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Box 20.1
Reader’s Guide

• This chapter relies significantly on:

– Chapter 19 on the particle kinetics of plasmas.

– The basic concepts of fluid mechanics, Secs. 13.4 and 13.5.

– Magnetosonic waves, Sec. 18.7.

– The basic concepts of geometric optics, Secs. 7.2 and 7.3

• The remaining Chapters 21 and 22 of Part VI, Plasma Physics, rely heavily on this
chapter.

20.1 Overview

The growth of plasma physics came about, historically, in the early 20th century, through
studies of oscillations in electric discharges and the contemporaneous development of means
to broadcast radio waves over great distances by reflecting them off the earth’s ionosphere. It
is therefore not surprising that most early plasma-physics research was devoted to describing
the various modes of wave propagation. Even in the simplest, linear approximation for a
plasma sufficiently cold that thermal effects are unimportant, we will see that the variety of
possible modes is immense.
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In the previous chapter, we introduced several length and time scales, e.g. the gyro
(Larmor) radius, the Debye length, the plasma period, the gyro (cyclotron) period and the
inverse collision frequency. To these we must now add the wavelength and period of the
wave under study. The wave’s characteristics are controlled by the relative sizes of these
parameters; and in view of the large number of parameters, there is a bewildering number of
possibilities. If we further recognize that plasmas are collisionless, so there is no guarantee
that the particle distribution functions can be characterized by a single temperature, then
the possibilities multiply.

Fortunately, the techniques needed to describe the propagation of linear wave pertur-
bations in a particular equilibrium configuration of a plasma are straightforward and can
be amply illustrated by studying a few simple cases. In this section, we shall follow this
course by restricting our attention to one class of modes, those where we can either ignore
completely the thermal motions of the ions and electrons that comprise the plasma (in other
words treat these species as cold) or include them using just a velocity dispersion or temper-
ature. We can then apply our knowledge of fluid dynamics by treating the ions and electrons
separately as fluids, upon which act electromagnetic forces. This is called the two-fluid for-
malism for plasmas. In the next chapter, we shall show when and how waves are sensitive to
the actual distribution of particle speeds by developing the more sophisticated kinetic-theory
formalism and using it to study waves in warm plasmas.

We begin our two-fluid study of plasma waves in Sec. 20.2 by deriving a very general wave
equation, which governs weak waves in a homogeneous plasma that may or may not have
a magnetic field, and also governs electromagnetic waves in any other dielectric medium.
That wave equation and the associated dispersion relation for the wave modes depend on a
dielectric tensor, which must be derived from an examination of the motion of the electrons
and protons (or other charge carriers) inside the wave.

In Sec. 20.4, we specialize to wave modes in a uniform, unmagnetized plasma. Using
a two-fluid (electron-fluid and proton-fluid) description of the charge carriers’ motions, we
derive the dielectric tensor and thence the dispersion relation for the wave modes. The
modes fall into two classes: (i) Transverse or electromagnetic modes. These are modified
versions of electromagnetic waves in vacuum. As we shall see, they can propagate only at
frequencies above the plasma frequency; at lower frequencies they become evanescent. (ii)
Longitudinal waves, which come in two species: Langmuir waves and ion acoustic waves.
Longitudinal waves are a melded combination of sound waves in a fluid and electrostatic
plasma oscillations; their restoring force is a mixture of thermal pressure and electrostatic
forces.

In Sec. 20.5, we explore how a uniform magnetic field changes the character of these
waves. The B field makes the plasma anisotropic but axially symmetric. As a result, the
dielectric tensor, dispersion relation, and wave modes have much in common with those in
an anisotropic but axially symmetric dielectric crystal, which we studied in the context of
nonlinear optics in Chap. 10. A plasma, however, has a much richer set of characteristic
frequencies than does a crystal (electron plasma frequency, electron cyclotron frequency, ion
cyclotron frequency, ...). As a result, even in the regime of weak linear waves and a cold
plasma (no thermal pressure), the plasma has a far greater richness of modes than does a
crystal.
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In Sec. 20.5, we derive the general dispersion relation that encompasses all of these cold-
magnetized-plasma modes, and explore the special cases of modes that propagate parallel to
and perpendicular to the magnetic field. Then in Sec. 20.6 we examine a practical example:
the propagation of radio waves in the Earth’s ionosphere, where it is a good approximation to
ignore the ion motion and work with a one-fluid (i.e. electron-fluid) theory. Having gained
insight into simple cases (parallel modes, perpendicular modes, and one-fluid modes), we
return in Sec. 20.7 to the full class of linear modes in a cold, magnetized, two-fluid plasma
and briefly describe some tools by which one can make sense of them all.

Finally, in Sec. 20.8, we turn to the question of plasma stability. In Sec. 14.6 and Chap.
15, we saw that fluid flows that have sufficient shear are unstable; perturbations can feed off
the relative kinetic energy of adjacent regions of the fluid, and use that energy to power an
exponential growth. In plasmas, with their long mean free paths, there can similarly exist
kinetic energies of relative, ordered, motion in velocity space; and perturbations, feeding
off those energies, can grow exponentially. To study this in full requires the kinetic-theory
description of a plasma, which we develop in Chap. 21; but in Sec. 20.8 we get insight into a
prominent example of such a velocity-space instability by analyzing two cold plasma streams
moving through each other. We illustrate the resulting two-stream instability by a short
discussion of particle beams that are created in disturbances on the surface of the sun and
propagate out through the solar wind.

20.2 Dielectric Tensor, Wave Equation, and General
Dispersion Relation

We begin our study of waves in plasmas by deriving a very general wave equation which
applies equally well to electromagnetic waves in unmagnetized plasmas, in magnetized plas-
mas, and in any other kind of dielectric medium such as an anisotropic crystal. This wave
equation is the same one as we used in our study of nonlinear optics in Chap. 10 [Eqs. (10.42)
and (10.43a)], and the derivation is essentially the same as that sketched in Ex. 10.7:

When a wave propagates through a plasma (or other dielectric), it entails a relative
motion of electrons and protons (or other charge carriers). Assuming the wave has small
enough amplitude to be linear, those charge motions can be embodied in an oscillating
polarization (electric dipole moment per unit volume) P(x, t), which is related to the plasma’s
(or dielectric’s) varying charge density ρe and current density j in the usual way:

ρe = −∇ · P , j =
∂P

∂t
. (20.1)

(These relations enforce charge conservation, ∂ρe/∂t + ∇ · j = 0.) When these ρe and j are
inserted into the standard Maxwell equations for E and B, one obtains

∇ · E = −∇ · P
ε0

, ∇ ·B = 0 , ∇ ×E = −∂B

∂t
, ∇ ×B = µ0

∂P

∂t
+

1

c2

∂E

∂t
. (20.2)

If the plasma is endowed with a uniform magnetic field Bo, that field can be left out of these
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equations, as its divergence and curl are guaranteed to vanish. Thus, we can regard E, B
and P in these Maxwell equations as the perturbed quantities associated with the waves.

From a detailed analysis of the response of the charge carriers to the oscillating E and
B fields, one can deduce a linear relationship between the waves’ electric field E and the
polarization P,

Pj = εoχjkEk . (20.3)

Here ε0 is the vacuum permittivity and χjk is a dimensionless, tensorial electric susceptibility
[cf. Eq. (10.21)]. A different, but equivalent, viewpoint on the relationship between P and
E can be deduced by taking the time derivative of Eq. (20.3), setting ∂P/∂t = j, assuming
a sinusoidal time variation e−iωt so ∂E/∂t = −iωE, and then reinterpreting the result as
Ohm’s law with a tensorial electric conductivity κe jk:

jj = κe jkEk , κe jk = −iωε0χjk . (20.4)

Evidently, for sinusoidal waves the electric susceptibility χjk and the electric conductivity
κe jk embody the same information about the wave-particle interactions.

That information is also embodied in a third object: the dimensionless dielectric tensor
εjk, which relates the electric displacement D to the electric field E:

Dj ≡ ε0Ej + Pj = ε0εjkEk , εjk = δjk + χjk = δjk +
i

ε0ω
κe jk . (20.5)

In the next section we shall derive the value of the dielectric tensor εjk for waves in an
unmagnetized plasma, and in Sec. 20.4 we shall derive it for a magnetized plasma.

Using the definition D = ε0E+P, we can eliminate P from equations (20.2), thereby ob-
taining the familiar form of Maxwell’s equations for dielectric media with no non-polarization-
based charges or currents:

∇ · D = 0 , ∇ · B = 0 , ∇ × E = −∂B

∂t
, ∇ × B = µ0

∂D

∂t
. (20.6)

By taking the curl of the third of these equations and combining with the fourth and with
Dj = ε0εjkEk, we obtain the wave equation that governs the perturbations:

∇2E − ∇(∇ · E) − ε · 1

c2

∂2E

∂t2
= 0 , (20.7)

where ε is our index-free notation for εjk. Specializing to a plane-wave mode with wave
vector k and angular frequency ω, so E ∝ eikxe−iωt, we convert this wave equation into a
homogeneous algebraic equation for the Cartesian components of the electric vector Ej (cf.
Box 12.2):

LijEj = 0 , (20.8)

where

Lij = kikj − k2δij +
ω2

c2
εij . (20.9)
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The algebratized wave equation (20.8) can have a solution only if the determinant of the
three-dimensional matrix Lij vanishes:

det||Lij|| ≡ det

∣∣∣∣

∣∣∣∣kikj − k2δij +
ω2

c2
εij

∣∣∣∣

∣∣∣∣ . (20.10)

This is a polynomial equation for the angular frequency as a function of the wave vector
(with ω and k appearing not only explicitly in Lij but also implicitly in the functional form
of εjk). Each solution, ω(k), of this equation is the dispersion relation for a particular wave
mode. We therefore can regard Eq. (20.10) as the general dispersion relation for plasma
waves—and for linear electromagnetic waves in any other kind of dielectric medium.

