
Contents

27 Cosmology 1
27.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
27.2 Homogeneity and Isotropy of the Universe;

Robertson-Walker Line Element . . . . . . . . . . . . . . . . . . . . . . . . . 2
27.3 The Stress-energy Tensor and the Einstein Field Equation . . . . . . . . . . 9
27.4 Evolution of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

27.4.1 Constituents of the universe: Cold matter, radiation, and dark energy 13
27.4.2 The vacuum stress-energy tensor . . . . . . . . . . . . . . . . . . . . 14
27.4.3 Evolution of the densities . . . . . . . . . . . . . . . . . . . . . . . . 14
27.4.4 Evolution in time and redshift . . . . . . . . . . . . . . . . . . . . . . 17
27.4.5 Physical processes in the expanding universe . . . . . . . . . . . . . . 22

27.5 Observational Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
27.5.1 Parameters characterizing the universe . . . . . . . . . . . . . . . . . 27
27.5.2 Local Lorentz frame of homogeneous observers near Earth . . . . . . 28
27.5.3 Hubble expansion rate . . . . . . . . . . . . . . . . . . . . . . . . . . 29
27.5.4 Primordial nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . 30
27.5.5 Density of Cold Dark Matter . . . . . . . . . . . . . . . . . . . . . . 30
27.5.6 Radiation Temperature and Density . . . . . . . . . . . . . . . . . . . 31
27.5.7 Anisotropy of the CMB: Measurements of the Doppler

Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
27.5.8 Age of the universe: Constraint on the dark energy . . . . . . . . . . 36
27.5.9 Magnitude-Redshift relation for type Ia supernovae:

Confirmation that the universe is accelerating . . . . . . . . . . . . . 36
27.6 The Big-Bang Singularity, Quantum Gravity, and the Initial Conditions of

the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
27.7 Inflationary Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

27.7.1 Amplification of Primordial Gravitational Waves by Inflation . . . . . 43
27.7.2 Search for Primordial Gravitational Waves by their Influence on the

CMB; Probing the Inflationary Expansion Rate . . . . . . . . . . . . 43

0



Chapter 27

Cosmology

Version 1127.1.K.pdf, 21 May 2011.

Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

[NOTE: Roger is doing a heavy rewrite of this chapter. I don’t know yet whether it will be
available by late May 2012 for use in Yanbei’s class. — Kip]

Box 27.1
Reader’s Guide

• This chapter relies significantly on
– Chapter 2 on special relativity.
– Chapter 23, on the transition from special relativity to general relativity.
– Chapter 24, on the fundamental concepts of general relativity.
– Sec. 25.3.3 on local energy-momentum conservation for a perfect fluid and Sec.

25.6 on the many-fingered nature of time.
• In addition, Box 27.3 and Ex. 27.7 of this chapter rely on the Planckian distribution

function for thermalized photons and its evolution (Liouville’s theorem or collision-
less Boltzmann equation), as presented in Secs. 3.2.4, 3.3, and sec:02EvolutionLaws
of Chap. 3.

27.1 Overview
General Relativity is an indispensable foundation for understanding the large scale structure
and evolution of the universe (cosmology), but it is only one foundation out of many. The
crudest of understandings can be achieved with general relativity and little else; but more
detailed and deeper understandings require combining general relativity with quantum field
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theory, nuclear and atomic physics, thermodynamics, fluid mechanics, and large bodies of
astrophysical lore.

In this chapter we shall explore aspects of cosmology which are sufficiently crude that gen-
eral relativity, augmented by only bits and pieces of other physics, can provide an adequate
foundation. Our exploration will simultaneously illustrate key aspects of general relativity
and give the reader an overview of modern cosmology.

We shall begin in Sec. 27.2 by discussing the observational data that suggest our universe
is homogeneous and isotropic when averaged over regions of space huge compared to clusters
of galaxies, and we then shall construct a spacetime metric for an idealized homogeneous,
isotropic model for the universe. In Sec. 27.3 we shall construct a stress-energy tensor that
describes, approximately, the total, averaged energy and pressure of the universe’s matter
and radiation; and we shall insert that stress-energy tensor and the metric of Sec. 27.2 into
the Einstein field equation, thereby deducing a set of equations that govern the evolution of
the universe. In Sec. 27.4 we shall study the predictions that those evolution equations make
for the rate of expansion of the universe and the manner in which the expansion changes
with time, and we shall describe the most important physical processes that have occured
in the universe during its evolution into its present state. As we shall see, the details of the
expansion are determined by the values of seven parameters that can be measured today—
with the caveat that there may be some big surprises associated with the so-called dark
energy. In Sec. 27.5 we shall describe the astronomical observations by which the universe’s
seven parameters are being measured, and the multifaceted evidence for dark energy. In
Sec. 27.6 we shall discuss the big-bang singularity in which the universe probably began,
and shall discuss the fact that this singularity, like singularities inside black holes, is a signal
that general relativity breaks down and must be replaced by a quantum theory of gravity
which (hopefully) will not predict singular behavior. We shall also examine a few features
that the quantum theory of gravity is likely to exhibit. Finally, in Sec. 27.7 we shall discuss
the “inflationary” epoch that the universe appears to have undergone immediately after the
quantum gravity, big-bang epoch.

27.2 Homogeneity and Isotropy of the Universe;
Robertson-Walker Line Element

The universe obviously is not homogeneous or isotropic in our neighborhood: In our solar
system (size ∼ 1014 cm) almost all the mass is concentrated in the sun and planets, with a
great void in between. Looking beyond the solar system, one sees the Milky Way Galaxy (size
∼ 1023 cm ∼ 105 light years, or equivalently 3 × 104 parsecs),1 with its mass concentrated
toward the center and its density falling off roughly as 1/(distance)2 as one moves out past the
sun and into the Galaxy’s outer reaches. Beyond the Galaxy is the emptiness of intergalactic
space; then other galaxies congregated into our own “local group” (size ∼ 106 parsecs). The
local group is in the outer reaches of a cluster of several thousand galaxies called the Virgo

1One parsec is 3.262 light years, i.e. 3.086×1018 cm. It is defined as the distance of a star whose apparent
motion on the sky, induced by the Earth’s orbital motion, is a circle with radius one arc second.
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Fig. 27.1: The synchronous coordinate system for a homogeneous, isotropic model of the universe.

cluster (size ∼ 107 parsecs), beyond which is the void of intercluster space, and then other
clusters at distances ! 108 parsecs.

Despite all this structure, the universe appears to be nearly homogeneous and isotropic
on scales ! 108 parsecs, i.e., ! 3 × 108 light years: On such scales one can regard galaxies
and clusters of galaxies as “atoms” of a homogeneous, isotropic “gas” that fills the universe.

On scales far larger than clusters of galaxies, our best information about homogeneity
and isotropy comes from the cosmic microwave background radiation (“CMB”). As we shall
see in Secs. 27.4 and 27.5 below, this radiation, emitted by hot, primordial gas long before
galaxies formed, comes to us from distances of order 3×109 parsecs (1×1010 light years)—a
scale 100 times larger than a rich cluster of galaxies (i.e., than a “supercluster”), and the
largest scale on which observations can be made. Remarkably, this microwave radiation has
a black body spectrum with a temperature that is the same, in all directions on the sky, to
within about three parts in 105. This means that the temperature of the primordial gas was
homogeneous on large scales to within this impressive accuracy.

These observational data justify a procedure in modeling the universe which was adopted
by Einstein (1917) and others, in the early days of relativistic cosmology, with little more than
philosophical justification: Like Einstein, we shall assume, as a zero-order approximation,
that the universe is precisely homogeneous and isotropic. Later we shall briefly discuss
galaxies and clusters of galaxies as first-order corrections to the homogeneous and isotropic
structure.

Our assumption of homogeneity and isotropy can be stated more precisely as follows:
There exists a family of slices of simultaneity (3-dimensional spacelike hypersurfaces), which
completely covers spacetime, with the special property that on a given slice of simultaneity
(i) no two points are distinguishable from each other (“homogeneity”), and (ii) at a given
point no one spatial direction is distinguishable from any other (“isotropy”).

Whenever, as here, the physical (geometrical) structure of a system has special symme-
tries, it is useful to introduce a coordinate system which shares and exhibits those symmetries.
In the case of a spherical black hole, we introduced spherical coordinate systems. Here we
shall introduce a coordinate system in which the homogeneous and isotropic hypersurfaces
are slices of constant coordinate time t [Fig. (27.1)]:

Recall (Sec. 25.6) the special role of observers whose world lines are orthogonal to the ho-
mogeneous and isotropic hypersurfaces: if they define simultaneity locally (on small scales)
by the Einstein light-ray synchronization process, they will regard the homogeneous hy-
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persurfaces as their own slices of simultaneity. Correspondingly, we shall call them the
“homogeneous observers.”

We shall define our time coordinate t to be equal to the proper time τ as measured by
these homogeneous observers, with the arbitrary additive constant in t so adjusted that one
of the homogeneous hypersurfaces (the “initial” hypersurface) has t = 0 everywhere on it.
Stated differently, but equivalently, we select arbitrarily the initial hypersurface and set t = 0
throughout it; and we then define t along the world line of a homogeneous observer to be
the proper time that the observer’s clock has ticked since the observer passed through the
initial hypersurface.

This definition of t has an important consequence: Since the points at which each of
the observers pass through the initial hypersurface are all equivalent (all indistinguishable;
“homogeneity”), the observers’ subsequent explorations of the homogeneous universe must
be indistinguishable; and, correspondingly, they must all reach any specific homogeneous
hypersurface at the same proper time τ , and thence at the same coordinate time t = τ .
Thus, the hypersurfaces of constant coordinate time t are the same as the homogeneous
hypersurfaces.

Turn, next, to the three spatial coordinates xj . We shall define them in an arbitrary
manner on the initial hypersurface, but shall insist that the homogeneous observers carry
them forward (and backward) in time along their world lines, so that each homogeneous
observer’s world line is a curve of constant x1, x2, and x3; cf. Fig. 27.1.

In this {t, xj} coordinate system the spacetime metric, described as a line element, will
take the generic form

ds2 = gttdt
2 + 2gtjdt dx

j + gjkdx
jdxk . (27.1)

Since xj are constant along a homogeneous observer’s world line, the basis vector (∂/∂t)xj

is tangent to the world line; and since t is constant in a homogeneous hypersurface, the
basis vector (∂/∂xj)t lies in the hypersurface. These facts, plus the orthogonality of the
homogeneous observer’s world line to the homogeneous hypersurface, imply that

gtj ≡ g
(

∂

∂t
,

∂

∂xj

)
=

∂

∂t
· ∂

∂xj
= 0 . (27.2)

Moreover, since the proper time along a homogeneous observer’s world line (line of constant
xj) is dτ =

√
−gttdt2, and since by construction dt is equal to that proper time, it must be

that
gtt = −1 . (27.3)

By combining Eqs. (27.1)–(27.3) we obtain for the line element in our very special coordinate
system

ds2 = −dt2 + gjkdx
jdxk . (27.4)

Because our spatial coordinates, thus far, are arbitrary (i.e., they do not yet mold themselves
in any special way to the homogeneous hypersurfaces), the spatial metric coefficients gjk must
be functions of the spatial coordinates xi as well as of time t.

[Side Remark : Any coordinate system in which the line element takes the form (27.4) is
called a synchronous coordinate system. This is true whether the hypersurfaces t = const
are homogeneous and isotropic or not. The key features of synchronous coordinates are that
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they mold themselves to the world lines of a special family of observers in such a way that
t is proper time along the family’s world lines, and the slices of constant t are orthogonal
to those world lines (and thus are light-ray-synchronization-defined simultaneities for those
observers). Since the introduction of synchronous coordinates involves a specialization of
precisely four metric coefficients (gtt = −1, gtj = 0), by a careful specialization of the four
coordinates one can construct a synchronous coordinate system in any and every spacetime.
On the other hand, one cannot pick an arbitrary family of observers and use them as the
basis of synchronous coordinates: The observers must move freely; i.e., their world lines
must be geodesics. This one can see by computing uα

;βuβ for the vector field #u ≡ ∂/∂t,
which represents the 4-velocities of the synchronous coordinate system’s special observers;
a straightforward calculation [Exercise 27.1] gives uα

;βuβ = 0, in accord with geodesic mo-
tion. Thus it is that the static observers (observers with constant r, θ, φ) outside a black
hole cannot be used as the foundation for synchronous coordinates. Those observers must
accelerate to prevent themselves from falling into the hole; and correspondingly, the clos-
est thing to a synchronous coordinate system that one can achieve, using for xj = const
the world lines of the static observers, is the Schwarzschild coordinate system, which has
gtj = 0 (the slices of constant t are simultaneities as measured by the static observers), but
gtt = −(1 − 2M/r) %= −1 (the proper time between two adjacent simultaneities depends on
the radius at which the static observer resides).]

Returning to cosmology, we shall now specialize our spatial coordinates so they mold
themselves nicely to the homogeneity and isotropy of the slices of constant t. One might
have hoped this could be done in such a way that the metric coefficients are independent
of all three coordinates xj . Not so. The surface of a sphere is a good example in one lower
dimension: it is homogeneous and isotropic, but the most symmetric coordinates one can
find for it, spherical polar coordinates, produce a line element (2)ds2 = a2dθ2 + a2 sin2 θdφ2

with a metric coefficient gφφ = a2 sin2 θ that depends on θ. The deep, underlying reason
is that the vector field (∂/∂φ)θ that “generates” rotations about the polar axis (z-axis)
does not commute with the vector field that generates rotations about any other axis; and,
correspondingly, those two vector fields cannot simultaneously be made the basis vectors
of any coordinate system, and the metric coefficients cannot be made independent of two
angular coordinates simultaneously. (For further detail see Secs. 25.2 and 25.3 of MTW, and
especially Exercise 25.8.)

