












Ph 136: Solution for Chapter 2

3.6 Observations of Cosmic Microwave Radiation from a Moving Earth
[by Alexander Putilin]

(a)

Iν =
h4ν3

c2
N

N =
gs
h3
η =

2
h3
η (for photons)

=⇒ Iν =
2hν3

c2
η =

(2h/c2)ν3

ehν/kT0 − 1
in its mean rest frame.

let x = hν/kT0,

Iν =
2(kT0)3

h2c2
x3

ex − 1
= (3.0× 10−15 erg

cm2
)

x3

ex − 1

from Fig. 1, we see the intensity peak is at xm = 2.82, which corresponds to
νm = 1.6× 1011s−1, λm = 0.19cm.

(b) From chapter 1, we already know that the photon’s energy as measured
in the mean rest frame is hν = −~p · ~u0, then (2.28) follows immediately.

(c) Let n be the direction at which the receiver points, and v be the earth’s
velocity w.r.t. to the microwave background, then in the earth’s frame, ~u0 =
(1/
√

1− v2,−v/
√

1− v2), ~p = (hν,−hνn). Plugging the above expressions
into (2.28), we find(let θ be the angle between v and n)

Iν =
2hν3

c2
η =

2h
c2

ν3

ehν/kT − 1

with T = T0

( √
1− v2

1− vcosθ

)

For small v, we can keep only terms linear in v and find T ≈ T0(1+vcosθ) which
exhibits a dipolar anisotropy. And the maximal relative variation ∆T/T ≈
(T (θ = 0)− T (θ = π))/T0 = 2v/c = 4× 10−3.

3.3 Regimes of Particulate and Wave-like Behavior [by Jeff Atwell]

(a) The equations in the text can be used to relate the occupation number
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Figure 1: Ex. 2.6

to the specific intensity

η =
h3

2
N =

c2

2hν3
Iν .

We also have the equation

Iν =
dE

dAdtdνdΩ
.

We are told that when the radiation reaches earth it has dE/dA ∼ 10−6

ergs/cm2, and dt = 1 sec. We should take dΩ = (1000 km)2/(1010 light years)2,
and might take dν ∼ ν (and one finds ν from E ∼ 100keV ). With this I find
η ∼ 2000. This is not as small as what was expected, and implies that the
photons behave more like waves in this case. The occupation number will stay
the same as the photons propagate because the energy flux dE/dA dies out as
1/r2, and the solid angle subtended by the source dies out as dΩ ∝ 1/r2, so
dE/dAdΩ is independent of radius, as are all other quantities that enter into Iν
and then into η.

(b) We are given the total dE in terms of the mass of the sun. An observer
at distance r from the source sees an energy flux dE/dA = dE/(4πr2), and sees
this coming from a solid angle dΩ ∼ λ2/r2. Therefore, dE/dAdΩ ∼ dE/(4πλ2).
Here λ = c/ν, and ν ∼ 1000 Hz. We are also given dν ∼ 1500 Hz, and dt ∼ 10−2

sec. Also, gs = 2 for gravitons. With this I calculate η = 1072, and so the gravi-
tons will behave like a classical gravitational wave.



3.11 Specific Heat for Phonons in an Isotropic Solid [by Jeff Atwell]

(a) As with blackbody radiation, each mode in a solid is a harmonic oscillator
with some well-defined frequency ν. Like all harmonic oscillators, this mode
must have uniformly spaced energy levels, with an energy spacing

ε = hν

When the mode is excited into itsN ’th energy level, we can regard it as havingN
quanta, i.e. N phonons; i.e., N will be its occupation number. Since the mode,
like any harmonic oscillator, can have any occupation number 0 ≤ N < ∞, it
must obey Bose-Einstein statistics rather than Fermi-Dirac statistics, and its
quanta — its phonons — must be bosons.

(b) Since phonons are bosons, and µR = 0, and each phonon has an energy
E = hν, the distribution functions will be the same as for blackbody radiation
(equation (2.21)): the mean number of quanta N in a mode with frequency ν
will be

η =
1

ehν/kT − 1
,

and the number density of phonons in phase space will be

N =
gs
h3

1
ehν/kT − 1

.

In this expression we must think of ν as the frequency of a phonon whose energy
is E = hν and whose momentum is p = E/cs = hν/cs.

