mass flow (discharge) Ṁ(x) along the three-dimensional,
turbulent jet of the previous exercise. Show that Ṁ increases with distance from the
nozzle so that mass must be entrained into the flow and become turbulent.
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(b) Compare the entrainment rate for a turbulent jet with that for a laminar jet (Ex. 15.3).
Do you expect the Coanda effect to be stronger for a turbulent or a laminar jet?

****************************

15.4.4 Kolmogorov Spectrum for Homogeneous and Isotropic Tur-
bulence

When a fluid exhibits turbulence over a large volume that is well-removed from any solid bod-
ies, then there will be no preferred directions and no substantial gradients in the statistically-
averaged properties of the turbulent velocity field. This suggests that the turbulence will be
stationary and isotropic. We shall now derive a semi-quantitative description of some of the
statistical properties of such stationary, isotropic turbulence. Our derivation will be based
on the following simple physical model:

We shall idealize the turbulent velocity field as made of a set of large eddies, each of
which contains a set of smaller eddies and so on. We suppose that each eddy splits into
eddies roughly half its size after a few turnover times. This can be described mathematically
as nonlinear or triple velocity correlation terms [terms like the second one in Eq. (15.15)]
producing, in the law of energy conservation, an energy transfer (a “cascade” of energy)
from larger scale eddies to smaller scale eddies. Now, for large enough eddies, we can ignore
the effects of molecular viscosity in the flow. However, for small enough eddies, viscous
dissipation will convert the eddy bulk kinetic energy into heat. This simple model will
enable us to derive a remarkably successful formula (the “Kolmogorov spectrum”) for the
distribution of turbulent energy over eddy size.

We must first introduce and define the turbulent energy per unit wave number and per
unit mass, uk(k). For this purpose, we focus on a volume V much larger than the largest
eddies. At some moment of time t, compute the spatial Fourier transform of the fluctuating
part of the velocity field δv(x), confined to this volume [with δv(x) set to zero outside V],
and also write down the inverse Fourier transform:

δṽ(k) =

∫

V
d3xδv(x)e−ik·x , δv =

∫
d3k

(2π)3
δṽeik·x inside V . (15.19)

The total energy per unit mass u in the turbulence, averaged over the box V, is then

u =

∫
d3x

V
1

2
|δv|2 =

∫
d3k

(2π)3

|δṽ|2
2V ≡

∫ ∞

0

dk uk(k) , (15.20)

where we have used Parseval’s theorem in the second equality, we have used d3k = 4πk2dk,
and we have defined

uk(k) ≡ |δṽ|2k2

4π2V . (15.21)

Here the bars denote a time average, k is the magnitude of the wave vector k ≡ |k| (i.e.
it is the wave number or equivalently 2π divided by the wavelength), and uk(k) is called
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the spectral energy per unit mass of the turbulent velocity field δv. In the third equality in
Eq. (15.20), we have assumed that the turbulence is isotropic so the integrand depends only
on wave number k and not on the direction of k. Correspondingly, we have defined uk(k) as
the energy per unit wave number rather than an energy per unit volume of k-space. This
means that, uk(k)dk is the average kinetic energy per unit mass associated with modes that
have k lying in the interval dk; we treat k as positive.

In Chap. 6 we introduced the concepts of a random process and its spectral density.
The Cartesian components of the fluctuating velocity δvx, δvy, δvz obviously are random
processes that depend on vectorial location in space x rather than on time as in Chap. 6. It
is straightforward to show that their double sided spectral densities are related to uk(k) by

Svx(k) = Svy(k) = Svz(k) =
(2π)2

3k2
× uk(k) . (15.22)

If we fold negative kx into positive, and similarly for ky and kz so as to get the kind of single-
sided spectral density that we used in Chap. 6, then these spectral densities get multiplied
by 23 = 8.

We shall now use our physical model of turbulence to derive an expression for uk(k).
Denote by kmin = 2π/" the wave number of the largest eddies, and by kmax that of the
smallest ones (those in which viscosity dissipates the cascading, turbulent energy). Our
derivation will be valid, and the result will be valid, only when kmax/kmin ) 1, i.e. only
when there is a large sequence of eddies from the largest to half the largest to a quarter the
largest ... down to the smallest.

As a tool in computing uk(k), we introduce the root-mean-square turbulent turnover
speed of the eddies with wave number k, v(k) ≡ v; and ignoring factors of order unity, we
treat the size of these eddies as k−1. Then their turnover time is τ(k) ∼ k−1/v(k) = 1/[kv(k)].
Our model presumes that in this same time τ (to within a factor of order unity), each eddy
of size k−1 splits into eddies of half this size; i.e. the turbulent energy cascades from k to
2k. In other words, our model presumes the turbulence is strong. Since the energy cascade
is presumed stationary (i.e. no energy is accumulating at any wave number), the energy per
unit mass that cascades in a unit time from k to 2k must be independent of k. Denote by q
that k-independent, cascading energy per unit mass per unit time. Since the energy per unit
mass in the eddies of size k−1 is v2 (aside from a factor 2, which we neglect), and the cascade
time is τ ∼ 1/(kv), then q ∼ v2/τ ∼ v3k. This tells us that the rms turbulent velocity is

v(k) ∼ (q/k)1/3. (15.23)

Our model lumps together all eddies with wave number within a range ∆k ∼ k around
k, and treats them all as having wave number k. The total energy per unit mass in these
eddies is uk(k)∆k ∼ kuk(k) when expressed in terms of the sophisticated quantity uk(k),
and it is ∼ v(k)2 when expressed in terms of our simple model. Thus, our model predicts
that uk(k) ∼ v(k)2/k, which by Eq. (15.23) implies

uk(k) ∼ q2/3k−5/3 for kmin % k % kmax ; (15.24)
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Fig. 15.9: The Kolmogorov spectral energy density for stationary, homogeneous turbulence.

see Fig. 15.9. This is the Kolmogorov spectrum for the spectral energy density of stationary,
isotropic, incompressible turbulence. It is valid only in the range kmin % k % kmax because
only in this range are the turbulent eddies continuously receiving energy from larger length-
scales and passing it on to smaller scales. At the ends of the range, the spectrum will be
modified in the manner illustrated qualitatively in Fig. 15.9.