Similarly, on our cosmological homogeneous hypersurfaces the most symmetric coordi-
nate system possible entails metric coefficients that are independent of only one coordinate,
not all three. In order to construct that most-symmetric coordinate system, we choose ar-
bitrarily on the hypersurface t = const an origin of coordinates. Isotropy about that origin
(all directions indistinguishable) is equivalent to spherical symmetry, which motivates our
introducing spherical polar coordinates θ, φ, and a radial coordinate that we shall call χ. In
this coordinate system the line element of the hypersurface will take the form

a2[dχ2 + Σ2(dθ2 + sin2 θdφ2)] , (27.5)

where a multiplicative constant (scale factor) a has been factored out for future convenience
(it could equally well have been absorbed into χ and Σ), and where Σ is an unknown
function of the radial coordinate χ. Correspondingly, the 4-dimensional line element of
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spacetime (27.4) will take the form

ds2 = −dt2 + a2[dχ2 + Σ2(dθ2 + sin2 θdφ2)] , (27.6)

where a is now a function of time t (i.e., it varies from hypersurface to hypersurface).
Our next task is to figure out what functions Σ(χ) are compatible with homogeneity

and isotropy of the hypersurfaces. There are elegant, group-theoretic ways to figure this
out; see, e.g., Ryan and Shepley (1975). A more straightforward but tedious way is to
note that, because the 3-dimensional Riemann curvature tensor of the hypersurface must be
homogeneous and isotropic, it must be algebraically expressible in terms of (i) constants,
and the only tensors that pick out no preferred locations or directions: (ii) the metric tensor
gjk and (iii) the Levi-Civita tensor εijk. Trial and error shows that the only combination of
these three quantities which has the correct number of slots and the correct symmetries is

Rijkl = K(gikgjl − gilgjk) , (27.7)

where K is a constant. By computing, for the 3-dimensional metric (27.5), the components
of the 3-dimensional Riemann tensor and comparing with (27.7), one can show that there are
three possibilities for the function Σ(χ) in the metric, and three corresponding possibilities
for the constant K in the three-dimensional Riemann tensor. These three possibilities are
nicely parametrized by a quantity k which takes on the values +1, 0, and −1:

k = +1 : Σ = sinχ , K =
k

a2
= +

1

a2
, (27.8a)

k = 0 : Σ = χ , K =
k

a2
= 0 , (27.8b)

k = −1 : Σ = sinhχ , K =
k

a2
= − 1

a2
. (27.8c)

We shall discuss each of these three possibilities in turn:
Closed universe [k = +1]: For k = +1 the geometry of the homogeneous hypersurfaces,

(3)ds2 = a2[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)] , (27.9)

is that of a 3-sphere, i.e., an ordinary sphere generalized to one higher dimension. One can
verify this, for example, by showing (Ex. 27.2) that in a 4-dimensional Euclidean space with
Cartesian coordinates (w, x, y, z) and line element

(4)ds2 = dw2 + dx2 + dy2 + dz2 , (27.10)

the 3-sphere
w2 + x2 + y2 + z2 = a2 (27.11)

has the same metric (27.9) as our cosmological, homogeneous hypersurface. Figure 27.2(a)
is an embedding diagram for an equatorial slice, θ = π/2, through the homogeneous hyper-
surface [2-geometry (2)ds2 = a2(dχ2 + sin2 χdφ2); cf. Eq. (27.9)]. Of course, the embedded
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Fig. 27.2: Embedding diagrams for the homogeneous hypersurfaces of (a) a closed, k = +1,
cosmological model; (b) a flat, k = 0, model; and (c) an open, k = −1 model.

surface is a 2-sphere. As radius (polar angle) χ increases, the circumference 2πa sinχ around
the spatial origin at first increases, then reaches a maximum at χ = π/2, then decreases
again to zero at χ = π. Clearly, the homogeneous hypersurface is topologically “closed” and
has a finite volume. For this reason a k = +1 cosmological model is often called a “closed
universe”. The universe’s 3-volume, V = 2π2a3 (Ex. 27.2).

Flat universe [k = 0]: For k = 0 the geometry of the homogeneous hypersurfaces,

(3)ds2 = a2[dχ2 + χ2(dθ2 + sin2 θdφ2)] , (27.12)

is that of a flat, 3-dimensional Euclidean space—as one can easily see by setting r = aχ
and thereby converting (27.12) into the standard spherical-polar line element for Euclidean
space. Correspondingly, this cosmological model is said to represent a “flat universe.” Note,
however, that this universe is only spatially flat: the Riemann curvature tensor of its 3-
dimensional homogeneous hypersurfaces vanishes; but, as we shall discuss below, because of
the time evolution of the expansion factor a, the Riemann curvature of the full 4-dimensional
spacetime does not vanish. The volumes of the homogeneous hypersurfaces are infinite, so
one cannot talk of the universe’s total volume changing with time. However, the volume ∆V
of a box in which resides a specific set of homogeneous observers will change as the expansion
factor a evolves. For example, the volume could be a box with sides ∆χ, ∆θ, ∆φ, so

∆V = εχθφ∆χ∆θ∆φ = a3χ2 sin θ∆χ∆θ∆φ , (27.13)

where εχθφ is a component of the Levi Civita tensor.
Open universe [k = −1]: For k = −1 the geometry of the homogeneous hypersurfaces,

(3)ds2 = a2[dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)] , (27.14)

is different from geometries with which we have ordinary experience: The equatorial plane
θ = π/2 is a 2-surface whose circumference 2πa sinhχ increases with growing radius aχ faster
than is permitted for any 2-surface that can ever reside in a 3-dimensional Euclidean space:

d(circumference)

d(radius)
= 2πcosh[(radius)/a] > 2π . (27.15)
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Correspondingly, any attempt to embed that equatorial plane in a Euclidean 3-space is
doomed to failure. As an alternative, we can embed it in a flat, Minkowski 3-space with line
element

(3)ds2 = −dT 2 + dr2 + r2dφ2 . (27.16)

The result is the hyperboloid of revolution,

T 2 − r2 = a2 , (27.17)

which is shown pictorially in Fig. 27.2(c). By analogy it is reasonable to expect, and one
easily can verify, that the full homogeneous hypersurface [metric (27.14)] has the same 3-
geometry as the 3-dimensional hyperboloid

T 2 − r2 = a2 (27.18)

in the 4-dimensional Minkowski space

(4)ds2 = −dT 2 + dr2 + r2(dθ2 + sin2 dφ2) . (27.19)

That this hyperboloid is, indeed, homogeneous and isotropic one can show by verifying
that Lorentz transformations in the T, r, θ,φ 4-space can move any desired point on the
hyperboloid into the origin, and can rotate the hyperboloid about the origin by an arbitrary
angle. Note that the T, r, θ,φ space has no relationship whatsoever to the physical spacetime
of our homogeneous, isotropic universe. It merely happens that both spaces possess 3-
dimensional hypersurfaces with the same 3-geometry (27.14). Because these hypersurfaces
are topologically open, with infinite volume, the k = −1 cosmological model is often called
an “open universe.”

[Side remark : Although homogeneity and isotropy force the cosmological model’s hy-
persurfaces to have one of the three metrics (27.9), (27.12), (27.14), the topologies of those
hypersurfaces need not be the obvious ones adopted and described above. For example, a flat
model could have a closed topology with finite volume rather than an open topology with
infinite volume. This could come about if, for example, in a Cartesian coordinate system
{x = χ sin θ cosφ, y = χ sin θ sinφ, z = χ cos θ} the 2-surface x = −L/2 were identical to
x = +L/2 (so x, like φ in spherical polar coordinates, is periodic), and if similarly y = −L/2
were identical to y = +L/2 and z = −L/2 were identical to z = +L/2. The resulting
universe would have volume a3L3; and if one were to travel outward far enough, one would
find oneself (as on the surface of the Earth) returning to where one started. This and other
unconventional choices for the topology of the standard cosmological models are kept in mind
by cosmologists, just in case observational data someday should give evidence for them; but
in the absence of such evidence, cosmologists assume the simplest choices of topology: those
made above.]

Historically, the three possible choices for the geometry of a homogeneous, isotropic cos-
mological model were discovered by Alexander Alexandrovich Friedmann (1922), a Russian
mathematician in Saint Petersburg; and, correspondingly, the specific solutions to the Ein-
stein field equations which Friedmann constructed using those geometries are called Fried-
mann cosmological models. The first proof that these three choices are the only possibilities
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for the geometry of a homogeneous, isotropic cosmological model was given independently
by Howard Percy Robertson (1935), who was a professor at Caltech, and by Arthur Geoffrey
Walker (1936), who was a young researcher at the Royal College of Science in London; and,
correspondingly, the general line element (27.6) with Σ = sinχ, χ, or sinhχ is called the
Robertson-Walker line element .

****************************

EXERCISES

Exercise 27.1 Example: The Observers of a Synchronous Coordinate System
Show that any observer who is at rest in a synchronous coordinate system [Eq. (27.4)] is
freely falling, i.e., moves along a geodesic of spacetime.

Exercise 27.2 Example: The 3-Sphere Geometry of a Closed Universe

(a) Show, by construction, that there exist coordinates χ, θ,φ on the 3-sphere (27.11)
[which resides in the the 4-dimensional Euclidean space of Eq. (27.10)] such that the
3-sphere’s line element assumes the same form (27.9) as that of a homogeneous hyper-
surface in a closed, k = +1, universe.

(b) Show that the total 3-volume of this 3-sphere is V = 2π2a3.

****************************

27.3 The Stress-energy Tensor and the Einstein Field
Equation

The expansion factor, a(t), of our zero-order, homogeneous, isotropic cosmological model is
governed by the Einstein field equation G = 8πT. In order to evaluate that equation we shall
need a mathematical expression for the stress-energy tensor, T.

We shall deduce an expression for T in two different ways: by mathematical arguments,
and by physical considerations; and the two ways will give the same answer. Mathematically,
we note that because the spacetime geometry is homogeneous and isotropic, the Einstein
curvature tensor must be homogeneous and isotropic, and thence the Einstein equation
forces the stress-energy tensor to be homogeneous and isotropic. In the local Lorentz frame
of a homogeneous observer, which has basis vectors

#e0̂ =
∂

∂t
, #eχ̂ =

1

a

∂

∂χ
, #eθ̂ =

1

aΣ

∂

∂θ
, #eφ̂ =

1

aΣ sin θ

∂

∂φ
, (27.20)

the components of the stress-energy tensor are T 0̂0̂ =(energy density measured by homo-
geneous observer), T 0̂ĵ =(momentum density), T ĵk̂ =(stress). Isotropy requires that the
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momentum density (a 3-dimensional vector in the homogeneous hypersurface) vanish; if it
did not vanish, its direction would break the isotropy. Isotropy also requires that the stress,
a symmetric-second rank 3-tensor residing in the homogeneous hypersurface, not pick out
any preferred directions; and this is possible if and only if the stress is proportional to the
metric tensor of the hypersurface. Thus, the components of the stress-energy tensor in the
observer’s local Lorentz frame must have the form

T 0̂0̂ ≡ ρ , T 0̂ĵ = 0, T ĵk̂ = P δjk , (27.21)

where ρ is just a new notation for the energy density, and P is the isotropic pressure.
This is precisely the stress-energy tensor of a perfect fluid which is at rest with respect to
the homogeneous observer. Reexpressed in geometric, frame-independent form, this stress-
energy tensor is

T = (ρ+ P )#u⊗ #u+ Pg , (27.22)

where #u is the common 4-velocity of the fluid and of the homogeneous observers

#u = #e0̂ =
∂

∂t
. (27.23)

Physical considerations lead to this same stress-energy tensor: The desired stress-energy
tensor must be that of our own universe, coarse-grain-averaged over scales large compared to
a cluster of galaxies, i.e., averaged over scales ∼ 108 parsecs. The contributors to that stress-
energy tensor will be (i) the galaxy clusters themselves, which like the atoms of a gas will
produce a perfect-fluid stress-energy with ρ equal to their smeared-out mass density and P
equal to 1/3 times ρ times their mean square velocity relative to the homogeneous observers;
(ii) the intercluster gas, which (one can convince oneself by astrophysical and observational
arguments) is a perfect fluid, nearly at rest in the frame of the homogeneous observers;
(iii) the cosmic microwave radiation, which, being highly isotropic, has the stress-energy
tensor of a perfect fluid with rest frame the same as that of the homogeneous observers;
(iv) as-yet undetected cosmological backgrounds of other fundamental particles such as neu-
trinos, gravitons, axions, neutralinos, . . . , which are expected on theoretical grounds to be
homogeneous and isotropic when coarse-grain averaged, with the same rest frame as the ho-
mogeneous observers; and (v) a possibly nonzero stress-energy tensor of the vacuum, which
we shall discuss in Sec. 27.4 below, and which also has the perfect-fluid form . Thus, all
the contributors are perfect fluids, and their energy densities and pressures add up to give a
stress-energy tensor of the form (27.22).

As in our analysis of relativistic stars (Sec. 25.3), so also here, before evaluating the
Einstein field equation we shall study the local law of conservation of 4-momentum, #∇·T = 0.
(That conservation law is always easier to evaluate than the field equation, and by virtue of
the contracted Bianchi identity it is equivalent to some combination of components of the
field equation.)

The quantity #∇ · T, which appears in the law of 4-momentum conservation, is a vector.
Since T has already been forced to be spatially isotropic, the spatial, 3-vector part of #∇·T, i.e.,
the projection of this quantity into a homogeneous hypersurface, is guaranteed already to
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vanish. Thus, only the projection orthogonal to the hypersurface, i.e., along #e0̂ = #u = ∂/∂t,
will give us any information. This projection is viewed by a homogeneous observer, or
equivalently by the perfect fluid, as the law of energy conservation. Evaluation of it, i.e.,
computation of T0̂

µ̂
;µ̂ = 0 with T given by (27.21) and the metric given by (27.6), yields

(Exercise 27.3)
d(ρa3)

dt
= −P

da3

dt
. (27.24)

This is precisely the first law of thermodynamics for a perfect fluid, as one can see by the
following calculation: Imagine a rectangular parallelopiped of fluid contained in the spatial
region between χ and χ+∆χ, between θ and θ +∆θ, and between φ and φ+∆φ. As time
passes the “walls” of this parallelopiped remain fixed relative to the homogeneous observers
(since the walls and the observers both keep xj fixed as t passes), and correspondingly the
walls remain fixed in the fluid’s rest frame. The volume of this fluid element is ∆V =
a3Σ2 sin θ∆χ∆θ∆φ, and the total mass-energy contained in it is E = ρV . Correspondingly,
the first law of thermodynamics for the fluid element, dE/dt = −PdV/dt says

∂(ρa3Σ2 sin θ∆χ∆θ∆φ)

∂t
= −P

∂(a3Σ2 sin θ∆χ∆θ∆φ)

∂t
. (27.25)

By dividing out the coordinate volume Σ2 sin θ∆χ∆θ∆φ (which is time independent), and
then replacing the partial derivative by an ordinary derivative (because ρ and a depend only
on t), we obtain the local law of energy conservation (27.24).

