
Ph 136: Solution 3 for Chapter 3

3.14 Solar Heating of the Earth: The Greenhouse Effect [by Alexander
Putilin]

(a) The energy per unit time per unit frequency emitted by the surface
element dA of the sun into the solid angle dΩ centered around unit vector n̂ is
(see Fig. 1) dẼ/dt = IνdAcosθdΩdν. And the total energy flux is thus
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Figure 1: Ex. 2.14a

(b) (See Fig. 2). Similarly, the flux arriving at the earth is given by
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From Fig.4, we see sinθ0 = R�/r. Thus
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Figure 2: Ex. 2.14b

(c) (See Fig. 3) Radiated power
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dẼ/dt

)
radiated

= σT 4
⊕4πR2

⊕, while ab-

sorbed power
(
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Figure 3: Ex. 2.14c

(d) If we take albedo A into account,
(
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remains the same. Thus we get
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(e) As given, the problem’s numbers yield an insanely high temperature
for the Earth’s surface temperature. We will use a Greenhouse factor of G =
0.58. Due to Greenhouse Effect,
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dẼ/dt
)
radiated

=
(
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gives us T⊕ = 293K.

3.15 Olber’s Paradox and Solar Furnace [by Alexander Putilin]
Place an observer at some spot on the earth and choose some arbitrary di-

rection n̂. (See Fig. 3)



Since the universe is assumed to be flat, it must be infinite in space and time
so the observer will see some star in that direction.
Vlasov equation then gives Iν(n̂)/ν3 = Iν/ν

3|at the star′s surface. And since
there’s no gravitational and Doppler shifts in a flat stationary universe: Iν(n̂) =
Iν(at the star′s surface).
The energy flux received by the observer is (see Ex. 2.11)
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the summation is over all the visible stars and Ti is the temperature of the i-th
star.
The hotter stars will dominate in this sum, so that T ≈ Thotter stars ≈ 104K.
When the earth come into thermal equilibrium F = σT 4

⊕, so its surface temper-
ature will be T⊕ = T ≈ 104K.
We are protected from being from fried because the universe is not stationary
but rather is expanding (and has finite lifetime). The stars first formed when
the universe was about 2 billion years old (at a redshift ∼ 5). When we look
out beyond that point, we see no more stars or galaxies. This means that only
a small fraction of our sky is actually covered by stellar surfaces.
Now let’s talk about solar furnace(see Fig. 4). We can use a lens of large

Figure 4: Ex. 2.15: Solar Furnace

diameter D and small focal length f << D to focus the sun’s rays. At the spot
where the rays are focused, the specific intensity Iν is the same as at the surface
of the sun:

Iν =
2h
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ν3

ehν/kT� − 1



And the energy flux F =
∫
IνcosθdΩdν, where the integration over the solid

angle is almost over the whole upper hemisphere: 0 ≤ θ ≤ π/2. Thus we find
F = σT 4

�. So at equilibrium the temperature of the spot is T = T�.
The effect of the lens is that it enlarges the image of the sun so that the image
is spread over almost all the sky.

3.20 Neutron Diffusion in a Nuclear Reactor [by Jeff Atwell]

(a) Denote the distribution function by nE(E, t).
Use ns, na, σs, σa to denote the density of scattering centers (i.e. moderator
atoms), absorbing centers (i.e. 238U atoms), the scattering cross section, and
the absorption cross section, respectively.
A neutron with speed v =

√
2E/m has a probability of getting scattered per

unit time vnsσs, and a probability of getting absorbed per unit time vnaσa.
Now we must use the energy decrement during each scattering. We are given

ξ = −d(lnE) ≈ 0.158.

This may be rewritten easily as

dE = −ξE.

It follows that the rate of a neutron slowing down is

dE

dt
= −vnsσsξE.

Then the “flux” q will be this quantity multiplied by the distribution function:
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)
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In the steady state, when nE(E, t) = nE(E), q will also be a function of the
energy only.

(b) Consider a tiny interval of energy δE at a neutron energy E that might
or might not be in the energy range where absorption occurs. The rate per unit
volume at which neutrons enter this interval via scattering from higher energies
is

dnenter

dt
= q(E)

δE

ξE

[because q is the rate per unit volume at which neutrons scatter downward in
energy through E, on average each neutron loses ξE of energy in its scattering, so
the fraction of them that wind up in the tiny interval δE is δE/(ξE).] Neutrons
leave δE due to both scattering and absorption. The number of neutrons per
unit volume in δE is nEδE, and they move with speed v, encountering naσa



absorbers per unit length of their motion, and encountering nsσs scatterers.
Therefore, the rate at which they leave δE is

dnleave

dt
= nEδEv(naσa + nsσs) .

Because the neutron distribution is in a steady state, the rates of entering and
leaving δE must be equal, which means

q = nEvξE(σsns + σana) . (1)

Thus, the relation between q and nE is different in the absorbing region than
in the non-absorbing region: it depends on σana.
Next we shall derive a differential equation for q. We shall do so using the
law of conservation of particles in energy space. Just as in physical space the
number density n and flux Sj of particles satisfies the conservation law ∂n/∂t+
∂Sj/∂xj = (dn/dt due to particle creation or destruction), so similarly in energy
space

∂nE
∂t

+
∂(−q)
∂E

=
dnE
dt absorption

= −nEvσana .

Here the negative sign on q is because q is the flux downward in energy space,
but the conservation law requires the flux upward. The first term on the left side
of this equation vanishes because the neutron distribution is in a steady state.
Rewriting the partial derivative as an ordinary derivative (because q depends
only on energy E), we obtain

dq/dE = −nEvσana .

Combining with Eq. (1) for q, we obtain the claimed result:
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(σsns + σana)ξ

.

Outside the absorption region σa vanishes and the neutron flux in energy space
is conserved, q = constant. In the absorption region q decreases with energy as
described by this equation.

(c) Integrate the differential equation from 7 eV to 6 eV:

ln
(
q(E = 7 eV )
q(E = 6 eV )

)
=

σana
ξ (σsns + σana)

ln (7/6).

In order to maintain the chain reaction, we need q(E = 6 eV )/q(E = 7 eV ) ≈
1/2. Now plug this in and solve for ns/na:

ns
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≈ σa
σs

(
ln (7/6)
ξ ln 2

− 1
)
≈ 140,

where I have used σs = 4.8 barns and σa = 1600 barns.


