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Chapter 16

Waves and Convection

Version 1116.1.K, 13 February 2012. Please send comments, suggestions, and errata via
email to kip@caltech.edu or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 16.1
Reader’s Guide

e This chapter relies heavily on Chaps. 13 and 14.

e Chap. 17 (compressible flows) relies to some extent on Secs. 16.2, 16.3 and 16.5 of
this chapter.

e The remaining chapters of this book do not rely significantly on this chapter.

16.1 Overview

In the preceding chapters, we have derived the basic equations of fluid dynamics and devel-
oped a variety of techniques to describe stationary flows. We have also demonstrated how,
even if there exists a rigorous, stationary solution of these equations for a time-steady flow,
instabilities may develop and the amplitude of oscillatory disturbances will grow with time.
These unstable modes of an unstable flow can usually be thought of as waves that interact
strongly with the flow and extract energy from it. Waves, though, are quite general and can
be studied independently of their sources. Fluid dynamical waves come in a wide variety
of forms. They can be driven by a combination of gravitational, pressure, rotational and
surface-tension stresses and also by mechanical disturbances, such as water rushing past a
boat or air passing through a larynx. In this chapter, we shall describe a few examples of
wave modes in fluids, chosen to illustrate general wave properties.

The most familiar types of wave are probably gravity waves on the surface of a large
body of water (Sec. 16.2), e.g. ocean waves and waves on lakes and rivers. We consider
these in the linear approximation and find that they are dispersive in general, though they



become nondispersive in the long-wavelength (shallow-water) limit, i.e., when they can feel
the water’s bottom. We shall illustrate gravity waves by their roles in helioseismology, the
study of coherent-wave modes excited within the body of the sun by convective overturning
motions. We shall also examine the effects of surface tension on gravity waves, and in this
connection shall develop a mathematical description of surface tension (Box 16.4).

In contrast to the elastodynamic waves of Chap. 12, waves in fluids often develop ampli-
tudes large enough that nonlinear effects become important (Sec. 16.3). The nonlinearities
can cause the front of a wave to steepen and then break—a phenomenon we have all seen at
the sea shore. It turns out that, at least under some restrictive conditions, nonlinear waves
have some very surprising properties. There exist soliton or solitary-wave modes in which
the front-steepening due to nonlinearity is stably held in check by dispersion, so particular
wave profiles are quite robust and propagate for long intervals of time without breaking or
dispersing. We shall demonstrate this by studying flow in a shallow channel. We shall also
explore the remarkable behaviors of such solitons when they pass through each other.

In a nearly rigidly rotating fluid, there is a remarkable type of wave in which the restoring
force is the Coriolis effect, and which have the unusual property that their group and phase
velocities are oppositely directed. These so-called Rossby waves, studied in Sec. 16.4, are
important in both the oceans and the atmosphere.

The simplest fluid waves of all are small-amplitude sound waves—a paradigm for scalar
waves. These are nondispersive, just like electromagnetic waves, and are therefore sometimes
useful for human communication. We shall study sound waves in Sec.16.5 and shall use
them to explore (i) the radiation reaction force that acts back on a wave-emitting object (a
fundamental physics issue), and (ii) matched asymptotic expansions (a mathematical physics
technique). We shall also describe how sound waves can be produced by fluid flows. This will
be illustrated with the problem of sound generation by high-speed turbulent lows—a problem
that provides a good starting point for the topic of the following chapter, compressible flows.

The last section of this chapter, Sec. 16.6, deals with dynamical motions of a fluid that are
driven by thermal effects, convection. To understand convection, one must first understand
diffusive heat conduction.

When viewed microscopically, heat conduction is a similar transport process to viscosity,
and it is responsible for analogous physical effects. If a viscous fluid has high viscosity, then
vorticity diffuses through it rapidly; simularly, if a fluid has high thermal conductivity, then
heat diffuses through it rapidly. In the other extreme, when viscosity is low (i.e., when the
Reynolds number is high), instabilities produce turbulence, which transports vorticity far
more rapidly than diffusion could possibly do. Analogously, in heated fluids with modest
conductivity, the accumulation of heat drives the fluid into convective motion, and the heat
is transported much more efficiently by this motion than by thermal conduction alone. As
the convective heat transport increases, the fluid motion becomes more vigorous and, if the
viscosity is sufficiently low, the thermally driven flow can also become turbulent. These
effects are very much in evidence near solid boundaries, where thermal boundary layers can
be formed, analogous to viscous boundary layers.

In addition to thermal effects that resemble the effects of viscosity, there are also unique
thermal effects—particularly the novel and subtle combined effects of gravity and heat. Heat,



unlike vorticity, causes a fluid to expand and thus, in the presence of gravity, to become
buoyant; and this buoyancy can drive thermal circulation or free convection in an otherwise
stationary fluid. (Free convection should be distinguished from forced convection in which
heat is carried passively by a flow driven in the usual manner by externally imposed pressure
gradients, for example when you blow on hot food to cool it, or stir soup over a hot stove.)

The transport of heat is a fundamental characteristic of many flows. It dictates the form
of global weather patterns and ocean currents. It is also of great technological importance
and is studied in detail, for example, in the cooling of nuclear reactors and the design of
automobile engines. From a more fundamental perspective, as we have already discussed,
the analysis and experimental studies of convection have led to major insights into the route
to chaos (cf. Sec. 15.6).

In Sec. 16.6, we shall describe some flows where thermal effects are predominant. We
shall begin in Sec. 16.6.1 by modifying the conservation laws of fluid dynamics so as to incor-
porate heat conduction. Then in Sec. 16.6.2 we shall discuss the Boussinesq approximation,
which is appropriate for modest scale flows where buoyancy is important. This allows us in
Sec. 16.6.3 to derive the conditions under which convection is initiated. Unfortunately, this
Boussinesq approximation sometimes breaks down. In particular, as we discuss in Sec. 16.6.4,
it is inappropriate for application to convection in stars and planets where circulation takes
place over several gravitational scale heights. Here, we shall have to use alternative, more
heuristic arguments to derive the relevant criterion for convective instability, known as the
Schwarzschild criterion, and to quantify the associated heat flux. We shall apply this theory
to the solar convection zone.

Finally, in Sec. 16.6.5 we return to simple buoyancy-driven convection in a stratified fluid
to consider double diffusion, a quite general type of instability which can arise when the
diffusion of two physical quantities (in our case heat and the concentration of salt) render
a fluid unstable despite the fact that the fluid would be stably stratified if there were only
concentration gradients of one of these quantities.

As in Chaps. 14 and 15, readers are urged to watch movies in parallel with reading this
chapter; see Box 16.2.

16.2 Gravity Waves on the Surface of a Fluid

Gravity waves' are waves on and beneath the surface of a fluid, for which the restoring force

is the downward pull of gravity. Familiar examples are ocean waves and the waves produced
on the surface of a pond when a pebble is thrown in. Less familiar are “g-modes” of vibration
of the sun, discussed at the end of this section.

Consider a small-amplitude wave propagating along the surface of a flat-bottomed lake
with depth h,, as shown in Fig. 16.1. As the water’s displacement is small, we can describe
the wave as a linear perturbation about equilibrium. The equilibrium water is at rest, i.e. it
has velocity v = 0. The water’s perturbed motion is essentially inviscid and incompressible,
so Vv = 0. A simple application of the equation of vorticity transport, Eq. (14.3), assures

INot to be confused with gravitational waves, which are waves in the relativistic gravitational field (space-
time curvature) that propagate at the speed of light, and which we shall meet in Chap. 26



Box 16.2
Movies Relevant to this Chapter
We strongly recommend that the reader view the following movies dealing with waves:

e Wawves in Fluids, by A. E. Bryson (1967), film in the series by the National Com-
mittee for Fluid Mechanics Films, available in 2012 at http://web.mit.edu/hml/
ncfmf .html .

e Rotating Flows, by Dave Fultz (1969); also at http://web.mit.edu/hml/ncfmf .
html — relevant to Rossby waves, Sec. 16.4.

o Fluid Motion in o Gravitational Field, by Hunter Rouse (1967), available
in 2012 at http://www.iihr.uiowa.edu/research/publications-and-media/
films-by-hunter-rouse/ — relevant to gravity waves on the surface of water,
Sec. 16.2.

We do not know of any comparably good movies on convection.

us that, since the water is static and thus irrotational before and after the wave passes, it
must also be irrotational within the wave. Therefore, we can describe the wave inside the
water by a velocity potential ¢ whose gradient is the velocity field,

v=Vi. (16.1)

Incompressibility, V - v = 0, applied to this equation, implies that the velocity potential v
satisfies Laplace’s equation
Vi) =0 (16.2)

Fig. 16.1: Gravity Waves propagating horizontally across a lake of depth h,.



We introduce horizontal coordinates x, y and a vertical coordinate z measured upward
from the lake’s equilibrium surface (cf. Fig. 16.1), and for simplicity we confine attention to
a sinusoidal wave propagating in the x direction with angular frequency w and wave number
k. Then ¢ and all other perturbed quantities have the form f(z)expli(kx — wt)] for some
function f(z). More general disturbances can be expressed as a superposition of many of
these elementary wave modes propagating in various horizontal directions (and in the limit,
as a Fourier integral). All of the properties of such superpositions follow straightforwardly
from those of our elementary plane-wave mode (see Secs. 7.2.2 and 7.3), so we shall continue
to focus on it.

We must use Laplace’e equation (16.2) to solve for the vertical variation, f(z), of the
velocity potential. As the horizontal variation at a particular time is o exp(ikx), direct
substitution into Eq. (16.2) gives two possible vertical variations, ¢ o exp(fkz). The
precise linear combination of these two forms is dictated by the boundary conditions. The
one that we shall need is that the vertical component of velocity v, = 0¢/0z vanish at the
bottom of the lake (z = —h,). The only combination that can vanish is a sinh function. Its
integral, the velocity potential, therefore involves a cosh function:

1 = g coshlk(z + h,)] expli(kz — wt)]. (16.3)

An alert reader might note at this point that, for this v, the horizontal component of
velocity v, = ¢, = tky does not vanish at the lake bottom, in violation of the no-slip
boundary condition. In fact, as we discussed in Sec 14.4, a thin, viscous boundary layer
along the bottom of the lake will join our potential-flow solution (16.3) to nonslipping fluid
at the bottom. We shall ignore the boundary layer under the (justifiable) assumption that
for our oscillating waves it is too thin to affect much of the flow.

Returning to the potential flow, we must also impose a boundary condition at the surface.
This can be obtained from Bernoulli’'s law. The version of Bernoulli’s law that we need is
that for an irrotational, isentropic, time-varying flow:

v?/2 4+ h + ® + Ot /Ot = constant everywhere in the flow (16.4)

[Egs. (13.46), (13.50)]. We shall apply this law at the surface of the perturbed water. Let
us examine each term: (i) The term v?/2 is quadratic in a perturbed quantity and therefore
can be dropped. (ii) The enthalpy h = u+ P/p (cf. Box 12.1) is a constant since u and p are
constants throughout the fluid and P is constant on the surface (equal to the atmospheric
pressure). [Actually, there will be a slight variation of the surface pressure caused by the
varying weight of the air above the surface, but as the density of air is typically ~ 1073 that
of water, this is a very small correction.] (iii) The gravitational potential at the fluid surface
is @ = g, where £(z, t) is the surface’s vertical displacement from equilibrium and we ignore
an additive constant. (iv) The constant on the right hand side, which could depend on time
C'(t), can be absorbed into the velocity potential term 0 /0t without changing the physical
observable v = V1. Bernoulli’s law applied at the surface therefore simplifies to give
oy

g+ 5 =0. (16.5)



Now, the vertical component of the surface velocity in the linear approximation is just
v,(z =0,t) = 0¢/0t. Expressing v, in terms of the velocity potential we then obtain

aQ o

Combining this with the time derivative of Eq. (16.5), we obtain an equation for the vertical
gradient of ¥ in terms of its time derivative:

op _ o

Finally, substituting Eq. (16.3) into Eq. (16.7) and setting z = 0 [because we derived
Eq. (16.7) only at the water’s surface|, we obtain the dispersion relation for linearized gravity
waves:

w? = gktanh(kh,) (16.8)

How do the individual elements of fluid move in a gravity wave? We can answer this
question by computing the vertical and horizontal components of the velocity by differenti-
ating Eq. (16.3) [Ex. 16.1]. We find that the fluid elements undergo elliptical motion similar
to that found for Rayleigh waves on the surface of a solid (Sec.12.4). However, in gravity
waves, the sense of rotation of the particles is always the same at a particular phase of the
wave, in contrast to reversals found in Rayleigh waves.

We now consider two limiting cases: deep water and shallow water.

16.2.1 Deep Water Waves
When the water is deep compared to the wavelength of the waves, kh, > 1, the dispersion

relation (16.8) becomes
w=+/gk|. (16.9)

Thus, deep water waves are dispersive; their group velocity V, = dw/dk = %\/g /k is half

their phase velocity, V, = w/k = /g/k. [Note: We could have deduced the deep-water
dispersion relation (16.9), up to a dimensionless multiplicative constant, by dimensional
arguments: The only frequency that can be constructed from the relevant variables g, k, p

is \/gk.]

16.2.2 Shallow Water Waves

For shallow water waves, with kh, < 1, the dispersion relation (16.8) becomes

w=+/gh, k|. (16.10)

Thus, these waves are nondispersive; their phase and group velocities are Vy = V; = v/gh,.
Below, when studying solitons, we shall need two special properties of shallow water
waves. First, when the depth of the water is small compared with the wavelength, but not




very small, the waves will be slightly dispersive. We can obtain a correction to Eq. (16.10)
by expanding the tanh function of Eq. (16.8) as tanhz = z — 23/3 4+ .... The dispersion

relation then becomes .
w = +/ghe (1 — éth?,) k. (16.11)

Second, by computing v = V¢ from Eq. (16.3), we find that in the shallow-water limit the
horizontal motions are much larger than the vertical motions, and are essentially independent
of depth. The reason, physically, is that the fluid acceleration is produced almost entirely by
a horizontal pressure gradient (caused by spatially variable water depth) that is independent
of height; see Ex. 16.1.

Often shallow-water waves have heights £ that are comparable to the water’s undisturbed
depth h,, and h, changes substantially from one region of the flow to another. A familiar
example is an ocean wave nearing a beach. In such cases, the wave equation is modified
by nonlinear and height-dependent effects. In Box 16.3 we derive the equations that govern
such waves, and in Exs. 16.2 and 16.8 and Sec. 16.3 below we explore properties of these
waves.

Box 16.3
Nonlinear Shallow-Water Waves with Variable Depth

Consider a nonlinear shallow-water wave propagating on a body of water with variable
depth. Let ho(x,y) be the depth of the undisturbed water at location (z,y) and let
&(x,y,t) be the height of the wave, so the depth of the water in the presence of the wave
is h = h,+&. As in the linear-wave case, so also here, the transverse fluid velocity (v, vy)
inside the water is nearly independent of height z, so the wave is characterized by three
functions &(x,y,t), v.(x,y,t) and v, (z,y,t). These functions are governed by the law of
mass conservation and the inviscid Navier Stokes equation (Euler equation).

The mass per unit area is ph = p(h, + &) and the corresponding mass flux (mass crossing
a unit length per unit time) is phv = p(h,+&)v, where v is the 2-dimensional, horizontal
vectorial velocity v = vye, + v,v,. Mass conservation, then, says that d[p(h, + &)]/0t +
AV - [p(h, + £)v] = 0, where PV is the 2-dimensional gradient operator that acts
solely in the horizontal (z,y) plane. Since p is constant and h, is time independent, this

becomes
¢/t + AV - [(hy+ E)V] =0. (1a)

The Navier Stokes equation for v at an arbitrary height z in the water says 0v /ot +
(v-OWV)v = —(1/p) VP, and hydrostatic equilibrium says the pressure is the weight
per unit area of the overlying water, P = g(£ — z)p (where height z is measured from the
water’s undisturbed surface). Combining these equations we obtain

/ot + (v-OV)v+¢PV.£=0. (1b)

Equations (1) are used, for example, in theoretical analyses of tsunamis (Ex. 16.2).