The smallest lengthscales present, k−1
max, are determined by the fact that there molecular

viscous forces become competitive with inertial forces in the Navier-Stokes equation, and
thereby convert the cascading energy into heat. Since the ratio of inertial forces to viscous
forces is the Reynolds number, the smallest eddies have a Reynolds number of order unity:
Rekmax = v(kmax)k−1

max/ν ∼ 1. Inserting Eq. (15.23) for v(k), we obtain

kmax ∼ q1/4ν−3/4. (15.25)

The largest eddies have sizes " ∼ k−1
min and turnover speeds v" = v(kmin) ∼ (q/kmin)1/3. By

combining these relations with Eq. (15.25) we see that the ratio of the largest wave numbers
present in the turbulence to the smallest is

kmax

kmin
∼

(
v""

ν

)3/4

= Re3/4
" . (15.26)

Here Re" is the Reynolds number for the flow’s largest eddies.
Let us now take stock of our results: If we know the scale " of the largest eddies and their

rms turnover speeds v" (and, of course, the viscosity of the fluid), then from these we can
compute their Reynolds number Re"; from that, Eq. (15.26), and kmin ∼ "−1, we can compute
the flow’s maximum and minimum wave numbers; and from q ∼ v3

" /" and Eq. (15.24) we
can compute the spectral energy density in the turbulence.

We can also compute the total time required for energy to cascade from the largest eddies
to the smallest: Since τ(k) ∼ 1/(kv) ∼ 1/(q1/3k2/3), each successive set of eddies feeds its
energy downward in a time 2−2/3 shorter than the preceeding set. As a result, it takes
roughly the same amount of time for energy to pass from the second largest eddies (size "/2)
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to the very smallest (size k−1
max) as it takes for the second largest to extract the energy from

the very largest. The total cascade occurs in a time of several "/v" (during which time, of
course, the mean flow has fed new energy into the largest eddies and they are sending it on
downwards).

These results are accurate only to within factors of order unity – with one major excep-
tion: The −5/3 power law in the Kolmogorov spectrum is very accurate. That this ought
to be so one can verify in two equivalent ways: (i) Repeat the above derivation inserting
arbitrary factors of order unity at every step. These factors will influence the final multi-
plicative factor in the Kolmogorov spectrum, but will not influence the −5/3 power. (ii)
Use dimensional analysis. Specifically: notice that the only dimensioned entitities that can
influence the spectrum in the region kmin % k % kmax are the energy cascade rate q and the
wave number k. Then notice that the only quantity with the dimensions of uk(k) (energy
per unit mass per unit wave number) that can be constructed from q and k is q2/3k−5/3.
Thus, aside from a multiplicative factor of order unity, this must be the form of uk(k).

Let us now review and critique the assumptions that went into our derivation of the Kol-
mogorov spectrum. First, we assumed that the turbulence is stationary and homogeneous.
Real turbulence is neither of these, since it exhibits intermittency (Sec. 15.3), and smaller
eddies tend to occupy less volume overall than larger eddies and so cannot be uniformly
distributed in space. Second, we assumed that the energy source is large-length-scale motion
and that the energy transport is local in k-space from the large length scales to steadily
smaller ones. In the language of a Fourier decomposition into normal modes, we assumed
that nonlinear coupling between modes with wave number k causes modes with wave number
of order 2k to grow, but does not significiantly enhance modes with wave number 100k or
0.01k. Again this is not completely in accord with observations which reveal the develop-
ment of coherent structures–large scale regions with correlated vorticity in the flow. These
structures are evidence for a reversed flow of energy in k-space from small scales to large
scales, and they play a major role in another feature of real turbulence, entrainment – the
spreading of an organised motion, e.g. a jet, into the surrounding fluid (Sec. 15.4.3 above).

Despite these qualifications, the Kolmogorov law is surprisingly useful. It has been veri-
fied in many laboratory flows, and it describes many naturally occuring instances of turbu-
lence. For example, the twinkling of starlight is caused by refractive index fluctuations in
the earth’s atmosphere, whose power spectrum we can determine optically. The underlying
turbulence spectrum turns out to be of Kolmogorov form.

****************************

EXERCISES

Exercise 15.8 Example: Excitation of Earth’s Normal Modes by Atmospheric Turbulence4

The Earth has normal modes of oscillation, many of which are in the milliHertz frequency
range. Large earthquakes occasionally excite these modes strongly, but the quakes are usually

4Problem devised by David Stevenson; based in part on Tanimoto and Um (1999) who, however, use
the pressure spectrum deduced in part (i) rather than the more nearly correct spectrum of part (ii). The
difference in spectra does not much affect their conclusions
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widely spaced in time compared to the ringdown time of a particular mode (typically a few
days). There is evidence of a background level of continuous excitation of these modes, with
an rms ground acceleration per mode ∼ 10−10 cm/s2 at seismically “quiet” times. Stochastic
forcing by the pressure fluctuations associated with atmospheric turbulence is suspected.
This exercise deals with some aspects of this hypothesis.

(a) Estimate the rms pressure fluctuations P (f) at frequency f , in a bandwidth equal to
frequency ∆f = f , produced on the earth’s surface by atmospheric turbulence, as-
suming a Kolmogorov spectrum for the turbulent velocities and energy. Make your
estimate in two ways: (a) via dimensional analysis (what quantity can you construct
from the energy cascade rate q, atmospheric density ρ and frequency f that has dimen-
sions of pressure?), and (b) via the kinds of arguments about eddy sizes and speeds
developed in Sec. 15.4.4.

(b) Your answer in part (i) should scale with frequency as P (f) ∝ 1/f . In actuality, the
measured pressure spectra have a scaling law more nearly like P (f) ∝ 1/f 2/3, not
P (f) ∝ 1/f [e.g., Fig. 2a of Tanimoto and Um (1999)]. Explain this; i.e., what is
wrong with the argument in (i), and how can you correct it to give P (f) ∝ 1/f 2/3?
Hint: There is a poem by Lewis Fry Richardson, which says:

Big whirls have little whirls,
which feed on their velocity.
Little whirls have lesser whirls,
and so on to viscosity.

(c) The low-frequency cutoff for this pressure spectrum is about 0.5 mHz, and at 1 mHz,
P (f) has the value P (f = 1mHz) ∼ 0.3Pa, which is about 3 × 10−6 of atmospheric
pressure. Assuming that 0.5 mHz corresponds to the largest eddies, which have a
length scale of a few km (a little less than the scale height of the atmosphere), derive
an estimate for the eddies’ turbulent viscosity νt in the lower atmosphere. By how
many orders of magnitude does this exceed the molecular viscosity? What fraction
of the sun’s energy input to Earth (∼ 106 erg cm−2 s−1) goes into maintaining this
turbulence (assumed to be distributed over the lowermost 10 km of the atmosphere)?

