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A plasma is a gas that is significantly ionized (through heating or photoionization) and
thus is composed of electrons and ions, and that has a low enough density to behave clas-
sically, i.e. to obey Maxwell-Boltzmann statistics rather than Fermi-Dirac or Bose-Einstein.
Plasma physics originated in the nineteenth century, in the study of gas discharges (Crookes
1879). However, it was soon realized that plasma is also the key to understanding the prop-
agation of radio waves across the Atlantic (Heaviside 1902). The subject received a further
boost in the early 1950s, with the start of the controlled (and the uncontrolled) thermonu-
clear fusion program. The various confinement devices described in the preceding chapter
are intended to hold plasma at temperatures as high as ∼ 108 K; the difficulty of this task
has turned out to be an issue of plasma physics as much as MHD. After fusion, the next new
venue for plasma research was extraterrestrial. Although it was already understood that
the Earth was immersed in a tenuous outflow of ionized hydrogen known as the solar wind,
the dawn of the space age in 1957 also initiated experimental space plasma physics. More
recently, the interstellar and intergalactic media beyond the solar system as well as exotic
astronomical objects like quasars and pulsars have allowed us to observe plasmas under quite
extreme conditions, irreproducible in any laboratory experiment.

The dynamical behavior of a plasma is more complex than the dynamics of the gases and
fluids we have met so far. This dynamical complexity has two main origins:

(i) The dominant form of interparticle interaction in a plasma, Coulomb scattering, is
so weak that the mean free paths of the electrons and ions are often larger than the
plasma’s macroscopic length scales. This allows the particles’ momentum distribu-
tion functions to deviate seriously from their equilibrium Maxwellian forms and, in
particular, to be highly anisotropic.

(ii) The electromagnetic fields in a plasma are of long range. This allows charged particles
to couple to each other electromagnetically and act in concert as modes of excitation
(plasma waves or plasmons) that behave like single dynamical entities. Much of plasma
physics consists of the study of the properties and interactions of these modes.

The dynamical behavior of a plasma depends markedly on frequency. At the lowest of fre-
quencies, the ions and electrons are locked together by electrostatic forces and behave like an
electrically conducting fluid; this is the regime of magnetohydrodynamics (MHD; Chap. 18).
At somewhat higher frequencies, the electrons and the ions can move relative to each other,
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behaving like two separate, interpenetrating fluids; we shall study this two-fluid regime in
Chap. 20. At still higher frequencies, complex dynamics are supported by momentum space
anisotropies and can be analyzed using a variant of the kinetic-theory collisionless Boltzmann
equation that we introduced in Chap. 3. We shall study such dynamics in Chap. 21. In the
two-fluid and collisionless-Boltzmann analyses of Chaps. 20 and 21, we focus on phenomena
that can be treated as linear perturbations of an equilibrium state. However, the complex-
ities and long mean free paths of plasmas also produce rich nonlinear phenomena; we shall
study some of these in Chap. 22. As a foundation for the dynamical studies in Chaps. 20, 21,
and 22, we develop in Chap. 19 detailed insights into the microscopic structure of a plasma.
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The Particle Kinetics of Plasma
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Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 19.1
Reader’s Guide

• This chapter relies significantly on portions of nonrelativistic kinetic theory as de-
veloped in Chap. 3.

• It also relies a bit but not greatly on portions of magnetohydrodynamics as devel-
oped in Chap. 18.

• The remaining chapters 20–22 of Part VI, Plasma Physics, rely heavily on this
chapter.

19.1 Overview

The preceding chapter, Chap. 18, can be regarded as a transition from fluid mechanics
toward plasma physics: In the context of a magnetized plasma, it described equilibrium
and low-frequency dynamical phenomena using fluid-mechanics techniques. In this chapter,
we prepare for more sophisticated descriptions of a plasma by introducing a number of
elementary foundational concepts peculiar to plasma, and by exploring a plasma’s structure
on the scale of individual particles using elementary techniques from kinetic theory.

Specifically, in Sec. 19.2 we identify the region of densities and temperatures in which
matter, in statistical equilibrium, takes the form of a plasma, and we meet a number of
specific examples of plasmas that occur in Nature and in the laboratory. Then in Sec. 19.3
we study two phenomena that are important for plasmas: the collective manner in which
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large numbers of electrons and ions shield out the electric field of a charge in a plasma (Debye
shielding), and oscillations of a plasma’s electrons relative to its ions (plasma oscillations).

In Sec. 19.4, we study the Coulomb scattering by which a plasma’s electrons and ions
deflect an individual charged particle from straight-line motion and exchange energy with it.
We then examine the statistical properties of large numbers of such Coulomb scatterings—
most importantly, the rates (inverse timescales) for the velocities of a plasma’s electrons
and ions to isotropize, and the rates for them to thermalize. Our calculations reveal that
Coulomb scattering is so weak that, in most plasmas encountered in Nature, it is unlikely to
produce isotropized or thermalized velocity distributions. In Sec. 19.5 we give a brief pre-
view of the fact that in real plasmas the scattering of electrons and ions off collective plasma
excitations (plasmons) will often isotropize and thermalize their velocities far faster than
would Coulomb scattering, and will cause many real plasmas to be far more isotropic and
thermalized than our Coulomb-scattering analyses suggest. We shall explore this “anoma-
lous” behavior in Chaps. 21 and 22. Finally, in Sec. 19.5 we use the statistical properties
of Coulomb scatterings to derive a plasma’s transport coefficients, specifically its electrical
and thermal conductivities, for situations where Coulomb scattering dominates over particle-
plasmon scattering.

Most plasmas are significantly magnetized. This introduces important new features into
their dynamics which we describe in Sec. 19.6: cyclotron motion (the spiraling of particles
around magnetic field lines), a resulting anisotropy of the plasma’s pressure (different pres-
sure along and orthogonal to the field lines), and the split of a plasma’s adiabatic index into
four different adiabatic indices for four different types of compression. Finally, in Sec. 19.7,
we examine the motion of an individual charged particle in a slightly inhomogeneous and
slowly time varying magnetic field, and we describe adiabatic invariants which control that
motion in easily understood ways.

19.2 Examples of Plasmas and their Density-Temperature
Regimes

The density-temperature regime in which matter behaves as a nonrelativistic plasma is shown
in Fig. 19.1. In this figure, and in most of Part VI, we shall confine our attention to pure
hydrogen plasma comprising protons and electrons. Many plasmas contain large fractions
of other ions, which can have larger charges and do have greater masses than protons. This
generalization introduces few new issues of principle so, for simplicity, we shall eschew it and
shall focus on a hydrogen plasma.

The boundaries of the plasma regime in Fig. 19.1 are dictated by the following consider-
ations:

19.2.1 Ionization boundary

We shall be mostly concerned with fully ionized plasmas, even though partially ionized
plasmas such as the ionosphere are often encountered in physics, astronomy, and engineering.
The plasma regime’s ionization boundary is the bottom curve in Fig. 19.1, at a temperature
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Fig. 19.1: The density-temperature regime in which matter, made largely of hydrogen, behaves
as a nonrelativistic plasma. The densities and temperatures of specific examples of plasmas are
indicated by dashed lines. The number density of electrons n is shown horizontally at the top, and
the corresponding mass density ρ is shown at the bottom. The temperature T is shown at the left
in degrees Kelvin, and at the right kBT is shown in keV, thousands of electron volts.
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of a few thousand degrees. This boundary is dictated by chemical equilibrium for the reaction

H ↔ p + e (19.1)

as described by the Saha equation (Ex. 4.6):

nenp

nH
=

(2πmekBT )3/2

h3
e−IP /kBT . (19.2)

Here ne, np, nH are the number densities of electrons, protons, and neutral Hydrogen atoms
(at the relevant temperatures hydrogen molecules have dissociated into individual atoms);
T is temperature; me is the electron rest mass; h is Planck’s constant; kB is Boltzmann’s
constant; and IP = 13.6 eV is the ionization potential of hydrogen—i.e., the binding energy
of its ground state. The boundary plotted in Fig. 19.1 is that of 50 percent ionization,
i.e., ne = np = nH = ρ/2mH (with mH the mass of a hydrogen atom); but because of the
exponential factor in Eq. (19.2), the line of 90 percent ionization is virtually indistinguishable
from that of 50 percent ionization on the scale of the figure. Using the rough equivalence
1 eV∼= 104 K, we might have expected that the ionization boundary would correspond to a
temperature T ∼ IP /kB ∼ 105 K. However this is true only near the degeneracy boundary
(see below). When the plasma is strongly non-degenerate, ionization occurs at a significantly
lower temperature due to the vastly greater number of states available to an electron when
free than when bound in a hydrogen atom. Equivalently, at low densities, once a Hydrogen
atom has been broken up into an electron plus a proton, the electron (or proton) must travel
a large distance before encountering another proton (or electron) with which to recombine,
making a new Hydrogen atom; as a result, equilibrium occurs at a lowered temperature,
where the ionization rate is thereby lowered to match the smaller recombination rate.