KKKk ok ok sk ok sk sk ok sk sk skosk skosk sk kR okokoskokoskoskosko sk

EXERCISES

Exercise 16.1 FEzample: Fluid Motions in Gravity Waves

(a)

Exercise 16.2 Fxample: Shallow-Water Waves with Variable Depth; Tsunamis

Show that in a gravity wave in water of arbitrary depth, (deep, shallow, or in between),
each fluid element undergoes elliptical motion. (Assume that the amplitude of the
water’s displacement is small compared to a wavelength.)

Calculate the longitudinal diameter of the motion’s ellipse, and the ratio of vertical to
longitudinal diameters, as functions of depth.

Show that for a deep-water wave, kh, > 1, the ellipses are all circles with diameters
that die out exponentially with depth.

We normally think of a circular motion of fluid as entailing vorticity, but a gravity
wave in water has vanishing vorticity. How can this vanishing vorticity be compatible
with the circular motion of fluid elements?

Show that for a shallow-water wave, kh, < 1, the motion is (nearly) horizontal and
independent of height z.

Compute the fluid’s pressure perturbation dP(z,z,t) inside the fluid for arbitrary
depth. Show that, for a shallow-water wave the pressure is determined by the need to
balance the weight of the overlying fluid, but for general depth, vertical fluid acceler-
ations alter this condition of weight balance.

2

Consider small-amplitude (linear) shallow-water waves in which the height of the bottom
boundary varies, so the unperturbed water’s depth is variable: h, = h,(z,y).

(a)

From the theory of non-linear shallow-water waves with variable depth, in Box 16.3,
show that the wave equation for the perturbation £(z,y,t) of the water’s height takes
the form

0?%¢

ot?
Here @V is the 2-dimensional gradient operator that acts in the horizonta (z, y) plane.
Note that gh, is the square of the wave’s propagation speed C? (phase speed and group
speed), so this equation takes the form (7.17) that we studied in the geometric optics
approximation in Sec. 7.3.1.

~ OV . (gh,PVE) =0. (16.12)

2Exercise courtesy David Stevenson.



(b)

Describe what happens to the direction of propagation of a wave as the depth h, of
the water varies (either as a set of discrete jumps in h, or as a slowly varying h,). As
a specific example, how must the propagation direction change as waves approach a
beach (but when they are sufficiently far out from the beach that nonlinearities have
not yet caused them to begin to break). Compare with your own observations at a
beach.

Tsunamis are gravity waves with enormous wavelengths, ~ 100 km or so, that prop-
agate on the deep ocean. Since the ocean depth is typically h, ~ 4 km, tsunamis are
governed by the shallow-water wave equation (16.12). What would you have to do to
the ocean floor to create a lens that would focus a tsunami, generated by an earthquake
near Japan, so that it destroys Los Angeles? For simulations of tsunami propagation,
see, e.g., http://bullard.esc.cam.ac.uk/ " taylor/Tsunami.html .

The height of a tsunami, when it is in the ocean with depth h, ~ 4 km, is only ~ 1 meter
or less. Use the geometric-optics approximation (Sec. 7.3) to show that the tsunami’s
wavelength decreases as A oc v/h, and its amplitude increases as max(£) o 1/ ho'/* as
the tsunami nears land and the water’s depth h, decreases.

How high, max(§), does the tsunami get when nonlinearities become strongly impor-
tant? (Assume a height of 1 m in the deep ocean.) How does this compare with the
heights of historically disastrous tsunamis when they hit land? From your answer you
should conclude that the nonlinearities must play a major role in raising the height.
Equations (1) in Box 16.3 are used by geophysicists to analyze this nonlinear growth of
the tsunami height. If the wave breaks, then these equations fail, and ideas developed
(in rudimentary form) in Ex. 17.7 must be used.
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16.2.3 Capillary Waves and Surface Tension

When the wavelength is very short (so k is very large), we must include the effects of surface
tension on the surface boundary condition. Surface tension can be treated as an isotropic
force per unit length, v, that lies in the surface and is unaffected by changes in the shape
or size of the surface; see Box 16.4. In the case of a gravity wave, this tension produces on
the fluid’s surface a net downward force per unit area —yd?¢/dz? = vk*¢, where k is the
horizontal wave number. [This downward force is like that on a curved violin string; cf. Eq.
(12.27) and associated discussion.] This additional force must be included in Eq. (16.5) as
an augmentation of pg. Correspondingly, the effect of surface tension on a mode with wave
number k£ is simply to change the true acceleration of gravity to an effective acceleration of
gravity

k2
g_>g+77. (16.13)
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Box 16.4
Surface Tension

In a water molecule, the two hydrogen atoms stick out from the larger oxygen atom
somewhat like Micky Mouse’s ears, with an H-O-H angle of 105 degrees. This asymmetry
of the molecule gives rise to a large electric dipole moment. In the interior of a body of
water, the dipole moments are oriented rather randomly, but near the water’s surface they
tend to be parallel to the surface and bond with each other so as to create surface tension
— a macroscopically isotropic, two-dimensional tension force (force per unit length)
that is confined to the water’s surface.

(a)
(b)

More specifically, consider a line L in the water’s surface, with unit length [drawing
(a) above]. The surface water on one side of L exerts a tension (pulling) force on the
surface water on the other side. The magnitude of this force is 7 and it is orthogonal to
the line L regardless of L’s orientation. This is analogous to an isotropic pressure P in
three dimensions, which acts orthogonally across any unit area.

Choose a point P in the water’s surface and introduce local Cartesian coordinates
there with z and y lying in the surface and z orthogonal to it [drawing (b) above]. In this
coordinate system, the 2-dimensional stress tensor associated with surface tension has

components AT, = (2)Tyy = —7, analogous to the 3-dimensional stress tensor for an
isotropic pressure, T, = T,, = T.. = P. We can also use a 3-dimensional stress tensor
to describe the surface tension: T, = T, = —yd(2); all other Tj, = 0. If we integrate

this 3-dimensional stress tensor through the water’s surface, we obtain the 2-dimensional
stress tensor: fT]kdz =2 Ti; i.e., medz = nyydz = —7. The 2-dimensional metric
of the surface is @g = g — e, ® e,; in terms of this 2-dimensional metric, the surface
tension’s 3-dimensional stress tensor is T = —vd(2)@g .

Water is not the only fluid that exhibits surface tension; all fluids do so, at the
interfaces between themselves and other substances. For a thin film, e.g. a soap bubble,
there are two interfaces (the top face and the bottom face of the film), so if we ignore the
film’s thickness, its stress tensor is twice as large as for a single surface, T = —276(2)@g.

The hotter the fluid, the more randomly are oriented its surface molecules and hence
the smaller the fluid’s surface tension 7. For water, v varies from 75.6 dyne/cm at T' = 0
C, to 72.0 dyne/cm at T' = 25 C, to 58.9 dyne/cm at 7' = 100 C.

In Exs. 16.3-16.5 we explore some applications of surface tension. In Sec. 16.2.3 and
Exs. 16.6 and 16.7, we explore the influence of surface tension on water waves.
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The remainder of the derivation of the dispersion relation for deep gravity waves carries over
unchanged, and the dispersion relation becomes

k,S
W = gk + (16.14)
p

[cf. Egs. (16.9) and (16.13)]. When the second term dominates, the waves are sometimes
called capillary waves. In Exs. 16.6 and 16.7 we explore some aspects of capillary waves. In
Exs. 16.3-16.5 we explore some other aspects of surface tension.
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EXERCISES

Exercise 16.3 Problem: Mazimum size of a water droplet
What is the maximum size of water droplets that can form by water very slowly dripping out
of a syringe? and out of a water faucet (whose opening is far larger than that of a syringe)?

Exercise 16.4 Problem: Force Balance for an Interface Between Two Fluids

Consider a point P in the curved interface between two fluids. Introduce Cartesian coor-
dinates at P with x and y parallel to the interface and z orthogonal [as in diagram (b)
of Box 16.4], and orient the x and y axes along the directions of the interface’s “principal
curvatures”, so the local equation for the interface is

33'2 y2

2= 4 =
2R1 2R,

Here R; and R, are the surface’s “principal radii of curvature” at P; note that each of them

can be positive or negative, depending on whether the surface bends up or down along their

directions. Show that, in equilibrium, stress balance V - T = 0 for the surface implies that
the pressure difference across the surface is

1 1
AP =~ —+—
V(Rl +R2)

(16.15)

(16.16)

where v is the surface tension.

Exercise 16.5 Challenge: Minimum Area of Soap Film

For a soap film that is attached to a bent wire (e.g. to the circular wire that a child uses to
blow a bubble), the air pressure on the film’s two sides is the same. Therefore, Eq. (16.16)
(with v replaced by 2+ since the film has two faces) tells us that at every point of the film, its
two principal radii of curvature must be equal and opposite, Ry = —Rs. It is an interesting
excercise in differential geometry to show that this means that the soap film’s surface area
is an extremum with respect to variations of the film’s shape, holding its boundary on the
wire fixed. If you know enough differential geometry, prove this extremal-area property of
soap films, and then show that, in order for the film’s shape to be stable, its extremal area
must actually be a minimum.
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Exercise 16.6 Problem: Capillary Waves

Consider deep-water gravity waves of short enough wavelength that surface tension must be
included, so the dispersion relation is Eq. (16.14). Show that there is a minimum value of
the group velocity and find its value together with the wavelength of the associated wave.
Evaluate these for water (7 ~ 70 dyne cm™!). Try performing a crude experiment to verify
this phenomenon.

Exercise 16.7 FExample: Boat Waves

A toy boat moves with uniform velocity u across a deep pond (Fig. 16.2). Consider the wave
pattern (time-independent in the boat’s frame) produced on the water’s surface at distances
large compared to the boat’s size. Both gravity waves and surface-tension or capillary waves
are excited. Show that capillary waves are found both ahead of and behind the boat, and
gravity waves, solely inside a trailing wedge. More specifically:

(a) In the rest frame of the water, the waves’ dispersion relation is Eq. (16.14). Change
notation so w is the waves’ angular velocity as seen in the boat’s frame and w, in the
water’s frame, so the dispersion relation is w? = gk + (7/p)k*. Use the doppler shift
(i.e. the transformation between frames) to derive the boat-frame dispersion relation
w(k).

(b) The boat radiates a spectrum of waves in all directions. However, only those with
vanishing frequency in the boat’s frame, w = 0, contribute to the time-independent
(“stationary”) pattern. As seen in the water’s frame and analyzed in the geometric
optics approximation of Chap. 7, these waves are generated by the boat (at points
along its horizontal dash-dot trajectory in Fig. 16.2) and travel outward with the group
velocity Vg,. Regard Fig. 16.2 as a snapshot of the boat and water at a particular
moment of time. Consider a wave that was generated at an earlier time, when the boat
was at location P, and that traveled outward from there with speed V, at an angle ¢
to the boat’s direction of motion. (You may restrict yourself to 0 < ¢ < 7/2.) Identify

Fig. 16.2: Capillary and gravity waves excited by a small boat (Ex. 16.7).
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the point Q that this wave has reached, at the time of the snapshot, by the angle 8
shown in the figure. Show that 6 is given by

Vyolk) sin g

tanf =
o u — V() cos ¢’

(16.17a)

where k is determined by the dispersion relation wg(k) together with the “vanishing
w” condition

wo(k, ) = ukcos ¢ . (16.17b)

(c) Specialize to capillary waves [k > /gp/7]. Show that

3tan ¢

tanf = ————— .
a 2tan®¢ — 1

(16.18)

Demonstrate that the capillary wave pattern is present for all values of 6 (including in
front of the boat, 7/2 < # < 7, and behind it, 0 < § < 7/2).

(d) Next, specialize to gravity waves and show that

tan ¢

tanf = — 2@
Y a2 g+ 1

(16.19)

Demonstrate that the gravity-wave pattern is confined to a trailing wedge with angles
0 < 04 = sin™'(1/3) = 19.47% cf. Fig. 16.2. You might try to reproduce these results
experimentally.
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16.2.4 Helioseismology

The sun provides an excellent example of the excitation of small amplitude waves in a fluid
body. In the 1960s, Robert Leighton and colleagues discovered that the surface of the sun
oscillates vertically with a period of roughly five minutes and a speed of ~ 1 km s~!. This
was thought to be an incoherent surface phenomenon until it was shown that the observed
variation was, in fact, the superposition of thousands of highly coherent wave modes excited
within the sun’s interior — normal modes of the sun. Present day techniques allow surface
velocity amplitudes as small as 2 mm s~! to be measured, and phase coherence for intervals as
long as a year has been observed. Studying the frequency spectrum and its variation provides
a unique probe of the sun’s interior structure, just as the measurement of conventional seismic
waves, as described in Sec.12.4, probes the earth’s interior.

The description of the normal modes of the sun requires some modification of our treat-
ment of gravity waves. We shall eschew details and just outline the principles. First, the
sun is (very nearly) spherical. We therefore work in spherical polar coordinates rather than



14

Cartesian coordinates. Second, the sun is made of hot gas and it is no longer a good approx-
imation to assume that the fluid is always incompressible. We must therefore replace the
equation V-v = 0 with the full equation of continuity (mass conservation) together with the
equation of energy conservation which governs the relationship between the perturbations of
density and pressure. Third, the sun is not uniform. The pressure and density in the unper-
turbed gas vary with radius in a known manner and must be included. Fourth, the sun has a
finite surface area. Instead of assuming that there will be a continuous spectrum of waves, we
must now anticipate that the boundary conditions will lead to a discrete spectrum of normal
modes. Allowing for these complications, it is possible to derive a differential equation for
the perturbations to replace Eq. (16.7). It turns out that a convenient dependent variable
(replacing the velocity potential v) is the pressure perturbation. The boundary conditions
are that the displacement vanish at the center of the sun and that the pressure perturbation
vanish at the surface.

At this point the problem is reminiscent of the famous solution for the eigenfunctions of
the Schrodinger equation for a hydrogen atom in terms of associated Laguerre polynomials.
The wave frequencies of the sun’s normal modes are given by the eigenvalues of the differential
equation. The corresponding eigenfunctions can be classified using three quantum numbers,
n,l,m, where n counts the number of radial nodes in the eigenfunction and the angular
variation of the pressure perturbation is proportional to the spherical harmonic Y, (6, ¢). If
the sun were precisely spherical, the modes with the same n and [ but different m would
be degenerate, just as is the case with an atom when there is no preferred direction in
space. However, the sun rotates with a latitude-dependent period in the range ~ 25 — 30
days and this breaks the degeneracy just as an applied magnetic field in an atom breaks
the degeneracy of the atom’s states (the Zeeman effect). From the observed splitting of
the solar-mode spectrum, it is possible to learn about the distribution of rotational angular
momentum inside the sun.

When this problem is solved in detail, it turns out that there are two general classes of
modes. One class is similar to gravity waves, in the sense that the forces which drive the
gas’s motions are produced primarily by gravity (either directly, or indirectly via the weight
of overlying material producing pressure that pushes on the gas.) These are called g modes.
In the second class (known as p and f modes), the pressure forces arise mainly from the
compression of the fluid just like in sound waves (which we shall study in Sec. 16.5 below).
Now, it turns out that the ¢ modes have large amplitudes in the middle of the sun, whereas
the p and f modes are dominant in the outer layers [cf. Fig. 16.3(b)]. The reasons for this
are relatively easy to understand and introduce ideas to which we shall return:

The sun is a hot body, much hotter at its center (T" ~ 1.5 x 107 K) than on its surface
(T ~ 6000 K). The sound speed C' is therefore much greater in its interior and so p and
f modes of a given frequency w can carry their energy flux ~ p&%w?c (Sec.16.5) with much
smaller amplitudes ¢ than near the surface. Therefore the p- and f-mode amplitudes are
much smaller in the center of the sun than near the surface.