(d) At f = 1 mHz, what is the characteristic spatial scale (wavelength) of the relevant
normal modes of the Earth? [Hint: The relevant modes have few or no nodes in the
radial direction. All you need to answer this is a typical wave speed for seismic shear
waves, which you can take to be 5 km/s.] What is the characteristic spatial scale
(eddy size) of the atmospheric pressure fluctuations at this same frequency, assuming
isotropic turbulence? Suggest a plausible estimate for the rms amplitude of the pres-
sure fluctuation averaged over a surface area equal to one square wavelength of the
earth’s normal modes. (You must keep in mind the random spatially and temporally
fluctuating character of the turbulence.)

(e) Using your answer from (d) and a characteristic shear and bulk modulus for the Earth’s
deformations of K ∼ µ ∼ 1012 dyne cm−2, comment on how the observed rms normal-
mode acceleration (10−10 cm s−2) compares with that expected from stochastic forcing
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due to atmospheric turbulence. You may need to go back to Chaps. 11 and 12, and
think about the relationship between surface force and surface deformation. [Note:
There are several issues in doing this assessment accurately that have not been dealt
with in this exercise, e.g. number of modes in a given frequency range; so don’t expect
to be able to get an answer more accurate than an order of magnitude.]

****************************

15.5 Turbulent Boundary Layers

Much interest surrounds the projection of spheres of cork, rubber, leather and string by
various parts of the human anatomy, with and without the mechanical advantage of levers of
willow, ceramic and the finest Kentucky ash. As is well-known, changing the surface texture,
orientation, and spin of a ball in various sports can influence the trajectory markedly. Much
study has been made of ways to do this both legally and illegally. Some procedures used by
professional athletes are pure superstition, but many others find physical explanations that
are good examples of the behavior of boundary layers. Many sports involve the motion of
balls where the boundary layers can be either laminar or turbulent; his allows opportunities
for controlling the flow. With the goal of studying this, let us now consider the structure of
a turbulent boundary layer—first along a straight wall, and later along a ball’s surface.

15.5.1 Profile of a Turbulent Boundary Layer

In Sec. 14.4.1, we derived the Blasius profile for a laminar boundary layer and showed that
its thickness a distance x downstream from the start of the boundary layer was roughly
3δ = 3(νx/V )1/2, where V is the free-stream speed; cf. Fig. 14.11. As we have described,
when the Reynolds number is large enough, Red = V d/ν ∼ 3× 105 or Reδ ∼

√
Red ∼ 500 in

the case of flow past a cylinder (Figs. 15.1 and 15.2), the boundary layer becomes turbulent.
A turbulent boundary layer consists of a thin laminar sublayer of thickness δls close to

the wall and a much thicker turbulent zone of thickness δt; Fig. 15.10.

(a) (b)

laminar

tu
rb

ul
en

t

y
V

laminar  sublayer

y

x vx

ls ls

t

Fig. 15.10: (a) Physical structure of a turbulent boundary layer. (b) Mean flow speed vx as a
function of distance from the wall for the turbulent boundary layer [solid curve, Eqs. (15.27)] and
for a laminar boundary layer [the Blasius profile, Eqs. (14.41)].
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In the following paragraphs we shall use the turbulence concepts developed above to
compute, in order of magnitude, the structures of the laminar sublayer and the turbulent
zone, and the manner in which those structures evolve along the boundary. We denote by
y distance perpendicular to the boundary, and by x distance along it in the direction of the
flow.

One key to the structure of the boundary layer is the fact that, in the x component of
the time-averaged Navier-Stokes equation, the stress-divergence term Txy,y has the potential
to be so huge (because of the boundary layer’s small thickness) that no other term can
compensate it. This is true in the turbulent zone, where Txy is the huge Reynolds stress, and
also true in the laminar sublayer, where Txy is the huge viscous stress produced by a huge
shear that results from the thinness of the layer. (One can check at the end of the following
analysis that, for the computed boundary-layer structure, other terms in the x component of
the Navier-Stokes equation are indeed so small that they could not compensate a significantly
nonzero Txy,y.) This potential dominance of Txy,y implies that the flow must adjust itself so
as to make Txy,y be nearly zero, i.e. Txy be (very nearly) independent of distance y from the
boundary.

In the turbulent zone Txy is the Reynolds stress, ρv2
" , where v" is the turbulent velocity

of the largest eddies at a distance y from the wall; and therefore constancy of Txy implies
constancy of v". The largest eddies at y will have a size " of order the distance y from the wall,
and correspondingly, the turbulent viscosity will be νt ∼ v"y/3. Equating the expression ρv2

"

for the Reynolds stress to the alternative expression 2ρνt
1
2 v̄,y (where v̄ is the mean flow speed

at y and 1
2 v̄,y is the shear), and using νt ∼ v"y/3 for the turbulent viscosity, we discover that

in the turbulent zone the mean flow speed varies logarithmically with distance from the wall:
v̄ ∼ v" ln y + constant. Since the turbulence is created at the inner edge of the turbulent
zone, y ∼ δls, by interaction of the mean flow with the laminar sublayer, the largest turbulent
eddies there must have their turnover speeds v" equal to the mean-flow speed there: v̄ ∼ v"

at y ∼ δls. This tells us the normalization of the logarithmically varying mean flow speed:

v̄ ∼ v"[1 + ln(y/δls)] at y ! δls . (15.27a)

Turn, next to the structure of the laminar sublayer. There the constant shear stress
is viscous, Txy = ρνv̄,y. Stress balance at the interface between the laminar sublayer and
the turbulent zone requires that this viscous stress be equal to the turbulent zone’s ρv2

" .
This equality implies a linear profile for the mean flow velocity in the laminar sublayer,
v̄ = (v2

" /ν)y. The thickness of the sublayer is then fixed by continuity of v̄ at its outer
edge, (v2

" /ν)δ" = v". Combining these last two relations, we obtain the following profile and
laminar-sublayer thickness:

v̄ ∼ v"

(
y

δls

)
at y " δls ∼ ν/v" . (15.27b)

