




Ph 136: Solution 4 for Chapter 4 and 5

5.3 Grand Canonical Ensemble for Ideal Relativistic Gas [by Alexei
Dvoretskii, edited by Geoffrey Lovelace]

(a) Suppose there are N identical particles in the volume. Since the gas
is in a classical regime, the average occupation number for each state is low
(η̄ � 1), so it is highly unlikely that a state will contain more than one quanta.
A given configuration thus has N particles in N states, which can be done in
N ! different ways. Therefore

M = N !

(b) Each particle can move in three dimensions; since the gas is monatomic,
there are no rotational or vibrational degrees of freedom. Therefore, the total
number of degrees of freedom is W = 3N . We know that N = 1

Mh3N , so, using
the result from part (a), N = 1

N !h3N . The particles travel freely for most of the
time, so all of the energy is kinetic:

EN =
∑N
A=1

√
p2
A +m2

(c) So far, we’ve been treating N as a constant. However, in reality the
system may have any number of particles, from 0 to ∞. For each system with
N particles, we must sum over the possible states, weighting each term by the
exponential given in Eq. (3.40a). The sum over all states of a system with N
particles confined to a volume each confined to a volume V can be expressed as∫
dNstates. Therefore, using Eq. (3.40a), we have

Z =
∑
n

exp
(
−E + µRNn

kT

)
=
∞∑
N=0

∫
dNstates,Ne

−Estate+µRN
kT .

Consider a single particle in the gas (say, particle A). It is confined to the
volume V that the gas occupies, so dNstates,N,A = V d3pA

h3 = 4πp2
AdpAV . The

number of states available to the entire gas of N particles, then, is

dNstates,N =
∏N
A=1 4πp2

AdpAV
N

h3NN !
.

Note that we have divided by N !, since the particles are identical; interchanging
any two particles does not give a new state. We already found E = Estate in
part (b).



Inserting these expression into the equation for Z, we have

Z =
∞∑
N=0

∫ ∏N
A=1 4πp2

AdpAV
N

h3NN !
e
−
„PN

A=1

√
p2
A

+m2
«
+µRN

kT

=
∞∑
N=0

e
µRN

kT
V N

N !h3N

N∏
A=1

[∫
e−
√

pA
2+m2

4πp2
AdpA

]

=
∞∑
N=0

e
µRN

kT
V N

N !h3N

[∫ ∞
0

e−
√
p2+m2

4πp2dp

]N
In the last line, we note that dpA is just a dummy variable.

(d) For the non-relativistic limit, write
√

p2 +m2 = m + p2

2m , which is the
non-relativistic energy. Then we have∫ ∞

0

e−
√
p2+m2
kT 4πp2dp =

∫ ∞
0

e
−m− p2

2m
kT 4πp2dp = e−m/kT (2πmkT )3/2.

Let µ ≡ µR −m, so that

Z =
∞∑
N=0

V N

N !h3N
e
µN
kT (2πmkT )3N/2 = exp

(
V

h3
e
µ
kT (2πmkT )3/2

)
.

From Z, it is straightforward to get the grand potential Ω:

Z = e−Ω/kT ⇒ −kT logZ = Ω = −kTe
µ
kT
V

h3
(2πmkT )3/2.

This is Eq. 3.47a.
For the ultrarelativistic limit, let m → 0, so that the particles travel near

the speed of light. Then∫ ∞
0

e−
√
p2+m2
kT 4πp2dp =

∫ ∞
0

e−p/kT 4πp2dp = 8π(kT )3.

It is straightforward to evaluate this integral. The rest of the problem proceeds
analogously to the nonrelativistic case, except you keep the relativistic chemical
potential:

−kT logZ = Ω = −8π V
h3 (kT )4eµR/kT

(e) The quantities you are asked to calculate in part (e) are all partial
derivatives of the potential you calculated in part (d). Eqs. (3.47c) tells you
how to get N̄ , S, and P : Take minus the partial derivative of Ω with respect to



µR, T . and V , respectively. The results are then

N̄ =
8πV (kT )3

h3
eµR/kT

P =
8π(kT )4

h3
eµR/kT

S = kN̄(4− µR
kT

).

To calculate Ē , use Eq. (3.43):

Ē = Ω + TS + µRN̄ = 3N̄kT.

Then it immediately follows that

Ē/N̄ = 3kT and Ē/V = 3P

5.2 Energy Representation for a Nonrelativistic Monatomic Gas [by
Dan Grin]

(a) We begin with an expression for the fundamental potential E of a non-
relativistic gas in the energy representation, (see Eq. 4.9c in the text)

E(V, S,N) = N

(
3h2

4πm

)(
V

N

)−2/3

exp
(

2
3kB

S

N
− 5/3

)
. (1)

To derive the desired relations, we need only substitute Eqn. (1) into the fol-
lowing expressions for the intensive variables in terms of variables of the funda-
mental potential (Eqns. 4.10a in the text):

T =
(
∂E

∂S

)
V,N

, µ =
(
∂E

∂N

)
V,S

, P = −
(
∂E

∂V

)
S,N

. (2)

In the case of temperature, this derivative is trivial, as E only depends on S
through the exponent, and yields

T = h2

2πkBm

(
N
V

)2/3
exp

[
2

3kB
S
N − 5/3

]
.