The g-modes are controlled by different physics and thus behave differently: The outer
~ 30 percent (by radius) of the sun is convective (cf. Sec. 16.6.4) because the diffusion of heat
is inadequate to carry the huge amount of nuclear energy being generated in the solar core.
The convection produces an equilibrium variation of pressure and density with radius that
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Fig. 16.3: (a) Measured frequency spectrum for solar p-modes with different values of the quantum
numbers n,l. The error bars are magnified by a factor 1000. Frequencies for modes with n > 30
and [ > 1000 have been measured. (b) Sample eigenfunctions for g and p modes labeled by n
(subscripts) and [ (parentheses). The ordinate is the radial velocity and the abscissa is fractional
radial distance from the sun’s center to its surface. The solar convection zone is the shaded region
at the bottom. (Adapted from Libbrecht and Woodard 1991.)

are just such as to keep the sun almost neutrally stable, so that regions that are slightly hotter
(cooler) than their surroundings will rise (sink) in the solar gravitational field. Therefore
there cannot be much of a mechanical restoring force which would cause these regions to
oscillate about their average positions, and so the g modes (which are influenced almost
solely by gravity) have little restoring force and thus are evanescent in the convection zone,
and so their amplitudes decay quickly with increasing radius there.

We should therefore expect only p and f modes to be seen in the surface motions and
this is, indeed the case. Furthermore, we should not expect the properties of these modes to
be very sensitive to the physical conditions in the core. A more detailed analysis bears this
out.

16.3 Nonlinear Shallow-Water Waves and Solitons

In recent decades, solitons or solitary waves have been studied intensively in many different
areas of physics. However, fluid dynamicists became familiar with them in the nineteenth
century. In an oft-quoted passage, John Scott-Russell (1844) described how he was riding
along a narrow canal and watched a boat stop abruptly. This deceleration launched a single
smooth pulse of water which he followed on horseback for one or two miles, observing it
“rolling on a rate of some eight or nine miles an hour, preserving its original figure some
thirty feet long and a foot to a foot and a half in height”. This was a soliton — a one
dimensional, nonlinear wave with fixed profile traveling with constant speed. Solitons can
be observed fairly readily when gravity waves are produced in shallow, narrow channels. We
shall use the particular example of a shallow, nonlinear gravity wave to illustrate solitons in



16

general.

16.3.1 Korteweg-de Vries (KdV) Equation

The key to a soliton’s behavior is a robust balance between the effects of dispersion and the
effects of nonlinearity. When one grafts these two effects onto the wave equation for shallow
water waves, then at leading order in the strengths of the dispersion and nonlinearity one gets
the Korteweg-de Vries (KdV) equation for solitons. Since a completely rigorous derivation
of the KdV equation is quite lengthy, we shall content ourselves with a somewhat heuristic
derivation that is based on this grafting process, and is designed to emphasize the equation’s
physical content.

We choose as the dependent variable in our wave equation the height ¢ of the water’s
surface above its quiescent position, and we confine ourselves to a plane wave that propagates
in the horizontal = direction so & = &(z, t).

In the limit of very weak waves, (z, t) is governed by the shallow-water dispersion relation
w = \/gh, k, where h, is the depth of the quiescent water. This dispersion relation implies
that &(x,t) must satisfy the following elementary wave equation [cf. Eq. (16.12)]:

0% e (0 o\ [ )
0="%r ~ogn = (8t Vghog )(at 9h°ax)5‘ (16.20)

In the second expression, we have factored the wave operator into two pieces, one that
governs waves propagating rightward, and the other leftward. To simplify our derivation
and the final wave equation, we shall confine ourselves to rightward propagating waves, and
correspondingly we can simply remove the left-propagation operator from the wave equation,
obtaining

35 %3

8t °Ox
(Leftward propagating waves are described by this same equation with a change of sign.)

We now graft the effects of dispersion onto this rightward wave equation. The dispersion

relation, including the effects of dispersion at leading order, is w = +/gh, k(1 — %thg)
[Eq. (16.11)]. Now, this dispersion relation ought to be derivable by assuming a variation
¢ x expli(kr — wt)] and substituting into a generalization of Eq. (16.21) with corrections
that take account of the finite depth of the channel. We will take a short cut and reverse
this process to obtain the generalization of Eq. (16.21) from the dispersion relation. The

result is (95
—|— \ g = ——\/ h, 08 3 , (16.22)

as a simple calculation Conﬁrms. ThlS is the “hnearlzed KdV equation”. It incorporates
weak dispersion associated with the finite depth of the channel but is still a linear equation,
only useful for small-amplitude waves.

Now let us set aside the dispersive correction and tackle the nonlinearity using the equa-
tions derived in Box 16.3. Denoting the depth of the disturbed water by h = h, + &, the
nonlinear law of mass conservation [Eq. (1a) of Box 16.3] becomes

oh N J(hv)
ot ox

ghe=—=10. (16.21)

=0, (16.23a)
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and the Navier Stokes equation [Eq. (1b) of Box 16.3] becomes

v o Ov +g oh
ot o 8:1:
Here we have specialized the equations in Box 16.3 to a one-dimensional wave in the channel

and to a constant depth h, of the channel’s undisturbed water. Equations (16.23a) and
(16.23b) can be combined to obtain

M + <v _ \/97]1) M —-0. (16.23¢)
ot ox
This equation shows that the quantity v — 24/gh is constant along characteristics that
propagate with speed v — v/gh. (This constant quantity is a special case of a “Riemann
invariant”, a concept that we shall study in Chap. 17.) When, as we shall require below, the
nonlinearites are modest so h does not differ greatly from h,, these characteristics propagate
leftward, which implies that for rightward propagating waves they begin at early times in
undisturbed fluid where v = 0 and h = h,. Therefore, the constant value of v — 2y/gh is
—24/gh,, and correspondingly in regions of disturbed fluid

V=2 ( gh — \/gho) . (16.24)
Substituting this into Eq. (16.23a), we obtain

on | (3\/971 9 gho) % ~0. (16.25)

We next substitute £ = h — h, and expand to first order in £ to obtain the final form of our
wave equation with nonlinearities but no dispersion:

¢ ¢ 35 g 0¢
o T Vhom = h o (16.26)

where the term on the right hand side is the nonlinear correction.
We now have separate dispersive corrections (16.22) and nonlinear corrections (16.26) to
the rightward wave equation (16.21). Combining the two corrections into a single equation,

we obtain (95 h2 e

0. (16.23b)

Finally, we substitute

X=T—+/ghot (16.28)

to transform into a frame moving rightward with the speed of small-amplitude gravity waves.
The result is the full Korteweg-deVries or KAV equation:

o¢ 3 ¢ 5 03¢
E+§\/hi(§_+_hoa 3> =0]. (16.29)
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16.3.2 Physical Effects in the KdV Equation

Before exploring solutions to the KdV equation (16.29), let us consider the physical effects
of its nonlinear and dispersive terms. The second (nonlinear) term 31/g/h, £0§/0x derives
from the nonlinearity in the (v - V)v term of the Navier-Stokes equation. The effect of this
nonlinearity is to steepen the leading edge of a wave profile and flatten the trailing edge
(Fig. 16.4.) Another way to understand the effect of this term is to regard it as a nonlinear
coupling of linear waves. Since it is nonlinear in the wave amplitude, it can couple together
waves with different wave numbers k. For example, if we have a purely sinusoidal wave
o exp(tkx), then this nonlinearity will lead to the growth of a first harmonic x exp(2ikz).
Similarly, when two linear waves with spatial frequencies k, k" are superposed, this term will
describe the production of new waves at the sum and difference spatial frequencies. We have
already met such wave-wave coupling in our study of nonlinear optics (Chap. 10), and in
the route to turbulence for rotating Couette flow (Fig. 15.16), and we shall meet it again in
nonlinear plasma physics (Chap. 22).

The third term in (16.29), g1/g/ho b3 9*¢/0x?, is linear and is responsible for a weak
dispersion of the wave. The higher-frequency Fourier components travel with slower phase
velocities than lower-frequency components. This has two effects. One is an overall spreading
of a wave in a manner qualitatively familiar from elementary quantum mechanics; cf. Ex.
7.2. For example, in a Gaussian wave packet with width Az, the range of wave numbers &
contributing significantly to the profile is Ak ~ 1/Ax. The spread in the group velocity is
then ~ Ak 9%*w/0k* ~ (gh,)/?h? kAk [cf. Eq. (16.11)]. The wave packet will then double in

size in a time )
Ax Az 1
ts read ™ ~ —. 16.30
pread 7 A, ( R ) kn/ghy (16.30)

The second effect is that since the high-frequency components travel somewhat slower than
the low-frequency components, there will be a tendency for the profile to become asymmetric
with the leading edge less steep than the trailing edge.

Given the opposite effects of these two corrections (nonlinearity makes the wave’s leading
edge steeper; dispersion reduces its steepness), it should not be too surprising in hindsight
that it is possible to find solutions to the KdV equation with constant profile, in which

g

g
! 1
y 0.8
: 0
: 0.4
. 0.2
0 1 2X -2 -1 0

Fig. 16.4: Steepening of a Gaussian wave profile by the nonlinear term in the KdV equation. The
increase of wave speed with amplitude causes the leading part of the profile to steepen with time
and the trailing part to flatten. In the full KdV equation, this effect can be balanced by the effect
of dispersion, which causes the high-frequency Fourier components in the wave to travel slightly
slower than the low-frequency components. This allows stable solitons to form.
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Fig. 16.5: Production of stable solitons out of an irregular initial wave profile.

nonlinearity balances dispersion. What is quite surprising, though, is that these solutions,
called solitons, are very robust and arise naturally out of random initial data. That is to say,
if we solve an initial value problem numerically starting with several peaks of random shape
and size, then although much of the wave will spread and disappear due to dispersion, we
will typically be left with several smooth soliton solutions, as in Fig. 16.5.

16.3.3 Single-Soliton Solution

We can discard some unnecessary algebraic luggage in the KdV equation (16.29) by trans-
forming both independent variables using the substitutions

3 3x  3(xr — Vgh,t) 9 [g
C ho Y 77 ho ho 9 T 2 ho t ( 6 3 )

The KdV equation then becomes

o, oc_ 0%

ar “on 8—773=0 . (16.32)

There are well understood mathematical techniques® for solving equations like the KdV
equation. However, we shall just quote solutions and explore their properties. The simplest
solution to the dimensionless KdV equation (16.32) is

- n2 | (< v ! 16.33
¢ = Cp sec (E) (77 - gCOT) . ( . )

This solution describes a one-parameter family of stable solitons. For each such soliton (each
(o), the soliton maintains its shape while propagating at speed dn/dr = (y/3 relative to a
weak wave. By transforming to the rest frame of the unperturbed water using Eqs. (16.31)
and (16.28), we find for the soliton’s speed there;

o _ {H ( o )} | (16.34)

dt 2h,

3See, for example, Whitham (1974).
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Fig. 16.6: Profile of the single-soliton solution (16.33), (16.31) of the KdV equation. The width
X1/2 is inversely proportional to the square root of the peak height &.

The first term is the propagation speed of a weak (linear) wave. The second term is the
nonlinear correction, proportional to the wave amplitude &, = h,(,. The half width of
the wave may be defined by setting the argument of the hyperbolic secant to unity. It is
M2 = (12/¢,)Y?, corresponding to

4h3 1/2
= = o ) 16.35
T1/2 = X1/2 (3§O) ( )
The larger the wave amplitude, the narrower its length and the faster it propagates; cf.

Fig. 16.6.

Let us return to Scott-Russell’s soliton. Converting to SI units, the speed was about 4 m
s~! giving an estimate of the depth of the canal as h, ~ 1.6 m. Using the width /5 ~ 5 m,
we obtain a peak height &, ~ 0.25 m, somewhat smaller than quoted but within the errors
allowing for the uncertainty in the definition of the width and an (appropriate) element of
hyperbole in the account.

16.3.4 Two-Soliton Solution

One of the most fascinating properties of solitons is the way that two or more waves interact.
The expectation, derived from physics experience with weakly coupled normal modes, might
be that, if we have two well separated solitons propagating in the same direction with the
larger wave chasing the smaller wave, then the larger will eventually catch up with the
smaller, and nonlinear interactions between the two waves will essentially destroy both,
leaving behind a single, irregular pulse which will spread and decay after the interaction.
However, this is not what happens. Instead, the two waves pass through each other unscathed
and unchanged, except that they emerge from the interaction a bit sooner than they would
have had they moved with their original speeds during the interaction. See Fig. 16.7. We
shall not pause to explain why the two waves survive unscathed, save to remark that there
are topological invariants in the solution which must be preserved. However, we can exhibit
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Fig. 16.7: Two-Soliton solution to the dimensionless KdV equation (16.32). This solution describes
two waves well separated for 7 — —oo that coalesce and then separate producing the original two
waves in reverse order as 7 — 400. The notation is that of Eq. (16.36); the values of the parameters
in that equation are 1y = 172 = 0 (so the solitons will be merged at time n = 0), a1 =1, ag = 1.4.

one such two-soliton solution analytically:

2

¢ = 3—772[1211117(77:7)] :
2
where FF' =14 fi + fo + (u) fifs,
Qo + o
and f; = exp[—ai(n —m) + )7] ; (16.36)

here «; and 7); are constants. This solution is depicted in Fig. 16.7.

16.3.5 Solitons in Contemporary Physics

Solitons were re-discovered in the 1960’s when they were found in numerical simulations of
plasma waves. Their topological properties were soon discovered and general methods to
generate solutions were derived. Solitons have been isolated in such different subjects as the
propagation of magnetic flux in a Josephson junction, elastic waves in anharmonic crystals,
quantum field theory (as instantons) and classical general relativity (as solitary, nonlinear
gravitational waves). Most classical solitons are solutions to one of a relatively small number
of nonlinear ordinary differential equations, including the KdV equation, Burgers’ equation
and the sine-Gordon equation. Unfortunately it has proved difficult to generalize these
equations and their soliton solutions to two and three spatial dimensions.

Just like research into chaos, studies of solitons have taught physicists that nonlinearity
need not lead to maximal disorder in physical systems, but instead can create surprisingly
stable, ordered structures.
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EXERCISES

Exercise 16.8 Fxample: Breaking of a Dam
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Consider the flow of water along a horizontal channel of constant width after a dam breaks.
Sometime after the initial transients have died away,* the flow may be described by the
nonlinear, unidirectional, shallow-water wave equations (16.23a) and (16.23b):

%+a<hv)—0 @4_ @4_ %—

ot " ox ot ox Yox T
Here h is the height of the flow, v is the horizontal speed of the flow and x is distance along
the channel measured from the location of the dam. Solve for the flow assuming that initially
(at t =0) h = h, for z < 0 and h = 0 for z > 0 (no water). Your solution should have
the form shown in Fig. 16.8. What is the speed of the front of the water? [Hints: Note
that from the parameters of the problem we can construct only one velocity, v/gh, and no
length except h,. It therefore is a reasonable guess that the solution has the self-similar form
h = he h(€), v = \/gh, ©(€), where h and & are dimensionless functions of the similarity
variable

0. (16.37)

x/t
= L ) (16.38)
gho
Using this ansatz, convert the partial differential equations (16.37) into a pair of ordinary
differential equations which can be solved so as to satisfy the initial conditions.]

ho

—_

Fig. 16.8: The water’s height h(z,t) after a dam breaks.

Exercise 16.9 Derivation: Single-Soliton Solution
Verify that expression (16.33) does indeed satisfy the dimensionless KdV equation (16.32).

Exercise 16.10 Derivation: Two-Soliton Solution

(a) Verify, using symbolic-manipulation computer software (e.g., Maple or Mathemat-
ica) that the two-soliton expression (16.36) satisfies the dimensionless KdV equation.
(Warning: Considerable algebraic travail is required to verify this by hand, directly.)

“In the idealized case that the dam is removed instantaneously, there will be no transients and Egs.
(16.37) will describe the flow from the outset.
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(b) Verify, analytically, that the two-soliton solution (16.36) has the properties claimed
in the text: First consider the solution at early times in the spatial region where
fi ~ 1, fs < 1. Show that the solution is approximately that of the single-soliton
described by Eq. (16.33). Demonstrate that the amplitude is (o = 3a? and find the
location of its peak. Repeat the exercise for the second wave and for late times.

(c) Use a computer to follow, numerically, the evolution of this two-soliton solution as time
7 passes (thereby filling in timesteps between those shown in Fig. 16.7).