To obtain an explicit form of the dispersion relation (20.10), we must give a prescription
for calculating the dielectric tensor εij, or equivalently [cf. Eq. (20.5)] the conductivity tensor
κe ij or the susceptibility tensor χij . The simplest prescription involves treating the electrons
and ions as independent fluids; so we shall digress, briefly, from our discussion of waves, to
present the two-fluid formalism for plasmas:

20.3 Two-Fluid Formalism

A plasma necessarily contains rapidly moving electrons and ions, and their individual re-
sponses to an applied electromagnetic field depend on their velocities. In the simplest model
of these responses, we average over all the particles in a species (electrons or protons in this
case) and treat them collectively as a fluid. Now, the fact that all the electrons are treated
as one fluid does not mean that they have to collide with one another. In fact, as we have
already emphasized in Chap. 19, electron-electron collisions are usually quite rare and we
can usually ignore them. Nevertheless, we can still define a mean fluid velocity for both the
electrons and the protons by averaging over their total velocity distribution functions just
as we would for a gas:

us = 〈v〉s ; s = p, e , (20.11)

where the subscripts p and e refer to protons and electrons. Similarly, for each fluid we define
a pressure tensor using the fluid’s dispersion of particle velocities:

Ps = nsms〈(v − us) ⊗ (v − us)〉 (20.12)

[cf. Eqs. (19.42) and (19.43)].
The density ns and mean velocity us of each species s must satisfy the equation of

continuity (particle conservation)

∂ns

∂t
+ ∇ · (nsus) = 0 . (20.13a)

They must also satisfy an equation of motion: the law of momentum conservation, i.e., the
Euler equation with the Lorentz force added to the right side

nsms

(
∂us

∂t
+ (us ·∇)us

)
= −∇ · Ps + nsqs(E + us × B) . (20.13b)
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Here we have neglected the tiny influence of collisions between the two species. In these
equations and below, qs = ±e is the particles’ charge (positive for protons and negative for
electrons). Note that, as collisions are ineffectual, we cannot assume that the pressure tensor
is isotropic.

Although the continuity and momentum-conservation equations (20.13) for each species
(electron or proton) is formally decoupled from the equations for the other species, there is
actually a strong physical coupling induced by the electromagnetic field: The two species
jointly produce E and B through their joint charge density and current density

ρe =
∑

s

qsns , j =
∑

s

qsnsus , (20.14)

and those E and B strongly influence the electron and proton fluids’ dynamics via their
equations of motion (20.13b).

****************************

EXERCISES

Exercise 20.1 Problem: Fluid Drifts in a Time-Independent, Magnetized Plasma
Consider a hydrogen plasma described by the two-fluid formalism. Suppose that Coulomb
collisions have had time to isotropize the electrons and protons and to equalize their temper-
atures so that their partial pressures Pe = nekBT and Pp = npkBT are isotropic and equal.
An electric field E created by external charges is applied.

(a) Using the law of force balance for fluid s, show that its drift velocity perpendicular to
the magnetic field is

vs⊥ =
E ×B

B2
− ∇Ps ×B

qsnsB2
− ms

qsB2
[(vs · ∇)vs]⊥ × B . (20.15)

The first term is the E× B drift discussed in Sec. 19.7.1.

(b) The second term, called the “diamagnetic drift”, is different for the electrons and the
protons. Show that this drift produces a current density perpendicular to B given by

j⊥ = −(∇P ) ×B

B2
, (20.16)

where P is the total pressure.

(c) The third term in Eq. (20.15) can be called the “drift-induced drift”. Show that, if
the electrons are nearly locked to the ion motion, then the associated current density
is well approximated by

j⊥ = − ρ

B2
[(v · ∇)v] ×B , (20.17)

where ρ is the mass density and v is the average fluid speed.

The transverse current densities (20.16) and (20.17) can also be derived by crossing B into
the MHD equation of force balance (18.11) for a time-independent, magnetized plasma.

****************************
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20.4 Wave Modes in an Unmagnetized Plasma

We now specialize to waves in a homogeneous, unmagnetized electron-proton plasma.
Consider, first, an unperturbed plasma in the absence of a wave, and work in a frame

in which the proton fluid velocity up vanishes. By assumption, the equilibrium is spatially
uniform. If there were an electric field, then charges would quickly flow to neutralize it;
so there can be no electric field, and hence (since ∇ · E = ρe/ε0) no net charge density.
Therefore, the electron density must equal the proton density. Furthermore, there can be no
net current as this would lead to a magnetic field; so since the proton current e npup vanishes,
the electron current = −e neue must also vanish, whence the electron fluid velocity ue must
vanish in our chosen frame. In summary: in an equilibrium homogeneous, unmagnetized
plasma, ue, up, E and B all vanish.

Now apply an electromagnetic perturbation. This will induce a small, oscillating fluid
velocity us in both the proton and electron fluids. It should not worry us that the fluid
velocity is small compared with the random speeds of the constituent particles; the same is
true in any subsonic gas dynamical flow, but the fluid description remains good there and
so also here.

20.4.1 Dielectric Tensor and Dispersion Relation for a Cold,
Unmagnetized Plasma

Continuing to keep the plasma unmagnetized, let us further simplify matters (temporarily)
by restricting ourselves to a cold plasma, so the tensorial pressures vanish, Ps = 0. As we
are only interested in linear wave modes, we rewrite the two-fluid equations (20.13) just
retaining terms that are first order in perturbed quantities, i.e. dropping the (us ·∇)us and
us × B terms. Then, focusing on a plane-wave mode, ∝ exp[i(k · x − ωt)], we bring the
equation of motion (20.13b) into the form

−iωnsmsus = qsnsE (20.18)

for each species, s = p, e. From this, we can immediately deduce the linearized current
density

j =
∑

s

nsqsus =
∑

s

insq2
s

msω
E , (20.19)

from which we infer that the conductivity tensor κe has Cartesian components

κe ij =
∑

s

insq2
s

msω
δij , (20.20)

where δij is the Kronecker delta. Note that the conductivity is purely imaginary, which
means that the current oscillates out of phase with the applied electric field, which in turn
implies that there is no time-averaged ohmic energy dissipation, 〈j · E〉 = 0. Inserting the
conductivity tensor (20.20) into the general equation (20.5) for the dielectric tensor, we
obtain

εij = δij +
i

ε0ω
κe ij =

(
1 −

ω2
p

ω2

)
δij . (20.21)
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Here and throughout this chapter, the plasma frequency ωp is very slightly different from that
used in Chap. 19: it includes a tiny (1/1836) correction due to the motion of the protons,
which we neglected in our analysis of plasma oscillations in Sec. 19.3.3:

ω2
p =

∑

s

nsq2
s

msε0
=

ne2

meε0

(
1 +

me

mp

)
. (20.22)

Note that because there is no physical source of a preferred direction in the plasma, the
dielectric tensor (20.21) is isotropic.

Now, without loss of generality, let the waves propagate in the z direction, so k = kez.
Then the algebratized wave operator (20.9), with ε given by (20.21), takes the following
form:

Lij =
ω2

c2




1 − c2k2

ω2 − ω2
p

ω2 0 0

0 1 − c2k2

ω2 − ω2
p

ω2 0

0 0 1 − ω2
p

ω2



 . (20.23)

The corresponding dispersion relation det||Ljk|| = 0 becomes

(
1 − c2k2

ω2
−

ω2
p

ω2

)2 (
1 −

ω2
p

ω2

)
= 0 . (20.24)

This is a polynomial equation of order 6 for ω as a function of k, so formally there are six
solutions corresponding to three pairs of modes propagating in opposite directions.

Two of the pairs of modes are degenerate with frequency

ω =
√

ω2
p + c2k2 . . (20.25)

We shall study them in the next subsection. The remaining pair of modes exist at a single
frequency,

ω = ωp (20.26)

These must be the electrostatic plasma oscillations that we studied in Sec. 19.3.3 (though now
with an arbitrary wave number k, while in Sec. 19.3.3 the wave number was assumed zero.)
In Sec. 20.4.3 we shall show that this is so and shall explore how these plasma oscillations
get modified by finite-temperature effects.