The fact that the local law of energy conservation, T0̂
µ̂
;µ̂ is identical to the first law

of thermodynamics should not be surprising. Into our stress-energy tensor we put only
the contribution of a perfect fluid, so energy conservation for it, in the fluid’s local rest
frame, must reduce to energy conservation for a perfect fluid, which is the first law of
thermodynamics. If we had put other contributions into the stress-energy tensor, we would
have obtained from energy conservation corresponding contributions to the first law; for
example (as we saw in Part V, when we studied fluid mechanics), if we had put viscous
stresses into the stress-energy tensor, we would have obtained the first law in the form
d(ρV ) = −PdV + TdS, including an explicit expression for the entropy increase dS due to
viscous heating.

Turn, next, to the components of the Einstein equation G = 8πT. Because the metric
has already been forced to be homogeneous and isotropic, the Einstein tensor is guaranteed
already to have the homogeneous, isotropic form G0̂0̂ %= 0, G0̂ĵ = 0, Gĵk̂ ∝ δjk, i.e., the
same form as the stress-energy tensor (27.21). Correspondingly, there are only two nontriv-
ial components of the Einstein field equation, the time-time component and the isotropic
(proportional to δjk) space-space component. Moreover, the contracted Bianchi identity
guarantees that some combination of these two components will be equivalent to our non-
trivial law of energy conservation, thereby leaving only one new piece of information to be
extracted from the Einstein equation. We shall extract that information from the time-
time component, G0̂0̂ = 8πT 0̂0̂. A straightforward but tedious evaluation of G0̂0̂ = Gtt for
the Robertson-Walker line element (27.6), and insertion into the field equation along with
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T 0̂0̂ = T tt = ρ gives
(
ȧ

a

)2

+
k

a2
=

8π

3
ρ , (27.26)

where the dot represents a derivative with respect to the homogeneous observers’ proper
time t.

To verify that no errors have been made, one can evaluate the remaining nontrivial
component of the field equation, Gχ̂χ̂ = 8πT χ̂χ̂ (or the θ̂θ̂ or φ̂φ̂ component; they are all
equivalent since Gĵk̂ and T ĵk̂ are both proportional to δjk). The result,

2
ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πP , (27.27)

is, as expected, a consequence of the first of the Einstein components (27.26) together with
the law of energy conservation (27.24): by differentiating (27.26) and then using (27.24) to
eliminate ρ̇, one obtains (27.27).

The task of computing the time evolution of our zero-order cosmological model now takes
the following form: (i) Specify an equation of state

P = P (ρ) (27.28)

for the cosmological perfect fluid; (ii) integrate the first law of thermodynamics

dρ

da
= −3

(ρ+ P )

a
(27.29)

[Eq. (27.24), rearranged] to obtain the density ρ and [via Eq. (27.28)] the pressure P as
functions of the expansion factor a; (iii) evolve the expansion factor forward in time using
the field equation (

ȧ

a

)2

+
k

a2
=

8π

3
ρ (27.30)

[Eq. (27.26)].
****************************

EXERCISES

Exercise 27.3 Practice: Energy Conservation for a Perfect Fluid

Consider a perfect fluid, with the standard stress-energy tensor T αβ = (ρ+ P )uαuβ +
Pgαβ. Assume that the fluid resides in an arbitrary spacetime, not necessarily our
homogeneous, isotropic cosmological model.

(a) Explain why the law of energy conservation, as seen by the fluid, is given by uαT αβ
;β =

0.
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(b) Show that this law of energy conservation reduces to

dρ

dτ
= −(ρ+ P )#∇ · #u , (27.31)

where τ is proper time as measured by the fluid.

(c) Show that for a fluid at rest with respect to the homogeneous observers in our homo-
geneous, isotropic cosmological model, (27.31) reduces to the first law of thermody-
namics (27.24). Note: as a tool in this calculation, you might want to derive and use
the following formulas, which are valid in any coordinate basis:

Γα
µα =

1√
−g

(
√
−g),µ , Aα

;α =
1√
−g

(
√
−gAα),α . (27.32)

Here, g denotes the determinant of the covariant components of the metric.

g ≡ det||gij|| . (27.33)

****************************

27.4 Evolution of the Universe

27.4.1 Constituents of the universe: Cold matter, radiation, and
dark energy

The evolution of our zero-order cosmological model is highly dependent on the equation of
state P (ρ); and that equation of state, in turn, depends on the types of matter and fields
that fill the universe—i.e., the universe’s constituents.

The constituents can be divided into three classes: (i) Cold matter, i.e. material whose
pressure is neglible compared to its total density of mass-energy so the equation of state can
be idealized as PM = 0 (subscript M for “matter”). The cold matter includes the baryonic
matter of which people, planets, stars, galaxies, and intergalactic gas are made, as well as
so-called cold, dark matter which is known to exist in profusion and might be predominantly
fundamental particles (e.g. axions or neutralinos). (ii) Radiation, i.e. material with equation
of state PR = ρR/3. This includes the CMB (primordial photons), primordial gravitons,
primordial neutrinos when their temperatures exceed their rest masses, and other finite-rest-
mass particles when the temperature is sufficiently high (i.e., very early in the universe).
(iii) Dark energy (denoted by a subscript Λ for historical reasons described in Box 27.2),
with very negative pressure, PΛ " −1

2ρΛ. As we shall see in Sec. 27.5, observations give
strong evidence that such matter is present today in profusion. We do not yet know for sure
its nature or its equation of state, but the most likely candidate is a nonzero stress-energy
tensor associated with the vacuum, for which the equation of state is PΛ = −ρΛ.
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27.4.2 The vacuum stress-energy tensor
Let us digress, briefly, to discuss the vacuum: The stress-energy tensors of quantum fields
are formally divergent, and must be renormalized to make them finite. In the early decades
of quantum field theory, it was assumed that (in the absence of boundaries such as those
of highly electrically conducting plates) the renormalized vacuum stress-energy tensor Tvac

would vanish. In 1968 Yakov Borisovich Zel’dovich initiated speculations that Tvac might, in
fact, be nonzero, and those speculations became fashionable in the 1980s in connection with
inflationary models for the very early universe (Sec. 27.7). It was presumed in the 1980s
and 90s that a phase transition in the early universe had driven quantum fields into a new
vacuum state, for which Tvac vanishes; but in the late 1990s, much to physicists’ amazement,
observational evidence began to mount that our universe today is filled with a profusion
of “dark energy”, perhaps in the form of a nonzero Tvac; and by 2000 that evidence was
compellingly strong.

If Tvac is nonzero, what form can it take? It must be a second-rank symmetric tensor,
and it would be very surprising if that tensor broke the local homogeneity and isotropy of
spacetime or picked out any preferred reference frames. In order not to break those local
symmetries or introduce any preferred frame, Tvac must be proportional to the metric tensor,
with its proportionality factor independent of location in spacetime:

Tvac = −ρΛg , i.e., T 0̂0̂
vac = ρΛ , T ĵk̂

vac = −ρΛ . (27.34)

This is a perfect-fluid equation of state with PΛ = −ρΛ.
If there is no significant transfer of energy or momentum between the vacuum and other

constituents of the universe, then energy-momentum conservation requires that Tvac be di-
vergence free. This, together with the vanishing divergence of the metric tensor, implies that
ρΛ is constant, despite the expansion of the universe! This constancy can be understood in
terms of the first law of thermodynamics (27.24): As the universe expands, the expansion
does work against the vacuum’s tension −PΛ = ρΛ at just the right rate as to replenish the
vacuum’s otherwise-decreasing energy density. For further insight into Tvac, see Box 27.2.

27.4.3 Evolution of the densities
In order to integrate the Einstein equation backward in time and thereby deduce the uni-
verse’s past evolution, we need to know how much radiation, cold matter, and dark energy
the universe contains today. Those amounts are generally expressed as fractions of the crit-
ical energy density that marks the dividing line between a closed universe and an open one.
By asking that k/a2 be zero, we find from the Einstein equation (27.26) that

ρcrit =
3

8π

(
ȧo
ao

)2

* 9× 10−30g/cm3 . (27.35)

Here we have used a numerical value of ȧo/ao (the value of ȧ/a today) that is discussed in
Sec. 27.5 below. The energy density today in units of the critical density is denoted

Ω ≡ ρo
ρcrit

, (27.36)
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Box 27.2
The Cosmological Constant

Soon after formulating general relativity, Einstein discovered that his field equation,
together with then plausible equations of state P (ρ), demanded that the universe be
either expanding or contracting; it could not be static. Firmly gripped by the mind-
set of his era, Einstein regarded a nonstatic universe as implausible, and thus thought
his field equation incompatible with the way the universe ought to behave; and so he
modified his field equation. There were very few possibilities for the modification, since
(i) it seemed clear that the source of curvature should still be the stress-energy tensor,
and accordingly the field equations should say E = 8πT where E is a tensor (evidently not
the Einstein tensor) which characterizes gravity; and (ii) in order that the field equation
leave four of the metric coefficients arbitrary (so they could be adjusted by coordinate
freedom) the tensor E should have an automatically vanishing divergence. Of the various
possibilities for E, one stood out as far simpler than all the rest: E = G + Λg, where Λ
is a “cosmological constant.” To Einstein’s great satisfaction, by choosing Λ negative he
was able, from his modified field equation

G + Λg = 8πT , (1)

to obtain a forever-static, homogeneous and isotropic cosmological model; see Ex. 27.5.
In 1929 Edwin Powell Hubble (1929), at the Mount Wilson Observatory, discovered

that the universe was expanding. What a shock this was to Einstein! After visiting
Mount Wilson and discussing Hubble’s observations with him, Einstein (1931) formally
renounced the cosmological constant and returned to his original, 1915, field equation
G = 8πT. In his later years, Einstein described the cosmological constant as the greatest
mistake of his life. Had he stuck to his original field equation, the expansion of the
universe might have been regarded as the greatest of all the predictions made by his
general relativity.

Remarkably, the cosmological-constant term Λg in Einstein’s modified field equa-
tion is identical to the modern vacuum contribution to the stress-energy tensor. More
specifically, if we define ρΛ ≡ Λ/8π so Tvac = −ρΛg = −(Λ/8π)g, then G + Λg = 8πT
becomes G = 8π(T + Tvac). Thus, the modern conclusion that there might be a nonzero
vacuum stress-energy tensor is actually a return to Einstein’s modified field equation.

It is not at all clear whether the universe’s dark energy has the equation of state
PΛ = −ρΛ and thus is the vacuum stress-energy. Cosmologists’ prejudice that it may
be vacuum is built into their adoption of Einstein’s cosmological constant notation Λ to
denote the dark energy.

and observations give values

ΩR ∼ 10−4 , ΩM * 0.27 , ΩΛ * 0.73 , Ω ≡ ΩR + ΩM + ΩΛ * 1.00 . (27.37)

We shall discuss these numbers and the observational error bars on them in Sec. 27.5.
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The evolution of the universe could be influenced by energy transfer among its three
constituents. However, that transfer was small during the epoch from a/ao ∼ 10−9 to today;
see Box 27.3. This means that the first law of thermodynamics (27.24) must hold true for
each of the three constituents individually: d(ρa3) = −Pda3. By combining this law with
the constituents’ equations of state, PM = 0, PR = ρR/3, and (assuming the dark energy is
vacuum) PΛ = −ρΛ, we obtain

ρR = ρRo
a4o
a4

, ρM = ρMo
a3o
a3

, ρΛ = const . (27.38)

These relations are plotted in Fig. 27.4 below, which we shall discuss later.
The qualitative evolution of our zero-order cosmological model is easily deduced by in-

serting Eqs. (27.38) into Einstein’s equation (27.26) and rewriting the result in the standard
form for the motion of a particle in a potential well:

1

2
ȧ2 + V (a) =

−k

2
, (27.39)

where

V (a) = −4π

3
a2ρ = −4π

3
ρcrita

2
o

(
ΩR

a2o
a2

+ ΩM
ao
a

+ ΩΛ
a2

a2o

)
. (27.40)

Note that a/ao is the ratio of the linear size of the universe at some time in the past, to the
size of the universe today. Each volume element, comoving with the homogeneous observers,
expands in length by ao/a from then until now, and expands in volume by (ao/a)3.

The shape of the effective potential V (a) is shown in Fig. 27.3: It increases monotonically
from −∞ at a = 0 to about −4ρcrita2o at a/ao * 0.7, and then, as the universe nears our own
era, it begins decreasing. The universe is radiation dominated at a/ao " 10−4 (Fig. 27.4),
it is cold-matter dominated between a/ao ∼ 10−4 and a/ao ∼ 1, and the maxing-out of the
effective potential and reversal to plunge is triggered by a modern-era (a/ao ∼ 1) transition
to dark-energy dominance.

The implications of this effective potential for the past evolution of our universe should
be clear from one’s experience with particle-in-potential problems: The universe must have
expanded at an ever decreasing rate ȧ from an age ∼ a small fraction of second, when our
equations of state became valid, until nearly the present epoch, a/ao ∼ 0.4, and then the
universe’s vacuum tension must have triggered an acceleration of the expansion.

It seems strange that the universe should switch over to acceleration in just the epoch
that we are alive, rather than far earlier or far later or not at all. The reasons for this are
unknown. It is a big surprise, revealed by recent observations.

If PΛ/ρΛ is independent of time, then the universe’s past evolution is not very sensitive
to the precise value of PΛ/ρΛ. For PΛ/ρΛ = −1

2 (the least negative pressure allowed by
current observations), as for PΛ/ρΛ = −1 (vacuum), the dark energy begins to influence
V (a) significantly only in the modern era, and its influence is to accelerate the expansion in
accord with observation. It is of no dynamical importance earlier.