19.2.2 Degeneracy boundary

The electrons, with their small rest masses, become degenerate more easily than the protons
or hydrogen atoms. The slanting line on the right side of Fig. 19.1 is the plasma’s boundary of
electron degeneracy. This boundary is determined by the demand that the mean occupation
number of the electrons’ single-particle quantum states not be # 1. In other words, the
volume of phase space per electron, i.e. the product of the volumes of real space ∼ n−1

e and
of momentum space ∼ (mekBT )3/2 occupied by each electron, should be comparable with
the elementary quantum mechanical phase-space volume given by the uncertainty principle,
h3. Inserting the appropriate factors of order unity [cf. Eq. (3.39)], this relation becomes the
boundary equation

ne $ 2
(2πmekBT )3/2

h3
. (19.3)

When the electrons become degenerate (rightward of the degeneracy line in Fig. 19.1), as
they do in a metal or a white dwarf star, the electron de Broglie wavelength becomes large
compared with the mean interparticle spacing, and quantum mechanical considerations are
of paramount importance.
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19.2.3 Relativistic boundary

Another important limit arises when the electron thermal speeds become relativistic. This
occurs when

T ∼ mec
2/kB ∼ 6 × 109 K (19.4)

(top horizontal line in Fig. 19.1). Although we shall not consider them much further, the
properties of relativistic plasmas (above this line) are mostly analogous to those of non-
relativistic plasmas (below this line).

19.2.4 Pair-production boundary

Finally, for plasmas in statistical equilibrium, electron-positron pairs are created in profusion
at high enough temperatures. In Ex. 5.8 we showed that, for kBT # mec2 but T high enough
that pairs begin to form, the density of positrons divided by that of protons is

n+

np
=

1

2y[y + (1 + y2)1/2]
, where y ≡ 1

4
ne

(
h√

2πmekBT

)3

emec2/kBT . (19.5)

Setting this expression to unity gives the pair-production boundary. This boundary curve,
labeled “Pairs” in Fig. 19.1, is similar in shape to the ionization boundary but shifted in
temperature by ∼ 2×104 ∼ α−2

F , where αF is the fine structure constant. This is because we
are now effectively “ionizing the vacuum” rather than a hydrogen atom, and the “ionization
potential of the vacuum” is ∼ 2mec2 = 4IP /α2

F .
We shall encounter a plasma above the pair-production boundary, and thus with a pro-

fusion of electron-positron pairs, in our discussion of the early universe in Chap. 27.

19.2.5 Examples of natural and man-made plasmas

Figure 19.1 and Table 19.1 show the temperature-density regions for the following plasmas:

• Laboratory gas discharge. The plasmas created in the laboratory by electric currents
flowing through hot gas, e.g., in vacuum tubes, spark gaps, welding arcs, and neon and
fluorescent lights.

• Controlled thermonuclear fusion experiments. The plasmas in which experiments for
controlled thermonuclear fusion are carried out, e.g., in tokamaks.

• Ionosphere. The part of the earth’s upper atmosphere (at heights of ∼ 50 − 300 km)
that is partially photoionized by solar ultraviolet radiation.

• Magnetosphere. The plasma of high-speed electrons and ions that are locked onto the
earth’s dipolar magnetic field and slide around on its field lines at several earth radii.

• Sun’s core. The plasma at the center of the sun, where fusion of hydrogen to form
helium generates the sun’s heat.
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Plasma ne T B λD ND ωp νee ωc rL

(m−3) (K) (T) (m) (s−1) (s−1) (s−1) (m)
Gas discharge 1016 104 — 10−4 104 1010 105 — —
Tokamak 1020 108 10 10−4 108 1012 104 1012 10−5

Ionosphere 1012 103 10−5 10−3 105 108 103 106 10−1

Magnetosphere 107 107 10−8 102 1010 105 10−8 103 104

Solar core 1032 107 — 10−11 1 1018 1016 — —
Solar wind 106 105 10−9 10 1011 105 10−6 102 104

Interstellar medium 105 104 10−10 10 1010 104 10−5 10 104

Intergalactic medium 1 106 — 105 1015 102 10−13 — —

Table 19.1: Representative electron number densities Ne, temperatures T and magnetic field
strengths B, together with derived plasma parameters in a variety of environments. The derived
parameters, discussed later in this chapter, are: λD the Debye length, ND the Debye number,
ωp the plasma frequency, νee the equilibration rate for electron energy, ωc the electron cyclotron
frequency, rL, the electron Lamour radius. Values are given to order of magnitude as all of these
environments are quite inhomogeneous.

• Solar wind. The wind of plasma that blows off the sun and outward through the region
between the planets.

• Interstellar medium. The plasma, in our Galaxy, that fills the region between the stars;
this plasma exhibits a fairly wide range of density and temperature as a result of such
processes as heating by photons from stars, heating and compression by shock waves
from supernovae, and cooling by thermal emission of radiation.

• Intergalactic medium. The plasma that fills the space outside galaxies and clusters of
galaxies; we shall meet the properties and evolution of this intergalactic plasma in our
study of cosmology, in the last chapter of this book.

Characteristic plasma properties in these various environments are collected in Table 19.1.
In the next three chapters we shall study applications from all these environments.

****************************

EXERCISES

Exercise 19.1 Derivation: Boundary of Degeneracy
Show that the condition ne # (mekBT )3/2/h3 [cf. Eq. (19.3)] that electrons be nondegenerate
is equivalent to the following statements:

(a) The mean separation between electrons, l ≡ n−1/3
e , is large compared to the de Broglie

wavelength, λ̄dB = !/(momentum), of an electron whose kinetic energy is kBT .

(b) The uncertainty in the location of an electron drawn at random from the thermal
distribution is small compared to the average inter-electron spacing.
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(c) The quantum mechanical zero-point energy associated with squeezing each electron

into a region of size l = n−1/3
e is small compared to the electron’s mean thermal energy

kBT .

****************************

19.3 Collective Effects in Plasmas – Debye Shielding
and Plasma Oscillations

In this section we introduce two key ideas that are associated with most of the collective
effects in plasma dynamics: Debye shielding and plasma oscillations.

19.3.1 Debye Shielding

Any charged particle inside a plasma attracts other particles with opposite charge and repels
those with the same charge, thereby creating a net cloud of opposite charges around itself.
This cloud shields the particle’s own charge from external view; i.e., it causes the particle’s
Coulomb field to fall off exponentially at large radii, rather than falling off as 1/r2. 1

This Debye shielding of a particle’s charge can be demonstrated and quantified as follows:
Consider a single fixed test charge Q surrounded by a plasma of protons and electrons.
Denote the average densities of electrons and protons, as smooth functions of radius r from
the test charge, by np(r), ne(r), and let the mean densities of electrons and protons (averaged
over a large volume) be n̄. (The mean electron and proton densities must be equal because of
overall charge neutrality) Then the electrostatic potential Φ(r) outside the particle satisfies
Poisson’s equation, which we write in SI units:2

∇2Φ = −(np − ne)e

ε0
− Q

ε0
δ(r) . (19.6)

(We denote the positive charge of a proton by +e and the negative charge of an electron by
−e.)

A proton at radius r from the particle has an electrostatic potential energy eΦ(r). Cor-
respondingly, the number density of protons at radius r is altered from n̄ by the Boltzmann
factor exp(−eΦ/kBT ); and, similarly, the density of electrons is altered by exp(+eΦ/kBT ):

np = n̄ exp(−eΦ/kBT ) $ n̄(1 − eΦ/kBT ) ,

ne = n̄ exp(+eΦ/kBT ) $ n̄(1 + eΦ/kBT ) , (19.7)

1Analogous effects are encountered in condensed matter physics and quantum electrodynamics.
2For those who prefer Gaussian units the translation is most easily effected by the transformations 4πε0 →

1 and µ0/4π → 1, and inserting factors of c by inspection using dimensional analysis. It is also useful to
recall that 1 T≡ 104 Gauss and that the charge on an electron is −1.6 × 10−19 C≡ −4.8 × 10−10 esu.
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where we have made a Taylor expansion of the Boltzmann factor valid for eΦ # kBT . By
inserting the linearized versions of Eq. (19.7) into (19.6), we obtain

∇2Φ =
2e2n̄

ε0kBT
Φ − Q

ε0
δ(r) . (19.8)

The spherically symmetric solution to this equation,

Φ =
Q

4πε0r
e−

√
2 r/λD , (19.9)

has the form of a Coulomb field with an exponential cutoff.3 The characteristic lengthscale
of the exponential cutoff,

λD ≡
(
ε0kBT

n̄e2

)1/2

= 69

(
T/1K

n̄/1 m−3

)1/2

m, (19.10)

is called the Debye length. It is a rough measure of the size of the Debye shielding cloud
that the charged particle carries with itself.

The charged particle could be some foreign charged object (not a plasma electron or
proton), or equally well, it could be one of the plasma’s own electrons or protons. Thus,
we can think of each electron in the plasma as carrying with itself a positively charged
Debye shielding cloud of size λD, and each proton as carrying a negatively charged cloud.
Each electron and proton not only carries its own cloud; it also plays a role as one of the
contributors to the clouds around other electrons and protons.