20.4.2 Electromagnetic Plasma Waves

To learn the physical nature of the modes with dispersion relation ω =
√

ω2
p + c2k2 [Eq. (20.25)],

we must examine the details of their electric-field oscillations, magnetic-field oscillations, and
electron and proton motions. A key to this is the algebratized wave equation LijEj = 0,
with Lij specialized to the dispersion relation (20.25): ||Lij|| = diag[0, 0, (ω2 − ω2

p)/c
2]. In

this case, the general solution to LijEj = 0 is an electric field that lies in the x–y plane
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(transverse plane), i.e. that is orthogonal to the waves’ propagation vector k = kez. The
third of the Maxwell equations (20.2) implies that the magnetic field is

B = (k/ω) ×E , (20.27)

which also lies in the transverse plane and is orthogonal to E. Evidently, these modes are
close analogs of electromagnetic waves in vacuum; correspondingly, they are known as the
plasma’s electromagnetic modes. The electron and proton motions in these modes, as given
by Eq. (20.18), are oscillatory displacements in the direction of E but out of phase with E.
The amplitudes of the fluid motions vary as 1/ω; as ω decreases, the fluid amplitudes grow.

The dispersion relation for these modes, Eq. (20.25), implies that they can only propa-
gate (i.e. have real angular frequency when the wave vector is real) if ω exceeds the plasma
frequency. As ω is decreased toward ωp, k approaches zero, so these modes become elec-
trostatic plasma oscillations with arbitrarily long wavelength orthogonal to the oscillation
direction, i.e., they become a spatially homogeneous variant of the plasma oscillations studied
in Sec. 19.3.3. At ω < ωp these modes become evanescent.

In their regime of propagation, ω > ωp, these cold-plasma electromagnetic waves have a
phase velocity given by

Vph =
ω

k
k̂ = c

(
1 −

ω2
p

ω2

)−1/2

k̂ , (20.28)

where k̂ ≡ k/k is a unit vector in the propagation direction. Although this phase velocity
exceeds the speed of light, causality is not violated because information (and energy) prop-
agate at the group velocity, not the phase velocity. The group velocity is readily shown to
be

Vg = ∇k ω =
c2k

ω
= c

(
1 −

ω2
p

ω2

)1/2

k̂ , (20.29)

which is less than c.
These cold-plasma electromagnetic modes transport energy and momentum just like wave

modes in a fluid. There are three contributions to the waves’ mean (time-averaged) energy
density: the electric, the magnetic and the kinetic energy densities. (If we had retained the
pressure, then there would have been an additional contribution from the internal energy.)
In order to compute these mean energy densities, we must form the time average of products
of physical quantities. Now, we have used the complex representation to denote each of our
oscillating quantities (e.g. Ex), so we must be careful to remember that A = aei(k·x−ωt) is an
abbreviation for the real part of this quantity—which is the physical A. It is easy to show
that the time-averaged value of the physical A times the physical B (which we shall denote
by 〈AB〉) is given in terms of their complex amplitudes by

〈AB〉 =
AB∗ + A∗B

4
. (20.30)

Using Eqs. (20.27) and (20.28), we can write the magnetic energy density in the form
〈B2〉/2µ0 = (1−ω2

p/ω
2)ε0〈E2〉/2. Using Eq. (20.19), the electron kinetic energy is neme〈u2

e〉/2 =
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(ω2
pe/ω

2)ε0〈E2〉/2 and likewise for the proton kinetic energy. Summing these contributions
and using Eq. (20.30), we obtain

U =
ε0EE∗

4
+

BB∗

4µ0
+

∑

s

nsmsusu∗
s

4

=
ε0EE∗

2
. (20.31)

The mean energy flux in the wave is carried (to quadratic order) by the electromagnetic
field and is given by the Poynting flux. (The kinetic-energy flux vanishes to this order.) A
straightforward calculation gives

FEM = 〈E × B〉 =
E × B∗ + E∗ × B

4
=

EE∗k

2µ0ω
= UVg , (20.32)

where we have used µ0 = c−2ε−1
0 . We therefore find that the energy flux is the product of

the energy density and the group velocity, as is true quite generally; cf. Sec. 6.3. (If it were
not true, then a localized wave packet, which propagates at the group velocity, would move
along a different trajectory from its energy, and we would wind up with energy in regions
with vanishing amplitude!)

20.4.3 Langmuir Waves and Ion Acoustic Waves in Warm Plasmas

For our case of a cold, unmagnetized plasma, the third pair of modes embodied in the disper-
sion relation (20.24) only exists at a single frequency, the plasma frequency ω = ωp. These
modes’ wave equation LijEj = 0 with ||Lij|| = diag(−k2,−k2, 0) [Eq. (20.23) with ω2 = ω2

p]
implies that E points in the z-direction, i.e., along k, i.e. in the longitudinal direction. The
Maxwell equations then imply B = 0, and the equation of motion (20.18) implies that the
fluid displacements are in the direction of E — the longitudinal direction. Clearly, these
modes, like electromagnetic modes in the limit k = 0 and ω = ωp, are electrostatic plasma
oscillations. However, in this case, where the spatial variations of E and us are along the di-
rection of oscillation instead of perpendicular, k is not constrained to vanish; rather, all wave
numbers are allowed. This means that the plasma can undergo plane-parallel oscillations at
ω = ωp with displacements in some Cartesian z-direction, and any arbitrary z-dependent
amplitude that one might wish. But these oscillations cannot transport energy; because ω
is independent of k, their group velocity Vg = ∇k ω vanishes.

So far, we have confined ourselves to wave modes in cold plasmas and have ignored
thermal motions of the particles. When thermal motions are turned on, the resulting thermal
pressure gradients convert longitudinal plasma oscillations, at finite wave number k, into
propagating, energy-transporting, longitudinal modes called Langmuir waves. As we have
already intimated, because the plasma is collisionless, to understand the thermal effects fully
we must turn to kinetic theory (Chap. 21). However, within the present chapter’s two-fluid
formalism, we can deduce the leading order effects of finite temperature with the guidance
of physical arguments.
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In our physical arguments, we shall assume that the electrons are thermalized with each
other at a temperature Te, the protons are thermalized at temperature Tp, and Te and Tp may
differ (because the timescale for electrons and protons to exchange energy is so much longer
than the timescales for electrons to exchange energy among themselves and for protons to
exchange energy among themselves; see Sec. 19.4.3.

Physically, the key to the Langumir waves’ propagation is the warm electrons’ thermal
pressure. (The proton pressure is unimportant because the protons oscillate electrostatically
with an amplitude that is tiny compared to the electrons; nevertheless, as we shall see below,
the proton pressure is important in other ways.)

Now, in an adiabatic sound wave in a fluid (where the particle mean free paths are small
compared to the wavelength), we relate the pressure perturbation to the density perturbation
by assuming that the entropy is held constant. In other words, we write ∇P = C2m∇n,
where C = (γP/nm)1/2 is the adiabatic sound speed (not to be confused with the speed of
light c), n is the particle density, m is the particle mass, and γ is the specific heat ratio,
which is 5/3 for a monatomic gas.

However, the electron gas in the plasma we are considering is collisionless on the short
timescale of a perturbation period, and we are only interested in the tensorial pressure
gradient parallel to k (which we take to point in the z direction), δPe zz,z. We can therefore
ignore all electron motion perpendicular to the wave vector as this is not coupled to the
parallel motion. The electron motion is then effectively one dimensional as there is only
one (translational) degree of freedom. The relevant specific heat at constant volume is
therefore just kB/2 per electron, while that at constant pressure is 3kB/2, giving γ = 3.1 The
effective sound speed for the electron gas is then C = (3kBTe/me)1/2, and correspondingly
the perturbations of longitudinal electron pressure and electron density are related by

δPe zz

meδne
= C2 =

3kBTe

me
. (20.33a)

This is one of the equations governing Langmuir waves. The others are the linearized
equation of continuity (20.13a), which relates the electrons’ density perturbation to the
longitudinal component of their fluid velocity perturbation

δne = ne
k

ω
ue z , (20.33b)

the linearized equation of motion (20.13b), which relates ue z and δPe zz to the longitudinal
component of the oscillating electric field

−iωnemeue z = ikδPe zz − neeEz , (20.33c)

and the linearized form of Poisson’s equation ∇ ·E = ρe/ε0, which relates Ez to δne

ikEz = −δnee

ε0
. (20.33d)

1We derived this longitudinal adiabatic index γ = 3 by a different method in Ex. 19.11e [Eq. (19.45)]
in the context of a plasma with a magnetic field along the longitudinal, z direction; it is valid also in our
unmagnetized case because the magnetic field has no influence on longitudinal electron motions.
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Fig. 20.1: Dispersion relations for electromagnetic waves, Langmuir waves, and ion-acoustic waves
in an unmagnetized plasma, whose electrons are thermalized with each other at temperature Te,
and protons are thermalized at a temperature Tp that might not be equal to Te. In the dotted
regions the waves are strongly damped, according to kinetic-theory analyses in Chap. 21.

Equations (20.33) are four equations for three ratios of the perturbed quantities. By
combining these equations, we obtain a condition that must be satisfied in order for them
to have a solution:

ω2 = ω2
pe +

3kBTe

me
k2 = ω2

pe(1 + 3k2λ2
D) ; (20.34)

here λD =
√

ε0kBTe/nee2 is the Debye length [Eq. (19.10)]. Equation (20.34) is the Bohm-
Gross dispersion relation for Langmuir waves.

