






Solution for Chapter 14

(compiled by Nate Bode, solutions by credited authors)
February 12, 2009

A

13.10 Winds and ocean currents in the north Atlantic [by unknown]

(a) The balance of the friction of the wind with the ocean and the Coriolis
force builds an Ekman layer in the Sargasso Sea area. See BT-15.4.4 for the
discussion of the surface currents’ direction.

The layer thickness is δE =
√

ν
Ω .

Ω = Ωe sin(latitute) =
2π

24× 3600s
× 0.5 ' 3.6× 10−5s−1 . (1)

The friction of the wind with the water is achieved by turbulence, taking
ν ' 0.01 ∼ 0.1 as the tubulent viscosity(see BT-13.5.3), δE =

√
ν
Ω ' 16 m ∼

50 m.
The Encyclopedia Britannica states that the trade winds have an average

speed of 5 km/s. Because these winds are very consistent the surface should
come in to equilibrium with the winds and should be traveling at roughly the
same speed. We saw in the chapter that the transverse velocity is also of the
same order as the parallel velocity, so we expect the fluid to be moving towards
the gyre at roughly the same speed. Equating the initial kinetic energy of a
fluid element and the potential energy gives a crude limit as to the height of the
gyre:

h ∼ 1
2
vtransverse

2

g
∼ 1

2
25 m2/s2

9.8 m/s2
≈ 1.28 m (2)

(b) When the water moves towards the center of the Sargasso sea,it piles up
and builds the gyre with an outward horizontal pressure gradient. This gradient
gives rise to the deep ocean geostrophic flow.

2Ω× v = −∇P
′

ρ
, P = ρgh(x, y), (3)

where h(x, y) is the height of ocean surface above an equipotential of

Φ +
1
2

(Ω2 × r)2 . (4)
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The y-component in Eq.(3) is

2Ωvy =
1
ρ

dP ′

dx
= g

dh(x, y)
dx

, ⇒ vy '
g

2Ω
∆h
∆x

(5)

For Gulf Stream, ∆h ∼ 1.5 m (the height of the gyre), ∆x ∼ 150 km (the
distance over which the sargasso Sea rises), then vy ' 1.4 m/ sec ' 5 km/hr is
the speed of the deep ocean current.

(c) Without continents we would see the current travels parallel to lines of
latitude. With the continents as the barriers, There are circular flows in every
ocean basin. They flow clockwise in the North Atlantic and North Pacific and
flow counterclockwise in the southern hemisphere.

B

15.10 Teacup [by Guodong Wang ’03, modified by Geoffrey Lovelace]

(a) In the water’s rotating reference frame, v = 0, according to the Navier-
Stokes equation in the rotating frame (eq. BT-13.53),

∇P ′ = 0⇒ P ′ = P + ρ[gz − 1
2

Ω2$2] = constant (6)

Taking z = 0, $ = 0 as the center of the water’s top surface, the constant at
(0,0) becomes the air pressure above the tea cup, namely P0. So,

P ($, z) = P0 − ρgz +
1
2
ρΩ2$2, (7)

where the z-axis’ direction is upward.
At the top surface of the water, z($), the pressure P ($, z($)) is P0. There-

fore the surface of the water is parabolic,

z($) =
Ω2

2g
$2. (8)

(b) The thickness of the Ekman layer at the bottom of the cup is

δE =
√
ν

Ω
∼

√
10−6 m2/s

1/s
∼ 1mm. (9)

Because the bulk flow is geostrophic, the fluid velocity in the Ekman layer
can be described as an Ekman spiral. To obtain an analytic expression for the
spiral, begin by using the axial symmetry of the problem: examine the velocity
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profile only for some choice of φ (I am using ($,φ, z cylindrical coordinates).
Specifically, if w ≡ v − V, where v is the velocity of the fluid at some point
in the boundary layer, and V is the velocity of the fluid in the bulk, then, if
w = wx + iwy, where wx and wy are the Cartesian components of w, then
the complex number w satisfied by Eq. (13.64) (see the text for derivation and
details)

d2w

dz2
=
(

1 + i

δe

)2

w. (10)