19.3.2 Collective behavior

A charged particle’s Debye cloud is almost always made of a huge number of electrons,
and very nearly the same number of protons. It is only a tiny, time-averaged excess of
electrons over protons (or protons over electrons) that produces the cloud’s net charge and
the resulting exponential decay of the electrostatic potential. Ignoring this tiny excess, the
mean number of electrons in the cloud and the mean number of protons are roughly

ND ≡ n̄
4π

3
λD

3 = 1.4 × 106 (T/1K)3/2

(n̄/1 m−3)1/2
. (19.11)

This Debye number is large compared to unity throughout the density-temperature regime
of plasmas, except for the tiny lower right-hand corner of Fig. 19.1. The boundary of that
corner region (labeled “Collective behavior / Independent Particles”) is given by ND = 1.
The upper left-hand side of that boundary has ND + 1 and is called the “regime of collective
behavior” because a huge number of particles are collectively responsible for the Debye cloud;
this leads to a variety of collective dynamical phenomena in the plasma. The lower right-
hand side has ND < 1 and is called the “regime of independent particles” because in it

3In nuclear physics this potential is known as a Yukawa potential.
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collective phenomena are of small importance. In this book we shall restrict ourselves to the
huge regime of collective behavior and ignore the tiny regime of independent particles.

Characteristic values for the Debye length and Deye number in a variety of environments
are listed in Table 19.1.

19.3.3 Plasma Oscillations and Plasma Frequency

Of all the dynamical phenomena that can occur in a plasma, perhaps the most important
is a relative oscillation of the plasma’s electrons and protons. A simple, idealized version of
this plasma oscillation is depicted in Fig. 19.2. Suppose for the moment that the protons
are all fixed and displace the electrons rightward (in the x-direction) with respect to the
protons by an amount ξ, thereby producing a net negative charge per unit area −en̄ξ at
the right end of the plasma, a net positive charge per unit area +en̄ξ at the left end, and
a corresponding electric field E = en̄ξ/ε0 in the x-direction throughout the plasma. The
electric field pulls on the plasma’s electrons and protons, giving the electrons an acceleration
d2ξ/dt2 = −eE/me and the protons an acceleration smaller by me/mp = 1/1836, which we
shall neglect. The result is an equation of motion for the electrons’ collective displacement:

d2ξ

dt2
= − e

me
E = − e2n̄

ε0me
ξ . (19.12)

Since Eq. (19.12) is a harmonic-oscillator equation, the electrons oscillate sinusoidally, ξ =
ξo cos(ωpt), at the plasma frequency

ωp ≡
(

n̄e2

ε0me

)1/2

= 56.4
( n̄

1 m−3

)1/2

s−1 . (19.13)

Notice that this frequency of plasma oscillations depends only on the plasma density n̄
and not on its temperature or on the strength of any magnetic field that might be present.
Note that if we define the electron thermal speed to be ve ≡ (kBTe/me)1/2, then ωp ≡ ve/λD.

+ + + 
+ + + 
+ + + 
+ + + 
+ + + 
+ + + 
+ + + 
+ + + 
+ + +

_ _ _ 
_ _ _ 
_ _ _ 
_ _ _ 
_ _ _ 
_ _ _ 
_ _ _ 
_ _ _ 
_ _ _

neutral

en
0

E = 

Fig. 19.2: Idealized depiction of the displacement of electrons relative to protons, which occurs
during plasma oscillations.
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In other words a thermal electron travels about a Debye length in a plasma oscillation
period. We can think of the Debye length as the electrostatic correlation length, and the
plasma period as the electrostatic correlation time.

Characteristic values for the plasma frequency in a variety of environments are listed in
Table 19.1.

19.4 Coulomb Collisions

In this section we will study transport coefficients (electrical and thermal conductivities) and
the establishment of local thermodynamic equilibrium in a plasma under the hypothesis that
Coulomb collisions are the dominant source of scattering for both electrons and protons. In
fact, as we shall see later, Coulomb scattering is usually a less effective scattering mechanism
than collisionless processes mediated by fluctuating electromagnetic fields.

19.4.1 Collision frequency

Consider first, as we did in our discussion of Debye shielding, a single test particle — let it
be an electron — interacting with background field particles — let these be protons for the
moment. The test electron moves with speed ve. The field protons will move much more
slowly if the electron and protons are near thermodynamic equilibrium (as the proton masses
are much greater than that of the electron), so the protons can be treated, for the moment,
as at rest. When the electron flies by a single proton, we can characterize the encounter using
an impact parameter b, which is what the distance of closest approach would have been if
the electron were not deflected; see Fig. 19.3. The electron will be scattered by the Coulomb
field of the proton, a process sometimes called Rutherford scattering. If the deflection angle
is small, θD # 1, we can approximate its value by computing the perpendicular impulse
exerted by the proton’s Coulomb field, integrating along the electron’s unperturbed straight
line trajectory.

meveθD =

∫ +∞

−∞

e2b

4πεo(b2 + v2
et2)3/2

dt =
e2

2πεoveb
, (19.14)

This implies that
θD = bo/b for b + bo , (19.15)

D

e

p 

b

v

Fig. 19.3: The geometry of a Coulomb collision.
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where

bo ≡
e2

2πε0mev2
e

. (19.16)

When b ! bo, this approximation breaks down and the deflection angle is of order a radian.4

Below we shall need to know how much energy the electron loses, for the large-impact-
parameter case. That energy loss, −∆E, is equal to the energy gained by the proton. Since
the proton is initially at rest, and since momentum conservation implies it gains a momentum
∆p = meveθD, ∆E must be

∆E = −(∆p)2

2mp
= −me

mp

(
bo

b

)2

E for b + bo . (19.17)

Here E = 1
2mev2

e is the electron’s initial energy.
We turn, next, from an individual Coulomb collision to the net, statistically averaged

effect of many collisions. The first thing we shall compute is the mean time tD required
for the orbit of the test electron to be deflected by an angle of order a radian from its
initial direction, and the inverse of tD, which we call the “deflection rate” or “deflection
frequency” and denote νD = 1/tD. If the dominant source of this deflection were a single
large-angle scattering event, then the relevant cross section would be σ = πb2

o (since all
impact parameters ! bo produce large-angle scatterings), and the mean deflection time and
frequency would be

νD ≡ 1

tD
= nσve = nπb2

ove (single large-angle scattering of an electron by a proton).

(19.18)
Here n is the proton number density, which is the same as the electron number density in
our hydrogen plasma.

The cumulative, random-walk effects of many small-angle scatterings off field protons
actually produce a net deflection of order a radian in a time shorter than this. As the
directions of the individual scatterings are random, the mean deflection angle after many
scatterings vanishes. However, the mean square deflection angle, 〈Θ2〉 =

∑
all encounters θ

2
D

will not vanish. That mean square deflection angle, during a time t, accumulates up to

〈Θ2〉 =

∫ bmax

bmin

(
bo

b

)2

nvet2πbdb = n2πb2
ovet ln

(
bmax

bmin

)
. (19.19)

Here the factor (bo/b)2 in the integrand is the squared deflection angle θ2
D for impact pa-

rameter b, and the remaining factor nvet2πbdb is the number of encounters that occur with
impact parameters between b and b+db during time t. The integral diverges logarithmically
at both its lower limit bmin and its upper limit bmax. Below we shall discuss the physical
origins of and values of the cutoffs bmin and bmax. The value of t that makes the mean square
deflection angle 〈Θ2〉 equal to unity is, to within factors of order unity, the deflection time
tD (and inverse deflection frequency ν−1

D ):

νep
D =

1

tepD
= n2πb2

ove ln Λ =
ne4 ln Λ

2πε20m2
ev3

e

, where Λ = bmax/bmin . (19.20)

4A more careful calculation gives 2 tan(θD/2) = bo/b, see e.g. Leighton (1959).
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Here the superscript ep indicates that the test particle is an electron and the field particles
are protons. Notice that this deflection frequency is larger, by a factor 2 ln Λ, than the
frequency (19.18) for a single large-angle scattering.

We must also consider the repulsive collisions of our test electron with field electrons.
Although we are no longer justified in treating the field electrons as being at rest, the impact
parameter for a large angle deflection is still ∼ b0, so Eq. (19.20) is also appropriate to this
case, in order of magnitude:

νee
D =

1

teeD
∼ νep

D ∼ n2πb2
ove ln Λ =

ne4 ln Λ

2πε20m2
ev

3
e

. (19.21)

Finally, and in the same spirit, we can compute the collision frequency for the protons.
Because electrons are so much lighter than protons, proton-proton collisions will be more
effective in deflecting protons than proton-electron collisions. Therefore, the proton collision
frequency is given by Eqs. (19.21) with the electron subscripts replaced by proton subscripts

νpp
D =

1

tpp
D

∼ ne4 ln Λ

2πε20m2
pv3

p

. (19.22)

19.4.2 The Coulomb logarithm

The maximum impact parameter bmax, which appears in Λ ≡ bmax/bmin, is the Debye length
λD, since at impact parameters b + λD the Debye shielding screens out a field particle’s
Coulomb field, while at b # λD Debye shielding is unimportant.