Having deduced the internal structure of the boundary layer, we turn to the issue of what
determines the y-independent turbulent velocity v" of the largest eddies. This v" is fixed by
matching the turbulent zone to the free-streaming region outside it. The free-stream velocity
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V must be equal to the mean flow velocity v̄ [Eq. (15.27a)] at the outer edge of the turbulent
zone. The logarithmic term will dominate, so V = v" ln(δt/δls). Introducing an overall
Reynolds number for the boundary layer,

Reδ ≡ V δt/ν, (15.28)

and noting that turbulence requires a huge value (! 1000) of this Reδ, we can reexpress V
as V ∼ v" ln Reδ. This should actually be regarded as an equation for the turbulent velocity
of the largest scale eddies in terms of the free-stream velocity:

v" ∼
V

ln Reδ
. (15.29)

If the thickness δt of the entire boundary layer and the free-stream velocity V are given,
then Eq. (15.28) determines the boundary layer’s Reynolds number, Eq. (15.29) then deter-
mines the turbulent velocity, and Eqs. (15.27) determine the layer’s internal structure.

Turn, finally, to the issue of how the boundary layer thickness δt evolves with distance
x down the wall (and correspondingly, how all the rest of the boundary layer’s structure,
which is fixed by δt, evolves). The key to its evolution is entrainment, which we met in our
discussion of turbulent wakes and jets (Sec. 15.4.3). At the turbulent zone’s outer edge, the
largest turbulent eddies move with speed ∼ v" into the free-streaming fluid, entraining that
fluid into themselves Correspondingly, the thickness grows at a rate

dδt

dx
∼ v"

V
∼ 1

ln Reδ
. (15.30)

Since ln Reδ depends only extremely weakly on δt, the turbulent boundary layer expands
essentially linearly with distance x, by contrast with a laminar boundary layer’s δ ∝ x1/2.

15.5.2 Coanda Effect and Separation in a Turbulent Boundary
Layer

One can easily verify that, not only does the turbulent boundary layer expand more rapidly
than the corresponding laminar boundary layer would, if it were stable, but the turbulent
layer is also thicker at all locations down the wall. Physically, this can be traced, in part,
to the fact that the turbulent boundary layer involves a three-dimensional velocity field,
whereas the corresponding laminar layer would involve only a two-dimensional field. The
enhanced thickness and expansion contribute to the Coanda effect for a turbulent boundary
layer — it’s ability to stick to the wall under adverse conditions (Sec. 15.4.3 above).

However, there is a price to be paid for this benefit. Since the velocity gradient is increased
close to the surface, the actual surface shear stress exerted by the turbulent layer, through
its laminar sublayer, is significantly larger than in the corresponding laminar boundary
layer. As a result, if the layer were to remain laminar, the portion that would adhere to
the surface would produce less viscous drag than the corresponding portion of the turbulent
layer. Correspondingly, in a long, straight pipe, the drag on the pipe wall goes up when the
boundary layer becomes turbulent.
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However, for flow around a cylinder or other confined body, the drag goes down! cf.
Fig. 15.2. The reason is that in the separated, laminar boundary layer the dominant source
of drag is not viscosity but rather a pressure differential between the front face of the cylinder,
where the layer adheres, and the back face where the reverse eddies circulate. The pressure is
much lower in the back-face eddies than in the front-face boundary layer, and that pressure
differential gives rise to a significant drag, which gets reduced when the layer goes turbulent
and adheres to the back face. Therefore, if one’s goal is to reduce the overall drag and the
laminar flow is prone to separation, a nonseparating (or delayed-separation) turbulent layer
is to be prefered over the laminar layer. Similarly (and for essentially the same reason), for
an airplane wing, if one’s goal is to maintain a large lift, then a nonseparating (or delayed-
separation) turbulent layer is to be prefered over a separating, laminar one.5

For this reason, steps are often taken in engineering flows to ensure that boundary layers
become and remain turbulent. A crude but effective example is provided by the vortex
generators that are installed on the upper surfaces of some airplane wings (Fig. 15.11). These
are small obstacles on the wing which penetrate through a laminar boundary layer into the
free flow. By changing the pressure distribution, they force air into the boundary layer
and initiate three-dimensional vortical motion in the boundary layer forcing it to become

5Another example of separation occurs in “Lee waves” which can form when wind blows over a mountain
range. These consist of standing-wave eddies in the separated boundary layer, somewhat analogous to the
Karman vortex street of Fig. 15.2d; and they are sometimes used by glider pilots to regain altitude.
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Fig. 15.11: (a) A laminar boundary layer, separating from an airplane wing due to an adverse
pressure gradient in the wing’s back side. (b) Vortex generators on attached to the wing’s top face
generate turbulence. The turbulent boundary layer sticks to the wing more effectively than the
laminar boundary layer (Coanda effect). Separation from the wing is delayed, and the wing’s lift
is increased and drag is decreased.
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partially turbulent. This can improve the wing’s lift, it allows the airplane to climb more
steeply without stalling due to boundary-layer separation, and it helps reduce aerodynamical
drag.

15.5.3 Instability of a Laminar Boundary Layer

Much work has been done on the linear stability of laminar boundary layers. The principles of
such stability analyses should now be familiar, although the technical details are formidable.
In the simplest case an equilibrium flow like the Blasius profile is identified and the equations
governing the time evolution of small perturbations are written down. The spatial and
temporal evolution of individual Fourier components is assumed to vary as exp i(k · x−ωt),
and we seek modes that have zero velocity perturbation on the solid surface past which the
fluid flows, and that decay to zero in the free stream. We ask whether there are unstable
modes, i.e., modes with real k for which the imaginary part of ω is positive so they grow
exponentially in time. The results can generally be expressed in the form of a diagram like
Fig. 15.12.

It is found that there is generally a critical Reynolds number at which one mode becomes
unstable. At higher values of the Reynolds number a range of k-vectors are unstable. One
interesting result of these calculations is that in the absence of viscous forces (i.e., in the
limit Reδ → ∞), the boundary layer is unstable if and only if there is a point of inflection
in the velocity profile (a point where d2vx/dy2 changes sign); cf. Fig. 15.12 and Ex. 15.9.

Although, in the absence of an inflection, an inviscid flow vx(y) is stable, for some such
profiles even the slightest viscosity can trigger instability. Physically, this is because viscosity
can tap the relative kinetic energies of adjacent flow lines. Viscous-triggered instabilities of
this sort are sometimes called secular instabilities by contrast with the dynamical instabil-
ities that arise in the absence of viscosity. Secular instabilities are quite common in fluid
mechanics.