Skoskoskoskoskosk sk skokosk sk skokosk sk kokoskoskokokoskosk ko skoskok

16.4 Rossby Waves in a Rotating Fluid

In a nearly rigidly rotating fluid, with the rotational angular velocity €2 parallel or antiparallel
to the acceleration of gravity g = —ge,, the Coriolis effect observed in the co-rotating
reference frame (Sec. 14.5) provides the restoring force for an unusual type of wave motion
called “Rossby waves.” These waves are seen in the Earth’s oceans and atmosphere [with
Q =(Earth’s rotational angular velocity) sin(latitude) e,; see Box 14.2].

For a simple example, we consider the sea above a sloping seabed; Fig. 16.9. We assume
the unperturbed fluid has vanishing velocity v = 0 in the Earth’s rotating frame, and
we study weak waves in the sea with oscillating velocity v. (Since the fluid is at rest in
the equilibrium state about which we are perturbing, we write the perturbed velocity as
v rather than 0v.) We assume that the wavelengths are long enough that viscosity and
surface tension are negligible. We also, in this case, restrict attention to small-amplitude
waves so that nonlinear terms can be dropped from our dynamical equations. The perturbed
Navier-Stokes equation (14.54a) then becomes (after linearization)

ov =V

420XV = . 16.39
5 p (16.39)

Here, as in Sec. 14.5, 0 P’ is the perturbation in the effective pressure [which includes gravi-
tational and centrifugal effects, P’ = P + p® — 1p(€ x x)?]. Taking the curl of Eq. (16.39),

Fig. 16.9: Geometry of ocean for Rossby waves.
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we obtain for the time derivative of the waves’ vorticity

Ow
= =22 V)v. (16.40)

We seek a wave mode with angular frequency w and wave number k, in which the horizontal
fluid velocity oscillates in the = direction and (in accord with the Taylor-Proudman theorem,
Sec. 14.5.3) is independent of z, so

ov,  Ov,
0z 0z
The only allowed vertical variation is in the vertical velocity v,, and differentiating V-v =0
with respect to z, we obtain

v, and vy, o expli(kr — wt)] , (16.41)

0,

022
The vertical velocity therefore varies linearly between the surface and the sea floor. Now,
one boundary condition is that the vertical velocity must vanish at the surface. The other is
that, at the sea floor z = —h, we must have v,(—h) = —aw,, where « is the tangent of the
angle of inclination of the sea floor. The solution to Eq. (16.42) satisfying these boundary
conditions is

—0. (16.42)

v, = %vy . (16.43)

Taking the vertical component of Eq. (16.40) and evaluating w, = vy, — vy, = ikv,, we
obtain

ov 2Qawv
kv, = 20— = Y 16.44
Py 0z h (16.44)
The dispersion relation therefore has the quite unusual form
2Q)
wk = TO‘ . (16.45)

Rossby waves have interesting properties: They can only propagate in one direction—
parallel to the intersection of the sea floor with the horizontal (our e, direction). Their phase
velocity V., and group velocity V, are equal in magnitude but in opposite directions,

Vo =—-V, = QkQT}O:ex ) (16.46)
If we use V - v = 0, we discover that the two components of horizontal velocity are in
quadrature, v, = iav,/kh. This means that, when seen from above, the fluid circulates with
the opposite sense to the angular velocity 2.

Rossby waves plays an important role in the circulation of the earth’s oceans; see, e.g.,
Chelton and Schlax (1996). A variant of these Rossby waves in air can be seen as undula-
tions in the atmosphere’s jet stream produced when the stream goes over a sloping terrain
such as that of the Rocky Mountains; and another variant in neutron stars generates gravi-
tational waves (ripples of spacetime curvature) that are a promising source for ground-based
gravitational-wave detectors such as LIGO.
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EXERCISES

Exercise 16.11 FEzxample: Rossby Waves in a Cylndrical Tank with Sloping Bottom

In the film Rotating Fluids by David Fultz (1969), about 20 minutes 40 seconds into the film,
an experiment is described in which Rossby waves are excited in a rotating cylindrical tank
with inner and outer vertical walls and a sloping bottom. Figure 16.10a is a photograph
of the tank from the side, showing its bottom which slopes upward toward the center, and
a bump on the bottom which generates the Rossby waves. The tank is filled with water,
then set into rotation with an angular velocity €2; the water is given time to settle down
into rigid rotation with the cylinder. Then the cylinder’s angular velocity is reduced by a
small amount, so the water is rotating at angular velocity AQ) < 2 relative to the cylinder.
As the water passes over the hump on the tank bottom, the hump generates Rossby waves.
Those waves are made visible by injecting dye at a fixed radius, through a syringe attached
to the tank. Figure 16.10b is a photograph of the dye trace as seen looking down on the tank
from above. If there were no Rossby waves present, the trace would be circular. The Rossby
waves make it pentagonal. In this exercise you will work out the details of the Rossby waves,
explore their physics, and explain the shape of the trace.

Because the slope of the bottom is cylindrical rather than planar, this is somewhat
different from the situation in the text (Fig. 16.9). However, we can deduce the details
of the waves in this cylindrical case from those for the planar case by geometric-optics
considerations (Sec. 7.3), making modest errors because the wavelength of the waves is not
all that small compared to the circumference around the tank.

(a) Using geometric optics, show that the rays along which the waves propagate are circles
centered on the tank’s symmetry axis.

(b) Focus on the ray that is half way between the inner and outer walls of the tank. Let its
radius be a and the depth of the water there be h, and the slope angle of the tank floor
be a. Introduce quasi-Cartesian coordinates © = a¢, y = —w, where {w, ¢, z} are

Fig. 16.10: Rossby waves in a rotating cylinder with sloping bottom. From Fultz (1969).
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cylindrical coordinates. By translating the Cartesian-coordinate waves of the text into
quasi-Cartesian coordinates and noting from Fig. 16.10b that five wavelengths must fit
into the circumference around the cylinder, show that the velocity field has the form
Ve, Ugpy Uy OC e'®9+b) and deduce the ratios of the three components of velocity to each
other. This solution has nonzero radial velocity at the walls — a warning that edge
effects will modify the waves somewhat. This analysis ignores those edge effects.

(c) Because the waves are generated by the ridge on the bottom of the tank, the wave
pattern must remain at rest relative to that ridge, which means it must rotate relative to
the fluid’s frame with the angular velocity d¢/dt = —ASQ. From the waves’ dispersion
relation deduce AQ/Q, the fractional slowdown of the tank that had to be imposed,
in order to generate the observed pentagonal wave.

(d) Compute the displacement field dx(w, ¢, z, t) of a fluid element whose undisplaced loca-
tion (in the rigidly rotating cylindrical coordinates) is (w, ¢, z). Explain the pentagonal
shape of the movie’s dye lines in terms of this displacement field.

(e) Compute the wave’s vertical vorticity field w, (relative to the rigidly rotating flow),
and show that as a fluid element moves, and the vertical vortex line through it shortens
or lengths due to the changing water depth, w, changes proportionally to the vortex
line’s length (as it must).
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16.5 Sound Waves

So far, our discussion of fluid dynamics has mostly been concerned with flows sufficiently slow
that the density can be treated as constant. We now introduce the effects of compressibility
by discussing sound waves (in a non-rotating reference frame). Sound waves are prototypical
scalar waves and therefore are simpler in many respects than vector electromagnetic waves
and tensor gravitational waves.

Consider a small-amplitude sound wave propagating through a homogeneous, time inde-
pendent fluid. The wave’s oscillations are generally very quick compared to the time for heat
to diffuse across a wavelength, so the pressure and density perturbations are adiabatically

related:
P = C%p, (16.47)

6

which will turn out to be the wave’s propagation speed — the speed of sound. The per-
turbation of the fluid velocity (which we denote v since the unperturbed fluid is static) is

where
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related to the pressure perturbation by the linearized Euler equation

ov _ VipP
ot p

(16.49a)
A second relation between v and P can be obtained by combining the linearized law of
mass conservation pdv /0t = —pV - v with the adiabatic pressure-density relation (16.47):

1 06P
pC? Ot

V.v= (16.49b)

By equating the divergence of Eq. (16.49a) to the time derivative of Eq. (16.49b), we obtain
a simple, dispersion-free wave equation for the pressure perturbation:

2
(% - C2V2) SP=0. (16.50)

Thus, as claimed, C' is the wave’s propagation speed.

For a perfect gas, this adiabatic sound speed is C' = (yP/p)/? where ~ is the ratio of
specific heats (see Ex. 5.4). The sound speed in air at 20°C is 340m s~!. In water under
atmospheric conditions, it is about 1.5km s™! (not much different from sound speeds in
solids).

Because the vorticity of the unperturbed fluid vanishes and the wave contains no vorticity-
producing forces, the wave’s vorticity vanishes, V x v = 0. This permits us to express the
wave’s velocity perturbation as the gradient of a velocity potential, v = V. Inserting this
into the perturbed Euler equation (16.49a) we get the pressure perturbation expressed in
terms of :

_,
P |

The first of these relations guarantees that 1 satisfies the same wave equation as d P:

0P = where |v = V. (16.51)

62 272
(w_cv)qp:o' (16.52)

It is sometimes useful to describe the wave by its oscillating pressure 0 P and sometimes by
its oscillating potential 1.

The general solution of the wave equation (16.52) for plane sound waves propagating in
the +x directions is

= fi(z —Ct) + folz + Ct) (16.53)

where f1, fo are arbitrary functions.

KKKk ok ok sk ok sk sk ok sk sk sk sk sk skosk kR okokoskokoskoskoskk

EXERCISES
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Exercise 16.12 Problem: Sound Wave in an Inhomogeneous Fluid

Consider a sound wave propagating through a static, inhomogeneous fluid in the absence of
gravity. (The inhomogeneity could arise, e.g., from a spatially variable temperature and/or
chemical composition.) The unperturbed density and sound speed are functions of location
in space, p,(x) and C(x), while the equilibrium pressure P is constant (due to hydrostatic
equilibrium) and the equilibrium velocity vanishes.

By repeating the analysis in Eqgs. (16.47)—(16.50), show that the wave equation is modified

to read
1

0P _ V (WC?VEP) =0, where W= — (16.54)

ot? - - pC? '
This is an example of the prototypical wave equation (7.17) that we used in Sec. 7.3.1 to
illustrate the geometric-optics formalism. The functional form of W and the placement of W
and C? (inside vs. outside the derivatives) have no influence on the wave’s dispersion relation
or its rays or phase, in the geometric optics limit, but they do influence the propagation of

the wave’s amplitude. See Sec. 7.3.1.

W
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16.5.1 Wave Energy

We shall use sound waves to illustrate how waves carry energy. The fluid’s energy density
is U = (3v* + u)p [Table 13.1 with ® = 0]. The first term is the fluid’s kinetic energy;
the second, its internal energy. The internal energy density can be evaluated by a Taylor
expansion in the wave’s density perturbation:

e (50 ot e e

where the three coefficients in brackets [] are evaluated at the equilibrium density. The first
term in Eq. (16.55) is the energy of the background fluid, so we shall drop it. The second
term will average to zero over a wave period, so we shall also drop it. The third term can
be simplified using the first law of thermodynamics in the form du = T'ds — Pd(1/p) (which
implies [0(up)/0pls = u+ P/p), followed by the definition h = u + P/p of enthalpy density,
followed by the first law in the form dh = T'ds + dP/p, followed by expression (16.48) for
the speed of sound. The result is

(82(52/)))8 - (Z_Z)S = %2 : (16.56)

Inserting this into the third term of Eq. (16.55) and averaging over a wave period and
wavelength, we obtain for the wave energy per unit volume U = %pﬁ + (C?/2p)ép?. Using
v = V4 [the second of Egs. (16.51)] and dp = (p/C?)9¢ /0t [from dp = (Op/OP) 6P =
dP/C? and the first of Egs. (16.51)], we bring this into the form

1 1 (o)’
U=gp [(VWQJF@ (a)

= (V). (16.57)
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The second equality can be deduced by multiplying the wave equation (16.52) by ¢ and
averaging. Thus, there is equipartition of energy between the kinetic and internal energy
terms.

The energy flux is F = (3v?+h)pv [Table 13.1 with ® = 0]. The kinetic energy flux (first
term) is third order in the velocity perturbation and therefore vanishes on average. For a
sound wave, the internal energy flux (second term) can be brought into a more useful form
by expanding the enthalpy per unit mass:

Oh

h—[h]+ Ka_P)j 5P =[] + %P | (16.58)

Here we have used the first law of thermodynamics dh = T'ds + (1/p)dP and adiabaticity of
the perturbation, s =constant; and the terms in square brackets are unperturbed quantities.
Inserting this into F = hpv and expressing 6 P and v in terms of the velocity potential [Eqs.
(16.51)], and averaging over a wave period and wavelength, we obtain for the energy flux
F = phv = § P v, which becomes

F = —p(g—f) Vi (16.59)

This equation and Eq. (16.57) are a special case of the scalar-wave energy flux and energy
density discussed in Sec. 7.3.1 and Ex. 7.4 [Egs. (7.18) with W = p/C?.

For a locally plane wave with ¢ = 1), cos(k - x — wt + ) (where ¢ is an arbitrary phase),
the energy density (16.57) is U = £p¢2k?, and the energy flux (16.59) is F = 1 py2wk. Since,
for this dispersion-free wave, the phase and group velocities are both V = (w/ k)l; = Ck
(where k = k/k is the unit vector pointing in the wave-propagation direction), the energy
density and flux are related by

F=UV =UCk]. (16.60)

The energy flux is therefore the product of the energy density and the wave velocity, as we
might have anticipated.

When studying dispersive waves in plasmas (Chaps. 20 and 22) we shall return to the
issue of energy transport, and shall see that just as information in waves is carried at the
group velocity, not the phase velocity, so energy is also carried at the group velocity.

In Sec. 7.3.1 we used the above equations for the sound-wave energy density U and
flux F to illustrate, via geometric-optics considerations, the behavior of wave energy in an
inhomogeneous, time-varying medium.

The energy flux carried by sound is conventionally measured in dB (decibels). The flux
in decibels, Fyp, is related to the flux /' in W m~2 by

Fag = 120 + 10 log,,(F) | . (16.61)

Sound that is barely audible is about 1 dB. Normal conversation is about 50-60 dB. Jet
aircraft and rock concerts can cause exposure to more than 120 dB with consequent damage
to the ear.
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16.5.2 Sound Generation

So far in this book, we have been concerned with describing how different types of waves
propagate. It is also important to understand how they are emitted. We now outline some
aspects of the theory of sound generation.

The reader should be familiar with the theory of electromagnetic wave emission [e.g.,
Chap. 9 of Jackson (1999)]. There, one considers a localised region containing moving
charges and consequently variable currents. The source can be described as a sum over
electric and magnetic multipoles, and each multipole in the source produces a characteristic
angular variation of the distant radiation field. The radiation-field amplitude decays inversely
with distance from the source and so the Poynting flux varies with the inverse square of the
distance. Integrating over a large sphere gives the total power radiated by the source, broken
down into the power radiated by each multipolar component. The ratio of the power in
successive multipole pairs [e.g., (magnetic dipole power)/(electric dipole power) ~ (electric
quadrupole power)/(electric dipole power)] is typically ~ (b/X)?, where b is the size of the
source and A = 1/k is the waves’ reduced wavelength. When A is large compared to b (a
situation referred to as slow motion since the source’s charges then generally move at speeds
~ (b/A)e small compared to the speed of light ¢), the most powerful radiating multipole is
the electric dipole d(t). The dipole’s average emitted power is given by the Larmor formula

(.i_2

6mepcd

(16.62)

where d is the second time derivative of d, the bar denotes a time average, and c is the speed
of light.