From this dispersion relation we deduce the phase speed of a Langmuir wave:

Vph =
ω

k
=

(
kBTe

me

)1/2 (
3 +

1

k2λ2
D

)1/2

. (20.35)

Evidently, when the reduced wavelength λ/2π = 1/k is less than or of order the Debye
length (kλD ! 1), the phase speed becomes comparable with the electron thermal speed.
It is then possible for individual electrons to transfer energy between adjacent compressions
and rarefactions in the wave. As we shall see in the next chapter, when we recover Eq.
(20.34) from a kinetic treatment, the resulting energy transfers damp the wave. Therefore,
the Bohm-Gross dispersion relation is only valid for reduced wavelengths much longer than
the Debye length, i.e. kλD ) 1; cf. Fig. 20.1.

In our analysis of Langmuir waves, we have ignored the proton motion. This is justified
as long as the proton thermal speeds are small compared to the electron thermal speeds,
i.e. Tp ) mpTe/me, which will almost always be the case. Proton motion is, however, not
ignorable in a second type of plasma wave that owes its existence to finite temperature:
ion acoustic waves. These are waves that propagate with frequencies far below the electron
plasma frequency—frequencies so low that the electrons remain locked electrostatically to
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the protons, keeping the plasma charge neutral and preventing electromagnetic fields from
participating in the oscillations. As for Langmuir waves, we can derive the ion-acoustic
dispersion relation using fluid theory combined with physical arguments:

In the next chapter, using kinetic theory we shall see that ion acoustic waves can propa-
gate only when the proton temperature is very small compared with the electron temperature,
Tp ) Te; otherwise they are damped. (Such a temperature disparity is produced, e.g., when
a plasma passes through a shock wave, and it can be maintained for a long time because
Coulomb collisions are so ineffective at restoring Tp ∼ Te; cf. Sec. 19.4.3.) Because Tp ) Te,
the proton pressure can be ignored and the waves’ restoring force is provided by electron
pressure. Now, in an ion acoustic wave, by contrast with a Langmuir wave, the individ-
ual thermal electrons can travel over many wavelengths during a single wave period, so the
electrons remain isothermal as their mean motion oscillates in lock-step with the protons’
mean motion. Correspondingly, the electrons’ effective (one-dimensional) specific heat ratio
is γeff = 1.

Although the electrons provide the ion-acoustic waves’ restoring force, the inertia of the
electrostatically-locked electrons and protons is almost entirely that of the heavy protons.
Correspondingly, the waves’ phase velocity is

Via =

(
γeffPe

npmp

)1/2

k̂ =

(
kBTe

mp

)1/2

k̂ , (20.36)

(cf. Ex. 20.4) and the dispersion relation is ω = Vphk = (kBTe/mp)1/2k.
From this phase velocity and our physical description of these ion-acoustic waves, it

should be evident that they are the magnetosonic waves of MHD theory (Sec. 18.7.2), in the
limit that the plasma’s magnetic field is turned off.

In Ex. 20.4, we show that the character of these waves gets modified when their wave-
length becomes of order the Debye length, i.e. when kλD ∼ 1. The dispersion relation then
gets modified to

ω =

(
kBTe/mp

1 + λ2
Dk2

)1/2

k , (20.37)

which means that for kλD + 1, the waves’ frequency approaches the proton plasma frequency
ωpp ≡

√
ne2/ε0mp ,

√
me/mpωp. A kinetic-theory treatment reveals that these waves are

strong damped when kλD !
√

Te/Tp. These features of the ion-acoustic dispersion relation
are shown in Fig. 20.1.

20.4.4 Cutoffs and Resonances

Electromagnetic waves, Langmuir waves and ion-acoustic waves in an unmagnetized plasma
provide examples of cutoffs and resonances.

A cutoff is a frequency at which a wave mode ceases to propagate, because its wave num-
ber k there becomes zero. Langmuir and electromagnetic waves at ω → ωp are examples;
see their dispersion relations plotted in Fig. 20.1. Consider, for concreteness, a monochro-
matic radio-frequency electromagnetic wave propagating upward into the earth’s ionosphere
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Fig. 20.2: Cutoff and resonance illustrated by wave propagation in the Earth’s ionosphere. The
thick, arrowed curves are rays and the thin, dashed curves are phase fronts. The electron density
is proportional to the darkness of the shading.

at some nonzero angle to the vertical (left side of Fig. 20.2), and neglect the effects of the
earth’s magnetic field. As the wave moves deeper (higher) into the ionosphere, it encounters
a rising electron density n and correspondingly a rising plasma frequency ωp. The wave’s
wavelength will typically be small compared to the inhomogeneity scale for ωp, so the wave
propagation can be analyzed using geometric optics (Sec. 7.3). Across a phase front, that
portion which is higher in the ionosphere will have a smaller k and thus a larger wavelength
and phase speed, and thus a greater distance between phase fronts (dashed lines). Therefore,
the rays, which are orthogonal to the phase fronts, will bend away from the vertical (left
side of Fig. 20.2); i.e., the wave will be reflected away from the cutoff at which ωp → ω
and k → 0. Clearly, this behavior is quite general. Wave modes are generally reflected from
regions in which slowly changing plasma conditions give rise to cutoffs.

A resonance is a frequency at which a wave mode ceases to propagate because its wave
number k there becomes infinite, i.e. its wavelength goes to zero. Ion-acoustic waves provide
an example; see their dispersion relation in Fig. 20.1. Consider, for concreteness, an ion-
acoustic wave deep within the ionosphere, where ωpp is larger than the wave’s frequency ω
(right side of Fig. 20.2). As the wave propagates toward the upper edge of the ionosphere, at
some nonzero angle to the vertical, the portion of a phase front that is higher sees a smaller
electron density and thus a smaller ωpp, and thence has a larger k and shorter wavelength,
and thus a shorter distance between phase fronts (dashed lines). This causes the rays to
bend toward the vertical (right side of Fig. 20.2). The wave is “attracted” into the region
of the resonance, ω → ωpp, k → ∞, where it gets “Landau damped” (Chap. 21) and dies.
This behavior is quite general. Wave modes are generally attracted toward regions in which
slowly changing plasma conditions give rise to resonances, and upon reaching a resonance,
they die.

We shall study wave propagation in the ionosphere in greater detail in Sec. 20.6 below.

****************************

EXERCISES
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Exercise 20.2 Derivation: Time-average Formula
Verify Eq. (20.30).

Exercise 20.3 Example: Collisional Damping in an Electromagnetic Wave Mode
Consider a transverse electromagnetic wave mode propagating in an unmagnetized, partially
ionized gas in which the electron-neutral collision frequency is νe. Include the effects of
collisions in the electron equation of motion, Eq. (20.18), by introducing a term −nemeνeue

on the right hand side. Ignore ion motion and electron-ion and electron-electron collisions.
Derive the dispersion relation when ω + νe and show by explicit calculation that the rate

of loss of energy per unit volume (−∇ · FEM, where FEM is the Poynting flux) is balanced
by the Ohmic heating of the plasma. (Hint: It may be easiest to regard ω as real and k as
complex.)

Exercise 20.4 Derivation: Ion Acoustic Waves
Ion acoustic waves can propagate in an unmagnetized plasma when the electron temperature
Te greatly exceeds the ion temperature Tp. In this limit, the electron density ne can be
approximated by ne = n0 exp(eΦ/kBTe), where n0 is the mean electron density and Φ is the
electrostatic potential.

(a) Show that for ion-acoustic waves that propagate in the z direction, the nonlinear
equations of continuity and motion for the ion (proton) fluid and Poisson’s equation
for the potential take the form

∂n

∂t
+

∂(nu)

∂z
= 0 ,

∂u

∂t
+ u

∂u

∂z
= − e

mp

∂Φ

∂z
,

∂2Φ

∂z2
= − e

ε0
(n − n0e

eΦ/kBTe) . (20.38)

Here n is the proton density and u is the proton fluid velocity (which points in the z
direction).

(b) Linearize these equations and show that the dispersion relation for small-amplitude
ion acoustic modes is

ω = ωpp

(
1 +

1

λ2
Dk2

)−1/2

=

(
kBTe/mp

1 + λ2
Dk2

)1/2

k , (20.39)

where λD is the Debye length. Verify that in the long-wavelength limit, this agrees
with Eq. (20.36).

Exercise 20.5 Challenge: Ion Acoustic Solitons
In this exercise we shall explore nonlinear effects in ion acoustic waves (Ex. 20.4), and shall
show that they give rise to solitons that obey the same Korteweg-de Vries equation as governs
solitonic water waves (Sec. 16.3).
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(a) Introduce a bookkeeping expansion parameter ε whose numerical value is unity,2 and
expand the ion density, ion velocity and potential in the form

n = n0(1 + εn1 + ε2n2 + . . . ) ,

u = (kBTe/mp)
1/2(εu1 + ε2u2 + . . . ) ,

Φ = (kBTe/e)(εΦ1 + ε2Φ2 + . . . ) . (20.40)

Here n1, u1, Φ1 are small compared to unity, and the factors of ε tell us that, as
the wave amplitude is decreased, these quantities scale proportionally to each other,
while n2, u2, and Φ2 scale proportionally to the squares of n1, u1 and Φ1. Change
independent variables from (t, z) to (τ, η) where

η =
√

2ε1/2λ−1
D [z − (kBTe/mp)

1/2t] ,

τ =
√

2ε3/2ωppt . (20.41)

By substituting Eqs. (20.40) and (20.41) into the nonlinear equations (20.38) and
equating terms of the same order in ε, show that n1, u1, Φ1 each satisfy the Korteweg-
de Vries equation (16.32):

∂ζ

∂τ
+ ζ

∂ζ

∂η
+

∂3ζ

∂η3
= 0 . (20.42)

(b) In Sec. 16.3 we discussed the exact, single-soliton solution (16.33) to this KdV equation.
Show that for an ion-acoustic soliton, this solution propagates with the physical speed
(1 + n1o)(kBTe/mp)1/2 (where n1o is the value of n1 at the peak of the soliton), which
is greater the larger is the wave’s amplitude n1o.