The minimum impact parameter bmin has different values depending on whether quantum
mechanical wave packet spreading is important or not for the test particle during the collision.
Because of wave-function spreading, the nearest the test particle can come to a field particle
is the test particle’s de Broglie wavelength, i.e., bmin = !/mv. However if the de Broglie
wavelength is smaller than b0, then the effective value of bmin will be simply b0. Therefore,

bmin = max[bo = 2e2/mev
2
e , !/meve] , and bmax = λD for test electrons ;

bmin = max[bo = 2e2/mpv
2
p , !/mpvp] , and bmax = λD for test protons . (19.23)

Over most of the accessible range of density and temperature for a plasma, 3 ! ln Λ ! 30.
Therefore if we set

ln Λ $ 10 , (19.24)

our estimate is good to a factor ∼ 3. For tables of ln Λ, see Spitzer (1962).

19.4.3 Thermal Equilibration Times in a Plasma

Suppose that a hydrogen plasma is heated in some violent way (e.g., by a shock wave). Such
heating will typically give the plasma’s electrons and protons a non-Maxwellian velocity
distribution. Coulomb collisions then, as time passes (and in the absence of more violent
disruptions), will force the particles to exchange energy in random ways, and will gradually
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drive them into thermal equilibrium. As we shall see, thermal equilibration is achieved at
different rates for the electrons and the protons, and correspondingly the following three
timescales are all different:

teqee ≡
(

time required for electrons to equilibrate with each other,
achieving a near Maxwellian velocity distribution

)
,

teqpp ≡ (time for protons to equilibrate with each other) , (19.25)

teqep ≡ (time for electrons to equilibrate with protons) .

In this section we shall compute these three equilibration times.
Electron-electron equilibration. In evaluating teqee, we shall assume that the electrons begin

with typical individual energies of order kBTe, where Te is the temperature to which they are
going to equilibrate, but their initial velocity distribution is rather non-Maxwellian. Then
we can choose a typical electron as the “test particle”. We have argued that Coulomb
interactions with electrons and protons are comparably effective in deflecting test electrons.
However, they are not comparably effective in transferring energy. When the electron collides
with a stationary proton, the energy transfer is

∆E

E
$ −me

mp
θ2

D (19.26)

[Eq. (19.17)]. This is smaller than the typical energy transfer in an electron-electron collision
by the ratio me/mp. Therefore it is the collisions between the electrons that are responsible
for establishing an electron Maxwellian distribution function.

The alert reader may spot a problem at this point. According to Eq. (19.26), electrons
always lose energy to protons and never gain it. This would cause the electron temperature
to continue to fall below the proton temperature, in clear violation of the second law of
thermodynamics. Actually what happens in practice is that, if we allow for non-zero proton
velocities, then the electrons can gain energy from some electron-proton collisions. This is
also the case for the electron-electron collisions of immediate concern.

The accurate formalism for dealing with this situation is the Fokker-Planck formalism,5

discussed in Sec. 6.9. Fokker-Planck is appropriate because, as we have shown, many weak
scatterings dominate the few strong scatterings. If we use the Fokker-Planck approach
to compute an energy equilibration time for a nearly Maxwellian distribution of electrons
with temperature Te, then it turns out that a simple estimate, based on combining the
deflection time (19.18) with the typical energy transfer (19.26) (with mp → me), and on
assuming a typical electron velocity ve = (3kBTe/me)1/2, gives an answer good to a factor
2. It is actually convenient to express this electron energy equilibration timescale using its
reciprocal, the electron-electron equilibration rate, νee. This facilitates comparison with the
other frequencies characterizing the plasma. The true Fokker-Planck result for electrons near
equilibrium is then

νee =
nσT c ln Λ

2π1/2

(
kBTe

mec2

)−3/2

= 2.5 × 10−5
( n

1m−3

)(
Te

1K

)−3/2 (
ln Λ

10

)
s−1, (19.27)

5For application of Fokker-Planck to this problem, see, e.g., Rosenbluth, MacDonald and Judd 1957
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where we have used the Thomson cross section

σT = (8π/3)(e2/4πε0mec
2)2 = 6.65 × 10−29 m2 . (19.28)

As for proton deflections [Eq. (19.22)], so also for proton energy equilibration, the light
electrons are far less effective at influencing the protons than are other protons. Therefore,
the protons achieve a thermal distribution by equilibrating with each other, and their proton-
proton equilibration rate can be written down immediately from Eq. (19.27) by replacing the
electron masses and temperatures with the proton values.

νpp =
nσT c ln Λ

2π1/2

(
me

mp

)1/2 (
kBTp

mec2

)−3/2

= 5.8 × 10−7
( n

1m−3

)(
Tp

1K

)−3/2 (
ln Λ

10

)
s−1.

(19.29)
Finally, if the electrons and protons have different temperatures, we should compute the

timescale for the two species to equilibrate with each other. This again is easy to estimate
using the energy transfer equation (19.26): tep $ (mp/me)tee The more accurate Fokker-
Planck result for the electron-proton equilibration rate is again very close and is given by

νep =
2nσT c ln Λ

π1/2

(
me

mp

) (
kBTe

mec2

)−3/2

= 4.0 × 10−8
( n

1m−3

)(
Te

1K

)−3/2 (
ln Λ

10

)
s−1.

(19.30)
Thus, at the same density and temperature, protons require ∼ (mp/me)1/2 = 43 times longer
to reach thermal equilibrium among themselves than do the electrons, and proton-electron
equilibration takes a time ∼ (mp/me) = 1836 longer than electron-electron equilibration.

19.4.4 Discussion

In Table 19.1, we list the electron-electron equilibration rates for a variety of plasma en-
vironments. Generically, they are very small compared with the plasma frequencies. For
example, if we take parameters appropriate to a Tokamak, we find that νee ∼ 10−8ωp and
νep ∼ 10−11ωp. In fact, the equilibration time is comparable, to order of magnitude, with the
total plasma confinement time ∼ 0.1 s (cf. section 18.3) . The disparity between νe and ωp

is even greater in the interstellar medium. For this reason most plasmas are well described
as collisionless and we must anticipate that the particle distribution functions will depart
significantly from Maxwellian.

****************************

EXERCISES

Exercise 19.2 Derivation: Coulomb logarithm

(a) Express the Coulomb logarithm in terms of the Debye number, ND, in the classical
regime, where bmin ∼ b0.
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(b) Use the representative parameters from Table 19.1 to evaluate Coulomb logarithms for
the sun’s core, a Tokamak, and the interstellar medium, and verify that they lie in the
range 3 ! ln Λ ! 30.

Exercise 19.3 Derivation: Electron-electron collision rate
Using the non-Fokker-Planck arguments outlined in the text, compute an estimate of the
electron-electron equilibration rate and show that it agrees with the Fokker-Planck result,
Eq. (19.27), to within a factor 2.

Exercise 19.4 Problem: Dependence of thermal equilibration on charge and mass
Compute the ion equilibration rate for a pure He3 plasma with electron density 1020 m−3

and temperature 108 K.

Exercise 19.5 Example: Stopping of α-particles
A 100 MeV α-particle is incident upon a plastic object. Estimate the distance that it will
travel before coming to rest. This is known as the particle’s range. [Hints: (i) DeBye
shielding does not occur in a plastic; why? (ii) The α-particle loses far more energy to
Coulomb scattering off electrons than off atomic nuclei; why? Estimate the electron density
as ne = 2×1029 m−3. (iii) Ignore relativistic corrections and refinements such as the so-called
density effect. (iv) Consider the appropriate values of bmax, bmin.)

Exercise 19.6 Example: Parameters for Various Plasmas
Estimate the Debye length λD, the Debye number ND, the plasma frequency fp ≡ ωp/2π
and the electron deflection timescale teeD ∼ tepD , for the following plasmas.

(a) An atomic bomb explosion in the Earth’s atmosphere one millisecond after the explo-
sion. (Use the Sedov-Taylor similarity solution for conditions behind the bomb’s shock
wave; Sec. 17.6.)

(b) The ionized gas that envelopes the Space Shuttle (cf. Box 17.3) as it re-enters the
Earth’s atmosphere.

(c) The expanding universe during its early evolution, just before it became cool enough
for electrons and protons to combine to form neutral hydrogen (i.e., just before ioniza-
tion “turned off”). (As we shall discover in Chap. 27, the universe today is filled with
black body radiation, produced in the big bang, that has a temperature T = 2.7 K,
and the universe today has a mean density of hydrogen ρ ∼ 1 × 10−29 g/cm3. Extrap-
olate backward in time to infer the density and temperature at the epoch just before
ionization turned off.)