ReRecrit ~ 500
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stable

    no
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Fig. 15.12: Values of wave number k for stable and unstable wave modes in a laminar boundary
layer with thickness δ, as a function of the boundary layer’s Reynolds number Reδ = V δ/ν. If the
unperturbed velocity distribution vx(y) has no inflection point, i.e. if d2vx/dy2 < 0 everywhere as
is the case for the Blasius profile (Fig. 14.11), then the unstable modes are confined to the shaded
region. If there is an inflection point (so d2vx/dy2 > 0 near the wall but becomes negative farther
from the wall), as is the case near a surface of separation (Fig. 14.12), then the unstable region is
larger and does not asymptote to k = 0 as Reδ → ∞, i.e. it has a boundary like the dashed curve.
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****************************

EXERCISES

Exercise 15.9 Problem: Tollmein-Schlicting Waves
Consider an inviscid (ν = 0), incompressible flow near a plane wall where a boundary layer
is established. Introduce coordinates x parallel to the wall and y perpendicular to the wall.
Let the components of the equilibrium velocity be vx(y).

(a) Show that a small perturbation in the velocity, δvy ∝ exp ik(x − ct), with k real and
frequency ck possibly complex, satisfies the differential equation

∂2δvy

∂y2
=

[
1

(vx − c)

d2vx

dy2
+ k2

]
δvy . (15.31)

Hence argue that a sufficient condition for unstable wave modes (Im(c) > 0), is that
the velocity field possess a point of inflection; cf. Fig. 15.12. (The boundary layer can
also be unstable in the absence of a point of inflection, but viscosity must be present
to trigger the instability.)

****************************

15.5.4 The Flight of a Ball.

Having developed some insights into boundary layers and their stability, we now apply those
insights to the balls used in various sports.

The simplest application is to the dimples on a golf ball [Fig. 15.13a]. The dimples
provide finite-amplitude disturbances in the flow which can initiate the formation of growing
wave modes and turbulence in the boundary layer. The adherence of the boundary layer to
the ball is improved and separation occurs further behind the ball leading to a lower drag
coefficient and a greater range of flight; see Figs. 15.2 and 15.13a.

(a)  Golf  Ball (b)  Cricket  Ball (c)  Baseball

turbulent
boundary

layer

turbulent
wake

laminar
boundary

layer

turbulent
boundary

layer
Force Force

Fig. 15.13: Boundary layers around golf balls, cricket balls, and baseballs, as they move leftward
relative to the air — i.e., as the air flows rightward as seen in their rest frames.
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A variant on this mechanism is found in the game of cricket, which is played with a ball
whose surface is polished leather with a single equatorial seam of rough stitching. When the
ball is “bowled” in a non-spinning way with the seam inclined to the direction of motion,
there is a laminar boundary layer on the smooth side and a turbulent boundary layer on
the side with the rough seam [Fig. 15.13b]. These two boundary layers separate at different
points behind the flow leading to a net deflection of the air. The ball will therefore swerve
towards the side with the leading seam. (The effect is strongest when the ball is new and
still shiny and on days when the humidity is high so the thread in the seam swells and is
more efficient at making turbulence.)

This mechanism is different from that used to throw a slider or curveball in baseball, in
which the pitcher causes the ball to spin about an axis roughly perpendicular to the direction
of motion. In the slider the axis is vertical; for a curveball it is inclined at about 45◦ to the
vertical. The spin of the ball creates circulation (in a nonrotating, inertial frame) like that
around an airfoil. The pressure forces associated with this circulation produce a net sideways
force in the direction of the baseball’s rotational velocity on its leading hemisphere, i.e. as
seen by the hitter [Fig. 15.13c]. The physical origin of this effect is actually quite complex
and is only properly described with reference to experimental data. The major effect is that
separation is delayed on the side of the ball where the rotational velocity is in the same
direction as the airflow, and happens sooner on the opposite side [Fig. 15.13c], leading to a
pressure differential. The reader may be curious as to how this circulation can be established
in view of Kelvin’s theorem, Eq. (14.15), which tells us that if we use a circuit that is so
far from the ball and its wake that viscous forces cannot cause the vorticity to diffuse to it,
then the circulation must be zero. What actually happens is that, when the flow is initiated,
starting vortices are shed by the ball and are then convected downstream, leaving behind the
net circulation Γ that passes through the ball (Fig. 15.14). This effect is very much larger in
two dimensions with a rotating cylinder than in three dimensions because the magnitude of
the shed vorticity is much larger. It goes by the name of Magnus effect in two dimensions
and Robins effect in three. It is also useful in understanding the lift in airfoils.
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Vortex Lines Starting Vortex
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v

Fig. 15.14: Vortex lines passing through a spinning ball. The starting vortex is created and
shed when the ball is thrown, and is carried downstream by the flow as seen in the ball’s frame of
reference. The vortex lines connecting this starting vortex to the ball lengthen as the flow continues.
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In table tennis, a drive is often hit with topspin so that the ball rotates about a horizontal
axis perpendicular to the direction of motion. In this case, the net force is downwards and the
ball falls faster toward the ground, the effect being largest after it has somewhat decelerated.
This allows a ball to be hit hard over the net and bounce before passing the end of the table,
increasing the margin for errors in the direction of the hit.

Those wishing to improve their curveballs or cure a bad slice are referred to the mono-
graphs by Adair (1990), Armenti (1992) and Lighthill (1986).

****************************

EXERCISES

Exercise 15.10 Problem: Effect of drag
A well hit golf ball travels about 300 yards. A fast bowler or fastball pitcher throws a ball
at over 90 m.p.h (miles per hour). A table tennis player can hit a forehand return at about
30 m.p.h. The masses and sizes of each of these three types of balls are mg ∼ 46g, dg ∼
43mm, mc ∼ 160g, dc ∼ 70mm, mb ∼ 140g, db ∼ 75mm, mtt ∼ 2.5g, dtt ∼ 38mm.

(a) For golf, cricket (or baseball) and table tennis, estimate the Reynolds number of the
flow and infer the drag coefficient, CD. (The variation of CD with Red can be assumed
to be similar to that in flow past a cylinder.)

(b) Hence estimate the importance of aerodynamic drag in determining the range of a ball
in each of these three cases.