As a second order ODE, this equation needs two boundary conditions, which
for our case, are as follows: i) the fluid in the bulk is at rest in the rotating
frame (implying V = 0 and w = v) so, w(z/δe →∞)→ 0; and ii) There is also
a no-slip boundary condition between the fluid and the bottom of the cup, so,
in the rotating frame, w(z = 0) = i cosφ − sinφ. The solution satisfying these
boundary conditions is (with velocity measured in units of Ω$)

w = v = vx + ivy (11)

q ≡ z

δe
(12)

vx = e−q sin(φ− q) (13)
vy = −e−q cos(φ− q). (14)

When φ = 0, then vx = v$ and vy = vφ. Thus

v$ = −e−q sin q (15)
vφ = −e−q cos q. (16)

This solution, an Ekman spiral, is drawn in in Fig. 1. Clearly, there is an
inward radial component of the velocity in the boundary layer.

We can estimate the radial velocity of fluid in the Ekman layer on dimen-
sional grounds. Deep in the boundary layer, the Ekman spiral diagram implies
that the tangential and radial velocities are of the same order of magnitude.
Therefore,

v$ ' vθ = Ω$ ∼ ΩL ∼ 1 s−1 × 0.1 m ∼ 0.1 m/s (17)

The mass flux that is carried by v$ ∼ ΩL is

ρδE2πLv$ ∼ 60 g/s (18)

(c) The pressure gradient is found by differentiating Eq. (4):

dP/d$ = ρΩ2$ (19)

This gradient is independent of z, so this pressure gradient is independent of
height going into the boundary layer. If dP/d$ did vary significantly with height
once you reach the boundary layer, then (d/dz)(dP/d$) would be significant.
Changing the order of the derivatives would then imply that (d/d$)(dP/dz)
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Figure 1: The Ekman spiral for fluid moving in the teacup. The radial and
tangential velocities, v$ and vφ, respectively, are plotted in units of Ω$. When
q = z/δe = 0, v$ = 0 and vφ = −1. As q →∞, the velocity vanishes.
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is significant, which would imply that there would be a non-negligible, vertical
force on the boundary layer that depended on $. But there should be no normal
force on the boundary layer, because such a force would deform the layer, and
since the boundary layer is very thin, any variation in its shape is vanishingly
small. It follows that we can take the radial pressure gradient to be independent
of z, even into the boundary layer.

Therefore, the bulk radial pressure gradient should be the same as the pres-
sure gradient in the boundary layer. In an inertial frame, force balance (i.e., the
Navier-Stokes equation) is

dv
dt
∝ −∇P ∝ −e$. (20)

Therefore, there is inward radial flow.

(d) After the boundary-layer water reaches the center of the cup, it moves
upward and joins the bulk water. (The only place for the (incompressible) fluid
to go when it reaches the center is up into the bulk.) Assuming a geostrophic
flow (which we shall check), the flow in the bulk should move outward toward
the side wall in such a way that the velocity gradients have no z components (in
the bulk, the Rossby and Ekman numbers are small, so the Taylor-Proudman
theorem holds). In other words, the fluid travels radially outward in Taylor
columns.

The water is incompressible, so water must leave the center of the bulk at
the same rate that fluid upwells into the center of the bulk., its outward speed
must be smaller than the inward speed of the bottom boundary layer by the
ratio of their thickness: vbulk

$ = −vboundary layer
$ (L/δE) ∼ (10 cm/s) × 0.01 = 1

mm/s. The Rossby number for this bulk motion is Ro = V
LΩ ∼ 0.01, so the

geostrophic approximation is reasonable.
The fluid must return to the boundary layer somehow. Our treatment of

the bulk and of the boundary layer neglected the vertical velocities. But we can
qualitatively get at the answer as follows:

As fluid in the boundary layer is swept toward the center, the fluid just
above (which is at the bottom of a Taylor column) falls down into the boundary
layer. Therefore, the entire column gradually sinks as it travels outward. I
say “gradually” because the velocity of the Taylor column is far less than the
velocity of the overall circulation (of order LΩ ). An observer in an inertial
frame would see tea leaves in the boundary layer upwell quickly in the center
and then gradually spiral back down to the boundary layer.