However, nothing requires that PΛ/ρΛ be constant. It is possible, in principle for PΛ/ρΛ
to evolve in a wide variety of ways that, in principle, could have had a strong influence on
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a

Fig. 27.3: The “particle-in-a-potential” depiction of the evolutionary equation (27.39) for the
expansion factor a of the universe. Plotted horizontally is the expansion factor, which plays the
role of the position of a particle. Plotted vertically is the “particle’s” potential energy V (a) (thick
curve) and its total energy −k/2 (thin dotted line). The difference in height between the dotted line
and the thick curve is the particle’s kinetic energy 1

2 ȧ
2, which must be positive. The form of V (a)

in the past (a ≤ ao) is shown solid. The form in the future is unknown because we do not know
the nature of the dark energy. If the form is that of the upper thick dashed curve, the universe
may reach a maximum size and then recontract. If the form is that of the lower dashed curve, the
univeral expansion will continue to accelerate forever.

the universe’s early evolution. That this probably did not occur we know from observational
data which show that the dark energy cannot have had a very significant influence on the
universal expansion at several key epochs in the past: (i) during the nucleosynthesis of
light elements when the universe was about 1 minute old, (ii) during recombination of the
primordial plasma (conversion from ionization to neutrality) when the universe was about
106 years old, and (iii) during early stages of galaxy formation when the universe was about
1 billion years old. Nevertheless, we are so ignorant, today, of the precise nature of the dark
energy, that we must be prepared for new surprises.

By contrast, the evolution of the dark energy in the future and the resulting evolution of
the universe are unconstrained by observation and are unknown. Until we learn for sure the
nature and dynamics of the dark energy, we cannot predict the universe’s future evolution.

27.4.4 Evolution in time and redshift
Since the dark energy cannot have had a very important dynamical role in the past, we shall
ignore it in the remainder of this section and shall idealize the universe as containing only
cold matter, with density ρM = ρMo(ao/a)3 and radiation with density ρR = ρRo(ao/a)4.

The radiation includes the cosmic background photons (which today are in the microwave
frequency band), plus gravitons, and plus those neutrinos whose rest masses are much less
than their thermal energies. In order for the observed abundances of the light elements to
agree with the theory of their nucleosynthesis, it is necessary that the neutrino and graviton
contributions to ρR be less than or of order the photon contributions.

The photons were in thermal equilibrium with other forms of matter in the early universe
and thus had a Planckian spectrum. Since black-body radiation has energy density ρR ∝ T 4

R
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Box 27.3

Interaction of Radiation and Matter
In the present epoch there is negligible radiation/matter interaction: the radiation

propagates freely, with negligible absorption by interstellar or intergalactic gas. However,
much earlier, when the matter was much denser and the radiation much hotter than today
and galaxies had not yet formed, the interaction must have been so strong as to keep the
photons and matter in thermodynamic equilibrium with each other. In this early epoch
the matter temperature, left to its own devices, would have liked to drop as 1/Volume2/3,
i.e., as 1/a2, while the radiation temperature, left to its own devices would have dropped
as 1/Volume1/3, i.e., as 1/a. To keep their temperatures equal, the photons had to feed
energy into matter. This feeding was not at all a serious drain on the photons’ energy
supply, however: Today the ratio of the number density of background photons to the
number density of baryons (i.e., protons and neutrons) is

nRo

nMo
=

aRTRo
4/(2.8kTRo)

ρmo/mp
∼ 108 , (1)

where mp is the proton mass, k is Boltzman’s constant and 2.8kTRo is the average energy
of a black-body photon at the CMB temperature TRo = 2.728 K. Because, aside from
a factor of order unity, this ratio is the entropy per baryon in the universe (Chaps. 4
and 5), and because the entropy per baryon was (nearly) conserved during the (nearly)
adiabatic expansion of the universe, this ratio was about the same in the early era of
thermal equilibrium as it is today. Since the specific heat per photon and that per baryon
are both of order Boltzman’s constant k, the specific heat of a unit volume of background
radiation in the early era exceeded that of a unit volume of matter by eight orders of
magnitude. Consequently, the radiation could keep the matter’s temperature equal to its
own with little effort; and accordingly, despite their interaction, the radiation by itself
satisfied energy conservation to high accuracy.

This remained true, going backward in time, until the temperature reached T ∼
1
5me/k ∼ 109 K, at which point electron-positron pairs formed in profusion and sucked
roughly half the photon energy density out of the photons. This pair formation, going
backward in time, or pair annihilation going forward, occurred when the universe was
several 10’s of seconds old (Fig. 27.4) and can be regarded as converting one form of
radiation (photons) into another (relativistic pairs). Going further backward in time, at
T ∼ mp/k ∼ 1013 K, the neutrons and protons (baryons) became relativistic, so cold
matter ceased to exist—which means that, going forward in time, cold matter formed at
T ∼ mp/k ∼ 1013 K.

As is shown in the text, the dark energy only became significant in the modern era;
so its interaction with cold matter and radiation (if any, and there presumably is very
little) cannot have been important during the universe’s past evolution.
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and the density decreases with expansion as ρR ∝ 1/a4, the photon temperature must have
been redshifted during this early era as TR ∝ 1/a. When the temperature dropped below
∼ 104 K, the electrons dropped into bound states around atomic nuclei, making the matter
neutral, and its opacity negligible, so the photons were liberated from interaction with the
matter and began to propagate freely. Kinetic theory (Box 27.4) tells us that during this
free propagation, the photons retained their Planckian spectrum, and their temperature
continued to be redshifted as TR ∝ 1/a. In accord with this prediction, the spectrum of
the photons today is measured to be Planckian to very high accuracy; its temperature is
TRo = 2.728 K, corresponding to a photon energy density today ργo ∼ 5 × 10−34 g cm−3.
Adding to this the neutrino and graviton energy densities, we conclude that ρRo ∼ 10−33 g
cm−3. By contrast, the matter density today is ρMo * 3× 10−30 g cm−3.

To recapitulate: the matter and radiation densities and temperatures must have evolved
as

ρM = ρMo
a3o
a3

, ρR = ρRo
a4o
a4

, TR = TRo
ao
a

, (27.41)

throughout the entire epoch from a/ao ∼ 3× 10−13 until today.
The density and temperature evolutions (27.41) are depicted as functions of the universe’s

expansion factor a/ao in Fig. 27.4. A second way to express the evolution is in terms of
cosmological redshift : Imagine photons emitted in some chosen spectral line of some chosen
type of atom (e.g., the Lyman alpha line of atomic hydrogen), at some chosen epoch during
the universe’s evolution. Let the atoms be at rest in the mean rest frame of the matter
and radiation, i.e., in the rest frame of a homogeneous observer, so they move orthogonally
to the homogeneous hypersurfaces. Focus attention on specific photons that manage to
propagate to Earth without any interaction whatsover with matter. Then they will arrive
with a wavelength, as measured on Earth today, which is much larger than that with which
they were emitted: The expansion of the universe has increased their wavelength, i.e., has
redshifted them. As is shown in Exercise 27.6 below, if the expansion factor was a at the
time of their emission, and if their wavelength at emission as measured by the emitter was
λ, then at reception on Earth as measured by an astronomer, they will have wavelength λo

given by
λo

λ
=

ao
a

; (27.42)

i.e., the photons’ wavelength is redshifted in direct proportion to the expansion factor of the
universe. It is conventional to speak of the redshift z as not the ratio of the wavelength
today to that when emitted, but rather as the fractional change in wavelength, so

z ≡ λo − λ

λ
=

ao
a

− 1 . (27.43)

In Fig. 27.4’s depiction of the density evolution of the universe, the horizontal axis at the
bottom is marked off in units of z.

It is also instructive to examine the density evolution in terms of proper time, t, as
measured in the mean rest frame of the matter and radiation; i.e., as measured by clocks
carried by the homogeneous observers. At redshifts z > ρMo/ρRo ∼ 5000, when the energy
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Box 27.4
Kinetic Theory of Photons in General Relativity

The kinetic theory of photons and other particles (Chap. 3) can be lifted from special
relativity into general relativity using the equivalence principle:

In any local Lorentz frame in curved spacetime, the number density in phase space
is given by the special relativity expression (3.3): N (P, #p) = dN/dVxdVp. Here P is the
location of the observer in spacetime, #p is the momentum of some chosen “fiducial” photon,
dVx is a small 3-volume at P in the physical space of the observer’s local Lorentz frame,
dVp is a small 3-volume in the momentum space of the observer’s local Lorentz frame,
centered on #p, and dN is the number of photons in dVx and dVp. For a homogeneous
observer, we can choose dVx = a3Σ2 sin θ dχ dθ dφ , dVp = dpχ̂dpθ̂dpφ̂, where the hats
denote components on the unit vectors #eχ̂, #eθ̂, #eφ̂.

The equivalence principle guarantees that, just as in flat spacetime, so also in curved
spacetime, (i) the number density in phase space, N , is independent of the velocity of
the local Lorentz frame in which it is measured (with all the frames presumed to be
passing through the event P); and (ii) if the photons do not interact with matter, then
N is constant along the world line of any chosen (fiducial) photon as it moves through
spacetime and as its 4-momentum #p evolves in the free-particle (geodesic) manner. [In
asserting this constancy of N , one must examine carefully the issue of curvature coupling;
Sec. 24.7. Because the volume element dVx involved in the definition of N has some finite,
though tiny size, spacetime curvature will produce geodesic deviation between photons
on opposite sides of dVx. One can show fairly easily, however, that this geodesic deviation
merely skews the phase-space volume element along its momentum directions in a manner
analogous to Fig. 2.6(b), while leaving the product dVx dVp fixed and thereby leaving N
unchanged; cf. Sec. 2.7.]

The equivalence principle also guarantees that in curved spacetime, as in flat, the
number density in phase space can be expressed in terms of the specific intensity Iν
and the frequency of the chosen photon ν (as measured in any local Lorentz frame):
N = h−4Iν/ν3 [Eq. (2.18)]. If the spectrum is Planckian with temperature T as measured
in this Lorentz frame, then N will have the form

N =
2

h3

1

ehν/kT − 1
. (1)

The Lorentz-invariance and conservation of N , together with the fact that this N depends
only on the ratio ν/T , implies that, (i) a spectrum that is Planckian in one reference frame
will be Planckian in all reference frames, with the temperature T getting Doppler shifted
in precisely the same manner as the photon frequency ν; and (ii) an initially Planckian
spectrum will remain always Planckian (under free propagation), with its temperature
experiencing the same cosmological redshift, gravitational redshift, or other redshift as
the frequencies of its individual photons.

For the CMB as measured by homogeneous observers, the frequencies of individual
photons get redshifted by the expansion as ν ∝ 1/a, so the photon temperature also gets
redshifted as T ∝ 1/a.



21

M

R

102

10-5

10+2

1010

10-2

104 106 108 1010 1012 1014 1016

108

106

104

102

1

10-10

10-15

10-20

10-25

10-30

10+4
10-4

10+6
10-6

10+6
10-8

10+10
10-10 1

0

t, sec

a/a0

z

TR, K TR

, g /cm3
MR

Fig. 27.4: The evolution of the total mass-energy densities ρM and ρR in matter and in radiation
and the radiation’s photon temperature TR, as functions of the expansion factor a of the universe,
the cosmological redshift z and the proper time t (in the mean rest frame of the matter and radiation)
since the “big bang.”

in radiation dominated over that in matter, a as a function of time was governed by the
Einstein field equation

(
ȧ

a

)2

+
k

a2
=

8π

3
ρR =

8π

3
ρRo

(ao
a

)4
. (27.44)

[Eq. (27.30)]. As we shall see in Sec. 27.5 below, the present epoch of the universe’s expansion
is an early enough one that, if it is closed or open, the evolution has only recently begun to
depart significantly from that associated with a flat, k = 0 model. Correspondingly, in the
early, radiation-dominated era, the evolution was independent of k to high precision, i.e.,
the factor k/a2 in the evolution equation was negligible. Ignoring that factor and integrating
Eq. (27.30), then setting ρ * ρR = ρRo(ao/a)4, we obtain

ρ * ρR =
3

32πt2
,

a

ao
=

(
32π

3
ρRot

2

)1/4

when
a

ao
<

ρRo

ρMo
∼ 3× 10−4 . (27.45)

Here the origin of time, t = 0, is taken to be at the moment when the expansion of the
universe began: the “big-bang.”

This early, radiation-dominated era ended at a cross-over time

tc =

[
3

32πρRo

(
ρRo

ρMo

)4
]1/2

∼
[

3

32π × 10−33g/cm3 (3× 10−4)4
]1/2

×

×
[

1 g

0.742× 10−28cm

]1/2
× 1 year

0.946× 1018cm
∼ 70, 000 years . (27.46)
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In this calculation the first two factors on the second line are introduced to convert from
geometrized units to conventional units. After the crossover time the solution to the Einstein
equation is that for pressure-free matter. The precise details of the time evolution will depend
on whether the universe is open, closed, or flat; but the three possibilities will agree up to
the present epoch to within a few tens of per cent (see Sec. 27.5). Ignoring the differences
between open, closed, and flat, we can adopt the k = 0, pressure-free evolution as given by
Friedmann’s flat model, Eqs. (27.48), (27.49), (27.50), and (27.51) —but with the origin of
time adjusted to match onto the radiation-dominated solution (27.45) at the cross-over time:

ρ * ρM =
1

6π(t + tc/3)2
,

a

ao
=

[
6πρMo

(
t +

tc
3

)2
]1/3

when
a

ao
>

ρRo

ρMo
∼ 3× 10−4 .

(27.47)
The present age of the universe, as evaluated by setting ρM = ρMo in this formula and
converting to cgs units, is of order 1010 years. We shall evaluate the age with higher precision
in section 27.5.8 below. In Fig. 27.4’s depiction of the evolution, the time t since the big
bang, as computed from Eqs. (27.45), (27.46), and (27.47), is marked along the top axis.

27.4.5 Physical processes in the expanding universe
The evolution laws (27.41) and (27.45), (27.46), and (27.47) for ρM and ρR are a powerful
foundation for deducing the main features of the physical evolution of the universe from the
very early epoch, a/ao ∼ 3× 10−13, i.e. z ∼ 3× 1012 and t ∼ 10−5 sec up to the present. For
detailed, pedagogical presentations of those features see, e.g., Peebles (1971) and Zel’dovich
and Novikov (1983). Here we shall just present a very short summary.