Exercise 19.7 Problem: Equilibration Time for a Globular Star Cluster
Collections of stars have many similarities to a plasma of electrons and ions. These similar-
ities arise from the fact that in both cases the interaction between the individual particles
(stars, or ions and electrons) is a radial, 1/r2 force. The principal difference is the fact that
the force between stars is always attractive, so there is no analog of Debye shielding. One
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consequence of this difference is the fact that a plasma can be spatially homogeneous and
static, when one averages over length scales large compared to the interparticle separation;
but a collection of stars cannot be: The stars congregate into clusters that are held together
by the stars’ mutual gravity.
A globular star cluster is an example. A typical globular cluster is a nearly spherical swarm
of stars with the following parameters: (cluster radius)≡ R = 10 light years; (total number
of stars in the cluster) ≡ N = 106; and (mass of a typical star)≡ m = (0.4 solar masses)=
8×1032 grams. Each star moves on an orbit of the average, “smeared out” gravitational field
of the entire cluster; and since that smeared-out gravitational field is independent of time,
each star conserves its total energy (kinetic plus gravitational) as it moves. Actually, the
total energy is only approximately conserved. Just as in a plasma, so also here, gravitational
“Coulomb collisions” of the star with other stars produce changes of the star’s energy.

(a) What is the mean time tE for a typical star in a globular cluster to change its energy
substantially? Express your answer, accurate to within a factor ∼ 3, in terms of N , R,
and m; evaluate it numerically and compare it with the age of the Universe.

(b) The cluster evolves substantially on the timescale tE . What type of evolution would
you expect to occur? What type of stellar energy distribution would you expect to
result from this evolution?6

****************************

19.5 Transport Coefficients

Because electrons have far lower masses than ions, they have far higher typical speeds at
fixed temperature and are much more easily accelerated; i.e., they are much more mobile.
As a result, it is the motion of the electrons, not the ions, that is responsible for the trans-
port of heat and charge through a plasma. In the spirit of the discussion above, we can
compute transport properties such as the electric conductivity and thermal conductivity on
the presumption that it is Coulomb collisions that determine the electron mean free paths
and that magnetic fields are unimportant. (Later we will see that collisionless effects usually
provide a more serious impediment to charge and heat flow than Coulomb collisions and
thus dominate the conductivities.)

Consider, first, an electron exposed to a constant, accelerating electric field E. The
electron’s typical field-induced velocity is along the direction of the electric field and has
magnitude −eE/meνD, where νD is the deflection frequency (rate) evaluated in Eqs. (19.20)
and (19.21). We call this a drift velocity because it is superposed on the electrons’ collision-
induced isotropic velocity distribution. The associated current density is j ∼ ne2E/meνD,
and the electrical conductivity is κe ∼ ne2/meνD. (Note that electron-electron collisions con-
serve momentum and do not impede the flow of current, so electron-proton collisions, which

6For a detailed discussion, see, e.g., Binney & Tremaine (1987).
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happen about as frequently, produce all the electrical resistance and are thus responsible for
this κe.)

The thermal conductivity can likewise be estimated by noting that a typical electron
travels a mean distance - ∼ ve/νD between large deflections, from an initial location where
the average temperature is different from the final location’s by an amount ∆T ∼ -|∇T |.
The heat flux transported by the electrons is therefore ∼ nvek∆T , which should be equated
to −κ∇T . We thereby obtain the electron contribution to the thermal conductivity as
κ ∼ nk2

BT/meνD.
Computations based on the Fokker-Planck approach7 produce equations for the electrical

and thermal conductivities that agree with the above estimates to within factors of order
unity:

κe = 4.9

(
e2

σT c ln Λme

) (
kBTe

mec2

)3/2

= 1.5 × 10−3

(
Te

1K

)3/2 (
ln Λ

10

)−1

Ω−1m−1 , (19.31a)

κ = 19.1

(
kBc

σT ln Λ

) (
kBTe

mec2

)5/2

= 4.4 × 10−11

(
Te

1K

)5/2 (
ln Λ

10

)−1

Wm−1K−1 . (19.31b)

Here σT is the Thomson cross section, Eq. (19.28). Note that neither transport coefficient
depends explicitly upon the density; increasing the number of charge or heat carriers is
compensated by the reduction in their mean free paths.

19.5.1 Anomalous Resistivity and Anomalous Equilibration

We have demonstrated that the theoretical Coulomb interaction between charged particles
gives very long mean free paths. Correspondingly, the electrical and thermal conductivities
(19.31a) and (19.31b) are very large in practical, geophysical and astrophysical applications.
Is this the way that real plasmas behave? The answer is invariably “no”.

As we shall show in the next three chapters, a plasma can support a variety of modes of
“collective excitation” in which large numbers of electrons and/or ions move in collective,
correlated fashions that are mediated by electromagnetic fields that they create. When the
modes of a plasma are sufficiently strongly excited, the electromagnetic fields carried by
the excitations can be much more effective than Coulomb scattering at deflecting the orbits
of individual electrons and ions, and at feeding energy into or removing it from electrons
and ions. Correspondingly, the electrical and thermal conductivities will be reduced. The
reduced transport coefficients are termed anomalous. Providing quantitative calculations of
these coefficients is one of the principal tasks of nonlinear plasma physics — as we shall start
to discuss in Chap. 21.

7Spitzer (1962).
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****************************

EXERCISES

Exercise 19.8 Challenge: Thermoelectric Transport Coefficients

(a) Consider a plasma in which the magnetic field is so weak that it presents little imped-
iment to the flow of heat and electric current. Suppose that the plasma has a gradient
∇Te of its electron temperature and also has an electric field E. It is a familiar fact
that the temperature gradient will cause heat to flow and the electric field will create
an electric current. Not so familiar, but somewhat obvious if one stops to think about
it, is the fact that the temperature gradient also creates an electric current, and the
electric field also causes heat flow. Explain in physical terms why this is so.

(b) So long as the mean free path of an electron between substantial deflections, -D,e =
(3kBTe/me)1/2tD,e, is short compared to the lengthscale for substantial temperature
change, Te/|∇Te|, and short compared to the lengthscale for the electrons to be ac-
celerated to near the speed of light by the electric field, mec2/eE, the fluxes of heat q
and of electric charge J will be governed by electron diffusion and will be linear in ∇T
and E:

q = −κ∇T − βE , J = κeE + α∇T . (19.32)

The coefficients κ (heat conductivity), κe (electrical conductivity), β, and α are called
thermoelectric transport coefficients. Use kinetic theory (Chap. 3), in a situation where
∇T = 0, to derive the conductivity equations J = κeE and q = −βE, and the following
approximate formulae for the transport coefficients:

κe ∼
ne2tD,e

me
, β ∼ kBT

e
κe . (19.33)

Show that, aside from a coefficient of order unity, this κe, when expressed in terms of
the plasma’s temperature and density, reduces to the Fokker-Planck result (19.31a).

(c) Use kinetic theory, in a situation where E = 0, to derive the conductivity equations
q = −κ∇T and J = α∇T , and the approximate formulae

κ ∼ kBn
kBTe

me
tD,e , α ∼ e

kBTe
κ . (19.34)

Show that, aside from a coefficient of order unity, this κ reduces to the Fokker-Planck
result (19.31b).

(d) It can be shown8 that for a hydrogen plasma it must be true that

αβ

κeκ
= 0.581 . (19.35)

8Spitzer (1962).
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By studying the entropy-governed probability distributions for fluctuations away from
statistical equilibrium, one can derive another relation among the thermoelectric trans-
port coefficients, the Onsager relation9

β = αT +
5

2

kBTe

e
κe ; (19.36)

Equations (19.35) and (19.36) determine α and β in terms of κe and κ. Show that
your approximate values of the transport coefficients, Eqs. (19.33) and (19.34), are in
rough accord with Eqs. (19.35) and (19.36).

(e) If a temperature gradient persists for sufficiently long, it will give rise to sufficient
charge separation in the plasma to build up an electric field (called a “secondary
field”) that prevents further charge flow. Show that this suppresses the heat flow: The
total heat flux is then q = −κT, effective∇T , where

κT, effective =

(
1 − αβ

κeκ

)
κ = 0.419κ . (19.37)

****************************

19.6 Magnetic Field

19.6.1 Cyclotron frequency and Larmor radius.

Many of the plasmas that we will encounter are endowed with a strong magnetic field. This
causes the charged particles to travel along helical orbits about the field direction rather
than move rectilinearly between collisions. If we denote the magnetic field by B, then the
equation of motion for an electron becomes

me
dv

dt
= −ev × B , (19.38)

which gives rise to a constant speed v|| parallel to the magnetic field and a circular motion
perpendicular to the field with angular velocity

ωc =
eB

me
= 1.76 × 1011

(
B

1 T

)
s−1. (19.39)

This angular velocity is called the electron cyclotron frequency, or simply the cyclotron fre-
quency. Notice that this cyclotron frequency depends only on the magnetic field strength B
and not on the plasma’s density n or the electron velocity (i.e., the plasma temperature T ).
Nor does it depend upon the angle between v and B, (called the pitch angle, α).