Thus, a fiducial fluid element has the following circulation pattern: i) flow
radially to the center of the boundary layer; ii) upwell in the center of the fluid;
iii) flow in a Taylor column with an outward velocity; eventually, the element
stops flowing upward and begins to flow back down, until iv) it re-enters the
boundary layer. Note that the flow lines should have no sharp corners, since
the forces on the fluid (and thus the fluid’s acceleration) should be continuous.

I sketch the flow lines in Fig. 2.
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Figure 2: A sketch of the circulation patterns in the teacup as seen in a rotating
reference frame. The bulk fluid (outside the boundary layer) is rotating nearly
rigidly, but the fluid gradually descends back to the boundary layer. Note that
the characteristic speed of this circulation pattern is much lower than Ω$, the
velocity of the rotating fluid.
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Figure 3: Normally a fluid particle would travel in a straight line as noted by
the initial flow line and the dashed line. However, in the presence of an askew
column a high pressure zone forms upstream of the column and a low pressure
zone forms downstream so that a pressure gradient forms which is orthogonal
to the column’s axis of symmetry. This pressure force will move the fluid ele-
ment off of its intial trajectory and give it a slight horizontal component. This
horizontal component will carry with it a drag force which will be proportional
in magnitude to the displacement of the fluid element off of its initial path. Ob-
viously when the flow is perpendicular to the column this displacement is 0 as
it is when the flow is parallel to the column. Therefore there is an intermediate
angle when the displacement is maximized which is likely around π/4.

(e) The total mass of the water in the cup is M ∼ πL2 · L, so it can mix
much of the water in a time scale of

tE ∼
M

ρδE2πLv$
∼ LδE

ν
∼ L√

νΩ
. (21)

Let L = 0.1 m, Ω = 1 s−1, ν = 10−6 m2/s, tE ∼ 100 s. The angular
momentum of the water is conserved in the bulk. Only in the bounary layer at
the bottom, the angular momentum loses by the friction. So the time scale of
the mass mixing is also the time scale for the bulk flow to slow down.

C

High and low Reynolds number self-propelling devices [by Nate
Bode]

(a) Let us first consider low Reynolds number flows. In this case the flow
is reversible, so any reversed motion will leave you right where you began as in
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the case of the flapping paddle. In the case of high Reynolds number flows the
viscosity is not important and the only relevant terms are those of the Euler
equations, the pressure and inertial terms. This indicates that motion will be
dominated by inertial interactions and the motion forwards will be essentially
due to the momentum flux behind the paddle. If the paddle is of length L, width
W and oscillates such that θ(t) = θmax sinωt then the displaced volume of ma-
terial is approximately WL2θmax, and the velocity of the fluid is approximately
Lω. Therefore the force that the paddle produces is of order

F =
∆P
∆t

= Mass×Velocity× ω = ρWL3θmaxω
2 (22)

Of course, this would only be true for small θmax. One might think that given a
motor and a boat, all one would have to do is increase the length of the paddle
to speed up the boat, but obviously the motor would need to have a similar
increase in power to be able to accommodate such a change in the length of the
paddle.

(b) Intuitively it is obvious that in a high Reynolds number flow the
corkscrew is not going to go anywhere. In this case the thin wire of the corkscrew
can not change the momentum of the water by any considerable amount and
therefore can not receive any propulsion. However, when the Reynolds number
is low the inertial term is irrelevant and the viscous drag forces become the dom-
inant factor. To consider how it moves let us view a small segment of column
moving through an angled flow as in Fig. ??. See the figure for a discussion of
the forces on the corkscrew.As done in the text we expect the horizontal drag
force per unit length to be FDz = CD