****************************

15.6 The Route to Turbulence: Onset of Chaos

15.6.1 Couette Flow

Let us examine qualitatively how a viscous flow becomes turbulent. A good example is
Couette flow between two long, concentric, relatively rotating cylinders as introduced in
Sec. 14.6.4 and depicted in Fig. 15.15a. The Rayleigh stability criterion (flow unstable if
and only if angular momentum per unit mass decreases outward) was derived in Sec. 14.6.4
ignoring viscous stress. Now suppose we have a flow that is stable according to the Rayleigh
criterion. Suppose, further, that the fluid is a liquid and we steadily decrease its viscosity
by heating it, so the Reynolds number steadily increases. At low Re, the equilibrium flow is
stationary and azimuthal [strictly in the φ direction in Fig. 15.15a]. However, at some critical
Reynolds number Rec1, the flow becomes unstable to the growth of small perturbations,
and these perturbations drive a transition to a new, stationary equilibrium that involves
poloidal circulation (quasi-circular motions in the r and z directions, called Taylor rolls);
see Fig. 15.15a.
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Fig. 15.15: Bifurcation in Couette flow. (a) Equilibrium flow with Taylor rolls. (b)Bifurcation
diagram in which the amplitude of the poloidal circulation |ΓP| in a Taylor roll is plotted against
the Reynolds number Re. At low Re (Re < Rec1) the only equilibrium flow configuration is smooth,
azimuthal flow. At larger Re (Rec1 < Re < Rec2) there are two equilibria, one with Taylor rolls and
stable, the other the smooth, azimuthal flow, which has become unstable. (c) Shape of a Taylor
roll at Rec1 < Re < Rec2 (dashed ellipse) and at higher Re, Rec2 < Re < Rec3 (wavy curve).

What has happened is that an equilibrium with a high degree of symmetry has become un-
stable, and a new, lower-symmetry, stable stable equilibrium has taken over; see Fig. 15.15b.
Translational invariance along the cylinder axis has been lost from the flow, despite the fact
that the boundary conditions remain translationally symmetric. This change of equilibrium
mode is another example of a bifurcation like that discussed when we treated the buckling
of beams and playing cards (Secs. 11.8 and 12.3.5).

As Re is increased further, this process repeats: At a second critical Reynolds number
Rec2, there is a second bifurcation of equilibria in which the azimuthally smooth Taylor rolls
become unstable and are replaced by new, azimuthally wavy Taylor rolls; see Fig. 15.15c.
Again, an equilibrium with higher symmetry (rotation invariance) has been replaced, at a
bifurcation point, by one of lower symmetry (no rotation invariance). There is a fundamental
frequency f1 associated with the wavy Taylor rolls’ motion as they circulate around the
central cylinder. Since the waves are nonlinearly large, harmonics of this fundamental are also
seen when one Fourier decomposes the velocity field; cf. Fig. 15.16a. When Re is increased
still further to some third critical value Rec3, there is yet another bifurcation. The Taylor
rolls now develop a second set of waves, superimposed on the first, with a corresponding
new fundamental frequency f2 that is incommensurate with f1. In the energy spectrum one
now sees various harmonics of f1 and of f2, as well as sums and differences of these two
fundamentals; cf. Fig. 15.16b.

It is exceedingly difficult to construct experimental apparatus that is clean enough, and
free enough from the effects of finite lengths of the cylinders, to reveal what happens next
as one turns up the Reynolds number. However, despite the absence of clean experiments, it
seemed obvious before the 1970’s what would happen: The sequence of bifurcations would
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Fig. 15.16: The energy spectrum of velocity fluctuations in rotating Couette flow (schematic). (a)
For a moderate Reynolds number, Rec2 < Re < Rec3, at which the stable equilibrium flow is that
with the wavy Taylor rolls of Fig. 15.15c. (b) For a higher Reynolds number, Rec3 < Re < Rec4,
at which the stable flow has wavy Taylor rolls with two incommensurate fundamental frequencies
present. (c) For a still higher Reynolds number, Re > Rec4, at which turbulence has set in.

continue, with ever decreasing intervals of Reynolds number ∆Re between them, producing
after awhile such a complex maze of frequencies, harmonics, sums, and differences, as to be
interpreted as turbulence. Indeed, one finds the onset of turbulence described in just this
manner in the classic fluid mechanics textbook of Landau and Lifshitz (1959).

The 1970’s and 1980’s brought a major breakthrough in our understanding of the onset
of turbulence. This breakthrough came from studies of model dynamical systems with only
a few degrees of freedom, in which nonlinear effects play similar roles to the nonlinearities of
the Navier-Stokes equation. These studies revealed only a handful of routes to irregular or
unpredictable behavior known as chaos, and none were of the Landau-Lifshitz type. However,
one of these routes starts out in the same manner as does rotating Couette flow: As a control
parameter (Reynolds number for Couette flow) is gradually increased, first oscillations with
one fundamental frequency f1 and its harmonics turn on; then a second frequency f2 and its
harmonics turn on, along with sums and differences of f1 and f2; and then, suddenly, chaos
sets in. Moreover, the chaos is clearly not being produced by a complicated superposition
of other, new frequencies; it is fundamentally different from that. The best Couette-flow
experiments of the 1980’s and later appear to confirm that the onset of turbulence goes by
this route; see Fig. 15.16c.

15.6.2 Feigenbaum Sequence and Onset of Turbulence in Convec-
tion

The very simplest of systems in which one can study the several possible routes to chaos
are one-dimensional mathematical maps. A lovely example is the “Feigenbaum sequence,”
explored by Mitchell Feigenbaum in the 1970’s.

The Feigenbaum sequence is a sequence {x1, x2, x3, . . .} of values of a real variable x,
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given by the rule (sometimes called the logistic equation) 6

xn+1 = 4axn(1 − xn). (15.32)

Here a is a fixed “control” parameter. It is easy to compute Feigenbaum sequences {xn} for
different values of a on a personal computer (Ex. 15.11). What is found is that there are
critical parameters a1, a2, . . . at which the character of the sequence changes sharply. For
a < a1, the sequence asymptotes to a stable fixed point. For a1 < a < a2, the sequence
asymptotes to stable, periodic oscillations between two fixed points. If we increase the
parameter further, so that a2 < a < a3, the sequence becomes a periodic oscillation between
four fixed points. The period of the oscillation has doubled. This period doubling (NOT
frequency doubling) happens again: When a3 < a < a4, x asymptotes to regular motion
between eight fixed points. Period doubling increases with shorter and shorter intervals of a
until at some value a∞, the period becomes infinite and the sequence does not repeat. Chaos
has set in.

