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Ph 136: Solution for Chapter 2

3.6 Observations of Cosmic Microwave Radiation from a Moving Earth
[by Alexander Putilin]

(a)

4,3
="y
c
9s 2
= 731= 737 (for photons)
2hv? 2h /)3
= Vn_( /v

02 - th/k}To _ 1

in its mean rest frame.

let © = hv /KTy,

2(kTp)? a3 _ 3
=250 T 30x10
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15erg) T
et —1

cm?

from Fig. 1, we see the intensity peak is at z,, = 2.82, which corresponds to
U = 1.6 x 10571 X\, = 0.19¢cm.

(b) From chapter 1, we already know that the photon’s energy as measured
in the mean rest frame is hv = —p'- iy, then (2.28) follows immediately.

(c) Let n be the direction at which the receiver points, and v be the earth’s
velocity w.r.t. to the microwave background, then in the earth’s frame, uy =
(1/vV/1—=v2,—v/v/1—=v2), § = (hv,—hvn). Plugging the above expressions
into (2.28), we find(let 6 be the angle between v and n)

2h® 2k v
T T2 1T 2 kT

NS
with T =Ty | Y222
1 — vcos

For small v, we can keep only terms linear in v and find T ~ T (14 vcosf) which
exhibits a dipolar anisotropy. And the maximal relative variation AT/T =
(TO=0)—T(0O=m))/To =2v/c=4x1073.

3.3 Regimes of Particulate and Wave-like Behavior [by Jeff Atwell]

(a) The equations in the text can be used to relate the occupation number



(1 o’ 5erg/cmz)

to the specific intensity

We also have the equation

dE
= dAdtdvdQ

I,

We are told that when the radiation reaches earth it has dE/dA ~ 107
ergs/cm?, and dt = 1 sec. We should take dQ = (1000 km)?/(10° light years)?,
and might take dv ~ v (and one finds v from £ ~ 100keV). With this I find
n ~ 2000. This is not as small as what was expected, and implies that the
photons behave more like waves in this case. The occupation number will stay
the same as the photons propagate because the energy flux dE/dA dies out as
1/r2, and the solid angle subtended by the source dies out as dQ2 oc 1/72, so
dE/dAdS) is independent of radius, as are all other quantities that enter into I,
and then into 7.

(b) We are given the total dE in terms of the mass of the sun. An observer
at distance r from the source sees an energy flux dE/dA = dE /(47nr?), and sees
this coming from a solid angle d2 ~ A\?/r2. Therefore, dE/dAdS) ~ dE/(47)\?).
Here A\ = ¢/v, and v ~ 1000 Hz. We are also given dv ~ 1500 Hz, and dt ~ 1072
sec. Also, g, = 2 for gravitons. With this I calculate n = 1072, and so the gravi-
tons will behave like a classical gravitational wave.



3.11 Specific Heat for Phonons in an Isotropic Solid [by Jeff Atwell]

(a) As with blackbody radiation, each mode in a solid is a harmonic oscillator
with some well-defined frequency v. Like all harmonic oscillators, this mode
must have uniformly spaced energy levels, with an energy spacing

€= hv

When the mode is excited into its N’th energy level, we can regard it as having N
quanta, i.e. N phonons; i.e., N will be its occupation number. Since the mode,
like any harmonic oscillator, can have any occupation number 0 < N < oo, it
must obey Bose-Einstein statistics rather than Fermi-Dirac statistics, and its
quanta — its phonons — must be bosons.

(b) Since phonons are bosons, and ur = 0, and each phonon has an energy
& = hv, the distribution functions will be the same as for blackbody radiation
(equation (2.21)): the mean number of quanta N in a mode with frequency v

will be
1

= Chuo/kT — 71

and the number density of phonons in phase space will be

s 1
J\/—g

T RB ehv/kT _ 1"

In this expression we must think of v as the frequency of a phonon whose energy
is & = hv and whose momentum is p = £/cs = hv/c,.