9Kittel (1958), Secs 33, 34; Reif (1965), Sec 15.8.
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The radius of the electron’s gyrating (spiraling) orbit, projected perpendicular to the
direction of the magnetic field, is called the Larmor radius and is given by

rL =
v⊥
ωc

=
v sinα

ωc
= 5.7 × 10−7

(
v⊥

1kms−1

) (
B

1T

)−1

m , (19.40)

where v⊥ is the electron’s velocity projected perpendicular to the field. Protons (and other
ions) in a plasma also undergo cyclotron motion. Because the proton mass is larger by
mp/me = 1836 than the electron mass, its angular velocity

ωcp =
eB

mp
= 0.96 × 108 s−1

(
B

1 T

)
(19.41)

is 1836 times lower. This quantity is called the proton cyclotron frequency or ion cyclotron
frequency . The sense of gyration is, of course, opposite to that of the electrons. If the protons
have similar temperatures to the electrons, their speeds are typically ∼

√
mp/me = 43 times

smaller than those of the electrons, and their typical Larmor radii are ∼ 43 times larger than
those of the electrons.

We demonstrated above that all the electrons in a plasma can oscillate in phase at the
plasma frequency. The electrons’ cyclotron motions can also become coherent. Such coherent
motions are called cyclotron resonances or cyclotron oscillations, and we shall study them
in Chap. 20. Ion cyclotron resonances can also occur. Characteristic electron cyclotron
frequencies and Larmor radii are tabulated in Table 19.1. As shown there, the cyclotron
frequency, like the plasma frequency, is typically far larger than Coulomb-mediated energy
equilibration rates.

19.6.2 Validity of the Fluid Approximation.

In Chap. 18, we developed the magnetohydrodynamic (MHD) description of a magnetized
plasma. We described the plasma by its density and temperature (or equivalently its pres-
sure). Under what circumstances, for a plasma, is this an accurate description? The answer
to this question turns out to be quite complex and a full discussion would go well beyond
this book. Some aspects, however, are easy to describe. One circumstance when a fluid
description ought to be acceptable is when the timescales τ that characterize the macro-
scopic flow are long compared with the time required to establish Maxwellian equilibrium
(i.e. τ + ν−1

ep ), and the excitation level of collective wave modes is so small that these do
not interfere seriously with the influence of Coulomb collisions. Unfortunately, this is rarely
the case. (One type of plasma where this might be a quite good approximation is that in
the interior of the sun.)

Magnetohydrodynamics can still provide a moderately accurate description of a plasma,
even if the electrons and ions are not fully equilibrated, when the electrical conductivity can
be treated as very large and the thermal conductivity as very small. This means that we can
treat the magnetic Reynolds’ number as effectively infinite and the plasma and the equation
of state as that of a perfect fluid (as we assumed in much of Chap. 18). It is not so essential



21

that the actual particle distribution functions be Maxwellian, merely that they have second
moments that can be associated with a (roughly defined) common temperature.

Quite often in plasma physics almost all of the dissipation is localized, for example to
the vicinity of a shock front, and the remainder of the flow can be treated using MHD. The
MHD description then provides a boundary condition for a fuller plasma physical analysis
of the dissipative region. This simplifies the analysis of such situations.

The great advantage of fluid descriptions, and the reason why physicists abandon them
with such reluctance, is that they are much simpler than other descriptions of a plasma.
One only has to cope with the fluid pressure, density, and velocity and does not have to deal
with an elaborate statistical description of the positions and velocities of all the particles.
Generalizations of the simple fluid approximation have therefore been devised which can
extend the domain of validity of simple MHD ideas.

One extension, which we develop in the following chapter, is to treat the protons and the
electrons as two separate fluids and derive dynamical equations that describe their (coupled)
evolution. Another extension, which we describe now, is to acknowledge that, in most plas-
mas, the cyclotron period is very short compared with the Coulomb collision time and that
the timescale on which energy is transferred backwards and forwards between the electrons
and the protons and the electromagnetic field is intermediate between ω−1

c and ν−1
ee . Intu-

itively, this allows the electron and proton velocity distributions to become axisymmetric
with respect to the magnetic field direction, though not fully isotropic. In other words, we
can characterize the plasma using a density and two separate components of pressure, one
associated with motion along the direction of the magnetic field, and the other with gyration
around the field lines.

For simplicity, let us just consider the electrons and their stress tensor, which we can
write as

T jk
e =

∫
Ne pjpk d3p

m
, (19.42)

[Eq. (3.30d)], where Ne is the electron number density in phase space. If we orient Cartesian
axes so that the direction of ez is parallel to the local magnetic field, then

||T jk
e || =




Pe⊥ 0 0
0 Pe⊥ 0
0 0 Pe||



 , (19.43)

where Pe⊥ is the electron pressure perpendicular to B, and Pe|| is the electron pressure
parallel to B. Now suppose that there is a compression or expansion on a timescale that
is long compared with the cyclotron period but short compared with the Coulomb collision
timescale, so we should not expect that Pe⊥ is equal to Pe|| and we anticipate that they will
evolve with density according to different laws.

The adiabatic indices governing P⊥ and P|| in such a situation are easily derived from
kinetic theory arguments (Exercise 19.11): For compression perpendicular to B and no
change of length along B,

γ⊥ ≡
(
∂ ln P⊥

∂ ln ρ

)

s

= 2 , γ|| ≡
(
∂ ln P||

∂ ln ρ

)

s

= 1 . (19.44)
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and for compression parallel to B and no change of transverse area,

γ⊥ ≡
(
∂ ln P⊥

∂ ln ρ

)

s

= 1 , γ|| ≡
(
∂ ln P||

∂ ln ρ

)

s

= 3 . (19.45)

By contrast if the expansion is sufficiently slow that Coulomb collisions are effective (though
not so slow that heat conduction can operate), then we expect the velocity distribution to
maintain isotropy and both components of pressure to evolve according to the law appropriate
to a monatomic gas,

γ =

(
∂ ln P⊥

∂ ln ρ

)

s

=

(
∂ lnP||

∂ ln ρ

)

s

=
5

3
. (19.46)

19.6.3 Conductivity Tensor

As is evident from the foregoing remarks, if we are in a regime where Coulomb scattering
really does determine the particle mean free path, then an extremely small magnetic field
strength suffices to ensure that individual particles complete gyrational orbits before they
collide. Specifically, for electrons, the deflection time tD, given by Eq. (19.20) exceeds ω−1

c if

B " 10−12
( n

1cm−3

) (
Te

1K

)−3/2

T. (19.47)

This is almost always the case. It is also almost always true for the ions.
When inequality (19.47) is satisfied, the transport coefficients must be generalized to

form tensors. Let us compute the electrical conductivity tensor for a plasma in which a
steady electric field E is applied. Once again orienting our coordinate system so that the
magnetic field is parallel to ez, we can write down an equation of motion for the electrons by
balancing the electromagnetic acceleration with the average rate of loss of momentum due
to collisions.

−e(E + v ×B) − meνDv = 0 (19.48)

Solving for the velocity we obtain
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 = − e

meνD(1 + ω2
c/ν

2
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1 ωc/νD 0

−ωc/νD 1 0
0 0 1 + ω2
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2
D
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 . (19.49)

As the current density is je = −nv = κeE, the electrical conductivity tensor is given by

κe =
ne2

meνD(1 + ω2
c/ν

2
D)




1 ωc/νD 0

−ωc/νD 1 0
0 0 1 + ω2

c/ν
2
D



 . (19.50)

It is apparent from the form of this conductivity tensor that when ωc + νD (as is almost
always the case), the conductivity perpendicular to the magnetic field is greatly inhibited,
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whereas that along the magnetic field is unaffected. Similar remarks apply to the flow of heat.
It is therefore often assumed that only transport parallel to the field is effective. However,
as is made clear in the next section, if the plasma is inhomogeneous, cross-field transport
can be quite rapid in practice.

****************************

EXERCISES

Exercise 19.9 Example: Relativistic Larmor radius
Use the relativistic equation of motion to show that the relativistic electron cyclotron fre-
quency is ωc = eB/γmewhere γ = 1/

√
1 − v2 is the electron Lorentz factor. What is the

relativistic Larmor radius?

Exercise 19.10 Example: Ultra-High-Energy Cosmic Rays
The most energetic cosmic ray reported in recent years is believed to be a proton and to
have an energy ∼ 3 × 1020 eV. In order to arrive at earth, it must have passed through a
perpendicular Galactic magnetic field of strength 0.3 nT for a distance of ∼ 1000 light year.
Through what angle will it have been deflected?

Exercise 19.11 Problem: Adiabatic Indices for Rapid Compression of a Magnetized Plasma
Consider a plasma in which, in the local mean rest frame of the electrons, the electron
stress tensor has the form (19.43) with ez the direction of the magnetic field. The following
analysis for the electrons can be carried out independently for the ions, with the same
resulting formulae.

(a) Show that

Pe|| = nme〈v2
||〉 , Pe⊥ =

1

2
nme〈|v⊥|2〉 , (19.51)

where 〈v2
||〉 is the mean square electron velocity parallel to B and 〈|v⊥|2〉 is the mean

square velocity orthogonal to B. (The velocity distributions are not assumed to be
Maxwellian.)