This period doubling is a second route to chaos, very different in character from the
“one-frequency, two-frequencies, chaos” route that one meets in Couette flow. Remarkably,
fluid dynamical turbulence can set in by this second route, as well as by the first. It does
so in certain very clean experiments on convection in liquid helium. We shall return to this
below, and then again in Sec. 16.6.

How can so starkly simple and discrete a thing as a one-dimensional map bear any
relationship at all to the continuous solutions of the fluid dynamical differential equations?
The answer is quite remarkable:

Consider a steady flow in which one parameter a (e.g. the Reynolds number) can be
adjusted. Now, as we change a and approach turbulence, the flow may develop a periodic
oscillation with a single frequency f1. We could measure this by inserting some probe at a
fixed point in the flow to measure a fluid variable y, e.g. one component of the velocity. We
can detect the periodicity either by inspecting the readout y(t) or its Fourier transform ỹ.
However, there is another way, that may be familiar from classical mechanics. This is to
regard {y, ẏ} as the two coordinates of a two-dimensional phase space. (Of course, instead
one could measure many variables and their time derivatives, resulting in an arbitrarily large
phase space, but let us keep matters as simple as possible.) For a single periodic oscillation,
the system will follow a closed path in this phase space [Fig. 15.17a]. As we increase a further,
a period doubling may occur and the trajectory in phase space may look like Fig. 15.17b.
Now, as we are primarily interested in the development of the oscillations, we need only keep
one number for every fundamental period P1 = 1/f1. Let us do this by taking a section
through phase space and introducing a coordinate x on this section as shown in Fig. 15.17.
The n’th time the trajectory crosses through this section, its crossing point is xn, and the
mapping from xn to xn+1 can be taken as a representative characterization of the flow. When
only the frequency f1 is present, the map will read xn+2 = xn [Fig. 15.17a]. When f1 and
f2 = 1

2f1 are present, the map will read xn+4 = xn [Fig. 15.17b]. (These specific maps are

6This equation first appeared in discussions of population biology (Verhulst, 1838). If we consider xn

as being proportional to the number of animals in a species, the number in the next season should be
proportional to the number of animals already present and to the availability of resources which will decrease
as xn approaches some maximum value, in this case unity. Hence the terms xn and 1 − xn in Eq. (15.32).
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Fig. 15.17: a) Representation of a single periodic oscillation as motion in phase space. b) Motion
in phase space after period doubling. The behavior of the system may also be described by using
the coordinate x of the Poincaré map.

overly simple compared to what one may encounter in a real flow, but they illustrate the
idea.)

To reiterate, instead of describing the flow by the full solution v(x, t) to the Navier-Stokes
equations and the flow’s boundary conditions, we can construct the simple map xn → xn+1

to characterize the flow. This procedure is known as a Poincaré map. The mountains have
labored and brought forth a mouse! However, this mouse turns out to be all that we need.
For some convection experiments, just the same period doubling behavior and approach to
chaos are present in these maps as in the two-dimensional phase-space diagram and in the
full solution to the fluid dynamical equations; and when observed in the Poincaré maps,
it looks qualitatively the same as in the Feigenbaum sequence. It is remarkable that for a
system with so many degrees of freedom, chaotic behavior can be observed by suppressing
almost all of them.

If, in the period-doubling route to chaos, we compute the limiting ratio of successive
critical parameters,

F = lim
j→∞

aj − aj−1

aj+1 − aj
, (15.33)

we find that it has the value 4.6692016090 . . . . This (Feigenbaum) number seems to be a
universal constant characteristic of most period doubling routes to chaos, independent of the
particular map that was used. For example, if we had used

xn+1 = a sin πxn (15.34)

we would have got the same constant.
The most famous illustration of the period doubling route to chaos is a classic experiment

by Libchaber and Maurer (1978) on convection in liquid helium. The temperature at a point
was monitored with time as the helium’s vertical temperature gradient was slowly increased.
Initially, the temperature was found to oscillate with a single period, but then subharmonics
started appearing one after another, until, eventually, the flow became turbulent. Libchaber
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was able to measure the ratio (15.33) accurate to about 3 per cent (with aj the temperature
at which the j’th period doubling occurred). His result agreed with Feigenbaum’s number
to within his experimental accuracy!

For several other routes to chaos identified in convection experiments, see Gollub and
Benson (1980).

When chaos sets in, the evolution of the system becomes essentially incalculable. This
is because, as can be shown mathematically, the future state, as measured by the values of
a set of fluid variables at some subsequent time (or by the value of a map), becomes highly
sensitive to the assumed initial conditions. Paths in phase space (or in the mapping) that
start extremely close to one another diverge from each other exponentially rapidly with time.

It is important to distinguish the unpredictability of classical chaos from unpredictability
in the evolution of a quantum mechanical system. A classical system evolves under precisely
deterministic differential equations. Given a full characterization of the system at any time t,
the system is fully specified at a later time t+∆t, for any ∆t. However, what characterizes a
chaotic system is that the evolution of two identical systems in neighboring initial states will
eventually evolve so that they follow totally different histories. The time for this to happen
is called the Lyapunov time. The practical significance of this essentially mathematical
feature is that if, as will always be the case, we can only specify the initial state up to
a given accuracy (due to practical considerations, not issues of principle), then the true
initial state could be any one of those lying in some region, so we have no way of predicting
what the state will be after a few Lyapunov times. Quantum mechanical indeterminacy is
different. If we can prepare a system in a given state described by a wave function, then
the wave function’s evolution will be governed fully deterministically by the time-dependent
Schrödinger equation. However, if we choose to make a measurement of an observable, many
quite distinct outcomes are immediately possible and the system will be left in an eigenstate
corresponding to the actual measured outcome. The quantum mechanical description of
classical chaos is the subject of quantum chaos.

The realisation that many classical systems have an intrinsic unpredictability despite
being deterministic from instant to instant has been widely publicised in popularisations of
research into chaos. However it is not particularly new. It was well understood, for example,
by Poincaré around 1900, and watching the weather report on the nightly news bears witness
to its dissemination into the popular culture! What is new and intriguing is the manner in
which the transition from a deterministic to a non-predictable evolution happens.