In the case of pressure, the derivative is trivial, as E only depends on V through
the pre-factor in front, and so,

P = −
(
∂E
∂V

)
S,N

= h2

2πm

(
N
V

)5/3
exp

[
2

3kB
S
N − 5/3

]
.

The chemical potential is a little trickier, but we can simplify our lives a little
by re-writing E in the following form

E =
(
N

V

)5/3( 3h2

4πm

)
exp

[
2

3kB
S

N
− 5/3

]
V (3)



Then, calling on the product (Leibniz) rule, we see that

µ =
(
∂E

∂N

)
V,S

=
5
3

(
N

V

)2/3 3h2

4πm
exp

[
2

3kB
S

N
− 5/3

]
− (4)

2S
3kBN2

(
N

V

)5/3

exp
[

2
3kB

S
N
− 5/3

]
V

⇒ µ = h2

4πm

(
N
V

)2/3 (
5− 2 S

kBN

)
exp

[
2

3kB
S
N − 5/3

]
.

(b) We verify that the Maxwell relations are satisfied by taking the appro-
priate derivatives of the Eqns. derived in part a).

−
(
∂P

∂S

)
N,V

= −
(

h2

3kBπNm

)(
N

V

)5/3

exp
[

2
3kB

S

N
− 5/3

]
=
(
∂T

∂V

)
S,N

(5)(
∂µ

∂V

)
N,S

=
(

h2

6πmN

)(
N

V

)5/3(
5− 2

S

kBN

)
exp

[
2

3kB
S

N
− 5/3

]
= −

(
∂P

∂N

)
S,V

.(6)

(
∂T

∂N

)
S,V

=

{
h2

3πmkBV

(
V

N

)1/3

− h2S

3πmk2
BN

2

(
N

V

)2/3
}
×

exp
[

2
3kB

S

N
− 5/3

]
=
(
∂µ

∂S

)
N,V

. (7)

(c) To derive the ideal gas gas equation, we solve the temperature equation
for the exponential expression to obtain

exp
[

2
3kB

S

N
− 5/3

]
=

2πkBmT
h2

(
V

N

)2/3

. (8)

Plugging this into the pressure equation, oodles of factors cancel out to yield
the desired ideal gas law:

P = NkBT/V .

4.10 Primordial Element Formation [by Alexei Dvoretskii, edited by Geof-
frey Lovelace, Dan Grin, Nate Bode]

In the early universe, the protons and neutrons travelled at non-relativistic
speeds, so they can be described as a monatomic, non-relativistic gas. The
photons travel at the speed of light and make up an ultrarelativistic gas. We
solve the problem by considering the gas in two different epochs and suppose
that the transition is rapid. Initially we have a gas made up of solely neutrons



and protons. The entropy per 2 protons and 2 neutrons is (ignoring the small
mass difference between the proton and neutron)

σinit = 4

(
5
2

+ ln

[
2mp

ρ

(
2πmpkTf

h2

)3/2
])

= 10 + 4 ln

[
2mp

ρ

(
2πmpkTf

h2

)3/2
]

In the final state the entropy will be given by the α-particle entropy per α-
particle added to the photon entropy per photon. Note that the 7 MeV is the
binding energy per nucleon. Therefore, the total binding energy of an α-particle
is 28 MeV (so the problem incorrectly gives 7 MeV). Therefore

σfinal =
5
2

+ ln

[
8mp

ρ

(
8πmpkTf

h2

)3/2
]

+ σγ ,

where σγ is the photon entropy per photon and can be roughly found from the
thermodynamic equation

σγ ∼ Sγ/k = U/T = 28 MeV/kT ≈ 4.49× 10−5 ergs/kT . (9)

Now we must calculate ρ at the transition point. As nucleosynthesis occurs after
inflation the universe expands adiabatically except when particle species anni-
hilate. At the ∼ MeV temperatures under consideration, the last annihilation
event (e+e− → γγ) has occurred, so we may treat the expansion of the universe
as adiabatic. This means that the density of baryons is given by

ρbaryon,init = ρbaryon,now

(
Tinit

Tnow

)3

. (10)

Currently the total matter density is ρtotal,now ≈ 1.7 × 10−29g/cm3, and the
mass fraction of baryons is about 2%. Therefore to we need to equate σinit and
σfinal, plugging in Eqns. 10 and 9. Solving using your favorite numerical solver
gives

Tcrit = 1.0× 109K .

The time of nucleosynthesis can be found by plugging this temperature into

T (t) =
Tinit√
t/tinit

⇒ tcrit = tinit

(
Tinit

Tcrit

)2

(11)

Therefore,

tcrit ∼ 100 s.

In Fig. 1, we can see that at early times (high temperatures), the higher entropy
(preferred) state is 2p + 2n, while at late times (low temperatures T < Tcrit),
the higher entropy (preferred) state is α+ γ, indicating that helium production
does not occur until T ∼ Tcrit.
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Figure 1: Particle Entropy per Particle in units of k−1 as a function of temper-
ature in Kelvin. Red curve shows entropy per particle for collection of protons
and neutrons only (initial state), while the green curve shows entropy per par-
ticle for α-particles and photons in the final state.
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