This same procedure can be followed when describing sound generation. However, as
we are dealing with a scalar wave, sound can have a monopolar source. As an pedagogical
example, let us set a small, spherical, elastic ball, surrounded by fluid, into radial oscillation
(not necessarily sinusoidal) with oscillation frequencies of order w, so the emitted waves have
reduced wavelengths of order A = C'/w. Let the surface of the ball have radius a + £(t), and
impose the slow-motion and small-amplitude conditions that

A>a> (€. (16.63)

As the waves will be spherical, the relevant outgoing-wave solution of the wave equation
(16.52) is
t—r/C
p=1=T/C) (16.64)
r
where f is a function to be determined. Since the fluid’s velocity at the ball’s surface must

match that of the ball, we have (to first order in v and )

flt=a/C), _ I

e, = v(a,t) = Vi ~ — .~ ——"e, (16.65)

a2
where in the third equality we have used the slow-motion condition. Solving for f(¢) and
inserting into Eq. (16.64), we see that

a2t —r/C)

Ylrt)=————"—. (16.66)
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It is customary to express the radial velocity perturbation v in terms of an oscillating
fluid monopole moment

q = 4mpa’€]. (16.67)

Physically this is the total radial discharge of air mass (i.e. mass per unit time) crossing an
imaginary fixed spherical surface of radius slightly larger than that of the oscillating ball.
In terms of ¢, we have £(t) = q(t)/4mpa®. Using this and Eq. (16.66), we compute for the
power radiated as sound waves [Eq. (16.59) integrated over a sphere centered on the ball]

P
7D_47rpC

(16.68)

Note that the power is inversely proportional to the signal speed. This is characteristic
of monopolar emission and in contrast to the inverse cube variation for dipolar emission
[Eq. (16.62)].

The emission of monopolar waves requires that the volume of the emitting solid body
oscillate. When the solid simply oscillates without changing its volume, for example the reed
on a musical instrument, dipolar emission will usually dominate. We can think of this as
two monopoles of size a in antiphase separated by some displacement b ~ a. The velocity
potential in the far field is then the sum of two monopolar contributions, which almost
cancel. Making a Taylor expansion, we obtain

ipole b b
Vaipore b wb (16.69)

77Z)monopole A C 7
where w and A are the characteristic magnitudes of the angular frequency and reduced
wavelength of the waves (which we have not assumed to be precisely sinusoidal).

This reduction of ¥ by the slow-motion factor /A implies that the dipolar power emis-
sion is weaker than the monopolar power by a factor ~ (b/X)? for similar frequencies and
amplitudes of motion—the same factor as for electromagnetic waves (see above). However,
to emit dipole radiation, momentum must be given to and removed from the fluid. In other
words the fluid must be forced by a solid body. In the absence of such a solid body, the
lowest multipole that can be radiated effectively is quadrupolar radiation, which is weaker
by yet one more factor of (b/X)2.

These considerations are important for understanding how noise is produced by the in-
tense turbulence created by jet engines, especially close to airports. We expect that the
sound emitted by the free turbulence in the wake just behind the engine will be quadrupolar
and will be dominated by emission from the largest (and hence fastest) turbulent eddies.
[See the discussion of turbulent eddies in Sec. 15.4.4.] Denote by ¢ and v, the size and
turnover speed of these largest eddies. Then the characteristic size of the sound’s source
will be a ~ b ~ ¢, the mass discharge will be ¢ ~ pl?v,, the characteristic frequency will
be w ~ v,/¢, the reduced wavelength of the sound waves will be A = ¢/w ~ {c/v,, and the
slow-motion parameter will be b/A ~ wb/c ~ wvy/c. The quadrupolar power radiated per
unit volume [Eq. (16.68) divided by the volume 3 of an eddy and reduced by ~ (b/X)*] will

therefore be 5 -
dx ’ (16.70)
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and this power will be concentrated around frequency w ~ v,/¢. For air of fixed sound speed
and length scale, and for which the largest eddy speed is proportional to some characteristic
speed V' (e.g. the average speed of the air leaving the engine), the sound generation increases
proportional to the eighth power of the Mach number M = V/c. This is known as Lighthill’s
law. The implications for the design of jet engines should be obvious.
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EXERCISES

Exercise 16.13 Problem: Aerodynamic Sound Generation

Consider the emission of quadrupolar sound waves by a Kolmogorov spectrum of free turbu-

lence (Sec. 15.4.4). Show that the power radiated per unit frequency interval has a spectrum
P,oxw 2.

Also show that the total power radiated is roughly a fraction M? of the power dissipated in

the turbulence, where M is the Mach number.
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16.5.3 Radiation Reaction, Runaway Solutions, and Matched
Asymptotic Expansions

Let us return to our idealized example of sound waves produced by a radially oscillating,
spherical ball. We shall use this example to illustrate several deep issues in theoretical
physics: the radiation-reaction force that acts back on a source due to its emission of
radiation, a spurious runaway solution to the source’s equation of motion caused by the
radiation-reaction force, and matched asymptotic expansions, a mathematical technique for
solving field equations when there are two different regions of space in which the equations
have rather different behaviors.® We shall meet these concepts again, in a rather more com-
plicated way, in Chap. 26, when studying the radiation reaction force caused by emission of
gravitational waves.

For our oscillating ball, the two different regions of space that we shall match to each
other are the near zone, r < A, and the wave zone, r 2 A.

We consider, first, the near zone, and we redo, from a new point of view, the analysis of
the matching of the near-zone fluid velocity to the ball’s surface velocity and the computation
of the pressure perturbation. Because the region near the ball is small compared to A and the
fluid speeds are small compared to C, the flow is very nearly incompressible, V-v = V%) = 0;
cf. the discussion of conditions for incompressibility in Sec. 13.6. [The near-zone equation
V2 = 0 is analogous to V2® = 0 for the Newtonian gravitational potential in the weak-
gravity near zone of a gravitational-wave source (Chap. 26).]

®Our treatment is based on Burke (1970).
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The general monopolar (spherical) solution to V2 = 0 is

Alt
= AW® | B(t) . (16.71)
r
Matching the fluid’s radial velocity v = 9y /0r = —A/ r? at r = a to the ball’s radial velocity

&, we obtain

A(t) = —a?£(t) . (16.72)

From the point of view of near-zone physics there is no mechanism for generating a nonzero
spatially constant term B(t) in ¢ [Eq. (16.71)], so if one were unaware of the emitted
waves and their action back on the source, one would be inclined to set this B(t) to
zero. [This is analogous to a Newtonian physicist, who would be inclined to write the
quadrupolar contribution to an axisymmetric source’s external gravitational field in the
form ® = Py(cos 0)[A(t)r=3 + B(t)r?] and then, being unaware of gravitational waves and
their action back on the source, would set B(t) to zero; see Chap. 26]. Taking this near-zone
point of view, with B = 0, we infer that the fluid’s pressure perturbation acting on the ball’s

surface is )
oY(a,t) A -
5 p = pak (16.73)

0P =—p

[Egs. (16.51)) and (16.72)].

The motion £(t) of the ball’s surface is controlled by the elastic restoring forces in its
interior and the fluid pressure perturbation §P on its surface. In the absence of dP the
surface would oscillate sinusoidally with some angular frequency w,, so & + w2¢ = 0. The

pressure will modify this to )
m(€ + w2f) = —4na*SP (16.74)

where m is an effective mass, roughly equal to the ball’s true mass, and the right hand side
is the integral of the radial component of the pressure perturbation force over the sphere’s
surface. Inserting the near-zone viewpoint’s pressure perturbation (16.73), we obtain

(m + 4ma®p)€ + mw2e =0 (16.75)

Evidently, the fluid increases the ball’s effective inertial mass (it loads additional mass onto
the ball), and thereby reduces its frequency of oscillation to

Wo drtadp
w = where Kk =

Vit k' m

is a measure of the coupling strength between the ball and the fluid. In terms of this loaded
frequency, the equation of motion becomes

(16.76)

E+w=0. (16.77)

This near-zone viewpoint is not quite correct, just as the standard Newtonian viewpoint
is not quite correct for the near-zone gravity of a gravitational-wave source (Chap. 26). To
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improve on this viewpoint, we temporarily move out into the wave zone and identify the
general, outgoing-wave solution to the sound wave equation,

f(t—er/c)

r

=

[Eq. (16.64)]. Here f is a function to be determined by matching to the near zone, and e
is a parameter that has been inserted to trace the influence of the outgoing-wave boundary
condition. For outgoing waves (the real, physical, situation), ¢ = +1; if the waves were
ingoing, we would have ¢ = —1.

This wave-zone solution remains valid down into the near zone. In the near zone we can
perform a slow-motion expansion to bring it into the same form as the near-zone velocity
potential (16.71):

(16.78)

PVIONI0)
r C
The second term is sensitive to whether the waves are outgoing or ingoing and thus must
ultimately be responsible for the radiation reaction force that acts back on the oscillating
ball; for this reason we will call it the radiation-reaction potential.
Equating the first term of this ¥ to the first term of (16.71) and using the value (16.72)
of A(t) obtained by matching the fluid velocity to the ball velocity, we obtain

f(t) = A(t) = —a?¢(t) . (16.80)

This equation tells us that the wave field f(t — r/C)/r generated by the ball’s surface
displacement £(t) is given by 1 = —a®£(t — 7/C)/r [Eq. (16.66)] — the result we derived
more quickly in the previous section. We can regard Eq. (16.80) as matching the near-zone
solution outward onto the wave-zone solution to determine the wave field as a function of
the source’s motion.

Equating the second term of Eq. (16.79) to the second term of the near-zone velocity
potential (16.71) we obtain

T (16.79)

B(t) = —e% = 6%25(15) : (16.81)

This is the term in the near-zone velocity potential ¢» = A/r + B that will be responsible
for radiation reaction. We can regard this radiation reaction potential Y*% = B(t) as having
been generated by matching the wave zone’s outgoing (¢ = +1) or ingoing (¢ = —1) wave
field back into the near zone.

This pair of matchings, outward then inward (Fig. 16.11), is a special, almost trivial
example of the technique of matched asymptotic expansions — a technique developed by
applied mathematicians to deal with much more complicated matching problems than this
one (see e.g. Cole, 1968).

The radiation-reaction potential Y** = B(t) = e(a®/C)E(t) gives rise to a radiation-
reaction contribution to the pressure on the ball’s surface PRR = —py)RR = —¢(pa®/C) €.
Inserting this into the equation of motion (16.74) along with the loading pressure (16.73)
and performing the same algebra as before, we get the following radiation-reaction-modified
form of Eq. (16.77):

K a

é+w2§ = ET'é, where 7 = 5 nC

(16.82)
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is less than the fluid’s sound travel time to cross the ball’s radius, a/C. The term ET‘é in the
equation of motion is the ball’s radiation-reaction acceleration, as we see from the fact that
it would change sign if we switched from outgoing waves, ¢ = +1, to ingoing waves, ¢ = —1.

In the absence of radiation reaction, the ball’s surface oscillates sinusoidally in time,
¢ = et The radiation reaction term produces a weak damping of these oscillations:

A 1
€ o et | where 0 = ie(wT)w (16.83)

with € = +1 is the radiation-reaction-induced damping rate. Note that in order of magnitude
the ratio of the damping rate to the oscillation frequency is 0/w = wr S wa/C = a/A, which
is small compared to unity by virtue of the slow-motion assumption. If the waves were
ingoing rather than outgoing, ¢ = —1, the fluid’s oscillations would grow. In either case,
outgoing waves or ingoing waves, the radiation reaction force removes energy from the ball
or adds it at the same rate as the sound waves carry energy off or bring it in. The total
energy, wave plus ball, is conserved.

Expression (16.83) is two linearly independent solutions to the equation of motion (16.82),
one with the sign 4+ and the other —. Since this equation of motion has been made third
order by the radiation-reaction term, there must be a third independent solution. It is easy
to see that, up to a tiny fractional correction, that third solution is

€ o el (16.84)

For outgoing waves, € = +1, this solution grows exponentially in time, on an extremely rapid
timescale 7 < a/C} it is called a runaway solution.

Such runaway solutions are ubiquitous in equations of motion with radiation reaction.
For example, a computation of the electromagnetic radiation reaction on a small, classical,
electrically charged, spherical particle gives the Abraham-Lorentz equation of motion

m(X — TX) = Fext (1685)
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Fig. 16.11: Matched asymptotic expansions for oscillating ball emitting sound waves. The near-
zone expansion feeds the radiation field 1 = LA(t —r/C) = —%aQé’(t —r/C) into the wave zone.
The wave-zone expansion then feeds the radiation-reaction field "} = B = ¢(a?/C)E back into the
near zone, and it produces the radiation-reaction pressure 6 PRR = —p¢RR on the ball’s surface.
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(Rorlich 1965; Sec. 16.2 of Jackson 1999). Here x(t) is the the particle’s world line, Foy is
the external force that causes the particle to accelerate, and the particle’s inertial mass m
includes an electrostatic contribution analogous to 4wa®p in our fluid problem. The timescale
7, like that in our fluid problem, is very short, and when the external force is absent, there
is a runaway solution x ox e*/7.

Much human heat and confusion were generated, in the the early and mid 20th century,
over these runaway solutions (see, e.g., Rorlich 1965). For our simple model problem, little
heat or confusion need be expended. One can easily verify that the runaway solution (16.84)
violates the slow-motion assumption a/A < 1 that underlies our derivation of the radiation
reaction acceleration. It therefore is a spurious solution.

Our model problem is sufficiently simple that one can dig deeper into it and learn that the
runaway solution arises from the slow-motion approximation trying to reproduce a genuine,
rapidly damped solution and getting the sign of the damping wrong (Ex. 16.15 and Burke
1970).
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EXERCISES

Exercise 16.14 Problem: FEnergy Conservation for Radially Oscillating Ball Plus Sound
Waves

For the radially oscillating ball as analyzed in Sec. 16.5.3, verify that the radiation reaction
acceleration removes energy from the ball, plus the fluid loaded onto it, at the same rate as
the sound waves carry energy away.

Exercise 16.15 Problem: Radiation Reaction Without the Slow Motion Approximation
Redo the computation of radiation reaction for a radially oscillating ball immersed in a
fluid, without imposing the slow-motion assumption and approximation. Thereby obtain
the following coupled equations for the radial displacement () of the ball’s surface and the
function ®(¢) = a 2f(t — ea/C), where v = r=! f(t — er/C') is the sound-wave field:

E+wi=rb, £=—-0—c(a/C)D . (16.86)

Show that in the slow-motion regime, this equation of motion has two weakly damped solu-
tions of the same form (16.83) as we derived using the slow-motion approximation, and one
rapidly damped solution & o exp(—ext/7). Burke (1970) shows that the runaway solution
(16.84) obtained using the slow-motion approximation is caused by that approximation’s
futile attempt to reproduce this genuine, rapidly damped solution.

Exercise 16.16 Problem: Sound Waves from a Ball Undergoing Quadrupolar Oscillations
Repeat the analysis of sound wave emission, radiation reaction, and energy conservation, as
given in Sec. 16.5.3 and Ex. 16.14, for axisymmetric, quadrupolar oscillations of an elastic
ball, rpan = a + £(t) Py(cos ).

Comment: Since the lowest multipolar order for gravitational waves is quadrupolar, this
exercise is closer to the analogous problem of gravitational wave emission than the monopolar
analysis in the text.
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Hint: If w is the frequency of the ball’s oscillations, then the sound waves have the form

- l (m(w/O) —z'ejgw/c))] | (1657

r

where K is a constant, R(X) is the real part of X, € is +1 for outgoing waves and —1 for
ingoing waves, and j, and my are the spherical Bessel and spherical Neuman functions of
order 2. In the distant wave zone, x = wr/C > 1,

€T

na(a) — ieja(x) = — (16.88)
in the near zone x = wr/C < 1,
3 2 4 - @’ 2 4
ng(x):—;(l&x &Lat& ..), jQ()zl—(l&x &at& ...) . (16.89)

n»

Here “& 2™ means “+4 (some constant)z
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16.6 |T2| Convection

In this last section of Chap 16, we turn attention to fluid motions driven by thermal effects
(see the overview in Sec. 16.1). As a foundation, we begin by discussing effects of heat
transport via thermal diffusion:

16.6.1 |[T2| Diffusive Heat Conduction

So long as the mean free path of heat-carrying particles is small compared to the fluid’s
inhomogeneity lengthscales (as is almost always the case), and the fractional temperature
change in one mean free path is small (as is also almost always true), the energy flux due to
heat flow takes the thermal-diffusion form

Feona = —xVT ) (1690)

see Secs. 3.7 and 13.7.3. Here & is the thermal conductivity.

