Ph 136: Solution 5 for Chapter 5 and 6

5.5 Electron-Positron Equilibrium at “Low” Temperatures [by Xinkai
Wul, [modified by Kip Thorne and Dan Grin]

(a) The reaction equation e~ +p — e~ +p+e~ +et gives fi.— + fip, =
2fte— + fip + fle+, which implies fi.— + fie+ =0, i.e.

Pe— = —fe+-

(b) In what follows we shall use fi— to denote fi.-, and fi+ to denote fio+.
The distribution function(density in phase space) for positrons and electrons
(both having g5 = 2) is given by
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The density in coordinate space ny is given by [d*pNi. We know that
n_ > n4 because while positrons and electrons are created in pairs we also
have ionization electrons from hydrogen atoms. Thus we must have g > .
This inequality combined with ji_ + fiy = 0 gives

fim >0, ,1+<o.\

(c) In the dilute-gas regime, ny =~ exp [—(% +mc? — ﬂi)/kT]. It’s trivial
to perform the momentum-space integral and find
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n << 1 means (fix —mec?) << —kT (see Chapter 2), i.e.
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The hydrogen mass density is p =~ n_m,, (because m. << m, and also electron-
positron pair generation is negligible, thus by charge neutrality n_ = n,) Thus
the dilute-gas region is given by

p<<8x10% (&) g cm3.
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(d) Define z = e#~/*T then ef+/kT" = 1/x. And using the expression for
n4+ we found in part (c), we get
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(e) [by Kip Thorne] The amount of phase space available to the ionization
electrons, per ionization electron, is of order Vipgse ~ (27rka)3/2%. If one
pair forms per ionization electron (our criterion for significant pair formation),
then each positron will also have available to it the phase volume V,pq5e. When
this Vphnase is very large (i.e. when p is very small, at fixed T ~ 108K), then
the positron is almost completely unaware of the presence of the electrons, so
the probability of its meeting an electron and annihilating is very small. This
means that, although pair production occurs only very rarely (because of the
very few number of photons with sufficient energy to produce a pair), once it has
occured, on average the positron lives for a very long time. It is this balancing
of the long life, due to the huge phase space per particle, against the rarity of
pair production, that enables significant pairs to form at T as low as ~ 108K.

5.4 Latent Heat and the Clausius-Clapeyron Equation [by Xinkai Wu]

(a) For fixed temperature and pressure, the change in the Gibbs potential
is
dG = ,aadNa + ,abdNb = (ﬂa - ,ab)dNa (10)
where we’ve used the fact that dN, = —dN,.

By the minimum principle for the Gibbs potential, N, will decrease when
fla > fip, and increase when [i, < jip. As a consequence, if phases a and b are in
equilibrium with each other, one must have fi, = fip(subtracting mzg,oc? from
both sides one finds p, = p15.) The Gibbs potential G is a function of (T, P, N),
so the chemical potential p = (g—g)T p is also a function of (7', P, N). However,
1 is an intensive quantity and conseqilently can’t depend on the extensive quan-
tity NV, namely pu is a unique function of 7" and P. The above reasoning is valid
for any phase a. In a two-phase region, we must have uq (T, P) = u(T, P),
which is one equation for two variables T" and P, giving a line in the T'— P



plane. In a three-phase region, u, (T, P) = pp(T, P), and pp(T, P) = u.(T, P),
which are two equations for the two variables T' and P, giving a point in the
T — P plane.

(b) The melting curve P = P(T) is determined by piice (T, P) = prwater (T, P).

Then taking the temperature derivative of the above identity along the melting
curve gives
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Using the Maxwell relations that one reads off of dG = —SdT 4+ VdP + udN,

we find
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where I denotes either phase (ice or water), s;, p; are the entropy per unit
mass and density for phase I, respectively. Thus
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(c) In equilibrium we still have pwater(T, Pwater) = tvapor (T Pyapor). How-
ever, Now Pyater is no longer equal to Pyapor- Instead, Pyater = FPiotal =
Poapor + Pgas- So we have prwater (T, Piotal) = fvapor(T, Prapor). Fixing T and
differentiating the above identity w.r.t. Piota1, we have
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