Some key physical events that one deduces during the evolution from z = 3× 1012 to the
present, z = 0, are these:

(i) At redshift z ∼ 3×1012, baryon-antibaryon pairs annihilated and the thermal energies
of neutrons and protons became much smaller than their rest-mass energies. This was the
epoch of formation of baryonic cold matter. (ii) At redshifts z ∼ 109 when the universe
was of order a second old, the photons ceased being energetic enough to make electron-
positron pairs; the pairs, which earlier had been plentiful, annihilated, feeding their energy
into photons; and with their annihilation the primordial gas suddenly became transparent to
neutrinos. Since then the neutrinos, born in thermodynamic equilibrium at z > 109, should
have propagated freely.

(iii) At redshifts z ∼ 3×108, when the universe was a few minutes old, ρR was roughly 1
g/cm3, and the temperature was TR = TM ∼ 109 K, nuclear burning took place. Going into
this epoch of primordial nucleosynthesis the matter consisted of equal numbers of protons,
neutrons, and electrons all in thermodynamic equilibrium with each other. Coming out,
according to evolutionary calculations for the relevant nuclear reactions, it consisted of about
75 per cent protons (by mass), 25 per cent alpha particles (4He nuclei), and tiny (< 10−6), but
observationally important amounts of deuterium, 3He, lithium, beryllium, and boron. [The
agreement of these predictions with observation constitutes strong evidence that cosmologists
are on the right track in their deductions about the early universe.] All the elements heavier
than boron were almost certainly made in stars when the universe was billions of years old.
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(iv) At the redshift z ∼ 3000, when the universe was about 70, 000 years old and TR ∼ TM

was about 104 K, came the cross-over from radiation dominance to matter dominance; i.e.,
ρR = ρM ∼ 10−17g/cm3.

(v) At the redshift z * 1090, when the universe was * 380, 000 years old and its tem-
perature had dropped to roughly 3000 K and its density to ρM ∼ 10−20g/cm3, the electrons
in the primordial plasma were captured by the protons and alpha particles to form neutral
hydrogen and helium. Before this epoch of recombination the matter was highly ionized and
opaque to radiation; afterward it was highly neutral and transparent.

(vi) Before recombination, if any matter tried to condense into stars or galaxies, it would
get adiabatically heated as it condensed and the rising pressure of radiation trapped inside
it would prevent the condensation from proceeding. After recombination, radiation was no
longer trapped inside a growing condensation. Now, for the first time, stars, galaxies, and
clusters of galaxies could begin to form. Measured anisotopies of the CMB, however, tells us
that the size of the density fluctuations at recombination was ∆ρM/ρM ∼ 10−4, which is just
the right size to grow, by gravitational condensation, to ∆ρ/ρ ∼ 1 at z ∼ 10. Thus it is that
the epoch of galaxy formation probably began around a redshift z ∼ 10, when the universe
was already about two billion years old compared to its present age of roughly 14 billion
years.

(vi) In galaxies such as ours there has been, since formation, a continuing history of
stellar births, nucleosynthesis, and deaths. The unravelling of our Galaxy’s nucleosynthesis
history and the resulting understanding of the origin of all the elements heavier than boron,
was achieved, in large measure in the 1950s, 60s and 70s, by nuclear astrophysicists under
the leadership of Caltech’s William A. Fowler. Our own sun is of the second generation or
later: By measuring in meteorites the relative abundances of unstable atomic nuclei and
their decay products, Caltech’s Gerald J. Wasserburg and his colleagues have deduced that
the solar system is only 4.58 billion years old—i.e., it formed when our Milky Way Galaxy
was already ∼ 5 billion years old.

Before recombination the radiation was kept thermalized by interactions with matter.
However, since recombination the radiation has propagated freely, interacting only with the
gravitation (spacetime curvature) of our universe.

****************************

EXERCISES

Exercise 27.4 Example: Friedmann’s Cosmological Models
Consider a model universe of the type envisioned by Alexander Friedmann (1922)—one with
zero pressure (i.e., containing only cold matter), so its density is ρM ∝ 1/a3; cf. Eq. (27.38).
Write this density in the form

ρ =
3

8π

am
a3

, (27.48)

where am is a constant whose normalization (the factor 3/8π) is chosen for later convenience.

(a) Draw the effective potential V (a) for this model universe, and from it discuss qualita-
tively the evolution in the three cases k = 0,±1.
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k = <1
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k = +1

Fig. 27.5: Time evolution of the expansion factor a(t) for the zero-pressure, Friedmann cosmological
models (Exercise 27.4). The three curves correspond to the closed, k = +1 model; the flat, k = 0,
model; and the open, k = −1 model.

(b) Show that for a closed, k = +1 universe with zero pressure, the expansion factor a
evolves as follows:

a =
am
2
(1− cos η) , t =

am
2
(η − sin η) . (27.49)

Here η is a parameter which we shall use as a time coordinate in Sec. 27.5 [Eq. (27.80)]below.
This a(t) [depicted in Fig. 27.5], is a cycloid .

(c) Show that for a flat, k = 0 universe, the evolution is given by

a =

(
9am
4

)1/3

t2/3 , ρ =
1

6πt2
. (27.50)

(d) Show that for an open, k = −1 universe, the evolution is given by

a =
am
2
(cosh η − 1) , t =

am
2
(sinh η − η) . (27.51)

Note, as shown in Fig. 27.5, that for small expansion factors, a - am, the evolutions
of the three models are almost identical.

Exercise 27.5 Problem: Einstein’s Static Universe
Consider a model universe of the sort that Einstein (1917) envisioned: one with a nonzero,
positive cosmological constant and containing matter with negligible pressure, P = 0. Rein-
terpret this in modern language as a universe with cold matter and a nonzero vacuum
stress-energy. Einstein believed that (when averaged over the motions of all the stars), the
universe must be static — i.e., neither expanding nor contracting: a = constant independent
of time.



25

(a) Show that Einstein’s equations do admit a solution of this form, and deduce from
it (i) the spatial geometry of the universe (spherical, flat, or hyperboloidal), and (ii)
relationships between the universe’s “radius” a, its matter density ρM , and its vacuum
energy density ρΛ.

(b) Show that Einstein’s static cosmological model is unstable against small perturbations
of its “radius”: if a is reduced slightly from its static, equilibrium value, the universe will
begin to collapse; if a is increased slightly, the universe will begin to expand. Einstein
seems not to have noticed this instability.

For a historical discussion of Einstein’s ideas about cosmology, see Sec. 15e of Pais (1982).

Exercise 27.6 Example: Cosmological Redshift

Consider a particle, with finite rest mass or zero, that travels freely through a homo-
geneous, isotropic universe. Let the particle have energy E as measured by a homoge-
neous observer side-by-side with it, when it starts its travels, at some early epoch in
the universe’s evolution; and denote by Eo its energy as measured by a homogeneous
observer at its location, near Earth, today. Denote by

p =
√
E2 −m2 , po =

√
Eo

2 −m2 (27.52)

the momentum of the particle as measured in the early epoch and today. In this
problem you will evaluate the ratio of the momentum today to the momentum in the
early epoch, po/p, and will deduce some consequences of that ratio.

(a) Place the spatial origin, χ = 0, of the spatial coordinates of a Robertson-Walker coordi-
nate system [Eq. (27.6)] at the point where the particle started its travel. (Homogeneity
guarantees we can put the spatial origin anywhere we wish.) Orient the coordinates so
the particle starts out moving along the “equatorial plane” of the coordinate system,
θ = π/2 and along φ = 0. (Isotropy guarantees we can orient our spherical coordinates
about their origin in any way we wish.) Then spherical symmetry about the origin
guarantees the particle will continue always to travel radially, with θ = π/2 and φ = 0
all along its world line; in other words, the only nonvanishing contravariant components
of its 4-momentum are pt = dt/dζ and pχ = dχ/dζ ; and, since the metric is diagonal,
the lowering of components shows that the only nonvanishing covariant components
are pt and pχ. Show that the quantity pχ is conserved along the particle’s world line.

(b) Express the momentum p measured by the homogeneous observer at the starting point
and the momentum po measured near Earth today in terms of pχ. [Hint: The local
Lorentz frame of a homogeneous observer has the basis vectors (27.20).] Show that

po
p

=
a

ao
=

1

1 + z
, (27.53)

where z is the cosmological redshift at the starting point.
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(c) Show that if the particle is a photon, then its wavelength is redshifted in accord with
Eqs. (27.42) and (27.43).

(d) Show that if the particle has finite rest mass and has speed v - 1 at its starting point,
as measured by a homogeneous observer there, then its velocity today as measured by
the near-Earth homogeneous observer will be

vo = v
a

ao
=

v

1 + z
. (27.54)

Exercise 27.7 Practice: Cosmic Microwave Radiation in an Anisotropic Cosmological Model

Consider a cosmological model with the spacetime metric

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2 . (27.55)

The quantities a, b, and c (not to be confused with the speed of light which is unity
in this chapter) are expansion factors for the evolution of the universe along its x, y,
and z axes. The Einstein field equation governs the time evolution of these expansion
factors; but the details of that evolution will not be important to us in this problem.

(a) Show that the space slices t = const in this model have Euclidean geometry, so the
model is spatially flat and homogeneous. Show that the observers who see these slices
as hypersurfaces of simultaneity, i.e., the homogeneous observers, have world lines of
constant x, y, and z, and their proper time is equal to the coordinate time t.

(b) At time te when the expansion factors were ae, be, and ce the universe was filled
with isotropic black-body photons with temperature Te, as measured by homogeneous
observers. Define px ≡ #p · ∂/∂x, py ≡ #p · ∂/∂y, pz ≡ #p · ∂/∂z for each photon. Show
that in terms of these quantities the photon distribution function at time te is

N =
2

h3

1

eE/kTe − 1
, where E =

[(
px
ae

)2

+

(
py
be

)2

+

(
pz
ce

)2
]1/2

. (27.56)

(c) After time te each photon moves freely through spacetime (no emission, absorption,
or scattering). Explain why px, py, and pz are constants of the motion along the
phase-space trajectory of each photon.

(d) Explain why N , expressed in terms of px, py, pz, retains precisely the form (27.56) for
all times t > te.

(e) At time to > te, when the expansion factors are ao, bo, co, what are the basis vectors
#e0̂, #ex̂, #eŷ, #eẑ of the local Lorentz frame of a homogeneous observer?

(f) Suppose that such an observer looks at the photons coming in from a direction n =
nx̂#ex̂ + nŷ#eŷ + nẑ#eẑ on the sky. Show that she sees a precisely Planck frequency distri-
bution with temperature To that depends on the direction n that she looks:

To = Te

[(
ao
ae
nx̂

)2

+

(
bo
be
nŷ

)2

+

(
co
ce
nẑ

)2
]−1/2

. (27.57)
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(g) In the case of isotropic expansion, a = b = c, show that To is isotropic and is redshifted
by the same factor, 1 + z, as the frequency of each photon [Eqs. (27.42) and (27.43)]:

To

Te
=

1

1 + z
=

ae
ao

. (27.58)

[The redshift z must not be confused with the coordinate z of Eq. (27.55).]

****************************

27.5 Observational Cosmology

27.5.1 Parameters characterizing the universe
Our zero-order (homogeneous and isotropic) model of the universe is characterized, today,
by the following parameters: (i) The quantity

Ho ≡ ȧo/ao , (27.59)

which is called the Hubble expansion rate, and which determines the critical density ρcrit =
(3/8π)H2

o [Eq. (27.35)]. (ii) The density of cold matter measured in units of the critical den-
sity, ΩM = ρMo/ρcrit [Eq. (27.36)]. (iii) The split of ΩM into two parts, ΩM = ΩB + ΩCDM.
Here ΩB is that portion due to “baryonic matter,” the type of matter (protons, neutrons,
electrons, and atoms and molecules made from them) of which stars, galaxies, and interstellar
gas are made; and ΩCDM is the portion due to non-baryonic, “cold, dark matter” (probably
axions and/or neutralinos and/or other types of weakly interacting, massive particles pro-
duced in the big bang). (iv) The temperature TRo of the CMB. (v) The density of radiation
in units of the critical density, ΩR = ρRo/ρcrit. (vi) ΩΛ, the density of dark energy in units of
the critical density. (vii) PΛ/ρΛ, the ratio of the dark energy’s pressure to its density (equal
to −1 if the dark energy is a nonzero stress-energy of the vacuum).

The time-time component of the Einstein field equation, Eq. (27.26), translated into the
notation of our seven parameters, says

k

a2o
= H2

o (Ω− 1) , where Ω = ΩM + ΩR + ΩΛ * ΩM + ΩΛ (27.60)

is the total density in units of the critical density. In most of the older literature (before
∼ 1995), much attention is paid to the dimensionless deceleration parameter of the universe,
defined as

qo ≡
−äo/ao
H2

o

=
ΩM

2
+

PΛ

ρΛ
ΩΛ . (27.61)

Here the second equality follows from the space-space component of the Einstein field equa-
tion, Eq. (27.27), translated into the language of our parameters, together with the fact that
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today the only significant pressure is that of dark energy, PΛ. We shall not use qo in this
book.

Remarkably, the values of our seven independent parameters Ho, ΩB, ΩM , TRo, ΩR, ΩΛ,
and PΛ/ρΛ are all fairly well known today (spring 2003), thanks largely to major observational
progress in the past several years. In this section we shall discuss the observations that have
been most effective in determining these parameters. For greater detail see, e.g., the review
article by Turner (1999), and the WMAP results presented by Bennett et. al. (2003), Hinshaw
et. al. (2009).

27.5.2 Local Lorentz frame of homogeneous observers near Earth
As a foundation for discussing some of the observations, we shall construct the local Lorentz
frame of a homogeneous observer near Earth. (The Earth moves relative to this frame with a
speed v = 630±20 km s−1, as revealed by a dipole anisotropy in the temperature distribution
of the CMB on the Earth’s sky.)

Homogeneous observers can have local Lorentz frames because they moves freely (along
timelike geodesics) through spacetime; cf. Ex. 27.1. For ease of analysis, we place the spatial
origin of the Robertson-Walker {t,χ, θ,φ} coordinate system at the location of a near-Earth
homogeneous observer. Then that observer’s Lorentz coordinates are

t̂ = t+
1

2
χ2aȧ , x̂ ≡ aχ sin θ cosφ , ŷ ≡ aχ sin θ sin φ , ẑ ≡ aχ cos θ ; (27.62)

cf. Eq. (24.8b) and associated discussion. Note that only at second-order in the distance
away from the origin of the local Lorentz frame does the Lorentz time t̂ differ from the
Robertson-Walker time coordinate t. This second-order difference will never be important
for anything we compute, so henceforth we will ignore it and set t̂ = t.