(b) Consider a fluid element with length l along the magnetic field and cross sectional area
A orthogonal to the field. Let v̄ be the mean velocity of the electrons (v̄ = 0 in the
mean electron rest frame) and let θ and σjk be the expansion and shear of the mean
electron motion as computed from v̄. Show that

dl/dt

l
=

1

3
θ + σjkbjbk ,

dA/dt

A
=

2

3
θ − σjkbjbk , (19.52)

where b = B/|B| = ez is a unit vector in the direction of the magnetic field.

(c) Assume that the timescales for compression and shearing are short compared to the
Coulomb-scattering electron-deflection timescale, τ # tD,e. Show, using the laws of
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energy and particle conservation, that

1

〈v2
||〉

d〈v2
||〉

dt
= −2

l

dl

dt
,

1

〈v2
⊥〉

d〈v2
⊥〉

dt
= − 1

A

dA

dt
, (19.53)

1

n

dn

dt
= −1

l

dl

dt
− 1

A

dA

dt
.

(d) Show that

1

Pe||

dPe||

dt
= −3

dl/dt

l
− dA/dt

A
= −5

3
θ − 2σjkbjbk ,

1

Pe⊥

dPe⊥

dt
= −dl/dt

l
− 2

dA/dt

A
= −5

3
θ + σjkbjbk . (19.54)

(e) Show that when the fluid is expanding or compressing entirely perpendicular to B,
with no expansion or compression along B, the pressures change in accord with the
adiabatic indices of Eq. (19.44). Show, similarly, that when the fluid expands or
compresses along B, with no expansion or compression in the perpendicular direction,
the pressures change in accord with the adiabatic indices of Eq. (19.45).

(f) Hence derive the so-called double adiabatic equations of state

P 2
⊥P‖ ∝ n5 , P⊥ ∝ nB , (19.55)

valid for changes on timescales long compared with the cyclotron period but short
compared with all Coulomb collision times.10

****************************

19.7 Adiabatic Invariants

In the next three chapters we shall meet a variety of plasma phenomena that can be un-
derstood in terms of the orbital motions of individual electrons and ions. These phenomena
typically entail motions in an electromagnetic field that is nearly, but not quite spatially
homogeneous on the scale of the Larmor radius rL, and that is nearly but not quite constant
during a cyclotron period 2π/ωc. In this section, in preparation for the next three chapters,
we shall review charged particle motion in such nearly homogeneous, nearly time-independent
fields.

Since the motions of electrons are usually of greater interest than those of ions, we shall
presume throughout this section that the charged particle is an electron; and we shall denote
its charge by −e and its mass by me.

10See Chew, Goldberger & Low (1956)
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B
E

v

v

Fig. 19.4: The proton motion (upper diagram) and electron motion (lower diagram) orthogonal to
the magnetic field, when there are constant electric and magnetic fields with |E×B| < B2c. Each
electron and proton moves in a circle with a superposed drift velocity vD given by Eq. (19.56).

19.7.1 Homogeneous, time-independent magnetic field

From the nonrelativistic version of the Lorentz force equation, dv/dt = −(e/me)v × B,
one readily deduces that an electron in a homogeneous, time-independent magnetic field B
moves with uniform velocity v|| parallel to the field, and moves perpendicular to the field in
a circular orbit with the cyclotron frequency ωc = eB/me and Larmor radius rL = mev⊥/eB.
Here v⊥ is the electron’s time-independent transverse speed (speed perpendicular to B).

19.7.2 Homogeneous time-independent electric and magnetic fields

Suppose that the homogeneous magnetic field B is augmented by a homogeneous electric
field E; and assume, initially, that |E ×B| < B2c. Then examine the electric and magnetic
fields in a new reference frame, one that moves with the velocity

vD =
E× B

B2
(19.56)

relative to the original frame. Note that the moving frame’s velocity vD is perpendicular to
both the magnetic field and the electric field. From the Lorentz transformation law for the
electric field, E′ = γ(E + vD × B), we infer that in the moving frame the electric field and
the magnetic field are parallel to each other. As a result, in the moving frame the electron’s
motion perpendicular to the magnetic field is purely circular; and, correspondingly, in the
original frame its perpendicular motion consists of a drift with velocity vD, and superimposed
on that drift, a circular motion (Fig. 19.4). In other words, the electron moves in a circle
whose center (the electron’s guiding center) drifts with velocity vD. Notice that the drift
velocity (19.56) is independent of the electron’s charge and mass, and thus is the same for
ions as for electrons. This drift is called the E × B drift .

When the component of the electric field orthogonal to B is so large that the drift velocity
computed from (19.56) exceeds the speed of light, the electron’s guiding center, of course,
cannot move with that velocity. Instead, the electric field drives the electron up to higher
and higher velocities as time passes, but in a sinusoidally modulated manner. Ultimately
the electron velocity gets arbitrarily close to the speed of light.
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Fig. 19.5: An electron’s motion in a time-independent, inhomogeneous magnetic field. (a) The
drift induced by the curvature of the field lines. (b) The drift induced by a transverse gradient of the
magnitude of the magnetic field. (c) The change in electron pitch angle induced by a longitudinal
gradient of the magnitude of the magnetic field.

When a uniform, time-independent gravitational field g accompanies a uniform, time-
independent magnetic field B, its effect on an electron will be the same as that of an electric
field Eequivalent = −(me/e)g: The electron’s guiding center will acquire a drift velocity

vD = −me

e

g ×B

B2
, (19.57)

and similarly for a proton. This gravitational drift velocity is typically very small.

19.7.3 Inhomogeneous, time-independent magnetic field

When the electric field vanishes, the magnetic field is spatially inhomogeneous and time-
independent, and the inhomogeneity scale is large compared to the Larmor radius rL of the
electron’s orbit, the electron motion is nicely described in terms of a guiding center.

Consider, first, the effects of a curvature of the field lines (Fig. 19.5a). Suppose that the
speed of the electron along the field lines is v||. We can think of this as a guiding center
motion. As the field lines bend in, say, the direction of the unit vector n with radius of
curvature R, this longitudinal guiding-center motion experiences the acceleration a = v2

||n/R.

That acceleration is equivalent to the effect of an electric field Eeffective = (−me/e)v2
||n/R,

and it therefore produces a drift of the guiding center with vD = (Eeffective×B)/B2. Since the
curvature R of the field line and the direction n of its bend are given by B−2(B·∇)B = n/R,
this curvature drift velocity is

vD =
mev2

||c

e
B × (B · ∇)B

B4
. (19.58)

Notice that the magnitude of this drift is

vD =
rL

R

v||
v⊥

v|| . (19.59)
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A second kind of inhomogeneity is a transverse spatial gradient of the magnitude of B.
As is shown in Fig. 19.5b, such a gradient causes the electron’s circular motion to be tighter
(smaller radius of curvature of the circle) in the region of larger B than in the region of smaller
B; and this difference in radii of curvature clearly induces a drift. It is straightforward to
show that the resulting gradient drift velocity is

vD =
−mev2

⊥c

2e

B× ∇B

B3
. (19.60)

A third, and last, kind of inhomogeneity is a longitudinal gradient of the magnitude of B
Fig. 19.5c. Such a gradient results from the magnetic field lines converging toward each other
(or diverging away from each other). The effect of this convergence is most easily inferred
in a frame that moves longitudinally with the electron. In such a frame the magnetic field
changes with time, ∂B′/∂t /= 0, and correspondingly there is an electric field that satisfies
∇ × E′ = −∂B′/∂t. The kinetic energy of the electron as measured in this longitudinally
moving frame is the same as the transverse energy 1

2mev2
⊥ in the original frame. This kinetic

energy is forced to change by the electric field E′. The change in energy during one circuit
around the magnetic field is

∆

(
1

2
mev

2
⊥

)
= −e

∮
E′ · d l = e

∫
∂B′

∂t
· dA = e

(ωc

2π
∆B

)
πr2

L =
mev2

⊥
2

∆B

B
. (19.61)

Here the second expression involves a line integral once around the electron’s circular orbit
and has ∂B′/∂t parallel to dA; the third expression involves a surface integral over the
interior of the orbit; in the fourth the time derivative of the magnetic field has been expressed
as (ωc/2π)∆B where ∆B is the change in magnetic field strength along the electron’s guiding
center during one circular orbit.