(c) To calculate the total energy in one type of sound wave (longitudinal or
transverse), we integrate NE over phase space, i.e. we multiply by the volume V
of our solid and we integrate over momentum space using spherical coordinates
so dVp = 4πp2dp:

ETotal =
∫
NEV dVp =

∫ ∞
0

(
gs
h3

1
ecsp/kT − 1

)
(csp)4πp2dp .

Change to the dimensionless variable x = csp/kT , to find

ETotal = gs
4πk4

h3c3s
V T 4

∫ ∞
0

x3

ex − 1
dx.

The integral can be evaluated in terms of the Bernoulli number [Eq. (2.48c) of
the text, plus Table 2.1]. The final result is

ETotal = gs
4π5k4

15h3c3s
V T 4,



which is what we wanted to show.

(d) To get the heat capacity, differentiate ETotal with respect to T :

CV = 4asT 3V.

(e) The phonon frequency and wavelength are related by ν = cs/λ, so the
thermal distribution function is given by

η =
1

ehcs/λkT − 1
=

1
eλT /λ − 1

.

From this we can see that when λ� λT , η � 1; and for λ ∼ λT , η ∼ 1; and for
λ� λT , η � 1.

The atomic spacing ao puts a lower limit on the wavelengths of the phonons,
λmin = 2ao, corresponding to an upper limit on their energies:

Emax = hνmax = hcs/λmin =
hcs
2ao

.

This may be safely ignored at low temperature. But when

kT ∼ Emax,

the computation will fail. TD ∼ Emax/k is the Debye temperature. Once we hit
the Debye temperature, the total number of modes saturates to some number
Nmodes, as adding higher frequency (lower λ) modes would force us to exceed
the fundamental lattice spacing.

When kT > Emax, every mode should hold an energy ∼ kT , and so then
ETotal ∼ gsNmodeskT , where Nmodes is the total number of modes of vibration
of the solid. This is the “equipartition theorem” in thermal physics. Then
CV = dEtotal/dT = gsNmodesk will be independent of temperature.

3.9 Equation of State for Electron-Degenerate Hydrogen [by Alexander
Putilin]

Mean occupation number of electron gas:

η =
1

e
Ẽ−µ̃e
kT + 1

, Ẽ2 = p2 +m2
e

Gas is degenerate if µ̃e −me >> kT . In this limit η(Ẽ) looks like Fig. 2
The width of the ”transition” region where η(Ẽ) goes from 0 to 1 is ∼ kT , so in
the limit µ̃e −me >> kT we can approximate η(Ẽ) by step function: η(Ẽ) = 1
for Ẽ < µ̃e; η(Ẽ) = 0 for Ẽ > µ̃e.
The number density n is given by

n =
∫ ∞

0

4πNp2dp = 4π
2
h3

∫ ∞
0

ηp2dp

=
8π
h3

∫ pF

0

p2dp =
8π
3h3

p3
F
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Figure 2: Ex. 2.9

where pF =
√
µ̃2
e −m2

e.
The energy density ρ = ρp + ρe. Protons are nonrelativistic so ρp = mpn =
8πmpp

3
F /3h

3. while

ρe = 4π
∫ ∞

0

N Ẽp2dp =
8π
h3

∫ pF

0

√
p2 +m2

e p
2dp

ρe ≈ men, if pF << me (non-relativistic case);

ρe ≈ 2π
h3
p4
F , if pF >> me (ultra-relativistic case)

In both cases ρe << ρp, provided that pF << mp, i.e. protons remain non-
relativistic. Thus

ρ ≈ ρp =
8πmp

3h3
p3
F =

8πmp

3(h/me)3
x3, x =

pF
me

Now turn to pressure. Electron’s pressure

Pe =
4π
3

∫ ∞
0

N Ẽ−1p4dp =
8π
3h3

∫ pF

0

p4dp√
p2 +m2

e

=
8πm4

e

3h3

∫ x

0

z4dz√
z2 + 1

(let z =
p

me
)

=
πm4

e

h3
ψ(x), where ψ(x) =

8
3

∫ x

0

z4dz√
1 + z2



Using Mathematica we find

ψ(x) = sinh−1x− x
(

1− 2x2

3

)√
1 + x2

for x << 1, ψ(x) ≈ 8
15
x5; for x >> 1, ψ(x) ≈ 2

3
x4

Proton pressure Pp = nkT << Pe in both cases. Thus

P ≈ Pe =
πm4

e

h3
ψ(x)
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