The near-Earth local Lorentz frame, like any local Lorentz frame, must be kept spatially
small compared to the radius of curvature of spacetime. That radius of curvature is related
to the Lorentz-frame components of spacetime’s Riemann curvature tensor by

R ∼ 1

|Rα̂β̂γ̂δ̂|1/2
. (27.63)

More precisely, since it is the largest components of Riemann that have the biggest physical
effects, we should use the largest components of Riemann when evaluating R. These largest
components of Riemann today turn out to be ∼ ȧ2o/a

2
o = H2

o and ∼ k/a2o. Observations
discussed below reveal that Ω ∼ 1, so k/a2o " H2

o [Eq. (27.60)]. Therefore, the universe’s
coarse-grain-averaged radius of spacetime curvature today is

R ∼ 1

Ho
; (27.64)

and the demand that the local Lorentz frame be small compared to this radius of curvature is
equivalent to the demand that we confine the local-Lorentz spatial coordinates to the region

Hor - 1 , where r ≡
√

x̂2 + ŷ2 + ẑ2 = aχ+O(aχ3) . (27.65)

(Below we shall neglect the tiny aχ3 correction.)
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27.5.3 Hubble expansion rate
Consider a homogeneous observer near enough to Earth to be in the near-Earth local Lorentz
frame, but not at its origin. Such an observer has fixed Robertson-Walker radius χ and local-
Lorentz radius r = aχ, and thus moves away from the origin of the local Lorentz frame with a
velocity, as measured by the frame’s rods and clocks, given by v = dr/dt = ȧχ; i.e., evaluating
that velocity today, v = ȧoχ. Correspondingly, special relativity insists that light emitted by
this homogeneous observer at local Lorentz radius r and received today by the homogeneous
observer at r = 0 should be Doppler shifted by an amount ∆λ/λ ∼= v = ȧoχ. Note that this
Doppler shift is proportional to the distance between the homogeneous observers, with the
proportionality factor equal to the Hubble constant:

z ≡ ∆λ

λ
= v = Hor . (27.66)

This Doppler shift is actually nothing but the cosmological redshift, looked at from a new
viewpoint: When specialized to emitters and receivers that are near each other, so they can
be covered by a single local Lorentz frame, the cosmological redshift formula (27.43) reduces
to

z =
ao
a

− 1 =
1

a
(ao − a) ∼=

1

ao
ȧo∆t = Ho∆t , (27.67)

where ∆t is the time required for the light to travel from emitter to receiver. Since the light
travels at unit speed as measured in the local Lorentz frame, ∆t is equal to the distance r
between emitter and receiver, and the cosmological redshift becomes z = Hor, in agreement
with the Doppler shift (27.66).

To the extent that the galaxies which astronomers study are at rest with respect to
homogeneous observers, they should exhibit the distance-redshift relation (27.66). In reality,
because of the gravitational attractions of other, nearby galaxies, typical galaxies are not at
rest relative to homogeneous observers, i.e., not at rest relative to the “Hubble flow”. Their
velocities relative to local homogeneous observers are called peculiar velocities and have
magnitudes that are typically vpec ∼ 300 km/sec ∼ 10−3, and can be as large as vpec ∼ 1000
km/sec. In order to extract the Hubble constant from measurements of galactic distances
and redshifts, astronomers must determine and correct for these peculiar motions. That
correction task is rather difficult when one is dealing with fairly nearby galaxies, say with
z " 0.003 so v " 1000 km/sec. On the other hand, when one is dealing with more distant
galaxies, the task of determining the distance r is difficult. As a result, the measurement
of the Hubble constant has been a long, arduous task, involving hundreds of astronomers
working for 2/3 of a century. Today this effort has finally paid off, with a number of somewhat
independent measurements that give

Ho = (70.5± 1.3) km sec−1Mpc−1 , (27.68)

where the unit of velocity is km s −1 and the unit of distance is 1 Mpc = 1 megaparsec = 106

pc. Converting into units of length and time (using c = 1), the inverse Hubble constant is

1

Ho
= (4.3± 0.1) Gpc = (13.9± 0.3)× 109 years . (27.69)
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Correspondingly, the critical density to close the universe, Eq. (27.35), is

ρcrit = (9.1± 0.4)× 10−30g/cm3 . (27.70)

In the cosmology literature one often meets the “Hubble parameter,” whose definition and
measured value are

h ≡ Ho

100km s−1Mpc−1 = 0.705± 0.013 . (27.71)

27.5.4 Primordial nucleosynthesis
When the universe was about a minute old and had temperature TR ∼ 109 K, nuclear
burning converted free protons and neutrons into the light isotopes deuterium ≡2H, 3He,
4He, and 7Li. Over the past four decades astronomers have worked hard to achieve precision
measurements of the primordial abundances of these isotopes. Those measurements, when
compared with nucleosynthesis calculations based on models for the universal expansion,
produce remarkably good agreement—but only when (i) the number of species of neutrinos
(which contribute to the radiation density and via the Einstein equation to the expansion
rate during the burning) is no greater than three (electron, muon, and tau neutrinos); and
(ii) dark energy has negligible influence on the universe’s expansion except in and near the
modern era, and possibly before nucleosynthesis; and (iii) the normalized baryon density is

ΩB = (0.040± 0.006)

(
0.70

h

)2

. (27.72)

Here 0.006 is the 95 per cent confidence limit. This is a remarkably accurate measurement
of the density of baryonic matter—and it shows that ρB is only about 5 per cent of the
critical density. An even more accurate value comes, today, from a combination of WMAP
and other measurements (Hinshaw 2009):

ΩB = (0.046± 0.02) . (27.73)

27.5.5 Density of Cold Dark Matter
The only kind of matter that can condense, gravitationally, is that with pressure P - ρ,
i.e., cold matter. The pressures of the universe’s other constituents (radiation and dark
energy) prevent them from condensing significantly; they must be spread rather smoothly
throughout the universe. The total density of cold matter, ΩM , can be inferred from the
gravitationally-measured masses M of large clusters of galaxies. Those masses are measured
in four ways: (i) by applying the virial theorem to the motions of their individual galaxies,
(ii) by applying the equation of hydrostatic equilibrium to the distributions of hot, X-ray
emitting gas in the clusters, (iii) by studying the influence of the clusters as gravitational
lenses for more distant objects, and (iv) from the positions and shapes of the Doppler peaks
in the CMB (Sec. 27.5.7). The results of the four methods agree reasonably well and yield
a total density of cold matter

ΩM = 0.27± 0.01 ; (27.74)
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see Turner (1999) for details and references; and for the Doppler peak measurements see
Hinshaw et. al. (2009).

This ΩM * 0.27 is much larger than the density of baryonic matter ΩB * 0.04. Their
difference,

ΩCDM = ΩM − ΩB = 0.23± 0.01 (27.75)

is the density of cold, dark matter.

27.5.6 Radiation Temperature and Density
The temperature of the CMB has been measured, from its Planckian spectrum, to be

TR = 2.728± 0.002K (27.76)

This temperature tells us with excellent accuracy the contribution of photons to the radiation
density

Ωγ = (0.5040± 0.005)

(
h

0.70

)2

× 10−4 . (27.77)

The radiation also includes primordial gravitational waves (gravitons), whose energy density
is predicted by inflationary arguments to be small compared to Ωγ , though this prediction
could be wrong. It can be no larger than Ωg ∼ Ωγ , as otherwise the gravitons would have
exerted an unacceptably large influence on the expansion rate of the universe during primor-
dial nucleosynthesis and thereby would have distorted the nuclear abundances measureably.
The same is true of other hypothetical forms of radiation. Primordial neutrinos must have
been in statistical equilibrium with photons and other forms of matter and radiation in the
very early universe. Statistical arguments about that equilibrium predict an energy density
for each neutrino species (electron, mu, and tau presumably) of Ων = (7/8)(4/11)4/3Ωγ , so
long as kTR . mνc2 (the neutrino rest mass-energy). Recent measurements of neutrino
oscillations tell us that the neutrinos have rest masses ! 0.01 eV, which implies that they
behaved like radiation until some transition temperature TR ! 100 K (at a redshift ! 30)
and then became nonrelativistic, with negligible pressure.

Combining all these considerations, we see that the total radiation density must be

ΩR ∼ 1× 10−4 (27.78)

to within a factor of order 2.

27.5.7 Anisotropy of the CMB: Measurements of the Doppler
Peaks

Consider an object with physical diameter D that resides at a distance r from Earth, and
neglect the Earth’s motion and object’s motion relative to homogeneous observers. Then
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the object’s angular diameter Θ as observed from Earth will be Θ = D/r, if r - 1/Ho so
the effects of spacetime curvature are negligible. For greater distances, r ∼ 1/Ho, the ratio

rAD ≡ D

Θ
(27.79)

(called the object’s angular-diameter distance) will be strongly influenced by the spacetime
curvature—and thence by the cosmological parameters Ho, ΩM , ΩΛ, PΛ/ρΛ that influence
the curvature significantly. In Ex. 27.8 formulas are derived for rAD as a function of these
parameters and the object’s cosmological redshift z (a measure of its distance).

Astronomers searched for many decades for objects on the sky (standard yardsticks),
whose physical diameter D could be known with high confidence. By combining the known
D’s with the yardsticks’ measured angular diameters Θ to get their rAD = D/Θ and by
measuring the redshifts z of their spectral lines, the astronomers hoped thereby to infer the
cosmological parameters from the theoretical relation rAD(z, cosmological parameters).

This effort produced little of value in the era ∼1930 to ∼1990, when astronomers were
focusing on familiar astronomical objects such as galaxies. No way could be found to deter-
mine, reliably, the physical diameter D of any such object.

Finally, in 1994, Marc Kamionkowski, David Spergel and Naoshi Sugiyama (1994) iden-
tified an object of a very different sort, whose physical diameter D could be known with high
confidence: the cosmological horizon in the era when the primordial plasma was recombin-
ing and matter and radiation were decoupling from each other. This was the long-sought
standard yardstick.

This cosmological horizon is not the same thing as the horizon of a black hole, but it is
analogous. It is the distance between objects that are just barely able to communicate with
each other via light signals. To discuss this concept quantitatively, it is useful to introduce
a new time coordinate η for the Robertson-Walker line element (27.6)

η =

∫
dt

a
; so dη =

dt

a
. (27.80)

Then the line element becomes

ds2 = a2[−dη2 + dχ2 + Σ2(dθ2 + sin2 θdφ2)] . (27.81)

By setting η = 0 at the beginning of the expansion and η = ηrec at the era of recombination,
and noting that light travels in the χ direction with coordinate speed dχ/dη = 1, we see that
the diameter of the horizon at recombination is

Drec = ηrec arec , where ηrec =

∫ trec

0

dt

a
(27.82)

and arec is the value of a at recombination. Two objects separated by a distance greater
than Drec were unable to communicate with each other at recombination, because there had
not been sufficient time since the birth of the universe for light to travel from one to the
other. In this sense, they were outside each others’ cosmological horizon. Objects with
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separations less than Drec could communicate, at recombination; i.e., they were inside each
others’ cosmological horizon.

As the universe expands, the cosmological horizon expands; objects that are outside each
others’ horizons in the early universe come inside those horizons at some later time, and can
then begin to communicate.

Kamionkowski, Spergel and Sugiyama realized that the universe provides us with markers
on the sky that delineate the horizon diameter at recombination, Drec. These markers are
anisotropies of the CMB, produced by the same density and temperature inhomogeneities
as would later grow to form galaxies.

The inhomogeneities are known, observationally, to have been perturbations of the density
with fixed, homogeneous entropy per baryon, i.e. with fixed T 3

R/ρM , and with amplitudes,
as they came inside the horizon,

3
∆TR

TR
=

∆ρM
ρM

∼ 1× 10−4 . (27.83)

We can resolve the perturbations ∆TR/TR at recombination into spatial Fourier com-
ponents characterized by wave number k, or equivalently by reduced wavelength λ̄ = 1/k.
Observers on Earth find it more convenient to resolve the perturbations into spherical har-
monics on the sky. Since order / = 1 corresponds to a perturbation with angular wavelength
360 degrees = 2π radians, order / must be a perturbation with angular wavelength 2π// and
thence angular reduced wavelength Θ = 1//. The ratio λ̄/Θ of physical reduced wavelength
to angular reduced wavelength is the angular-diameter distance over which the CMB photons
have traveled since recombination:

rrecAD =
λ̄

Θ
=

/

k
. (27.84)

Now, consider perturbations with spatial scale small enough that a reduced wavelength
λ̄ came inside the horizon (“crossed the horizon”) somewhat earlier than recombination.
Before λ̄ crossed the horizon, each high temperature region was unaware of a neighboring
low temperature region, so the two evolved independently, in such a way that their fractional
temperature difference grew as

∆TR

TR
∝ a ∝ t2/3 (27.85)

[Ex. 27.10]. When λ̄ crossed the horizon (i.e., when the horizon expanded to become larger
than λ̄), the neighboring regions began to communicate. The high-TR, high-ρM region pushed
out against its low-TR, low-ρM neighbor, generating sound waves; and correspondingly, the
growth of ∆TR/TR changed into acoustic oscillations.

For perturbations with some specific physical size λ̄1/4 (angular size Θ1/4), the acoustic
oscillations had completed one quarter cyle at the time of recombination, so their temperature
contrast was reduced, at recombination, to zero. For pertubations a little smaller, Θ1/2, the
oscillations had completed a half cycle at recombination, so the hot regions and cold regions
were reversed, and the temperature contrast was roughly as large as at horizon crossing.
Perturbations still smaller, Θ3/4, had completed 3/4 of a cycle at recombination, so their
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Θ0 Θ1Θ0 Θ3/4Θ1/2Θ1/4

Fig. 27.6: Anisotropy of the CMB as measured by WMAP (the first two Doppler peaks; most
error bars smaller than the dots; Hinshaw et. al. 2009) and by CBI and ACBAR (the last three
peaks; Pearson et. al. 2002, and Kuo et. al. 2002). Plotted vertically is the mean square temperature
fluctuation; plotted horizontally is the angular scale Θ. The solid curve is the theoretical prediction
when one inserts the best-fit values of the cosmological parameters. The grey shading is the range of
statistical fluctuations one would expect in an ensemble of universes all with these same cosmological
parameter values. This figure is adapted from Hinshaw et. al. (2009).

density contrast was momentarily zero. Perturbations smaller still, Θ1, had completed a full
cycle of oscillation at recombination and so had a large density contrast; and so forth.