(c) To calculate the total energy in one type of sound wave (longitudinal or
transverse), we integrate A’ over phase space, i.e. we multiply by the volume V'
of our solid and we integrate over momentum space using spherical coordinates
so dVp = 4tp?dp:

_ _ [T (s 1 2
gTotal - /NEVde —/0 (]ﬁeCs;D/kT_1> (Csp)47l'p dp .

Change to the dimensionless variable x = csp/kT, to find
4k < g3
Erotal = gs——=VT* [ ———dx.
Total g hgci /0 e — 1 Z
The integral can be evaluated in terms of the Bernoulli number [Eq. (2.48¢) of

the text, plus Table 2.1]. The final result is

4okt

goa: STFp13 .3 ;
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which is what we wanted to show.

(d) To get the heat capacity, differentiate Erorq; Wwith respect to T
Cy = 4a,T?V.

(e) The phonon frequency and wavelength are related by v = ¢/, so the
thermal distribution function is given by

_ 1 _ 1
= Che/3kT — 1~ o/r — 1

From this we can see that when A < Ay, n < 1; and for A ~ A, n ~ 1; and for
A Ap, > 1.

The atomic spacing a, puts a lower limit on the wavelengths of the phonons,
Amin = 2a,, corresponding to an upper limit on their energies:
heg
2a,
This may be safely ignored at low temperature. But when

kT ~ gma)u

gma:r: = hl/max = hcs/)\min =

the computation will fail. Tp ~ Enax/k is the Debye temperature. Once we hit
the Debye temperature, the total number of modes saturates to some number
Nmodes, as adding higher frequency (lower A) modes would force us to exceed
the fundamental lattice spacing.

When kT > Enax, every mode should hold an energy ~ kT, and so then
Erotal ~ JsNmodeskT, where Niodes 1S the total number of modes of vibration
of the solid. This is the “equipartition theorem” in thermal physics. Then
Cy = d&tota1/dT = gsNmodesk Will be independent of temperature.

3.9 Equation of State for Electron-Degenerate Hydrogen |[by Alexander
Putilin]
Mean occupation number of electron gas:
1 ~
= "TF5_4 , E?=p* 4 m?
e w41

Cas is degenerate if fi, — me >> kT. In this limit 5(E) looks like Fig. 2

The width of the ”transition” region where n(E) goes from 0 to 1 is ~ kT, so in
the limit fi. —me >> KT we can approximate 7(E) by step function: n(£) = 1
for B < fie; n(E) =0 for E > fi.

The number density n is given by

o0 2 oo
n = / AT Npidp = 4Wﬁ npdp
0 0
8£



es il

|
I
|
|
|
|
|
w
Figure 2: Ex. 2.9

where pp = /2 — m2.

The energy density p = p, + p.. Protons are nonrelativistic so p, = m,n =
8mmy,p3/3h3. while

oo - 87 PFr
pe = 471'/ NEp?dp = ﬁ/ V% +m2 p*dp
0 0

Pe = men, if pp << m, (non-relativistic case);

2m
ﬁp%, if pr >> m, (ultra-relativistic case)

Q

Pe

In both cases p. << pp, provided that pr << m,, i.e. protons remain non-
relativistic. Thus

_ 8mmy 4 8rmy 3 Pr

P%pp_ 3h3 Prp = 3(h/m€)3x , T Me

Now turn to pressure. Electron’s pressure

A [ - 8t [P pldp
P = — E7ptdp = — / —
3 /0 N b ap 3h3 0 /p2+m2
4
Smm, let z = i)

/‘r 2%dz (
3h3 0 \/22+1 Me

Tm2 8 [T 2tz
= 3 Y(x), where ¢($):§ i



Using Mathematica we find

Y(x) = sinh ™'z —x <1 - 2;2) V1+a?

2
for x << 1, ¢(x) =~ %x5; for x >>1, ¢(x) = 3%

4

Proton pressure P, = nkT << P, in both cases. Thus
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