****************************

20.5 Wave Modes in a Cold, Magnetized Plasma

20.5.1 Dielectric Tensor and Dispersion Relation

TO HERE
We now complicate matters somewhat by introducing a uniform magnetic field B0 into

the unperturbed plasma. To avoid further complications, we make the plasma cold, i.e.
we omit thermal effects. The linearized equation of motion (20.13b) for each species then
becomes

−iωus =
qsE

ms
+

qs

ms
us × B0 . (20.43)

It is convenient to multiply this equation of motion by nsqs/ε0 and introduce a scalar plasma
frequency and scalar and vectorial cyclotron frequencies for each species

ωps =

(
nsq2

s

ε0ms

)1/2

, ωcs =
qsB0

ms
, ωcs = ωcsB̂0 =

qsB0

ms
(20.44)

2See Box 7.2 for a discussion of such bookkeeping parameters in a different context.
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[so ωpp =
√

(me/mp) ωpe , ωpe/43, ωce < 0, ωcp > 0, and ωcp = (me/mp)|ωce| , |ωce|/1860].
Thereby we bring the equation of motion (20.43) into the form

−iω

(
nqs

ε0
us

)
+ ωcs ×

(
nqs

ε0
us

)
= ω2

psE . (20.45)

By combining this equation with ωcs×(this equation), we can solve for the fluid velocity of
species s as a linear function of the electric field E:

nsqs

ε0
us = −i

(
ωω2

ps

ω2
cs − ω2

)
E−

ω2
ps

(ω2
cs − ω2)

ωcs × E + ωcs

iω2
ps

(ω2
cs − ω2)ω

ωcs · E . (20.46)

(This relation is useful when one tries to deduce the physical properties of a wave mode.)
From this fluid velocity we can read off the current j =

∑
s nsqsus as a linear function of

E; by comparing with Ohm’s law j = κe · E, we then obtain the tensorial conductivity κe,
which we insert into Eq. (20.21) to get the following expression for the dielectric tensor (in
which B0 and thence ωcs is taken to be along the z axis):

ε =




ε1 −iε2 0
iε2 ε1 0
0 0 ε3



 , (20.47)

where

ε1 = 1 −
∑

s

ω2
ps

ω2 − ω2
cs

, ε2 =
∑

s

ω2
psωcs

ω(ω2 − ω2
cs)

, ε3 = 1 −
∑

s

ω2
ps

ω2
. (20.48)

Let the wave propagate in the x–z plane, at an angle θ to the z-axis (i.e. to the magnetic
field). Then the algebratized wave operator (20.8) takes the form

||Lij || =
ω2

c2




ε1 − n2 cos2 θ −iε2 ñ2 sin θ cos θ

iε2 ε1 − n2 0
n2 sin θ cos θ 0 ε3 − ñ2 sin2 θ



 , (20.49)

where

n =
ck

ω
(20.50)

is the wave’s index of refraction—i.e, the wave’s phase velocity is Vph = ω/k = c/n. (Note:
n must not be confused with the number density of particles n.) The algebratized wave
operator (20.49) will be needed when we explore the physical nature of modes, in particular
the directions of their electric fields, which satisfy LijEj = 0.

From the wave operator (20.49), we deduce the waves’ dispersion relation det||Lij|| = 0.
Some algebra brings this into the form

tan2 θ =
−ε3(n2 − εR)(n2 − εL)

ε1(n2 − ε3) (n2 − εR εL/ε1)
, (20.51)



18

where

εL = ε1 − ε2 = 1 −
∑

s

ω2
ps

ω(ω − ωcs)
, εR = ε1 + ε2 = 1 −

∑

s

ω2
ps

ω(ω + ωcs)
. (20.52)

20.5.2 Parallel Propagation

As a first step in making sense out of the general dispersion relation (20.51) for waves in
a cold, magnetized plasma, let us consider wave propagation along the magnetic field, so
θ = 0. The dispersion relation (20.51) then factorizes to give three pairs of solutions:

n2 ≡ c2k2

ω2
= εL , n2 ≡ c2k2

ω2
= εR , ε3 = 0 . (20.53)

Consider the first solution in Eq. (20.53), n2 = εL. The algebratized wave equation
LijEj = 0 [with Lij given by Eq. (20.49)] in this case requires that the electric field direction
be E ∝ (ex − iey)e−iωt, which is a left-hand circularly polarized wave propagating along
the static magnetic field (z direction). The second solution in (20.53), n2 = εR, is the
corresponding right-hand circular polarized mode. From Eqs. (20.52) we see that these two
modes propagate with different phase velocities (but only slightly different, if ω is far from
the electron cyclotron frequency and far from the proton cyclotron frequency.) The third
solution in (20.53), ε3 = 0, is just the electrostatic plasma oscillation in which the electrons
and protons oscillate parallel to and are unaffected by the static magnetic field.

As an aid to exploring the frequency dependence of the left and right modes, we plot in
Fig. 20.3 the refractive index n = ck/ω as a function of ω/|ωce|.

In the high-frequency limit, the refractive index for both modes is slightly less than unity
and approaches that for an unmagnetized plasma, n = ck/ω , 1 − 1

2ω
2
p/ω

2 [cf. Eq. (20.28)],
but with a small difference between the modes given to leading order by

nL − nR ,
ω2

peωce

ω3
(20.54)

This difference is responsible for an important effect known as Faraday rotation:
Suppose that a linearly polarized wave is incident upon a magnetized plasma and prop-

agates parallel to the magnetic field. We can deduce the behavior of the polarization by
expanding the mode as a linear superposition of the two circular polarized eigenmodes, left
and right. These two modes propagate with slightly different phase velocities, so after prop-
agating some distance through the plasma, they acquire a relative phase shift ∆φ. When
one then reconstitutes the linear polarized mode from the circular eigenmodes, this phase
shift is manifest in a rotation of the plane of polarization through an angle ∆φ/2 (for small
∆φ). This, together with the difference in refractive indices (20.54) (which determines ∆φ)
implies a rotation rate for the plane of polarization given by

dχ

dz
=

ω2
peωce

2ω2c
. (20.55)
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Fig. 20.3: Square of wave refractive index for circularly polarized waves propagating along the
static magnetic field in a proton-electron plasma with ωpe > ωce. (Remember, that we will regard
both the electron and the proton cyclotron frequencies as positive numbers.) The angular frequency
is plotted logarithmically in units of the modulus of the electron gyro frequency.

As the wave frequency is reduced, the refractive index decreases to zero, first for the right
circular wave, then for the left circular wave; cf. Fig. 20.3. Vanishing of n at a finite frequency
corresponds to vanishing of k and infinite wavelength, i.e., it signals a cutoff ; cf. Fig. 20.2
and associated discussion. When the frequency is lowered further, the squared refractive
index becomes negative and the wave mode becomes evanescent. Correspondingly, when
a circularly polarized electromagnetic wave with constant real frequency propagates into
an inhomogeneous plasma parallel to its density gradient and parallel to a magnetic field,
then beyond the spatial location of the wave’s cutoff, its wave number k becomes purely
imaginary, and the wave dies out with distance (gradually at first, then more rapidly).

The cutoff frequencies are different for the two modes and are given by

ωcoR,L =
1

2

[{
(ωce + ωcp)

2 + 4(ω2
pe + ω2

pp)
}1/2 ± (|ωce|− ωcp)

]

, ωpe ± |ωce| if ωpe + |ωce| as is usually the case. (20.56)

As we lower the frequency further (Fig. 20.3), first the right mode and then the left
regain the ability to propagate. When the wave frequency lies between the proton and
electron gyro frequencies, ωcp < ω < |ωce|, only the right mode propagates. This mode
is sometimes called a whistler. As the mode’s frequency increases toward the electron gyro
frequency |ωce| (where it first recovered the ability to propagate), its refractive index and wave
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vector become infinite—a signal that ω = |ωce| is a resonance for the whistler; cf. Fig. 20.2.
The physical origin of this resonance is that the wave frequency becomes resonant with the
gyrational frequency of the electrons that are orbiting the magnetic field in the same sense as
the wave’s electric vector rotates. To quantify the strong wave absorption that occurs at this
resonance, one must carry out a kinetic-theory analysis that takes account of the electrons’
thermal motions (Chap. 21).