For a viscous, heat-conducting fluid moving in an external gravitational field, the most
general governing equations are the fundamental thermodynamic potential u(p, s), the first
law of thermodynamics [Eq. (2) or (3) of Box 13.2], the law of mass conservation (13.25) or
(13.27), the Navier-Stokes equation (13.65), and the law of dissipative entropy production
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(13.70):

u = u(p,s), (16.91a)

du  ds d(1/p)
= = 1o —pP—I2, (16.91b)
% = —pV.v, (16.91c)

d
pd—;, = —VP+pg+V(CO)+2V - (no), (16.91d)
ds —kVT B 9 ‘ K 9

T [p (%) +V. ( T )] = (0*+2no:0 + T(VT) : (16.91e)

These are four scalar equations and one vector equation for four scalar and one vector
variables: the density p, internal energy per unit mass u, entropy per unit mass s, pressure
P, and velocity v. The thermal conductivity x and coefficients of shear and bulk viscosity ¢
and 1 = pv are presumed to be functions of p and s (or equally well, p and T').

This set of equations is far too complicated to solve, except via massive numerical sim-
ulations, unless some strong simplifications are imposed. We must therefore introduce ap-
proximations. Our first approzimation (already implicit in the above equations) is that the
thermal conductivity k is constant, as are the coefficients of viscosity; for most real applica-
tions this is close to true, and no significant physical effects are missed by assuming it. Qur
second approximation, which does limit somewhat the type of problem we can address, is
that the fluid motions are very slow—slow enough that, not only can the flow be regarded
as “incompressible” (§ = V -v = 0), but the squares of the shear and expansion (which are
quadratic in the fluid speed) are negligibly small, and we thus can ignore viscous dissipation.
These approximations bring the the last three of the fluid evolution equations (16.91) into
the simplified form

V.v ~ 0, dp/dt~0, (16.92a)
dv A\ 9
—_— = —— 16.92b
i p +g+vViv ( )
d

pTd—j = KV (16.92¢)

[Our reasons for using “~" in Egs. (16.92a) will become clear in Sec. 16.6.2 below, in con-
nection with buoyancy.] Note that Eq. (16.92b) is the standard form of the Navier Stokes
equation for incompressible flows, which we have used extensively in the past several chap-
ters. Equation (16.92c) is an elementary law of energy conservation; it says that the rate
of increase of entropy density moving with the fluid is equal to minus the divergence of the
conductive energy flux Fieor = —kVT.

We can convert the entropy evolution equation (16.92¢) into an evolution equation for
temperature by expressing the changes ds/dt of entropy per baryon in terms of changes d7'/dt
of temperature. The usual way to do this is to note that T'ds (the amount of heat deposited
in a unit mass of fluid) is given by c¢dT’, where ¢ is the fluid’s specific heat per unit mass.
However, the specific heat depends on what one holds fixed during the energy deposition:
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the fluid element’s volume or its pressure. As we have assumed that the fluid motions are
very slow, the fractional pressure fluctuations will be correspondingly small. (This does
not preclude significant temperature fluctuations, provided that they are compensated by
density fluctuations of opposite sign. However, if there are temperature fluctuations, then
these will tend to equalize through thermal conduction in such a way that the pressure does
not change significantly.) Therefore, the relevant specific heat for a slowly moving fluid is the
one at constant pressure, cp, and we must write T'ds = cpdT.% Eq. (16.92c) then becomes a
linear partial differential equation for the temperature

dl’ 0T
— = VT = T 16.
o 8t+v \Y% xVeT|, (16.93)

where

X = K/pcp (16.94)

is known as the thermal diffusivity and we have again taken the easiest route in treating
cp and p as constant. When the fluid moves so slowly that the advective term v - VT is
negligible, then Eq. (16.93) says that the heat simply diffuses through the fluid, with the
thermal diffusivity x being the diffusion coefficient for the temperature.

The diffusive transport of heat by thermal conduction is similar to the diffusive transport
of vorticity by viscous stress [Eq. (14.3)] and the thermal diffusivity y is the direct analog
of the kinematic viscosity v. This motivates us to introduce a new dimensionless number
known as the Prandtl number, which measures the relative importance of viscosity and heat
conduction (in the sense of their relative abilities to produce a diffusion of vorticity and of
heat):

14
Pr=—|. 16.95
» (16.95)

For gases, both v and x are given to order of magnitude by the product of the mean molecular
speed and the mean free path, and so Prandtl numbers are typically of order unity. (For
air, Pr ~ 0.7.) By contrast, in liquid metals the free electrons carry heat very efficiently
compared with the transport of momentum (and vorticity) by diffusing ions, and so their
Prandtl numbers are small. This is why liquid sodium is used as a coolant in nuclear power
reactors. At the other end of the spectrum, water is a relatively poor thermal conductor
with Pr ~ 6, and Prandtl numbers for oils, which are quite viscous and poor conductors,
measure in the thousands. Other Prandtl numbers are given in Table 16.1.

One might think that, when the Prandtl number is small (so x is large compared to
v), one should necessarily include heat flow in the fluid equations and pay attention to
thermally induced buoyancy (Sec. 16.6.2). Not so. In some low-Prandtl-number flows, the
heat conduction is so effective that the fluid becomes essentially isothermal, and buoyancy
effects are minimised. Conversely, in some large-Prandtl-number flows the large viscous
stress reduces the velocity gradient so that slow, thermally driven circulation takes place
and thermal effects are very important. In general, the kinematic viscosity is of direct

6See e.g. Turner 1973 for a more formal justification of the use of the specific heat at constant pressure
rather than constant volume.
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Fluid v (m*™1) x (m%~!) Pr
Earth’s mantle 107 106 10%3
Solar interior 1072 102 10~4
Atmosphere 107° 107° 1
Ocean 106 10~ 10

Table 16.1: Order of magnitude estimates for kinematic viscosity v, thermal diffusivity y, and
Prandtl number Pr = v/x for earth, fire, air and water.

importance in controlling the transport of momentum, and hence in establishing the velocity
field, whereas heat conduction affects the velocity field only indirectly (Sec. 16.6.2 below).
We must therefore examine each flow on its individual merits.

There is another dimensionless number that is commonly introduced when discussing
thermal effects: the Péclet number. 1t is defined, by analogy with the Reynolds’ number, by

VL
Pe=-—|, (16.96)
X

where L is a characteristic length scale of the flow and V is a characteristic speed. The
Péclet number measures the relative importance of advection and heat conduction.
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EXERCISES

Exercise 16.17 Fxample: Poiseuille Flow with a uniform temperature gradient
A nuclear reactor is cooled with liquid sodium which flows through a set of pipes from the
reactor to a remote heat exchanger, where the heat’s energy is used to generate electricity.
Unfortunately, some heat will be lost through the walls of the pipe before it reaches the heat
exchanger and this will reduce the reactor’s efficiency. In this exercise, we determine what
fraction of the heat is lost through the pipe walls.

Consider the flow of the sodium through one of the pipes, and assume that the Reynold’s
number is modest so the flow is steady and laminar. Then the fluid velocity will have the
parabolic Poiseuille profile

2
v =25 (1 - %) (16.97)

[Eq. (13.76) and associated discussion]. Here R is the pipe’s inner radius, w is the cylindrical
radial coordinate measured from the axis of the pipe, and v is the mean speed along the
pipe. Suppose that the pipe has length L > R from the reactor to the heat exchanger, and
is thermally very well insulated so its inner wall is at nearly the same temperature as the
core of the fluid. Then the total temperature drop AT down the length L will be AT < T,
and the temperature gradient will be constant, so the temperature distribution in the pipe
has the form

T=T— AT% + f(w) . (16.98)
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Use Eq. (16.92¢) to show that

GRPAT [3 = 1w!
_ { d w} (16.99)

= 2yL |4 YT

Derive an expression for the conductive heat flux through the walls of the pipe and
show that the ratio of the heat escaping through the walls to that advected by the
fluid is AT/T. (Ignore the influence of the temperature gradient on the velocity field
and treat the thermal diffusivity and specific heat as constant throughout the flow.)

Consider a nuclear reactor in which 10kW of power has to be transported through a
pipe carrying liquid sodium. If the reactor temperature is ~ 1000K and the exterior
temperature is room temperature, estimate the flow of liquid sodium necessary to
achieve the necessary transport of heat

Exercise 16.18 Problem: Thermal Boundary Layers

In Sec. 14.4, we introduced the notion of a laminar boundary layer by analyzing flow past a
thin plate. Now suppose that this same plate is maintained at a different temperature from
the free flow. A thermal boundary layer will be formed, in addition to the viscous boundary
layer, which we presume to be laminar. These two boundary layers will both extend outward
from the wall but will (usually) have different thicknesses.

(a)
(b)

Explain why their relative thicknesses depend on the Prandtl number.

Using Eq. (16.93), show that in order of magnitude the thickness of the thermal bound-
ary layer, dr, is given by

U((ST)(S% - KX ’
where v(dr) is the fluid velocity parallel to the plate at the outer edge of the thermal
boundary layer and /¢ is the distance downstream from the leading edge. Let V' be the

free stream fluid velocity and AT be the temperature difference between the plate and
the body of the flow.

Estimate d7 in the limits of large and small Prandtl numbers.

What will be the boundary layer’s temperature profile when the Prandtl number is
exactly unity?

KKKk kook sk ok sk sk ok sk sk sk sk sk skosk sk okokokoskokoskoskoskok
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16.6.2 |[T2| Boussinesq Approximation

When heat fluxes are sufficiently small, we can use Eq. (16.93) to solve for the tempera-
ture distribution in a given velocity field, ignoring the feedback of thermal effects onto the
velocity. However, if we imagine increasing the flow’s temperature differences so the heat
fluxes also increase, at some point thermal feedback effects will begin to influence the ve-
locity significantly. Typically, the first feedback effect to occur is buoyancy, the tendency of
the hotter (and hence lower-density) fluid to rise in a gravitational field and the colder (and
hence denser) fluid to descend.” In this section, we shall describe the effects of buoyancy as
simply as possible. The minimal approach, which is adequate surprisingly often, is called
the Boussinesq approximation. It can be used to describe many heat-driven laboratory flows
and atmospheric flows, and some geophysical flows.

The types of flows for which the Boussinesq approximation is appropriate are those in
which the fractional density changes are small (|Ap| < p). By contrast, the velocity can
undergo large changes, though it remains constrained by the “incompressibility” relation
(16.92a):

V-v=0. Boussinesq (1) (16.100)

One might think that this implies the density is constant moving with a fluid element,
since mass conservation says dp/dt = —pV - v. However, thermal expansion causes small
density changes, with tiny corresponding violations of Eq. (16.100); this explains the “~
that we used in Egs. (16.92a). The key point is that, for these types of flows, the density is
controlled to high accuracy by thermal expansion, and the velocity field is divergence free to
high accuracy.

In discussing thermal expansion, it is convenient to introduce a reference density py and
reference temperature Ty, equal to some mean of the density and temperature in the region

of fluid that one is studying. We shall denote by

7

T=T-T, (16.101)

the perturbation of the temperature away from its reference value. The thermally perturbed
density can then be written as

p=po(l—ar)l|, (16.102)

where « is the thermal expansion coefficient for volume® [evaluated at constant pressure for
the same reason as cp was at constant pressure in the paragraph following Eq. (16.92¢)]:

B dlnp
a——( — )P . (16.103)

Equation (16.102) enables us to eliminate density perturbations as an explicit variable and
replace them by temperature perturbations.

"This effect is put to good use in a domestic “gravity-fed” warm-air circulation system. The furnace
generally resides in the basement not the attic!

8Note that « is three times larger than the thermal expansion coefficient for the linear dimensions of the
fluid.
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Turn, now, to the Navier-Stokes equation (16.92b) in a uniform external gravitational
field. We expand the pressure-gradient term as

P P
_vP ~ —V—(l +ar), (16.104)

P Po

and, as in our analysis of rotating flows [Eq. (14.53)], we introduce an effective pressure
designed to compensate for the first-order effects of the uniform gravitational field:

P =P+ py®=P—pyg-x|. (16.105)

(Notice that P’ measures the amount the pressure differs from the value it would have in
supporting a hydrostatic atmosphere of the fluid at the reference density.) The Navier-Stokes
equation (16.92b) then becomes

dv _VP’

— = —arg +vV?v, Boussinesq (2) (16.106)
dt Po

dropping the small term O(aP’). In words, a fluid element accelerates in response to a
buoyancy force which is the sum of the first and second terms on the right hand side of
Eq. (16.106), and a viscous force.

In order to solve this equation we must be able to solve for the temperature perturbation,
7. This evolves according to the standard equation of heat diffusion, Eq. (16.93):

2—; = xV?7. Boussinesq (3) (16.107)

Equations (16.100), (16.106) and (16.107) are the equations of fluid flow in the Boussinesq
approximation; they control the coupled evolution for the velocity v and the temperature
perturbation 7. We shall now use them to discuss free convection in a laboratory apparatus.

16.6.3 Rayleigh-Bénard Convection

In a relatively simple laboratory experiment to demonstrate convection, a fluid is confined
between two rigid plates a distance d apart, each maintained at a fixed temperature, with
the upper plate cooler than the lower by AT. When AT is small, viscous stresses, together
with the no-slip boundary conditions at the plates, inhibit circulation; so, despite the upward
boyancy force on the hotter, less-dense fluid near the bottom plate, the fluid remains stably
at rest with heat being conducted diffusively upward. If the plates’ temperature difference
AT is gradually increased, the buoyancy becomes gradually stronger. At some critical AT
it will overcome the restraining viscous forces, and the fluid will start to circulate (convect)
between the two plates. Our goal is to determine the critical temperature difference AT
for the onset of convection.

We now make some physical arguments to simplify the calculation of AT;. From our
experience with earlier instability calculations, especially those involving elastic bifurcations
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ZA

Ty-AT/2

To+AT/2

Fig. 16.12: Rayleigh-Bénard convection. A fluid is confined between two horizontal surfaces
separated by a vertical distance d. When the temperature difference between the two plates AT is
increased sufficiently, the fluid will start to convect heat vertically. The reference effective pressure
P} and reference temperature Ty are the values of P’ and T' measured at the midplane z = 0.

(Secs. 11.8 and 12.3.5), we anticipate that for AT < AT, the response of the equilibrium
to small perturbations will be oscillatory (i.e., will have positive squared eigenfrequency w?),
while for AT > AT, perturbations will grow exponentially (i.e., will have negative w?).
Correspondingly, at AT = AT, w? for some mode will be zero. This zero-frequency mode
will mark the bifurcation of equilibria from one with no fluid motions to one with slow,
convective motions. We shall search for AT, by searching for a solution to the Boussinesq
equations (16.100), (16.106) and (16.107) that represents this zero-frequency mode. In those
equations we shall choose for the reference temperature Tj, density py and effective pressure
Py the values at the midplane between the plates, z = 0; cf. Fig. 16.12.