Equation (19.61) can be rewritten as a conservation law along the world line of the
electron’s guiding center:

mev2
⊥

2B
= constant . (19.62)

Notice that the conserved quantity mev2
⊥/2B is equal to 1/2π times the total magnetic flux

threading through the electron’s circular orbit, πr2
LB; thus, the electron moves along the

field lines in such a manner as to keep the magnetic flux enclosed within its orbit always
constant ; see Fig. 19.5c. A second interpretation of (19.62) is in terms of the magnetic
moment created by the electron’s circulatory motion; that moment is µ = (−mev2

⊥/2B2)B;
and its magnitude is the conserved quantity

µ =
mev2

⊥
2B

= constant . (19.63)

An important consequence of the conservation law (19.62) is a gradual change in the
electron’s pitch angle

α ≡ tan−1(v||/v⊥) (19.64)
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Fig. 19.6: Two examples of the mirroring of particles in an inhomogeneous magnetic field: (a) A
magnetic bottle. (b) The earth’s van Allen belts.

as it spirals along the converging field lines: Because there is no electric field in the original
frame, the electron’s total kinetic energy is conserved in that frame,

Ekin = me
1

2
(v2

|| + v2
⊥) = constant . (19.65)

This, together with the constancy of µ = mev2
⊥/2B and the definition (19.64) of the electron

pitch angle, implies that the pitch angle varies with magnetic field strength as

tan2 α =
Ekin

µB
− 1 . (19.66)

Notice that as the field lines converge, B increases in magnitude, and α decreases. Ultimately,
when B reaches a critical value Bcrit = Ekin/µ, the pitch angle α goes to zero. The electron
then “reflects” off the strong-field region and starts moving back toward weak fields, with
increasing pitch angle. The location at which the electron reflects is called the electron’s
mirror point .

Figure 19.6 shows two examples of this mirroring. The first example is a “magnetic
bottle.” Electrons whose pitch angles at the center of the bottle are sufficiently small have
mirror points within the bottle and thus cannot leak out. The second example is the van
Allen belts of the earth. Electrons (and also ions) travel up and down the magnetic field
lines of the van Allen belts, reflecting at mirror points.

It is not hard to show that the gradient of B can be split up into the three pieces we have
studied: a curvature with no change of B = |B| (Fig. 19.5a), a change of B orthogonal to the
magnetic field (Fig. 19.5b), and a change of B along the magnetic field (Fig. 19.5c). When
(as we have assumed) the lengthscales of these changes are far greater than the electron’s
Larmor radius, their effects on the electron’s motion superpose linearly.

19.7.4 A slowly time varying magnetic field

When the magnetic field changes on timescales long compared to the cyclotron period 2π/ωc,
its changes induce alterations of the electron’s orbit that can be deduced with the aid of
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adiabatic invariants—i.e., quantities that are invariant when the field changes adiabatically
(slowly).11

The conserved magnetic moment µ = mev2
⊥/2B associated with an electron’s trans-

verse, circular motion is an example of an adiabatic invariant. We proved its invariance in
Eqs. (19.61) and (19.62) above (where we were computing in a reference frame in which the
magnetic field changed slowly, and associated with that change there was a weak electric
field). This adiabatic invariant can be shown to be, aside from a constant multiplicative
factor 2πmec/e, the action associated with the electron’s circular motion, Jφ =

∮
pφdφ. Here

φ is the angle around the circular orbit and pφ = mev⊥rL − eAφ is the φ component of the
electron’s canonical momentum. The action Jφ is a well-known adiabatic invariant.

Whenever a slightly inhomogeneous magnetic field varies slowly in time, not only is
µ = mev2

⊥/2B adiabatically invariant (conserved); so also are two other actions. One is the
action associated with motion from one mirror point of the magnetic field to another and
back,

J|| =

∮
p|| · d l . (19.67)

Here p|| = mev|| − eA|| = mev|| is the generalized (canonical) momentum along the field
line, and d l is distance along the field line; so the adiabatic invariant is the spatial average
〈v||〉 of the longitudinal speed of the electron, multiplied by twice the distance ∆l between
mirror points, J|| = 2〈v||〉∆l.

The other (third) adiabatic invariant is the action associated with the drift of the guiding
center: an electron mirroring back and forth along the field lines drifts sideways, and by its
drift it traces out a 2-dimensional surface to which the magnetic field is parallel—e.g., the
surface of the magnetic bottle in Fig. 19.6a. The action of the electron’s drift around this
magnetic surface turns out to be proportional to the total magnetic flux enclosed within the
surface. Thus, if the field geometry changes very slowly, the magnetic flux enclosed by the
magnetic surface on which the electron moves is adiabatically conserved.

How nearly constant are the adiabatic invariants? The general theory of adiabatic in-
variants shows that, so long as the temporal changes of the magnetic field structure are
smooth enough to be described by analytic functions of time, then the fractional failures of
the adiabatic invariants to be conserved are of order e−τ/P , where τ is the timescale on which
the field changes and P is the period of the motion associated with the adiabatic invariant
(2π/ωc for the invariant µ; the mirroring period for the longitudinal action; the drift period
for the magnetic flux enclosed in the electron’s magnetic surface). Because the exponential
e−τ/P dies out so quickly with increasing timescale τ , the adiabatic invariants are conserved
to very high accuracy whenever τ + P .

****************************

EXERCISES

Exercise 19.12 Example: Mirror Machine

11See e.g. Landau & Lifshitz (1960), Northrop (1963).
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Fig. 19.7: Penning Trap for localizing individual charged particles. The magnetic field is uni-
form and parallel to the axis of symmetry e3. The electric field is maintained between a pair of
hyperboloidal caps and a hyperboloidal ring.

One method for confining hot plasma is to arrange electric coils so as to make a mirror
machine in which the magnetic field has the geometry sketched in Fig. 19.6a. Suppose that
the magnetic field in the center is 1 T and the field strength at the two necks is 10 T, and
that plasma is introduced with an isotropic velocity distribution near the center of the bottle.

(a) What fraction of the plasma particles will escape?

(b) Sketch the pitch angle distribution function for the particles that remain.

(c) Suppose that Coulomb collisions cause particles to diffuse in pitch angle α with a
diffusion coefficient

Dαα ≡
〈

∆α2

∆t

〉
= t−1

D (19.68)

Estimate how long it will take most of the plasma to escape the mirror machine.

(d) What do you suspect will happen in practice?

Exercise 19.13 Challenge: Penning Traps
A clever technique for studying the behavior of individual electrons or ions is to entrap them
using a combination of electric and magnetic fields. One of the simplest and most useful
devices is the Penning trap.12 Basically this comprises a uniform magnetic field B combined
with a hyperboloidal electrostatic field that is maintained between hyperboloidal electrodes
as shown in Fig. 19.7. The electrostatic potential has the form Φ(x) = Φ0(z2 − x2/2 −
y2/2)/2d2, where Φ0 is the potential difference maintained across the electrodes, d is the
minimum axial distance from the origin to the hyperboloidal cap as well as 1/

√
2 times the

minimum radius of the ring electrode.

(a) Show that the potential satisfies Laplace’s equation, as it must.

12Brown & Gabrielse (1986)
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(b) Now consider an individual charged particle in the trap. Show that there can be three
separate oscillations excited:

(i) Cyclotron orbits in the magnetic field with angular frequency ωc,

(ii) “Magnetron” orbits produced by E × B drift around the axis of symmetry with
angular frequency ωm,

(iii) Axial oscillations parallel to the magnetic field with angular frequency ωz.

Assume that ωm # ωz # ωc and show that ω2
z $ 2ωmωc.

(c) Typically the potential difference across the electrodes is ∼ 10 V, the magnetic field
strength is B ∼ 6 T, and the radius of the ring and the height of the caps above the
center of the traps are ∼ 3 mm. Estimate the three independent angular frequencies for
electrons and ions verifying the ordering ωm # ωz # ωc. Also estimate the maximum
velocities associated with each of these oscillations if the particle is to be retained by
the trap.

(d) Solve the classical equation of motion exactly and demonstrate that the magnetron
motion is formally unstable.

Penning traps have been used to perform measurements of the electron-proton mass ratio
and the magnetic moment of the electron with unprecedented precision.

****************************

Bibliographic Note

For a very thorough treatment of the particle kinetics of plasmas, see Shkarofsky, Johnston
and Bachynski (1966). For less detailed treatments see the relevant portions of Boyd and
Sanderson (1969), Krall and Trivelpiece (1973), Jackson (1999), Schmidt (1979), and es-
pecially Spitzer (1962). For particle motion in inhomogeneous and time varying magnetic
fields, see Northrop (1963) and the relevant portions of Jackson (1999).
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Box 19.2
Important Concepts in Chapter 19

• Density-Temperature regime for plasmas, Sec. 19.2 and Fig. 19.1

• Examples of environments where plasmas occur, Sec. 19.2, Fig. 19.1, and Table
19.1

• Debye shielding, Debye length and Debye number, Secs. 19.3.1 and 19.3.2

• Plasma oscillations and plasma frequency, Sec. 19.3.3

• Coulomb logarithm, its role in quantifying the cumulative effects of small-angle
Coulomb scatterings, and its typical values, Secs. 19.4.1, 19.4.2

• Deflection times tD and rates νD for Coulomb collisions (ee, pp and ep), Sec. 19.4.1

• Thermal equilibration times tE and rates νE = 1/tE for Coulomb collisions (ee, pp,
and ep and their ratios), Sec. 19.4.3

• Electric and thermal conductivity for an unmagnetized plasma when the principal
impediment is Coulomb scattering, Sec. 19.5

• Anomalous resistivity and equilibration, Sec. 19.5

• Cyclotron frequency for electrons and protons; Larmor radius, Sec. 19.6.1

• Anisotropic pressures, adiabatic indices, and electrical conductivity in a magnetized
plasma, Secs. 19.6.2 and 19.6.3
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