Another feature of the whistler is that it is highly dispersive close to resonance; its
dispersion relation there is given approximately by

ω , |ωce|
1 + ω2

pe/c
2k2

(20.57)

The group velocity, obtained by differentiating Eq. (20.57), is given approximately by

Vg = ∇k ω , 2ωcec

ωpe

(
1 − ω

|ωce|

)3/2

B̂0 . (20.58)

This velocity varies extremely rapidly close to resonance, so waves of different frequency
propagate at very different speeds.

This is the physical origin of the phenomenon by which whistlers were discovered, histor-
ically. They were first encountered by radio operators who heard, in their earphones, strange
tones with rapidly changing pitch. These turned out to be whistler modes excited by light-
ning in the southern hemisphere, that propagated along the earth’s magnetic field through
the magnetosphere to the northern hemisphere. Only modes below the lowest electron gyro
frequency on the waves’ path (their geometric-optics ray) could propagate, and these were
highly dispersed, with the lower frequencies arriving first.

There is also a resonance associated with the left hand polarized wave, which propagates
below the proton cyclotron frequency; see Fig. 20.3.

Finally, let us examine the very low-frequency limit of these waves (Fig. 20.3). We find
that both dispersion relations n2 = εL and n2 = εR asymptote, at arbitrarily low frequencies,
to

ω = ak

(
1 +

a2

c2

)−1/2

. (20.59)

Here a = B0[µ0ne(mp + me)]−1/2 is the Alfvén speed that arose in our discussion of magne-
tohydrodynamics [Eq. (18.64)]. In fact, both modes, left and right, at very low frequencies,
have become the Alfvén waves that we studied using MHD in Sec. 18.7.2. However, our two-
fluid formalism reports a phase speed ω/k = a/

√
1 + a2/c2 for these Alfvén waves that is

slightly lower than the speed ω/k = a predicted by our MHD formalism. The 1/
√

1 + a2/c2

correction could not be deduced using nonrelativistic MHD, because that formalism neglects
the displacement current. (Relativistic MHD includes the displacement current and predicts
precisely this correction factor.)

We can understand the physical origin of this correction by examining the particles’
motions in a very-low-frequency Alfvén wave; see Fig. 20.4. Because the wave frequency is
far below both the electron and the proton cyclotron frequencies, both types of particle orbit
the B0 field many times in a wave period. When the wave’s slowly changing electric field is
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Fig. 20.4: Gyration of electrons and ions in a low frequency Alfvén wave. Although the electrons
and ions gyrate with opposite senses about the magnetic field, their E × B drifts are similar. It is
only in the next highest order of approximation that a net ion current is produced parallel to the
applied electric field.

applied, the guiding centers of both types of orbits acquire the same slowly changing drift
velocity v = E × B0/B2

0 , so the two fluid velocities also drift at this rate and the currents
associated with the proton and electron drifts cancel. However, when we consider corrections
to the guiding-center response that are of higher order in ω/ωcp and ω/ωce, we find that the
ions drift slightly faster than the electrons, which produces a net current that modifies the
magnetic field and gives rise to the 1/

√
1 + a2/c2 correction to the Alfvén wave’s phase

speed.

20.5.3 Perpendicular Propagation

Turn, next, to waves that propagate perpendicular to the static magnetic field, (k = kex;
B0 = B0ez; θ = π/2). In this case our general dispersion relation (20.51) again has three
solutions corresponding to three modes:

n2 ≡ c2k2

ω2
= ε3 , n2 ≡ c2k2

ω2
=

εRεL

ε1
, ε1 = 0 . (20.60)

The first solution

n2 = ε3 = 1 −
ω2

p

ω2
(20.61)

has the same index of refraction as for an electromagnetic wave in an unmagnetized plasma
[cf. Eq. (20.25)], so this is called the ordinary mode. In this mode, the electric vector and
velocity perturbation are parallel to the static magnetic field, so the field has no influence
on the wave. The wave is identical to an electromagnetic wave in an unmagnetized plasma.

The second solution in Eq. (20.60),

n2 = εRεL/ε1 =
ε2
1 − ε2

2

ε1
, (20.62)
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Fig. 20.5: Variation of refractive index n for wave propagation perpendicular to the magnetic field
in an electron ion plasma with ωpe > ωce. The ordinary mode is designated by O, the extraordinary
mode by E.

is known as the extraordinary mode and has an electric field that is orthogonal to B0 but
not to k.

The refractive indices for the ordinary and extraordinary modes are plotted as functions
of frequency in Fig. 20.5. The ordinary-mode curve is dull; it is just like that in an unmag-
netized plasma. The extraordinary-mode curve is more interesting. It has two cutoffs, with
frequencies

ωco1,2 ,
(

ω2
pe +

1

4
ω2

ce

)1/2

± 1

2
ωce , (20.63)

and two resonances with strong absorption, at frequencies known as the Upper and Lower
Hybrid frequencies. These frequencies are given approximately by

ωUH , (ω2
pe + ω2

ce)
1/2 ,

ωLH ,
[
(ω2

pe + |ωce|ωcp)|ωce|ωcp

ω2
pe + ω2

ce

]1/2

. (20.64)

In the limit of very low frequency, the extraordinary, perpendicularly propagating mode
has the same dispersion relation ω = ak/

√
1 + a2/c2 as the paralleling propagating modes



23

[Eq. (20.59)]. It has become the fast magnetosonic wave, propagating perpendicular to the
static magnetic field (Sec. 18.7.2), while the parallel waves became the Alfvén modes.

20.6 Propagation of Radio Waves in the Ionosphere

The discovery, in 1902, that radio waves could be reflected off the ionosphere, and thereby
could be transmitted over long distances, revolutionized communications and stimulated
intensive research on radio wave propagation in a magnetized plasma. In this section, we
shall discuss radio-wave propagation in the ionosphere, for waves whose propagation vectors
make arbitrary angles θ to the magnetic field. The approximate formalism we shall develop
is sometimes called magneto-ionic theory.

The ionosphere is a dense layer of partially ionized gas between 50 and 300 km above
the surface of the earth. The ionization is due to incident solar UV radiation. Although the
ionization fraction increases with height, the actual density of free electrons passes through
a maximum whose height rises and falls with the sun.

The electron gyro frequency varies from ∼ 0.5 to ∼ 1 MHz in the ionosphere, and the
plasma frequency increases from effectively zero to a maximum that can be as high as 100
MHz; so typically, ωpe + |ωce|. We are interested in wave propagation at frequencies above
the electron plasma frequency, which in turn is well in excess of the ion plasma frequency
and the ion gyro frequency. It is therefore a good approximation to ignore ion motions
altogether. In addition, at the altitudes of greatest interest for radio wave propagation, the
temperature is very low, Te ∼ 200−600K, so the cold plasma approximation is well justified.
A complication that one must sometimes face in the ionosphere is the influence of collisions
(Ex. 20.3 above), but in this section we shall ignore it.

It is conventional in magnetoionic theory to introduce two dimensionless parameters

X =
ω2

pe

ω2
, Y =

|ωce|
ω

, (20.65)

in terms of which (ignoring ion motions) the components (20.48) of the dielectric tensor
(20.47) are

ε1 = 1 +
X

Y 2 − 1
, ε2 =

XY

Y 2 − 1
, ε3 = 1 − X . (20.66)

It is convenient, in this case, to rewrite the dispersion relation det||Lij || = 0 in a form
different from Eq. (20.51)—a form derivable, e.g., by computing explicitly the determinant
of the matrix (20.49), setting

x =
X − 1 + n2

1 − n2
, (20.67)

solving the resulting quadratic in x, then solving for n2. The result is the Appleton-Hartree
dispersion relation

n2 = 1 − X

1 − Y 2 sin2 θ
2(1−X) ±

[
Y 4 sin4 θ
2(1−X)2 + Y 2 cos2 θ

]1/2
(20.68)
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There are two commonly used approximations to this dispersion relation. The first is
the quasi-longitudinal approximation, which is used when k is approximately parallel to the
static magnetic field, i.e. when θ is small. In this case, just retaining the dominant terms in
the dispersion relation, we obtain

n2 , 1 − X

1 ± Y cos θ
. (20.69)

This is just the dispersion relation (20.53) for the left and right modes in strictly parallel
propagation, with the substitution B0 → B0 cos θ. By comparing the magnitude of the
terms that we dropped from the full dispersion relation in deriving (20.69) with those that
we retained, one can show that the quasi-longitudinal approximation is valid when

Y 2 sin2 θ ) 2(1 − X) cos θ . (20.70)

The second approximation is the quasi-transverse approximation; it is appropriate when
inequality (20.70) is reversed. In this case the two modes are generalizations of the precisely
perpendicular ordinary and extraordinary modes, and their approximate dispersion relations
are

n2
O = 1 − X ,

n2
X = 1 − X(1 − X)

1 − X − Y 2 sin2 θ
. (20.71)

The ordinary-mode dispersion relation is unchanged from the strictly perpendicular one,
(20.61); the extraordinary dispersion relation is obtained from the strictly perpendicular one
(20.62) by the substitution B0 → B0 sin θ.

The quasi-longitudinal and quasi-transverse approximations simplify the problem of trac-
ing rays through the ionosphere.