The unperturbed equilibrium, when AT = AT, is a solution of the Boussinesq equa-
tions (16.100), (16.106) and (16.107) with vanishing velocity, a time-independent vertical
temperature gradient dT/dz = —AT/d, and a compensating, time-independent, vertical
pressure gradient:

AT AT 22
v=0, r=T-Th=-—rz, P’:P(;+gpoa7%. (16.108)

When the zero-frequency mode is present, the velocity v will be nonzero, and the temperature
and effective pressure will have additional perturbations é7 and 6 P’:

2
v#£0, T:T—TOZ—%Z—F(;T, P':P(;—i-gpooz%%—i—c;P’. (16.109)
The perturbations v, 67 and 6 P are governed by the Boussinesq equations and the boundary
conditions v = 0 (no-slip) and 7 = 0 at the plates, z = +d/2. We shall manipulate these in
such a way as to get a partial differential equation for the scalar temperature perturbation
0T by itself, decoupled from the velocity and the pressure perturbation.
Consider, first, the result of inserting expressions (16.109) into the Boussinesg-approximated
Navier-Stokes equation (16.106). Because the perturbation mode has zero frequency, dv /0t
vanishes; and because v is extremely small, we can neglect the quadratic advective term
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v - Vv, thereby bringing Eq. (16.106) into the form

VoP
Po

=vV?v — gadT . (16.110)

We want to eliminate § P’ from this equation. The other Boussinesq equations are of no help
for this, since P’ is absent from them. One might be tempted to eliminate 0 P using the
equation of state P = P(p,T); but in the present analysis our Boussinesq approximation
insists that the only significant changes of density are those due to thermal expansion, i.e.
it neglects the influence of pressure on density, so the equation of state cannot help us.
Lacking any other way to eliminate d P’, we employ a very common trick: we take the curl
of Eq. (16.110). As the curl of a gradient vanishes, 0 P" drops out. We then take the curl
one more time and use the fact that V - v = 0 to obtain

vV3(V?v) = agV?5T — al(g - V)VoT . (16.111)

Turn, next, to the Boussinesq version of the equation of heat transport, Eq. (16.107).
Inserting into it Egs. (16.109) for 7 and v, setting 007 /0t to zero because our perturbation

has zero frequency, linearizing in the perturbation, and using g = —ge,, we obtain
AT
- —— = XV (16.112)

This is an equation for the vertical velocity v, in terms of the temperature perturbation o7.
By inserting this v, into the z component of Eq. (16.111), we achieve our goal of a scalar
equation for d7 alone:

v V2226 =

2 2
agAT (3 oT (9(57') (16.113)

d 0x? + oy?

This is a sixth order differential equation, even more formidable than the fourth order equa-
tions that arise in the elasticity calculations of Chaps. 11 and 12. We now see how prudent
it was to make simplifying assumptions at the outset!

The differential equation (16.113) is, however, linear, so we can seek solutions using
separation of variables. As the equilibrium is unbounded horizontally, we look for a single
horizontal Fourier component with some wave number k; i.e., we seek a solution of the form

o1 o exp(ikx) f(2) (16.114)

where f(z) is some unknown function. Such a d7 will be accompanied by motions v in the
x and z directions (i.e., v, = 0) that also have the form v; o exp(ikx)f;(z) for some other
functions f;(z).

The anszatz (16.114) converts the partial differential equation (16.113) into the single
ordinary differential equation

2 )\ . Rakf
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where we have introduced yet another dimensionless number

_ agATd?
-

Ra (16.116)

called the Rayleigh number. By virtue of the relation (16.112) between v, and d7, the
Rayleigh number is a measure of the ratio of the strength of the buoyancy term —adrg to
the viscous term vV?v in the Boussinesq version (16.106) of the Navier-Stokes equation:

buovancy force
Ra ~ Yy Yy

16.117
viscous force ( )

The general solution of Eq. (16.115) is an arbitrary, linear combination of three sine
functions and three cosine functions:

3

f= Z A, cos(pnkz) + By sin(u,kz) (16.118)

n=1

where the dimensionless numbers p,, are given by

Ra \ /3 A V2
Lo = (k4d4) ermmil3 _ 1] - n=1273, (16.119)
which involves the three cube roots of unity, e>™/3. The values of five of the coefficients

A,, B, are fixed in terms of the sixth (an overall arbitrary amplitude) by five boundary
conditions at the bounding plates, and a sixth boundary condition then determines the
critical temperature difference AT, (or equivalently, the critical Rayleigh number Rac;)
at which convection sets in.

The six boundary conditions are: (i) The requirement that the fluid temperature be
the same as the plate temperature at each plate, so 07 = 0 at z = +d/2. (ii) The no-
slip boundary condition v, = 0 at each plate which, by virtue of Eq. (16.112) and é7 = 0
at the plates, translates into 07., = 0 at z = £d/2 (where the indices after the comma
are partial derivatives). (iii) The no-slip boundary condition v, = 0, which by virtue of
incompressibility V - v = 0 implies v, ., = 0 at the plates, which in turn by Eq. (16.112)
implies 07 .., + 07T .. = 0 at z = +d/2.

It is straightforward but computationally complex to impose these six boundary condi-
tions and from them deduce the critical Rayleigh number for onset of convection; see Pellew
and Southwell (1940). Rather than present the nasty details, we shall switch to a toy prob-
lem in which the boundary conditions are adjusted to give a simpler solution, but one with
the same qualitative features as for the real problem. Specifically, we shall replace the no-slip
condition (iii) (v, = 0 at the plates) by a condition of no shear, (iii’) v, , = 0 at the plates.
By virtue of incompressibility V - v = 0, the x derivative of this translates into v, ,, = 0,
which by Eq. (16.112) translates to 07 .,40 + 07 ..., = 0. To recapitulate, we seek a solution
of the form (16.118), (16.119) that satisfies the boundary conditions (i), (ii), (iii’).
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Ra it Ra

Fig. 16.13: Horizontal wave number k of the first mode to go unstable, as a function of Rayleigh
number, Ra. Along the solid curve the mode has zero frequency; to the left of the curve it is stable,
to the right it is unstable. Racyi; is the minimum Rayleigh number for convective instability.

The terms in Eq. (16.118) with n = 1,2 always have complex arguments and thus always
have z dependences that are products of hyperbolic and trigonometric functions with real
arguments. For n = 3 and large enough Rayleigh number, u3 is positive and the solutions
are pure sines and cosines. Let us just consider the n = 3 terms alone, in this regime, and
impose boundary condition (i), that 67 = 0 at the plates. The cosine term by itself,

67 = constant x cos(uskz) e™** (16.120)
satisfies this, if we set
/3 1/2
pskd |/ Ra \' kd

where m is an integer. It is straightforward to show, remarkably, that Eqgs. (16.120), (16.121)
also satisfy boundary conditions (ii) and (iii’), so they solve the toy version of our problem.
As AT is gradually increased from zero, the Rayleigh number Ra gradually grows, passing
one after another through the sequence of values (16.121) with m = 0, 1,2, ... (for any chosen
k). At each of these values there is a zero-frequency, circulatory mode of fluid motion with
horizontal wave number k, which is passing from stability to instability. The first of these,
m = 0, represents the onset of circulation for the chosen k, and the Rayleigh number at this
onset [Eq. (16.121) with m = 0] is
2 12 2\3
Ra = % . (16.122)
This Ra(k) relation is plotted as a thick curve in Fig. 16.13.

Notice in Fig. 16.13 that there is a critical Rayleigh number Ra.,;; below which all modes
are stable, independent of their wave numbers, and above which modes in some range k,;, <
k < kmax are unstable. From Eq. (16.122) we deduce that, for our toy problem, Rag; =
2774 /4 ~ 660.

When one imposes the correct boundary conditions (i), (ii), (iii) [instead of our toy choice
(i), (ii), (iii")] and works through the nasty details of the computation, one obtains a Ra(k)
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Fig. 16.14: Hexagonal convection cells in Rayleigh-Bénard convection. The fluid, which is visual-
ized using aluminum powder, rises at the centers of the hexagons and falls around the edges.

relation that looks qualitatively the same as Fig. 16.13, and one deduces that convection
should set in at Racy =~ 1700, which agrees reasonably well with experiment. One can carry
out the same computation with the fluid’s upper surface free to move (e.g., due to placing air
rather than a solid plate at z = d/2). Such a computation predicts that convection begins
at Ragy >~ 1100, though in practice surface tension is usually important and its effect must
be included.

One feature of these critical Rayleigh numbers is very striking. Because the Rayleigh
number is an estimate of the ratio of buoyancy forces to viscous forces [Eq. (16.117)], an
order-of-magnitude analysis suggests that convection should set in at Ra ~ 1—which is
wrong by three orders of magnitude! This provides a vivid reminder that order-of-magnitude
estimates can be quite inaccurate. In this case, the main reason for the discrepancy is that the
convective onset is governed by a sixth-order differential equation (16.113), and thus is very
sensitive to the lengthscale d used in the order-of-magnitude analysis. If we choose d/7 rather
than d as the length scale, then an order-of-magnitude estimate could give Ra ~ 7% ~ 1000,
a much more satisfactory value.

Once convection has set in, the unstable modes grow until viscosity and nonlinearities
stabilize them, at which point they carry far more heat upward between the plates than does
conduction. The convection’s velocity pattern depends, in practice, on the manner in which
the heat is applied and the temperature dependence of the viscosity. For a limited range
of Rayleigh numbers near Ra.,;, it is possible to excite a hexagonal pattern of convection
cells as shown in Fig. 16.14. When the Rayleigh number becomes very large, the convection
becomes fully turbulent and we must introduce an effective turbulent viscosity to replace
the molecular viscosity (cf. Chap. 15).

Free convection, like that in this laboratory experiment, also occurs in meteorological
and geophysical flows. For example for air in a room, the relevant parameter values are o« =
1/T ~ 0.003 K~ (Charles’ Law), and v ~ x ~ 107° m? s™!, so the Rayleigh number is Ra ~
3x 108(AT/1K)(d/1m)3. Convection in a room thus occurs extremely readily, even for small
temperature differences. In fact, so many modes of convective motion can be excited that
heat-driven air flow is invariably turbulent. It is therefore common in everyday situations to
describe heat transport using a phenomenological turbulent thermal conductivity (cf. section
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15.4). A further example is given in Box 16.5.

Box 16.5
Mantle Convection and Continental Drift

As is now well known, the continents drift over the surface of the globe on a timescale
of roughly a hundred million years. Despite the clear geographical evidence that the
continents fit together, geophysicists were, for a long while, skeptical that this occured
because they were unable to identify the forces responsible for overcoming the visco-elastic
resilience of the crust. It is now known that these motions are in fact slow convective
circulation of the mantle driven by internally generated heat from the radioactive decay
of unstable isotopes, principally uranium, thorium and potassium.

When the heat is generated within the convective layer (which has radial thickness
d), rather than passively transported from below, we must modify our definition of the
Rayleigh number. Let the heat generated per unit mass per unit time be (). In the analog
of our laboratory analysis, where the fluid is assumed marginally unstable to convective
motions, this @) will generate a heat flux ~ pQd, which must be carried diffusively.
Equating this flux to kAT /d, we can solve for the temperature difference AT between
the lower and upper edges of the convective mantle: AT ~ pQd?/k. Inserting this AT
into Eq. (16.116), we obtain a modified expression for the Rayleigh number

apgQd’
KXV

Ra' = (1)

Let us now estimate the value of Ra’ for the earth’s mantle. The mantle’s kinematic

viscosity can be measured by post-glacial rebound studies (cf. Ex. 14.7) to be ~ 107
m? s~!. We can use the rate of attenuation of diurnal and annual temperature variation
with depth in surface rock to estimate a thermal diffusivity x ~ 107 m? s~!. Direct
experiment furnishes an expansion coefficient, o ~ 3 x 107 K~!. The thickness of the
upper mantle is roughly 700 km and the rock density is about 4000 kg m~3. The rate of
heat generation can be estimated both by chemical analysis and direct measurement at
the earth’s surface and turns out to be Q ~ 10~ W kg=!. Combining these quantities,
we obtain an estimated Rayleigh number Ra’ ~ 10°, well in excess of the critical value
for convection under free slip conditions which evaluates to 868 (Turcotte & Schubert
1982). For this reason, it is now believed that continental drift is driven primarily by
mantle convection.
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EXERCISES

Exercise 16.19 Problem: Critical Rayleigh Number
Estimate the temperature to which pans of oil (v ~ 107> m? s™!, Pr~ 3000), water (v ~ 107°
m? s7!, Pr~ 6) and mercury (v ~ 1077 m? s7!, Pr~ 0.02) would have to be heated in order
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to convect. Assume that the upper surface is at room temperature. Do not perform this
experiment with mercury!

Exercise 16.20 Problem: Width of a Thermal Plume

Consider a knife on its back, so its sharp edge points in the upward, 2z direction. The edge
(idealized as extending infinitely far in the y direction) is hot, and by heating adjacent fluid
it creates a rising thermal plume. Introduce a temperature deficit AT (z) that measures the
typical difference in temperature between the plume and the surrounding, ambient fluid at
height z above the knife edge, and let J,(z) be the width of the plume at height z.

(a) Show that energy conservation implies the constancy of 0,ATv,, where v,(z) is the
plume’s mean vertical speed at height z.

(b) Make an estimate of the buoyancy acceleration and use this to estimate v,.

(c) Use Eq. (16.107) to relate the width of the plume to the speed. Hence, show that the
width of the plume scales as d, oc 2%/° and the temperature deficit as AT oc 273/,

(d) Repeat this exercise for a three dimensional plume above a hot spot.
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16.6.4 Convection in Stars

The sun and other stars generate heat in their interiors by nuclear reactions. In most stars,
the internal energy is predominantly in the form of hot hydrogen and helium ions and their
electrons, while the thermal conductivity is due primarily to diffusing photons (Sec. 3.7),
which have much longer mean free paths than the ions and electrons. When the photon
mean free path becomes small due to high opacity (as happens in the outer 30 per cent of
the sun; Fig. 16.15), the thermal conductivity goes down, so in order to transport the heat
from nuclear burning, the star develops an increasingly steep temperature gradient. The
star may then become convectively unstable and transport its energy far more efficiently by
circulating its hot gas than it could have by photon diffusion. Describing this convection is
a key step in understanding the interiors of the sun and other stars.

Convection

Photosphere
Zone

Fig. 16.15: A convection zone occupies the outer 30 per cent of a solar-type star.

A heuristic argument provides the basis for a surprisingly simple description of this
convection. As a foundation for our argument, let us identify the relevant physics:
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Before After

Fig. 16.16: Convectively unstable interchange of two blobs in a star whose entropy per unit mass
increases downward. Blob B rises to the former position of blob A and expands adiabatically to
match the surrounding pressure. The entropy per unit mass of the blob is higher than that of the
surrounding gas and so the blob has a lower density. It will therefore be buoyant and continue to
rise. Similarly, blob A will continue to sink.

First: the pressure within stars varies through many orders of magnitude; typically 102
for the sun. Therefore, we cannot use the Boussinesq approximation; instead, as a fluid
element rises or descends, we must allow for its density to change in response to large
changes of the surrounding pressure. Second: The convection involves circulatory motions
on such large scales that the attendant shears are small and viscosity is thus unimportant.
Third: Because the convection is driven by ineffectiveness of conduction, we can idealize
each fluid element as retaining its heat as it moves, so the flow is adiabatic. Fourth: the
convection will usually be very subsonic, as subsonic motions are easily sufficient to transport
the nuclear-generated heat, except very close to the solar surface.

Our heuristic argument, then, focuses on convecting fluid blobs that move through the
star’s interior very subsonically, adiabatically, and without viscosity. As the motion is sub-
sonic, each blob will remain in pressure equilibrium with its surroundings. Now, suppose
we make a virtual interchange between two blobs at different heights (Fig. 16.16). The blob
that rises (blob B in the figure) will experience a decreased pressure and thus will expand,
so its density will diminish. If its density after rising is lower than that of its surroundings,
then it will be buoyant and continue to rise. Conversely, if the risen blob is denser than
its surroundings, then it will sink back to its original location. Therefore, a criterion for
convective instability is that the risen blob has lower density than its surroundings. Since
the blob and its surroundings have the same pressure, and since the larger is the entropy s
per unit mass of gas, the lower is its density (there being more phase space available to its
particles), the fluid is convectively unstable if the risen blob has a higher entropy than its
surroundings. Now, the blob’s motion was adiabatic, so its entropy per unit mass s is the
same after it rises as before. Therefore, the fluid is convectively unstable if the entropy per
unit mass s at the location where the blob began (lower in the star) is greater than that at
the location to which it rose (higher in the star); i.e., the star is convectively unstable if its
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entropy per unit mass decreases outward, ds/dr < 0. For small blobs, this instability will
be counteracted by both viscosity and heat conduction; but for large blobs, viscosity and
conduction are ineffective, and the convection proceeds.

When building stellar models, astrophysicists find it convenient to determine whether
a region of a model is convectively unstable by computing what its structure would be
without convection, i.e., with all its heat carried radiatively. That computation gives some
temperature gradient dT'/dr. If this computed dT'/dr is superadiabiatic, i.e., if

_dInT - (8lnT> (_dlnP) _ (dlnT) | (16.123)
dlnr OlnP), dinr dinr )
then correspondingly the entropy s decreases outward, and the star is convectively unstable.
This is known as the Schwarzschild criterion for convection, since it was formulated by the
same Karl Schwarzschild as discovered the Schwarzschild solution to Einstein’s equations
(which describes a nonrotating black hole; Chap. 25).