The result is the pattern of temperature anisotropy as a function of Θ or equivalently
/ = 1/Θ shown in Fig. 27.6. The first peak in the pattern is for perturbations whose reduced
wavelength λ̄0 had only recently come inside the horizon at recombination, so λ̄0 = rADΘ0

is equal to the diameter Drec of the horizon at recombination, aside from a small difference
that can be computed with confidence. This is the standard yardstick that astronomers had
sought for decades.

The basic structure of the pattern of anisotropy oscillations shown in Fig. 27.6 is in accord
with the above description of acoustic oscillations, but the precise details are modestly
different because the initial distribution of inhomogeneities is statistical (i.e. is a random
process in the sense of Chap. 6), and the physics of the oscillations is somewhat complex.
Examples of the complexities are: (i) ∆TR does not go to zero at the minima Θ1/4 and
Θ3/4 because the emitting matter has acquired inhomogeneous velocities relative to Earth
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by falling into the oscillations’ gravitational potential wells, and these velocities produce
Doppler shifts that smear out the minima. (ii) This same infall makes the density and
temperature contrasts smaller at the half-cycle point Θ1/2 than at the full-cycle points Θ0

and Θ1.
Despite these and other complexities and statistical effects, the shapes of the acoustic

oscillations can be computed with high confidence, once one has chosen values for the cos-
mological parameters. The reason for the confidence is that the amplitude of the oscillations
is very small, so nonlinear effects are negligible. The pattern of the temperature oscillations
at recombination is computed as a function of physical length λ̄, with results that depend
modestly on some of the cosmological parameters; and then the physical pattern is converted
into a pattern as seen on Earth’s sky, using the angular-diameter distance rAD = λ̄/Θ that
the CMB photons have traveled since recombination, which depends very strongly on the
cosmological parameters.

Remarkably, the positions Θ0, Θ1/2, Θ1, . . . of the oscillation peaks (called Doppler peaks
for no good reason2), depend more strongly on the total density Ω * ΩM +ΩΛ than on other
parameters.

The first quantitative studies of the Doppler peaks, by the Boomerang project’s balloon-
borne instruments (Lange et. al. 2000) and soon thereafter by MAXIMA (Balbi et. al. 2000)
revealed that Ω = 1.0±0.2 — a great triumph: the universe’s total density is approximately
critical, and therefore its spatial geometry is approximately flat. A variety of other balloon-
based and ground-based measurements in 2000–2003 led to increasing confidence in this
conclusion and in a variety of other Boomerang/MAXIMA cosmological discoveries. More
recently the WMAP satellite-borne instruments have produced a great leap in accuracy
(Hinshaw et. al. 2008):

Ω = 1.00± 0.02 (27.86)

see Fig. 27.6. This near-unity value of Ω implies that the universe is very close to being
spatially flat; see Eq. (27.60).

The WMAP measurements also reveal that before the sound waves began producing
the oscillations, the spectral density of the temperature perturbations decayed as STR(k) ∝
k−0.96±0.01, so the rms amplitude of the fluctuations, ∆T rms

R =
√
(k/2π)STR(k) [Eq. (5.64)]

was nearly independent of wave number k, i.e. independent of Θ. This is in accord with
predictions from “inflationary” models for the production of the perturbations (Sec. 27.7
below.)

2Yakov B. Zel’dovich and Rashid A. Sunyaev (1970), who first predicted the existence of these peaks,
later gave them a name that has a little more justification: They called them Sakharov oscillations because
Andrei D. Sakharov (1965) was the first to predict the sound waves that give rise to the peaks. Zel’dovich
and Sunyaev introduced this name at a time when their close friend Andrei Sakharov was being attacked by
the Soviet government; they hoped that this would call attention to Sakharov’s international eminence and
help protect him. It seemed not to help.
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27.5.8 Age of the universe: Constraint on the dark energy
The total mass density Ω = 1.00 ± 0.02 from CMB anisotropy and the cold-matter mass
density ΩM = 0.27± 0.01 leave a missing mass density

ΩΛ = 0.73± 0.02 , (27.87)

which must be in some exotic form (dark energy) that does not condense, gravitationally,
along with the cold matter, and that therefore must have a pressure |PΛ| ∼ ρΛ. This dark
energy must have had a negligible density at the time of recombination and at the time of
nucleosynthesis; otherwise, it would have disturbed the shapes of the Doppler peaks and
distorted the nuclear abundances. In order that it be significant now and small earlier,
compared to cold matter, it must have a negative pressure PΛ < 0. One handle on how
negative comes from the age of the universe.

Assuming, that PΛ/ρΛ ≡ wΛ was constant or approximately so during most of the age
of the universe (i.e., back to redshift z ∼ 10) and that the dark energy did not exchange
significant energy with other constituents of the universe during that recent epoch, then
the first law of thermodynamics implies that ρΛ = ρcritΩΛ(ao/a)3(1+wΛ). Inserting this,
ρM = ρcritΩM (ao/a)3, and ρ = ρM + ρΛ into the Einstein equation (27.26), solving for
dt = da/ȧ, and integrating, we obtain for the product of the current age of the universe to
and the Hubble expansion rate Ho:

Hoto =

∫ 1

0

dv√
1− ΩM − ΩΛ + 1

v (ΩM + ΩΛv−3wΛ)
. (27.88)

The more negative is PΛ/ρΛ = wΛ, the larger is the integral, and thus the larger is Hoto.
By comparing the observed properties of the oldest stars in our galaxy with the theory

of stellar evolution, and estimating the age of the universe at galaxy formation, astronomers
arrive at an estimate

to = (14± 1.5)× 109yr (27.89)

for the age of the universe. A more accurate age from WMAP and other measurements is

to = (13.7± 0.1)× 109yr . (27.90)

WMAP [?? with the aid of Eq. (27.88) ??] also places a moderately tight constraint on the
dark energy’s ratio wΛ ≡ PΛ/ρΛ of pressure to energy density (Hinshaw 2009):

−1.14 < wΛ < −0.88 . (27.91)

27.5.9 Magnitude-Redshift relation for type Ia supernovae:
Confirmation that the universe is accelerating

The constraint PΛ/ρΛ < −0.78 on the dark energy has a profound consequence for the
expansion rate of the universe. In the “particle-in-a-potential” analysis [Eqs. (27.39), (27.40)



37

ef
fe

ct
iv

e 
 m

B

(0.5,0.5)    (0, 0)
( 1,    0 )    (1, 0)
(1.5,–0.5)  (2, 0)

 
(1(1S,S,1X) = ( 0,   1 )

Fl
at

1
X

 =
 0

�

redshift  z

Dashed
Solid

14

16

18

20

22

24

 
 

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 27.7: Magnitude-redshift diagram for type Ia supernovae based on observations by Perlmutter
et. al. (1999) and others. [Adapted from Perlmutter et. al. (1999).]

and Fig. 27.3] the contribution of the dark energy to the potential is VΛ(a) = −(4π/3)a2ρΛ ∝
an where n > 1.3, which grows stronger with increasing a. Correspondingly, in the present
era, the “potential energy” is becoming more negative, which means that the universe’s
“kinetic energy” 1

2 ȧ
2 must be increasing: the universe has recently made the transition from

a decelerating expansion to an accelerating expansion.
In 1998 two independent groups of astronomers reported the first direct observational

evidence of this acceleration (Riess et. al. 1998, Perlmutter et. al. 1999). Their evidence
was based on systematic observations of the apparent brightness of type Ia supernovae as
a function of the supernovae’s redshift-measured distances. If the universal expansion is,
indeed, accelerating, then distant objects (including supernovae), which we see when the
universe was much younger than today, would have experienced a slower universal expansion
than we experience today, so their observed redshifts z should be lower than in a universe
with constant or decelerating expansion rate. These lowered redshifts should show up as a
leftward displacement of the supernovae’s locations in a diagram plotting the supernovae’s
redshift horizontally and their brightness (a measure of their distance) vertically—a so-called
magnitude-redshift diagram.

Such a diagram is shown in Fig. 27.7. The measure of brightness used in this diagram is
the supernova’s apparent magnitude

m ≡ −2.5 log10(F/2.5× 10−8WM−2) , (27.92)

where F is the flux received at Earth. The sign is chosen so that the dimmer the supernova,
the larger the magnitude. A series of theoretical curves is plotted in the diagram, based on
assumed values for ΩM and ΩΛ, and on the presumption that the dark energy is vacuum
stress-energy so PΛ/ρΛ = −1. The formulae for these curves are derived in Ex. 27.9. The
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solid curves are for no dark energy, ΩΛ = 0. The dark energy, which converts the universal
deceleration ä < 0 into acceleration ä > 0, pushes the curves leftward for distant supernovae
(upper right-hand region), as described above. The dashed curves are for a mixture of dark
energy and cold matter that sums to the critical density, ΩΛ + ΩM = 1.

A detailed analysis of the data by Perlmutter et. al. (1999) gives (assuming PΛ/ρΛ = −1)

ΩΛ =
1

3
(4ΩM + 1)± 1

6
. (27.93)

Combining with ΩM = 0.27± 0.01, this implies

ΩΛ = 0.70± 0.17 , (27.94)

in good agreement with the CMB measurements and deductions from the ages of the oldest
stars.

To recapitulate: A variety of observations all point in the same direction. They agree
that our universe is close to spatially flat, with ΩΛ * 0.73, ΩM * 0.27, and ΩR ∼ 10−4.

****************************

EXERCISES

Exercise 27.8 Example: Angular-Diameter Distance
Consider an electromagnetic emitter at rest in the cosmological fluid (i.e. at rest relative
to homogeneous observers), and let the emitter’s radiation be observed at Earth. Neglect
the Earth’s motion relative to homogeneous observers. Let the cosmological redshift of the
emitted radiation be z = ∆λ/λ.

(a) Show that the emitter’s angular-diameter distance is

rAD =
R

1 + z
, (27.95)

where

R = aoΣ(∆χ) =
Σ(∆χ)

Ho

√
|1− Ω|

. (27.96)

Here ao is the Universe’s expansion factor today, Σ is the function defined in Eq. (27.8),
∆χ is the coordinate distance that light must travel in going from emitter to Earth
if its path has constant θ and φ, and for simplicity we have assumed Ω %= 1. [Hint:
Place the Earth at χ = 0 of the Robertson-Walker coordinate system, and the emitter
at χ = ∆χ, and use the line element (27.81). Also assume Ω %= 1 throughout; the final
formula (27.98) for rAD when Ω = 1 can be obtained by letting Ω → 1 at the end of
the calculation.]

(b) Assuming that the dark energy is vacuum stress-energy so PΛ = −ρΛ, show that in
the limit Ω → 1 so k = 0, the quantity Σ(∆χ)/

√
|1− Ω| appearing in Eq. (27.96)

becomes
Σ(∆χ)√
|1− Ω|

=
∆χ√
|1− Ω|

=

∫ 1+z

1

du√
ΩRu4 + ΩMu3 + (1− Ω)u2 + ΩΛ

. (27.97)
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[Hint: Use Eqs. (27.80) and (27.81) to deduce that

∆χ =

∫ to

te

dt

a
=

∫ 1+z

1

a

ao

dt

da
d
ao
a

and use the Einstein equation for da/dt.] Note that for a spatially flat universe [k = 0,
Ω = 1, Σ(∆χ) = ∆χ], Eqs. (27.95), (27.96) and (27.97) imply

rAD =
1

Ho(1 + z)

∫ 1+z

1

du√
ΩRu4 + ΩMu3 + ΩΛ

. (27.98)

(c) Plot rAD(z) for the measured values ΩΛ = 0.73, ΩM = 0.27, ΩR * 0, Ho = 70 km s−1

Mpc−1. Explore graphically how rAD(z) changes as Ω and ΩΛ/ΩM change.

Exercise 27.9 Example: Magnitude-Redshift Relation and Luminosity Distance
Consider a supernova which emits a total luminosity L as measured in its own local Lorentz
frame in an epoch when the expansion factor is a and the cosmological redshift is z = ao/a−1.

(a) Assume that the supernova and the Earth are both at rest relative to homogeneous
observers at their locations. Place the origin χ = 0 of a Robertson-Walker coordinate
system at the supernova’s location, orient the coordinate axes so the Earth lies at
θ = π/2 and φ = 0, and denote by ∆χ the Earth’s radial coordinate location. Show
that the flux of energy received from the supernova at Earth today is given by

F =
L

4πR2(1 + z)2
, (27.99)

where R is the same function as appears in the angular-diameter distance, Eqs. (27.96),
(27.97).

(b) It is conventional to define the source’s luminosity distance rL in such a manner that
the flux is F = L/4πr2L. Eq. (27.99 ) then implies that

rL = (1 + z)R = (1 + z)2rAD . (27.100)

Plot rL(z) for the measured values ΩΛ = 0.73, ΩM = 0.27, ΩR * 0, Ho = 70 km s−1

Mpc−1. Explore graphically how rL(z) changes as Ω and ΩΛ/ΩM change.

Exercise 27.10 Challenge: Growth of Perturbations Before They Cross the Horizon
Show that in a matter-dominated universe, ρM . ρR and ρM . ρΛ, the fractional density
difference of two neighboring regions that are outside each others’ cosmological horizons
grows as ∆ρ/ρ ∝ a ∝ t2/3. [Hint: the difference of spatial curvature between the two regions
is of importance. For a solution, see, e.g., pp. 108–110 of Peebles (1993).]

