
Ph 136: Solution 5 for Chapter 5 and 6

5.5 Electron-Positron Equilibrium at “Low” Temperatures [by Xinkai
Wu], [modified by Kip Thorne and Dan Grin]

(a) The reaction equation e− + p −→ e− + p + e− + e+ gives µ̃e− + µ̃p =
2µ̃e− + µ̃p + µ̃e+ , which implies µ̃e− + µ̃e+ = 0, i.e.

µ̃e− = −µ̃e+ .

(b) In what follows we shall use µ̃− to denote µ̃e− , and µ̃+ to denote µ̃e+ .
The distribution function(density in phase space) for positrons and electrons
(both having gs = 2) is given by

N± =
2
h3
η± =

2
h3

1
e(Ẽ−µ̃±)/kT + 1

(1)

Ẽ ≈ mc2 + p2/2m (2)

⇒ N± = 2
h3

1

e(
p2
2m+mc2−µ̃±)/kT+1

The density in coordinate space n± is given by
∫
d3pN±. We know that

n− > n+ because while positrons and electrons are created in pairs we also
have ionization electrons from hydrogen atoms. Thus we must have µ̃− > µ̃+.
This inequality combined with µ̃− + µ̃+ = 0 gives

µ̃− > 0, µ̃+ < 0.

(c) In the dilute-gas regime, η± ≈ exp
[
−( p2

2m +mc2 − µ̃±)/kT
]
. It’s trivial

to perform the momentum-space integral and find

n± =
2
h3

(2πmkT )3/2exp

(
µ̃± −mc2

kT

)
(3)

η << 1 means (µ̃± −mc2) << −kT (see Chapter 2), i.e.

n± <<
2
h3

(2πmkT )3/2 = 4.8× 1027

(
T

108K

)3/2

cm−3 (4)

The hydrogen mass density is ρ ≈ n−mp (because me << mp and also electron-
positron pair generation is negligible, thus by charge neutrality n− = np) Thus
the dilute-gas region is given by

ρ << 8× 103
(

T
108K

)3/2
g · cm−3.



(d) Define x ≡ eµ̃−/kT , then eµ̃+/kT = 1/x. And using the expression for
n± we found in part (c), we get

n = n− − n+ =
2
h3

(2πmkT )3/2e−mc
2/kT (x− 1/x) (5)

define y ≡ 1
4
nλ3emc

2/kT , where λ ≡ h√
2πmkT

(6)

⇒ 2y = (x− 1/x) (7)
⇒ x = y + (1 + y2)1/2 (8)

(9)

Thus, n+
n = 1/x

x−1/x = 1

2y[y+(1+y2)1/2]

(e) [by Kip Thorne] The amount of phase space available to the ionization
electrons, per ionization electron, is of order Vphase ∼ (2πmkT )3/2mp

ρ . If one
pair forms per ionization electron (our criterion for significant pair formation),
then each positron will also have available to it the phase volume Vphase. When
this Vphase is very large (i.e. when ρ is very small, at fixed T ∼ 108K), then
the positron is almost completely unaware of the presence of the electrons, so
the probability of its meeting an electron and annihilating is very small. This
means that, although pair production occurs only very rarely (because of the
very few number of photons with sufficient energy to produce a pair), once it has
occured, on average the positron lives for a very long time. It is this balancing
of the long life, due to the huge phase space per particle, against the rarity of
pair production, that enables significant pairs to form at T as low as ∼ 108K.

5.4 Latent Heat and the Clausius-Clapeyron Equation [by Xinkai Wu]

(a) For fixed temperature and pressure, the change in the Gibbs potential
is

dG = µ̃adNa + µ̃bdNb = (µ̃a − µ̃b)dNa (10)

where we’ve used the fact that dNb = −dNa.

By the minimum principle for the Gibbs potential, Na will decrease when
µ̃a > µ̃b, and increase when µ̃a < µ̃b. As a consequence, if phases a and b are in
equilibrium with each other, one must have µ̃a = µ̃b(subtracting mH2Oc

2 from
both sides one finds µa = µb.) The Gibbs potential G is a function of (T, P,N),
so the chemical potential µ =

(
∂G
∂N

)
T,P

is also a function of (T, P,N). However,
µ is an intensive quantity and consequently can’t depend on the extensive quan-
tity N , namely µ is a unique function of T and P . The above reasoning is valid
for any phase a. In a two-phase region, we must have µa(T, P ) = µb(T, P ),
which is one equation for two variables T and P , giving a line in the T − P



plane. In a three-phase region, µa(T, P ) = µb(T, P ), and µb(T, P ) = µc(T, P ),
which are two equations for the two variables T and P , giving a point in the
T − P plane.

(b) The melting curve P = P (T ) is determined by µice(T, P ) = µwater(T, P ).
Then taking the temperature derivative of the above identity along the melting
curve gives(
∂µice

∂T

)
P

+
(
∂µice

∂P

)
T

(
dP

dT

)
melt

=
(
∂µwater

∂T

)
P

+
(
∂µwater

∂P

)
T

(
dP

dT

)
melt

(11)

⇒
(
dP

dT

)
melt

=
[(

∂µwater

∂T

)
P

−
(
∂µice

∂T

)
P

]
/

[(
∂µice

∂P

)
T

−
(
∂µwater

∂P

)
T

]
(12)

Using the Maxwell relations that one reads off of dG = −SdT + V dP + µdN ,
we find (

∂µI
∂T

)
P

= −
(
∂SI
∂NI

)
T,P

= −mH2OsI (13)(
∂µI
∂P

)
T

=
(
∂VI
∂NI

)
T,P

= mH2O/ρI (14)

where I denotes either phase (ice or water), sI , ρI are the entropy per unit
mass and density for phase I, respectively. Thus(

dP

dT

)
melt

=
−mH2O(swater − sice)

mH2O

ρice
− mH2O

ρwater

(15)

= (swater − sice)
ρiceρwater

ρice − ρwater
(16)

⇒
(
dP
dT

)
melt

= ∆qmelt
T

(
ρiceρwater
ρice−ρwater

)
(c) In equilibrium we still have µwater(T, Pwater) = µvapor(T, Pvapor). How-

ever, now Pwater is no longer equal to Pvapor. Instead, Pwater = Ptotal =
Pvapor + Pgas. So we have µwater(T, Ptotal) = µvapor(T, Pvapor). Fixing T and
differentiating the above identity w.r.t. Ptotal, we have(

∂µwater

∂Ptotal

)
T

=
(
∂µvapor

∂Pvapor

)
T

(
dPvapor

dPtotal

)
T

(17)

⇒
(
dPvapor

dPtotal

)
T

=
(
∂µwater

∂Ptotal

)
T

/

(
∂µvapor

∂Pvapor

)
T

(18)

=
mH2O

ρwater
/
mH2O

ρvapor
(19)

⇒ dPvapor
dPtotal

= ρvapor/ρwater.
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