In practice, if the star is convective, then the convection is usually so efficient at trans-
porting heat that the actual temperature gradient is only slightly superadiabatic; i.e., the
entropy s is nearly independent of radius—it decreases outward only very slightly. (Of course,
the entropy can increase significantly outwards in a convectively stable zone where radiative
diffusion is adequate to transport heat.)

We can demonstrate the efficiency of convection by estimating the convective heat flux
when the temperature gradient is slightly superadiabatic, i.e., when A|VT| = |(dT'/dr)| —
|(dT'/dr)4| is slightly positive. As a tool in our estimate, we introduce the concept of the
mizing length, denoted by [—the typical distance a blob travels before breaking up. As the
blob is in pressure equilibrium, we can estimate its fractional density difference from its sur-
roundings by 0p/p ~ 6T /T ~ A|VT|l/T. Invoking Archimedes’ principle, we estimate the
blob’s acceleration to be ~ gdp/p ~ gA|VT|l/T (where g is the local acceleration of gravity),

and hence the average speed with which a blob rises or sinks will be o ~ (gA|VT|/T)'?l.
The convective heat flux is then given by

Feony ~ cppul A|VT)|
~ cpp(g/T)Y*(A|VT|)>?12 . (16.124)

We can bring this into a more useful form, accurate to within factors of order unity, by
setting the mixing length equal to the pressure scale height | ~ H = |dr/dIn P| as is usually
the case in the outer parts of a star, setting cp ~ h/T where h is the enthalpy per unit mass
[cf. the first law of thermodynamics, Eq. (3) of Box 13.2], setting g = —(P/p)dIn P/dr ~
C?|dIn P/dr| [cf. the equation of hydrostatic equilibrium (13.13) and Eq. (16.48) for the
speed of sound C], and setting |VT| = |dT/dr| ~ Tdln P/dr. The resulting expression for
F.ony can then be inverted to give

2/3
AvT (F)/ Faw " 16.125)
VT hpC 5P\/kgT/m, ’ '
Here the last expression is obtained from the fact that the gas is fully ionized, so its enthalpy
is h = %P/ p and its speed of sound is about the thermal speed of its protons (the most
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numerous massive particle), ¢ ~ /kgT/m, (with kg Boltzmann’s constant and m, the
proton rest mass).

It is informative to apply this estimate to the convection zone of the sun (the outer ~ 30
per cent of its radius; Fig. 16.15). The luminosity of the sun is ~ 4 x 10 W and its radius
is 7 x 10° km, so its convective energy flux is Fyony ~ 108 W m~2. Consider, first, the
convection zone’s base. The pressure there is P ~ 1 TPa and the temperature is T ~ 10°
K, so Eq. (16.125) predicts |[AVT|/|VT| ~ 3 x 107%; i.e., the temperature gradient at the
base of the convection zone need only be superadiabatic by a few parts in a million in order
to carry the solar energy flux.

By contrast, at the top of the convection zone (which is nearly at the solar surface), the
gas pressure is only ~ 10 kPa and the sound speed is ~ 10 km s~!, so hpc ~ 105W m~2, and
|AVT|/|VT]| ~ 1; i.e., the temperature gradient must depart significantly from the adiabatic
gradient in order to carry the heat. Moreover, the convective elements, in their struggle to
carry the heat, move with a significant fraction of the sound speed so it is no longer true
that they are in pressure equilibrium with their surroundings. A more sophisticated theory
of convection is therefore necessary near the solar surface.

Convection is very important in some other types of stars. It is the primary means of
heat transport in the cores of stars with high mass and high luminosity, and throughout very
young stars before they start to burn their hydrogen in nuclear reactions.
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EXERCISES

Exercise 16.21 Problem: Radiative Transport
The density and temperature in the interior of the sun are roughly 0.1 kg m~2 and 1.5 x 107
K.

(a) Estimate the central gas pressure and radiation pressure and their ratio.

(b) The mean free path of the radiation is determined almost equally by Thomson scatter-
ing, bound-free absorption and free-free absorption. Estimate numerically the photon
mean free path and hence estimate the photon escape time and the luminosity. How
well do your estimates compare with the known values for the sun?

Exercise 16.22 Problem: Bubbles

Consider a small bubble of air rising slowly in a large expanse of water. If the bubble is
large enough for surface tension to be ignored, then it will form an irregular cap of radius
r. Show that the speed with which the bubble rises is roughly ~ (gr)/2. (A more refined
estimate gives a numerical coefficient of 2/3.)

Skt sk skokosk sk skokosk sk skokosk sk skokosk sk kokoskoskokokskoskok
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16.6.5 |T2| Double Diffusion — Salt Fingers

Convection, as we have described it so far, is driven by the presence of an unbalanced
buoyancy force in an equilibrium distribution of fluid. However, it can also arise as a higher
order effect even if the fluid initially is stably stratified, i.e. if the density gradient is in
the same direction as gravity. An example is salt fingering, a rapid mixing that can occur
when warm, salty water lies at rest above colder fresh water. The higher temperature of the
upper fluid outbalances the weight of its salt, making it more buoyant than the fresh water
below. However, in a small, localized, downward perturbation of the warm, salty water, heat
diffuses laterally into the colder surrounding water faster than salt diffuses, increasing the
perturbation’s density so it will continue to sink.

It is possible to describe this instability using a local perturbation analysis. The set up is
somewhat similar to the one we used in Sec. 16.6.3 to analyze Rayleigh-Bénard convection:
We consider a stratified fluid in which there is a vertical gradient in the temperature, and as
before, we measure its departure from a reference temperature Ty at a midplane (z = 0) by
7 =T —Ty. We presume that in the equilibrium 7 varies linearly with z, so V7 = (dr/dz)e,
is constant. Similarly, we characterize the salt concentration by C = (concentration) —
(equilibrium concentration at the mid plane), and we assume that in equilibrium C like 7
varies linearly with height, so VC = (dC/dz)e, is constant. The density p will be equal to
the equilibrium density at the midplane plus corrections due to thermal expansion and due
to salt concentration

p = po— apoT + BpoC (16.126)

[cf. Eq. (16.102)]. Here [ is a constant for concentration analogous to the thermal expansion
coefficient « for temperature. In this problem, by contrast with Rayleigh-Bénard convection,
it is easier to work directly with the pressure than the modified pressure. In equilibrium,
hydrostatic equilibrium dictates that its gradient be VP = —pg.

Now, let us perturb about these values and write down the linearized equations for the
evolution of the perturbations. We shall denote the perturbation of temperature (relative to
the reference temperature) by d7, of salt concentration by 0C, of density by dp, of pressure
by 6P, and of velocity by simply v since the unperturbed state has v = 0. We shall not ask
about the onset of instability, but rather (because we expect our situation to be generically
unstable) we shall seek a dispersion relation w(k) for the perturbations. Correspondingly,
in all our perturbation equations we shall replace 9/0t with —iw and V with ik, except for
the equilibrium VC and V7 which are constants.

The first of our perturbation equations is the linearized Navier-Stokes equation

—iwpov = —ikdP + gép — vk*pov | (16.127a)

where we have kept the viscous term because we expect the Prandtl number to be of order
unity (for water Pr ~ 6). Low velocity implies incompressibity V - v = 0, which becomes

k-v=0. (16.127b)
The density perturbation follows from the perturbed form of Eq. (16.126)

0p = —apedT + BpooC . (16.127¢)
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The temperature perturbation is governed by Eq. (16.107) which linearizes to
—iwdT + (v - V)1 = —}k*0T . (16.127d)

Assuming that the timescale for the salt to diffuse is much longer than that for the temperature
to diffuse, we can ignore salt diffusion all together so that ddC/dt = 0, which becomes

—iwdC + (v-V)C=0 (16.127¢)

Equations (16.127) are five equations for the five unknowns 6 P, dp, dC, 6T, v, one of which
is a three component vector! Unless we are careful, we will end up with a seventh order
algebraic equation. Fortunately, there is a way to keep the algebra manageable. First, we
eliminate the pressure perturbation by taking the curl of Eq. (16.127a) [or equivalently by
crossing k into Eq. (16.127a)]:

(—iw + vk*)pok x v =k x gép (16.128a)
Taking the curl of this equation again allows us to incorporate incompressibility (16.127b):
(iw — vk?*)pok*g - v = [(k - g)* — k*¢*]op . (16.128b)

Since g points vertically, this is one equation for the density perturbation in terms of the
vertical velocity perturbation v, . We can obtain a second equation of this sort by inserting
Eq. (16.127d) for é7 and Eq. (16.127e) for 6C into Eq. (16.127¢); the result is

S (TN Beo .
dp = (iw—xk2) (v V)T + o (v-V)C. (16.128c¢)

Since the unperturbed gradients of temperature and salt concentration are both vertical,
Eq. (16.128c), like (16.128b), involves only v, and not v, or v,. Solving both (16.128b) and
(16.128c) for the ratio dp/v. and equating these two expressions, we obtain the following
dispersion relation for our perturbations:

(k-g)?
k292

w(w + ivk?)(w + ixk?) + [1 — } [walg - V)T — (w+ixk*)B(g - V)C] =0. (16.129)

When k is real, as we shall assume, we can write this dispersion relation as a cubic
equation for p = —iw with real coefficients. The roots for p are either all real or one real
and two complex conjugates, and growing modes have the real part of p positive. When the
constant term in the cubic is negative, i.e. when

(g-V)C<0, (16.130)

we are guaranteed that there will be at least one positive, real root p and this root will
correspond to an unstable, growing mode. Therefore, a sufficient condition for instability is
that the concentration of salt increase with height!
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Fig. 16.17: Salt Fingers in a fluid in which warm, salty water lies on top of cold fresh water.

By inspecting the dispersion relation we conclude that the growth rate will be maximal
when k- g = 0, i.e. when the wave vector is horizontal. What is the direction of the velocity
v for these fastest growing modes? Incompressibility (16.127b) says that v is orthogonal to
the horizontal k; and Eq. (16.128a) says that k x v points in the same direction as k x g,
which is horizontal since g is vertical. These two conditions imply that v points vertically.
Thus, these fastest modes represent fingers of salty water descending past rising fingers of
fresh water; cf. Fig. 16.17. For large k (narrow fingers), the dispersion relation (16.129)
predicts a growth rate given approximately by

B(-g-V)C

vk? '
Thus, the growth of narrow fingers is driven by the concentration gradient and retarded by
viscosity. For larger fingers, the temperature gradient will participate in the retardation,
since the heat must diffuse in order to break the buoyant stability.

Now let us turn to the nonlinear development of this instability. Although we have just
considered a single Fourier mode, the fingers that grow are roughly cylindrical rather than
sheet-like. They lengthen at a rate that is slow enough for the heat to diffuse horizontally,
though not so slow that the salt can diffuse. Let the diffusion coefficient for the salt be x¢
by analogy with x for temperature. If the length of the fingers is L and their width is oy,
then to facilitate heat diffusion and prevent salt diffusion, the vertical speed v must satisfy

p=—lw ~ (16.131)

L L
X2 v X2 (16.132)
6f 5f
Balancing the viscous acceleration vv/ 5; by the buoyancy acceleration g3dC, we obtain
5C6?
o~ IPOC0F (16.133)
v

We can therefore re-write Eq. (16.132) as

1/4 1/4
Xcv L xvL
A . 16.134
<gﬁdc) o< (gﬁéc) (16.134)
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Typically, xc ~ 0.01x, so Eq. (16.134) implies that the widths of the fingers lie in a narrow
range, as is verified in laboratory experiments.

Salt fingering can also occur naturally, for example in an estuary where cold river water
flows beneath sea water warmed by the sun. However, the development of salt fingers is quite
slow and in practice it only leads to mixing when the equilibrium velocity field is very small.
This instability is one example of a quite general type of instability known as double diffusion
which can arise when two physical quantities can diffuse through a fluid at different rates.
Other examples include the diffusion of two different solutes and the diffusion of vorticity
and heat in a rotating flow.
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EXERCISES

Exercise 16.23 Problem: Laboratory experiment
Make an order of magnitude estimate of the size of the fingers and the time it takes for them
to grow in a small transparent jar. You might like to try an experiment.

Exercise 16.24 Problem: Internal Waves
Consider a stably stratified fluid at rest and let there be a small (negative) vertical density
gradient, dp/dz.

(a) By modifying the above analysis, ignoring the effects of viscosity, heat conduction and
concentration gradients, show that small-amplitude linear waves, which propagate in
a direction making an angle 6 to the vertical, have an angular frequency given by
w = N|sind|, where N = [(g- V)Inp]'/? is known as the Brunt-Viisdld frequency.
These waves are called internal waves.

(b) Show that the group velocity of these waves is orthogonal to the phase velocity and
interpret this result physically.
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Bibliographic Note

For textbook treatments of waves in fluids, we recommend Lighthill (1978) and Whitham
(1974), and from a more elementary and physical viewpoint, Tritton (1977). To develop
physical insight into gravity waves on water and sound waves in a fluid, we suggest portions
of the movie by Bryson (1964). For solitary-wave solutions to the Korteweg-deVries equation,
see materials, including brief movies, at the website of Takasaki (2006).

For a brief, physically oriented introduction to Rayleigh-Bénard convection, see Chap. 4
of Tritton (1987). In their Chaps. 5 and 6, Landau and Lifshitz (1959) give a fairly succinct
treatment of diffusive heat flow in fluids, the onset of convection in several different physical
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e Gravity waves on water and other liquids, Sec. 16.2

Surface tension and its stress tensor, Box 16.4

Rossby Waves in a Rotating Fluid, Sec. 16.4

Sound waves in fluids and gases, Sec. 16.5

Thermal effects and convection, Sec. 16.6

Box 16.6
Important Concepts in Chapter 16

Deep water waves and shallow water waves, Secs. 16.2.1, 16.2.2

Nonlinear shallow water waves, Box 16.3

Tsunamis, Ex. 16.6

Dispersion, Sec. 16.3.1

Steepening due to nonlinear effects, Sec. 16.3.1, Fig. 16.4

Solitons or solitary waves; nonlinear steepening balances dispersion, Sec. 16.3
Korteweg-deVries equation, Secs. 16.3.1-16.3.4

Capillary waves, Sec. 16.2.3

Sound wave generation in slow-motion approximation: power proportional to
squared time derivative of monopole moment, Sec. 16.5.2

Decibel, Sec. 16.5.2

Matched asymptotic expansions, Sec. 16.5.3

Radiation reaction force; runaway solution as a spurious solution that violates
the slow-motion approximation used to derive it, Sec. 16.5.3

Thermal conductivity, x, and diffusive heat conduction, Sec. 16.6.1

Thermal diffusivity, x = x/pcp, and diffusion equation for temperature, Sec.
16.6.1

Thermal expansion coefficient, o = (91ln p/0T")p, Sec. 16.6.2

Prandtl number, Pr= v/x ~(vorticity diffusion)/(heat diffusion), Sec. 16.6.1
Péclet number, Pe= V L/x ~(advection)/(conduction), Sec. 16.6.1

Rayleigh number Ra=ag/ATd?*/(vy) ~(buoyancy)/(viscous force), Sec.
16.6.3

Boussinesq approximation for analyzing thermally induced buoyancy, Sec.
16.6.2

Free convection and forced convection, Sec. 77

Rayleigh-Bénard (free) convection, Sec. 16.6.3 and Fig. 16.12

Critical Rayleigh number for onset of Rayleigh-Bénard convection, Sec. 16.6.3
Schwarzschild criterion for convection in stars, Sec. 16.6.4

Double-diffusion instability, Sec. 16.6.5
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situations, and the concepts underlying double diffusion. In his Chaps. 2-6, Chandrasekhar
(1961) gives a thorough and rich treatment of the influence of a wide variety of phenomena
on the onset of convection, and on the types of fluid motions that can occur near the onset of
convection. The book by Turner (1973) is a thorough treatise on the influence of buoyancy
(thermally induced and otherwise) on fluid motions. It includes all topics treated in Sec.
16.6 and much much more.
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