****************************
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27.6 The Big-Bang Singularity, Quantum Gravity, and
the Initial Conditions of the Universe

Although we do not know for sure the correct equation of state at redshifts z . 3 × 1012,
where the thermal energy of each baryon exceeds its rest mass-energy, the “particle-in-a-
potential” form (27.39) of the evolution equation tells us that, so long as dV/da ≥ 0 at
small a, the universe must have begun its expansion in a state of vanishing expansion factor
a = 0, nonzero ȧ, and infinite ȧ/a. Since some of the components of the Riemann curvature
tensor in the local Lorentz frame of a homogeneous observer are of order ȧ2/a2, this means
the expansion began in a state of infinite spacetime curvature, i.e., infinite tidal gravity,
i.e., in a “big-bang” singularity . From the form V = −(4π/3)a2ρ for the effective potential
[Eq. (27.39)] and the first law of thermodynamics (27.29), we see that the sufficient condition
dV/da ≥ 0 for the universe to have begun with a singularity is

ρ+ 3P > 0 . (27.101)

Cold matter and radiation satisfy this condition, but dark energy violates it. As we have
seen, dark energy seems to have become important in our universe only recently, so it might
not have been important at the universe’s beginning. In this section we shall assume that
it was not, and that the energy condition ρ+ 3P > 0 was satisfied in the early universe. In
the next section we shall discuss some consequences of a possible early-universe violation of
ρ+ 3P > 0.

The conclusion that the universe, if homogeneous and isotropic (and if ρ + 3P > 0),
must have begun in a big-bang singularity, drove Yevgeny Lifshitz and Isaak Khalatnikov,
students of Lev Landau in Moscow, to begin pondering in the late 1930s the issue of whether
deviations from homogeneity and isotropy might have permitted the universe to avoid the
singularity. A few events (the imprisonment of Landau for a year during Stalin’s purges,
then World War II, then the effort to rebuild Moscow, a nuclear weapons race with the
United States, and other more urgent physics research) intervened, preventing the Lifshitz-
Khalatnikov studies from reaching fruition until the early 1960s. However, after a great
push in 1959–1961, Lifshitz and Khalatnikov reached the preliminary conclusion that early
anisotropy and inhomogeneity could have saved the universe from an initial singularity:
Perhaps the universe contracted from an earlier, large-scale state, then rebounded at finite
size and finite curvature as a result of inhomogeneities and anisotropies. For a pedagogical
presentation of the analysis which produced this conclusion see Landau and Lifshitz (1962).

The Lifshitz-Khalatnikov analysis was based on the mathematics of tensor analysis (dif-
ferential geometry). In 1964 Roger Penrose (1965), a young faculty member at Kings College
in London, introduced into general relativity an entire new body of mathematical techniques,
those of differential topology, and used them to prove a remarkable theorem: that no matter
how inhomogeneous and anisotropic an imploding star may be, if it implodes so far as to
form a horizon, then it necessarily will produce a singularity of infinite spacetime curvature
inside that horizon. Stephen Hawking and George Ellis (1968), at first graduate students
and then research fellows at Cambridge University, by picking up Penrose’s techniques and
applying them to the early universe, proved that Lifshitz and Khalatnikov had to be wrong:
The presently observed state of the universe plus reasonable constraints on its early equation
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of state imply that, regardless of any inhomogeneity or anisotropy, there must have been a
singularity of infinite curvature. In response to these differential-topology analyses, Lifshitz,
Khalatnikov, and their student Vladimir Belinsky reexamined their differential-geometry
analyses, found an error, and discovered a possible structure for generic spacetime singu-
larities. In this so-called mixmaster structure, as a freely moving observer approaches the
singularity, inhomogeneities and anisotropies drive the tidal gravity (spacetime curvature)
to oscillate in such a way that the observer feels an infinite, chaotic sequence of oscillations
with ever growing amplitude, ever shortening period, and finite total proper-time duration.
This is an example of the chaotic behavior which occurs frequently in nonlinear physics.

John Archibald Wheeler, a professor at Princeton University, realized in the mid 1950s
that the singularities which began the big bang and terminate the implosion of a star cannot
be classical: as one nears them, one must encounter a breakdown in classical general rela-
tivity, and new physics governed by the laws of quantum gravity (Wheeler 1957). Wheeler
devised a simple argument to show that this is so, and to determine the critical radius of
curvature of spacetime at which the transition to quantum gravity occurs:

Quantum theory insists that every field possess a half quantum of flucutational zero-point
energy in each of its modes. Moreover, if one wishes to measure the average value of the field
in a spacetime region with 4-volume L4 (a region with side L along each of its 4 dimensions),
one’s measurements will be sensitive to the zero-point fluctuations of the modes that have
wavelengths ∼ L, but not to any others.

Now, so long as gravity is weak over the scale L, one can introduce a nearly Lorentz frame
in the region L4 and regard the deviations δgµν ≡ gµν−ηµν of the metric coefficients gµν from
the flat metric ηµν as a nearly linear field that lives in nearly flat spacetime. This field must
be just as subject to the laws of quantum mechanics as any other field. Its gravitational-
wave modes with wavelength L have an energy density of order the square of the gradient of
δgµν , i.e., ∼ (δgµν/L)2, and thus for these modes to contain a half quantum of unpredictable,
fluctuational energy, they must have unpredictable fluctuations δgµν of the metric given by

(
δgµν
L

)2

L3 ∼ !
2L

. (27.102)

Here the first term is the fluctuational energy density, L3 is the 3-dimensional volume of
the mode, and !/2L is its total fluctuational energy. Correspondingly, the mode’s metric
fluctuations are

δgµν ∼
√
!
L

. (27.103)

These fluctuations (which we have evaluated in the closest thing there is to a local Lorentz
frame in our region L4) guarantee that, whenever we try to measure a length L, we will make
unavoidable errors with magnitude

δL

L
∼ δgµν ∼

√
!
L

. (27.104)

The smaller is L, the larger are these fractional errors. When L is made smaller than
√
!,

the fractional errors exceed unity, there is no hope of measuring L at all (and our analysis
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also breaks down because we cannot introduce a nearly Lorentz frame throughout the region
L4). Thus, for a lengthscale L to be measureable, it must lie in the regime

L ! LPW , where LPW ≡
√
! =

(
G!
c3

)1/2

= 1.616× 10−33 cm . (27.105)

The critical lengthscale LPW is called the Planck-Wheeler length. It is the shortest length
that can possibly be measured with any accuracy. Thus, it is the smallest length that can
be subjected to the classical laws of physics. Since gravity is characterized, classically, by
the geometry of spacetime, classical gravity (i.e., general relativity) must break down on
lengthscales shorter than LPW . This should be true in the small in ordinary, nearly flat
spacetime; and it also should be true near singularities: Near a singularity, when the radius
of curvature of spacetime as predicted by classical general relativity becomes shorter than
LPW , general relativity must break down and be replaced by the correct quantum theory of
gravity. And when quantum gravity comes into play, it may very well convert the singularity
into something nonsingular.

Thus, to understand the true outcome of the gravitational implosion of a star, deep inside
the horizon, one must understand quantum gravity; and to understand the initial conditions
of the universe, one must understand quantum gravity.

The attempt to construct a quantum theory of gravity which unifies gravity with the
strong, electromagnetic, and weak forces in an elegant and mutually consistent way is one
of the “holy grails” of current theoretical physics research.

27.7 Inflationary Cosmology
If ρ+3P > 0, then the universe is guaranteed to have cosmological horizons of the sort that
we met when discussing acoustic oscillations in the era of recombination (Sec. 27.5.7).

The background radiation received at Earth today last interacted with matter (at a
redshift z ∼ 103) quite near our cosmological horizon. Two observers at the locations of
that last interaction, one on our north celestial pole (i.e., directly above the north pole of
the Earth) and the other on our south celestial pole (i.e., directly above the south pole of
the Earth), are today far outside each others’ cosmological horizons; and at the moment of
that last interaction, they were enormously far outside each others’ horizons. It is a great
mystery how two regions of the universe, so far outside each others’ horizons (i.e. with no
possibility for causal contact since the big bang) could have the same temperatures at the
time of that last interaction, to within the measured accuracy of ∆T/T ∼ 10−4.

One solution to this mystery is to assume that the universe emerged from the Planck-
Wheeler era of quantum gravity in a very nearly homogeneous and isotropic state (but one
with enough inhomogeneities to seed galaxy formation). This “solution” leaves to a future
theory of quantum gravity the task of explaining why this state was nearly homogeneous
and isotropic. An alternative solution, proposed by Alan Guth (1981), then a postdoctoral
fellow at Stanford University, is inflation.

Suppose, Guth suggests, that the universe emerged from the Planck-Wheeler, quantum-
gravity era, with its fields in a vacuum state for which Tvac = −ρvacg was nonzero and
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perhaps was even as large in magnitude as ρvac ∼ !−2 ∼ 1093g/cm3.
The expansion factor a presumably will have been of order LPW when the universe

emerged from the Planck-Wheeler era; and the evolution equation (27.30) predicts that it
subsequently will expand classically in accord with the law

a = LPW exp

[(
4π

3
ρΛ

)1/2

t

]
= LPW exp

(
t

µLPW

)
, (27.106)

where µ is a dimensionless constant that might be of order unity. This exponential expansion
under the action of vacuum stress-energy is called “inflation;” and if it lasted long enough,
that means our entire universe was so small in the early stages of inflation that it could easily
communicate with itself, producing homogeneity and isotropy.

Of course, inflation at this enormous rate could not have lasted forever; it surely is not
continuing today. If it occurred at all, it must have turned off at some point as a result of
the fields undergoing a phase transition from the original vacuum state (sometimes called
the “false vacuum”) to a new vacuum state in which ρvac is zero, or perhaps equal to the tiny
ρΛ that we observe today.

Although these ideas seem speculative, they have been made quite plausible by two fac-
tors: (i) they fit naturally into present ideas about the physics of the grand unification of
all forces; and (ii) they successfully explain a number of mysterious features of the universe
in which we live, including its spatial flatness, the high degree of isotropy of the background
radiation (Ex. 27.11), and the flat (wavelength-independent) spectrum of rms density fluc-
tuations that ultimately condensed into galaxies. For details see, e.g., Kolb and Turner
(1994).

27.7.1 Amplification of Primordial Gravitational Waves by Infla-
tion

This section is not yet written.

27.7.2 Search for Primordial Gravitational Waves by their Influence
on the CMB; Probing the Inflationary Expansion Rate

This section is not yet written.

****************************

EXERCISES

Exercise 27.11 Practice: Inflationary explanation for the isotropy of the cosmological back-
ground radiation
Consider an inflationary cosmological model in which (i) the expansion factor inflates as
a = LPW exp(t/µLPW ) until it has e-folded N . 1 times, i.e., from time t = 0 (when it
emerges from the Planck-Wheeler era) to time t = NµLPW , and then (ii) a phase transition
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drives a into the standard expansion produced by radiation with P = ρ/3: an expansion
with a ∝ t1/2 [Eq. (27.45)]. Show that in this model, if the number of e-folding times during
inflation is N . 70, then the north-celestial-pole and south-celestial-pole regions which
emit the background radiation we see today are actually inside each others’ cosmological
horizons: They were able to communicate with each other (and thereby, the inflationary
scenario suggests, were able to homogenize to the same temperature) during the inflationary
era. Hint : the number of e-foldings required is given analytically by

N . ln

[
Ho

−1

LPW

(ρo
Λ

)1/4
]
* 70 . (27.107)

****************************

Bibliographic Note
For an elementary introduction to cosmology, we recommend Chaps. 17, 18, 19 of Hartle
(2003); and at an intermediate level, similar to this Chap. 27, we recommend Chap. 8 of
Carroll (2004). Textbook treatments of cosmology written before about 1995 are rather out
of date, so one should only consult the standard old relativity texts such as MTW (1973)
and Weinberg (1972) for the most basic ideas.

For physical processes in the early universe such as dark matter, inflation and phase
transitions, we recommend Kolb and Turner (1994). Peebles (1993) is an excellent, but a bit
out of date, treatise on all aspects of cosmology. More up to date treatises include Dodelson
(2003) and Ryden (2002).
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Box 27.5
Important Concepts in Chapter 27

• Homogeneity and isotropy of universe, and its mathematical description via hy-
persurfaces, synchronous coordinates, Robertson-Walker line element, and three
spatial geometries (closed, flat and open), Sec. 27.2

– Homogeneous observers and their local Lorentz frame, Secs. 27.2, 27.3, 27.5.2
• Functions describing evolution of universe: expansion factor a(t) and total density

of mass-energy ρ(t), Secs. 27.2, 27.3
– Evolution laws for ρ(t) and a(t): first law of themodynamics, and Einstein

equation for expansion rate, Sec. 27.3
– Critical density to close the universe, ρcrit, Eq. (27.35)
– Effective potential for expansion of universe and qualitative and quantitative

forms of a(t), Secs. 27.4.3, and 27.4.4
• Constituents of the universe: baryonic matter, cold dark matter, radiation, and

dark energy; and their evolution as functions of the universe’s expansion factor a,
Secs. 27.4.1, 27.4.3, 27.5.8

– Ω ≡ ρ/ρcrit and its measured values for constituents, Secs. 27.4.3, 27.5.4–27.5.7
– Stress-energy tensor for the vacuum, cosmological constant, and their possible

role as the dark energy, Sec. 27.4.1, Box 27.2
– Radiation temperature and cosmological redshift as functions of a, Sec. 27.4.4
– Preservation of Planckian spectrum during evolution, Box 27.4

• Physical processes during expansion: baryon-antibaryon annihilation, electron-
positron annihilation, primordial nucleosynthesis, radiation-matter equality, plasma
recombination, galaxy formation, Secs. 27.4.5, 27.5.4

• Observational parameters: Hubble expansion rate Ho, Ω for constituents, spatial
curvature k/a2o, deceleration parameter qo, age of universe, to, Secs. 27.5.1, 27.5.3

– Measured values and methods of measurement, Secs. 27.5.3–27.5.9
– Distance-redshift relation, Sec. 27.5.3
– Angular-diameter distance as function of redshift, Eq. (27.79) and Ex. 27.8
– Anisotropy of the CMB; Doppler peaks, and their use to measured the spatial

geometry of the universe and thence Ω, Sec. 27.5.7, Fig. 27.6
– Ages of the universe constrains equation of state of dark energy, Sec. 27.5.8
– Luminosity distance; magnitude-redshift relation, Sec. 27.5.9, Ex. 27.9

• Big-bang singularity, Planck-Wheeler length and quantum gravity, Sec. 27.6
• Inflation, Sec. 27.7
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