Commercial radio stations operate in the AM (amplitude modulated) band (0.5-1.6 MHz),
the SW (short wave) band (2.3-18 MHz), and the FM (frequency modulated) band (88-108
MHz). Waves in the first two bands are reflected by the ionosphere and can therefore
be transmitted over large surface areas. FM waves, with their higher frequencies, are not
reflected and must therefore be received as “ground waves” (waves that propagate directly,
near the ground). However, they have the advantage of a larger bandwidth and consequently
a higher fidelity audio output. As the altitude of the reflecting layer rises at night, short
wave communication over long distances becomes easier.

****************************

EXERCISES

Exercise 20.6 Derivation: Appleton-Hartree Dispersion Relation
Derive Eq. (20.68).
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Exercise 20.7 Example: Dispersion and Faraday rotation of Pulsar pulses
A radio pulsar emits regular pulses at 1s intervals, which propagate to Earth through the
ionized interstellar plasma with electron density ne , 3 × 104m−3. The pulses observed at
f = 100 MHz are believed to be emitted at the same time as those observed at much higher
frequency, but they arrive with a delay of 100ms.

(a) Explain briefly why pulses travel at the group velocity instead of the phase velocity
and show that the expected time delay of the f = 100 MHz pulses relative to the
high-frequency pulses is given by

∆t =
e2

8π2meε0f 2c

∫
nedx , (20.72)

where the integral is along the waves’ propagation path. Hence compute the distance
to the pulsar.

(b) Now suppose that the pulses are linearly polarized and that their propagation is ac-
curately described by the quasi-longitudinal approximation. Show that the plane of
polarization will be Faraday rotated through an angle

∆χ =
e∆t

me
〈B‖〉 (20.73)

where 〈B‖〉 =
∫

neB·dx/
∫

nedx. The plane of polarization of the pulses emitted at 100
MHz is believed to be the same as the emission plane for higher frequencies, but when
the pulses arrive at earth, the 100 MHz polarization plane is observed to be rotated
through 3 radians relative to that at high frequencies. Calculate the mean parallel
component of the interstellar magnetic field.

Exercise 20.8 Example: Reflection of Short Waves by the Ionosphere
The free electron density in the night-time ionosphere increases exponentially from 109m−3

to 1011m−3 as the altitude increases from 100 to 200km and diminishes above this height.
Use Snell’s law [Eq. (7.49)] to calculate the maximum range of 10 MHz waves transmitted
from the earth’s surface, assuming a single ionospheric reflection.

****************************

20.7 CMA Diagram for Wave Modes in a Cold, Mag-
netized Plasma

Magnetized plasmas are anisotropic, just like most nonlinear crystals (Chap. 10). This
implies that the phase speed of a propagating wave mode depends on the angle between the
direction of propagation and the magnetic field. There are two convenient ways to exhibit
this anisotropy diagrammatically. The first method, due originally to Fresnel, is to construct
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Fig. 20.6: (a) Wave normal surface for a whistler mode propagating at an angle θ with respect to
the magnetic field direction. In this diagram we plot the phase velocity Vph = (ω/k)k̂ as a vector
from the origin, with the direction of the magnetic field chosen upward. When we fix the frequency
ω of the wave, the tip of the phase velocity vector sweeps out the figure-8 curve as its angle θ to the
magnetic field changes. This curve should be thought of as rotated around the vertical (magnetic-
field) direction to form a figure-8 “wave-normal” surface. Note that there are some directions where
no mode can propagate. (b) Refractive index surface for the same whistler mode. Here we plot
ck/ω as a vector from the origin, and as its direction changes with fixed ω, this vector sweeps out
the two hyperboloid-like surfaces. Since the length of the vector is ck/ω = n, this figure can be
thought of as a polar plot of the refractive index n as a function of wave propagation direction θ
for fixed ω; hence the name “refractive index surface”. The group velocity Vg is orthogonal to the
refractive-index surface (Ex. 20.10). Note that for this whistler mode, the energy flow (along Vg)
is focused toward the direction of the magnetic field.

phase velocity surfaces (also called wave-normal surfaces), which are polar plots of the wave
phase velocity Vph = ω/k as a function of the angle θ that the wave vector k makes with the
magnetic field; see Fig. 20.6a.

The second type of surface, used originally by Hamilton, is the refractive index surface.
This is a polar plot of the refractive index n = ck/ω for a given frequency again as a function
of the wave vector’s angle θ to B; see Fig. 20.6b. This plot has the important property
that the group velocity is perpendicular to the surface (Ex. 20.10). As discussed above, the
energy flow is along the direction of the group velocity and, in a magnetized plasma, this
can make a large angle with the wave vector.

A particularly useful application of these ideas is to a graphical representation of the
various types of wave modes that can propagate in a cold, magnetized plasma, Fig. 20.7.
This is known as the Clemmow-Mullaly-Allis or CMA diagram. The character of waves of
a given frequency ω depends on the ratio of this frequency to the plasma frequency and the
cyclotron frequency. This allows us to define two dimensionless numbers, (ω2

pe + ω2
pp)/ω

2

and |ωce|ωcp/ω2, which are plotted on the horizontal and vertical axes of the CMA diagram.
[Recall that ωpp = ωpe

√
me/mp and ωcp = ωce(me/mp).] The CMA space defined by these
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Fig. 20.7: Clemmow-Mullally-Allis (CMA) Diagram for wave modes with frequency ω propagating
in a plasma with plasma frequencies ωpe, ωpp and gyro frequencies ωce, ωcp. Plotted upward is
the dimensionless quantity |ωce|ωcp/ω2, which is proportional to B2, so magnetic field strength
also increases upward. Plotted rightward is the dimensionless quantity (ω2

pe + ω2
pp)/ω2, which is

proportional to n, so the plasma number density also increases rightward. Since both the ordinate
and the abscissa scale as 1/ω2, ω increases in the left-down direction. This plane is split into sixteen
regions by a set of curves on which various dielectric components have special values. In each of
the sixteen regions are shown two or one or no wave-normal surfaces (phase-velocity surfaces) at
fixed ω; cf. Fig. 20.6a. These surfaces depict the types of wave modes that can propagate for that
region’s values of frequency ω, magnetic field strength B, and electron number density n. In each
wave-normal diagram the dashed circle indicates the speed of light; a point outside that circle has
phase velocity Vph greater than c; inside the circle, Vph < c. The topologies of the wave normal
surfaces and speeds relative to c are constant throughout each of the sixteen regions, and change
as one moves between regions.
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two dimensionless parameters can be subdivided into sixteen regions, within each of which
the propagating modes have a distinctive character. The mode properties are indicated by
sketching the topological form of the wave normal surfaces associated with each region.

The form of each wave-normal surface in each region can be deduced from the general
dispersion relation (20.51). To deduce it, one must solve the dispersion relation for 1/n =
ω/kc = Vph/c as a function of θ and ω, and then generate the polar plot of Vph(θ).

On the CMA diagram’s wave-normal curves, the characters of the parallel and perpendic-
ular modes are indicated by labels: R and L for right and left parallel modes (θ = 0), and O
and X for ordinary and extraordinary perpendicular modes (θ = π/2). As one moves across
a boundary from one region to another, there is often a change of which parallel mode gets
deformed continuously, with increasing θ, into which perpendicular mode. In some regions
a wave-normal surface has a figure-eight shape, indicating that the waves can propagate
only over a limited range of angles, θ < θmax. In some regions there are two wave-normal
surfaces, indicating that—at least in some directions θ—two modes can propagate; in other
regions there is just one wave-normal surface, so only one mode can propagate; and in the
bottom-right two regions there are no wave-normal surfaces, since no waves can propagate
at these high densities and low magnetic-field strengths.

****************************

EXERCISES

Exercise 20.9 Problem: Exploration of Modes in the CMA Diagram
For each of the following modes studied earlier in this chapter, identify in the CMA diagram
the phase speed, as a function of frequency ω, and verify that the turning on and cutting off
of the modes, and the relative speeds of the modes, are in accord with the CMA diagram’s
wave-normal curves.

a. EM modes in an unmagnetized plasma.

b. Left and right modes for parallel propagation in a magnetized plasma.

c. Ordinary and extraordinary modes for perpendicular propagation in a magnetized
plasma.

Exercise 20.10 Derivation: Refractive Index Surface
Verify that the group velocity of a wave mode is perpendicular to the refractive index surface.

****************************
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20.8 Two Stream Instability

When considered on large enough scales, plasmas behave like fluids and are subject to a wide
variety of fluid dynamical instabilities. However, as we are discovering, plasmas have internal
degrees of freedom associated with their velocity distributions, and this offers additional
opportunities for unstable wave modes to grow and for free energy to be released. A full
description of velocity-space instabilities is necessarily kinetic and must await the following
chapter. However, it is instructive to consider a particularly simple example, the two stream
instability, using cold plasma theory, as this brings out several features of the more general
theory in a particularly simple manner.