Chaotic behavior is well documented in a variety of physical dynamical systems: electrical
circuits, nonlinear pendula, dripping faucets, planetary motions and so on. The extent to
which the principles that have been devised to describe chaos in these systems can also
be applied to general fluid turbulence remains a matter for debate. There is no question
that there are similarities, and there has been quantitative success in applying chaos results
to a limited form of turbulent convection. However, most forms of turbulence are not so
easily described and there is still a huge gap between the intriguing mathematics of chaotic
dynamics and practical applications to natural and technological flows.

****************************
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EXERCISES

Exercise 15.11 Problem: Feigenbaum Sequence
Use a computer to calculate the first five critical parameters aj in the Feigenbaum sequence,
Eq. (15.32). Hence verify that the ratio of successive differences, tends toward the limit
quoted in Eq. (15.33). (Hint. You might find it helpful to construct a graph to find suitable
starting values, x1 and starting parameters a.)

Exercise 15.12 Example: Lyapunov Exponent
Consider the logistic equation (15.32) for the special case a = 1, which is large enough to
ensure that chaos has set in.

(a) Make the substitution xn = sin2 πθn and show that the equation can be expressed in
the form θn+1 = 2θn(mod 1); i.e., θn+1 = fractional part of 2θn. .

(b) Write θn as a “binimal” (binary decimal). For example 11/16 = 1/2 +1/8+1/16 has the
binary decimal form 0.1011 . Explain what happens to this number in each successive
iteration.

(c) Now suppose that an error is made in the i’th digit of the starting binimal. When will
it cause a major error in the predicted value of xn?

(d) If the error after n iterations is written εn, show that the Lyapunov exponent p defined
by

p = lim
n→∞

1

n
ln

∣∣∣∣
εn
ε0

∣∣∣∣ (15.35)

is ln 2 (so εn ( 2nε0 for large enough n). Lyapunov exponents play an important role
in the theory of dynamical systems.

Exercise 15.13 Example: Strange Attractors
Another interesting one-dimensional map is provided by the recursion relation,

xn+1 = a

(
1 − 2

∣∣∣∣xn − 1

2

∣∣∣∣

)
(15.36)

(a) Consider the asymptotic behavior of the variable xn for different values of the parameter
a, with both xn and a being confined to the interval [0, 1]. In particular find that for
0 < a < acrit (for some acrit), the sequence xn converges to a stable fixed point, but for
acrit < a < 1, the sequence wanders chaotically through some interval [xmin, xmax].

(b) Using a computer, calculate the value of acrit and the interval [xmin, xmax] for a = 0.8.

(c) The interval [xmin, xmax] is an example of a strange attractor. It has the property that
if we consider sequences with arbitrarily close starting values, their values of xn in this
range will eventually diverge. Show that the attractor is strange by computing the
sequences with a = 0.8 and starting values x1 = 0.5, 0.51, 0.501, 0.5001. Determine
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the number of iterations nε required to produce significiant divergence as a function
of ε = x1 − 0.5. It is claimed that nε ∼ − ln2(ε). Can you verify this? Note that the
onset of chaos at a = acrit is quite sudden in this case, unlike the behavior exhibited
by the Feigenbaum sequence.

Exercise 15.14 Problem: Lorenz Equations
One of the first discoveries of chaos in a mathematical model was by Lorenz (1963), who made
a simple model of atmospheric convection. In this model, the temperature and velocity field
are characterized by three variables, x, y, z, which satisfy the coupled, nonlinear differential
equations

dx/dt = 10(y − x) ,

dy/dt = −xz + 28x − y ,

dz/dt = xy − 8z/3 . (15.37)

(The precise definitions of x, y, z need not concern us here.) Integrate these equations numer-
ically to show that x, y, z follow non-repeating orbits in the three-dimensional phase space
that they span, but follow certain broadly defined paths in this space. (It may be helpful to
plot out the trajectories of pairs of the dependent variables.)
[Note: These Lorenz equations are often studied with the numbers 10, 28, 8/3 replaced by
parameters σ, ρ, and β. As these parameters are varied, the behavior of the system changes.]

****************************

Bibliographic Note

Turbulence is omitted from many standard textbooks on fluid mechanics, aside from brief
descriptions, presumably because it is so poorly understood. Good textbook treatments
can be found in White (1991), Tennekes and Lumley (1972), and from a more physical
perspective, Tritton (1977). To develop physical insight into turbulence, we recommend
viewing the movies by Stewart (1968) and Rouse (1963) and looking at photographs, e.g. in
Van Dyke (1982). For the influence of boundary layers and turbulence on the flight of balls
of various sorts, see Adair (1990), Armenti (1992), and Lighthill (1986). For the onset of
turbulence, and more generally the onset of chaos in dynamical systems and mathematical
maps, see Sagdeev, Usikov and Zaslavsky (1988), and Acheson (1990).
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Box 15.4
Important Concepts in Chapter 15

• Weak turbulence contrasted with strong or fully developed turbulence, Sec. 15.1

• Scaling relation, Sec. 15.2

• Stagnation pressure, Sec. 15.2

• Drag coefficient, Sec. 15.2

• Karman vortex street, Sec. 15.2

• Critical Reynolds number, Red ∼ 1000, for onset of turbulence, Sec. 15.2

• Entrainment, Coanda effect, and its role on airplane wings, Secs. 15.2, 15.5.1, Ex.
15.7

• Intermittency, Sec. 15.1

• Role of vorticity in turbulence: stretching of vortex tubes, Sec. 15.3.1, Fig. 15.5

• Eddies, energy cascade, viscous damping at smallest scale, Sec. 15.4.4

• Kolmogorov spectrum, Sec. 15.4.4

• Weak turbulence theory, Sec. 15.4

– Decomposition into time averaged flow and fluctuating flow, Sec. 15.4.1

– Reynolds stress, tubulent viscosity, and their role in coupling fluctuating flow
to time-averaged flow, Secs. 15.4.1, 15.4.2

– The physics that governs the structure of the time-averaged flow in boundary
layers, wakes and jets, Sec. 15.5.1, Exs. 15.5, 15.6

• Secular instability contrasted with dynamical instability, Sec. 15.5.3

• Rotating Couette flow, Sec. 15.6.1

• Poincaré map and its use to produce discrete maps that characterize a flow, Sec.
15.6.2

• Lyapunov exponent, Ex. 15.12

• Strange attractor, Ex. 115.13
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