We will apply our results in a slightly unusual way, to the propagation of fast electron
beams through the slowly outflowing solar wind. These electron beams are created by
coronal disturbances generated on the surface of the sun (specifically those associated with
“Type III” radio bursts). The observation of these fast electron beams was initially a puzzle
because plasma physicists knew that they should be unstable to the exponential growth of
electrostatic waves. What we will do in this section is demonstrate the problem. What
we will not do is explain what is thought to be its resolution, since that involves nonlinear
plasma physics considerations beyond the scope of this book.3

Consider a simple, cold (i.e. with negligible thermal motions) electron-proton plasma at
rest. Ignore the protons for the moment. We can write the dispersion relation for electron
plasma oscillations in the form

ω2
pe

ω2
= 1. (20.74)

Now allow the ions also to oscillate about their mean positions. The dispersion relation is
slightly modified to

ω2
p

ω2
=

ω2
pe

ω2
+

ω2
pp

ω2
= 1 (20.75)

[cf. Eq. (20.24)]. If we were to add other components (for example Helium ions), that would
simply add extra terms to Eq. (20.75).

Next, return to Eq. (20.74) and look at it in a reference frame through which the electrons
are moving with speed u. The observed wave frequency is then Doppler shifted and so the
dispersion relation becomes

ω2
pe

(ω − ku)2
= 1 , (20.76)

where ω is now the angular frequency measured in this new frame. It should be evident
from this how to generalize Eq. (20.75) to the case of several cold streams moving with
different speeds ui. We simply add the terms associated with each component using angular
frequencies that have been appropriately Doppler shifted:

ω2
p1

(ω − ku1)2
+

ω2
p2

(ω − ku2)2
+ · · · = 1 . (20.77)

(This procedure will be justified via kinetic theory in the next chapter.)

3See, e.g., Melrose 1980.
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Fig. 20.8: Left hand side of the dispersion relation (20.77) for two cold plasma streams and two
different choices of wave vector k. For small enough k, there are only two real roots for ω.

The left hand side of the dispersion relation (20.77) is plotted in Fig. 20.8 for the case of
two cold plasma streams. The dispersion relation (20.77) is a quartic in ω and so it should
have four roots. However, for small enough k only two of these roots will be real; cf. Fig. 20.8.
The remaining two roots must be a complex conjugate pair and the root with the positive
imaginary part corresponds to a growing mode. We have therefore shown that for small
enough k the two stream plasma will be unstable. Small electrostatic disturbances will grow
exponentially to large amplitude and ultimately react back upon the plasma. As we add
more cold streams to the plasma, so we add more modes, some of which will be unstable.
This simple example demonstrates how easy it is for a plasma to tap the free energy residing
in anisotropic particle distribution functions.

Let us return to our solar-wind application and work in the rest frame of the wind (u1 = 0)
where the plasma frequency is ωp1 = ωp. If the beam density is a fraction α of the solar wind
density so ω2

p2 = αω2
p, and the beam velocity is u2 = V , then by differentiating Eq. (20.77),

we find that the local minimum of the left hand side occurs at ω = kV/(1 + α1/3), and the
value of the left hand side at that minimum is ω2

p(1+α1/3)/ω2. This minimum exceeds unity
(thereby making two roots of the dispersion relation complex) for

k <
ωp

V
(1 + α1/3)3/2 . (20.78)

This is therefore the condition for there to be a growing mode. The maximum value for the
growth rate can be found simply by varying k. It is

ωi =
31/2α1/3ωp

24/3
. (20.79)

For the solar wind near earth, we have ωp ∼ 105rad s−1, α ∼ 10−3, V ∼ 104km s−1. We
therefore find that the instability should grow, thereby damping the fast electron beam, in
a length of 30km, which is much less than the distance from the sun (1.5 × 108 km)! This
describes the problem that we will not resolve.
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****************************

EXERCISES

Exercise 20.11 Derivation: Two stream instability
Verify Eq. (20.79)

Exercise 20.12 Example: Relativistic Two Stream Instability
In a very strong magnetic field, we can consider electrons as constrained to move in one
dimension along the direction of the magnetic field. Consider a beam of relativistic protons
propagating with density nb and speed ub ∼ c through a cold electron-proton plasma along
B. Generalize the dispersion relation (20.77) for modes with k ‖ B.

Exercise 20.13 Problem: Drift Waves
Another type of wave mode that can be found from a fluid description of a plasma (but
which requires a kinetic treatment to understand completely) is a drift wave. The limiting
case that we consider here is a modification of an ion acoustic mode in a strongly magnetized
plasma with a density gradient. Suppose that the magnetic field is uniform and parallel to
the direction ez. Let there be a gradient in the equilibrium density of both the electrons
and the protons n0 = n0(x). In the spirit of our description of ion acoustic modes in an
unmagnetized, homogeneous plasma [cf. Eq. (20.36)], treat the ion fluid as cold but allow
the electrons to be warm and isothermal with temperature Te. We seek modes of frequency
ω propagating perpendicular to the density gradient, i.e. with k = (0, ky, kz).

(i) Consider the equilibrium of the warm electron fluid and show that there must be a
fluid drift velocity along the direction ey of magnitude

Vde = −V 2
ia

ωci

1

n0

dn0

dx
, (20.80)

where Via = (kBTe/mp)1/2 is the ion acoustic speed. Explain in physical terms the
origin of this drift and why we can ignore the equilibrium drift motion for the ions.

(ii) We will limit our attention to low frequency electrostatic modes that have phase veloci-
ties below the Alfvén speed. Under these circumstances, perturbations to the magnetic
field can be ignored and the electric field can be written as E = −∇Φ. Write down the
three components of the linearized ion equation of motion in terms of the perturbation
to the ion density n, the ion fluid velocity u and the electrostatic potential Φ.

(iii) Write down the linearized equation of ion continuity, including the gradient in n0,
and combine with the equation of motion to obtain an equation for the fractional ion
density perturbation

δn

n0
=

(
(ω2

cpk
2
z − ω2k2)V 2

ia + ω2
cpωkyVde

ω2(ω2
cp − ω2)

)
.

(
eΦ

kBTe

)
(20.81)
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(iv) Argue that the fractional electron density perturbation follows a linearized Boltzmann
distribution so that

δne

n0
=

eΦ

kBTe
. (20.82)

(v) Use both the ion and the electron density perturbations in Poisson’s equation to obtain
the electrostatic drift wave dispersion relation in the low frequency (ω ) ωcp), long
wavelength (kλD ) 1) limit:

ω =
kyVde

2
± 1

2
[k2

yV
2
de + 4k2

zV
2
ia]

1/2 . (20.83)

Describe the physical character of the mode in the additional limit kz → 0. A proper
justification of this procedure requires a kinetic treatment, which also shows that, under
some circumstances, drift waves can be unstable and grow exponentially. Just as the
two stream instability provides a mechanism for plasmas to erase non-uniformity in
velocity space, so drift waves can rapidly remove spatial irregularities.

****************************

Bibliographic Note

The definitive monograph on waves in plasmas is Stix (1992). For the most elementary
textbook treatment see portions of Chen (1974). For more sophisticated and detailed text-
book treatments see Boyd and Sanderson (1969), Clemmow and Doughtery (1969), Krall
and Trivelpiece (1973), Landau and Lifshitz (1981), and Schmidt (1966). For treatments
that focus on astrophysical plasmas, see Melrose (1980) and Parks (1991).
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Box 20.2
Important Concepts in Chapter 20

• For a linear dielectric medium: polarization vector P, electrical susceptibility tensor
χij, dielectric tensor εij , electrical conductivity tensor κe ij , wave operator in Fourier
domain Lij , and dispersion relation det||Lij|| = 0, Sec. 20.2

• Two-fluid formalism for a plasma: for each species – fluid velocity us = 〈vs〉,
pressure tensor Ps, particle conservation, and equation of motion (Euler equation
plus Lorentz force), Sec. 20.3

• Waves in cold, unmagnetized plasma, Secs. 20.4.1, 20.4.2

– How to deduce the electric field and particle motions in a wave mode, Secs.
20.4.1, 20.4.3

– Electromagnetic waves and their cutoff at the plasma frequency, Secs. 20.4.2,
20.4.4

– Nonpropagating electrostatic oscillations, Sec. 20.4.1

• Waves in warm, unmagnetized plasma:

– Electrostatic oscillations become Langmuir waves, Sec. 20.4.3

– Ion acoustic waves, Sec. 20.4.3

• Cutoff: form of dispersion relation near a cutoff; Electromagnetic waves and Lang-
muir waves as examples; for inhomogeneous plasma: deflection of wave away from
cutoff region in space, Secs. 20.4.4, 20.6

• Resonance: form of dispersion relation near a resonance; Ion acoustic waves as
example; for inhomogeneous plasma: attraction of wave into resonance region and
dissipation there, Secs. 20.4.4, 20.6

• Waves in cold, magnetized plasma, Sec. 20.5

– Waves propagating parallel to the magnetic field: Alfven waves, whistlers,
right-circularly-polarized EM waves, and left-circularly-polarized EM waves,
Sec. 20.5.2

– Waves propagating perpendicular to the magnetic field: Magnetosonic waves,
upper hybrid waves, lower hybrid waves, ordinary EM waves, extraordinary
EM waves, Sec. 20.5.3

– Ways to depict dependence of phase velocity on direction: phase-velocity (or
wave-normal) surface and CMA diagram based on it; refractive index surface,
Sec. 20.7

• Two-stream instability, Sec. 20.8