1
2ρV

2d sinα where d is the diameter of the
column, CD is a drag constant of order unity, and α is the angle of displacement.
Then we would expect the total force on the corkscrew with an optimal choice
of angle to be

F = FDzL ∼ ρV 2dL (23)

D

14.1 Spreading of a Laminar Wake Behind a Sphere [by Alexander
Putilin ’00]

(b) Now with the cylinder replaced by the sphere, the cross section per-
pendicular to the flow is two dimensional and momentum conservation then
implies:

∆v · w2 = const (24)
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namely ∆v ∝ w−2.
The x component of the Navier-Stokes equation gives the same relation in

the sphere case as in the cylinder case, w ∝ x1/2.
Combining these we get ∆v ∝ x−1.

14.4 Turbulent wake behind a sphere [by Alexei Dvoretskii ’99]

(b) The turbulent wake works in much the same way as its laminar counter-
part, except that we should replace the intrinsic molecular viscosity ν with the
kinematic turbulent viscosity νt ∼ ∆v̄w. The x component of the Navier-Stokes
equation then gives the familiar relation

w ∼
(νtx
V

)1/2

∼
(

∆v̄wx
V

)1/2

(25)

regardless of whether it’s a cylinder or a sphere.
Now for the sphere, conservation of momentum implies that ∆v̄ ∼ w−2.
Combining these we find w ∼ const · x1/3. Using the fact that when x ∼ d,

w ∼ d, we determine that const ∼ d2/3 and thus w ∼ d2/3x1/3. Also we get
∆v̄ ∼ const ·x−2/3. Using the fact that when x ∼ d, ∆v̄ ∼ V , we can determine
the const and find ∆v̄ ∼ V (d/x)2/3.

14.2 Spreading of a 2-dimensional laminar jet [by H.W. Lee and Kip
Thorne]

This problem is pretty much parallel to the analysis in Section 13.4, except
that the width w of the jet and its speed vx now scale w.r.t. x differently from
those in Section 13.4. (because now the ambient fluid is at rest and we have a
nozzle ejecting fluid out.)

(a) This argument goes the same as that on Page 20 of Section 13.4. The
Navier-Stokes equation reads

(v ·∇)v =
−∇P

ρ
+ ν∇2v (26)

The y component of the N-S equation shows that the pressure difference
∆P ∼ ρv2

xw
2/x2. Recall that we’ll use the x component of the N-S equation

to find the velocity profile. So we plug the above expression for ∆P into the
x component of the N-S equation and find there the ratio between the ∇P

ρ

term and the (v ·∇)v term (which is of the same order as the ν∇2v term) is
∼ w2

x2 � 1. Thus the pressure gradient term is indeed negligible for our purpose.

(b) The balance between the x components of the (v ·∇)v term and the
ν∇2v term gives the familiar result

w ∼
(
νx

vx

)1/2

(27)
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Now the conservation of momentum along the x direction requires

v2
xw = const, i.e. vx ∼ w−1/2 (28)

Combining these we find

w ∼ x2/3, vx ∼ x−1/3 (29)

(c) Give the stream function the following trial form

ζ = axpf(ξ) (30)

where the normalization a and the index p are to be determined, and f(ξ) is a

function of the dimensionless number ξ ≡ bx−2/3y with b ≡
(
F

48ρν2

)1/3

.
Then we find

vx =
∂ζ

∂y
= axpf ′

ξ

y
(31)

vy = − ∂ζ

∂x
= axp−1

(
2
3
ξf ′ − pf

)
(32)

Plugging these expressions into the x component of the N-S equation and
throwing away terms subleading in the small parameter ξ2/(b2x2/3) (i.e. y2/x2,
recalling that the jet is assumed to be very “thin”), we get

1
3
a2b2x−

7
3 +2p

[
(−2 + 3p)f ′2 − 3pff ′′

]
= ab3νx−2+pf ′′′ (33)

thus to have a self-similar solution we must satisfy

− 7
3

+ 2p = −2 + p, i.e. p =
1
3

(34)

and the N-S equation becomes

f ′′′ +
a

3bν
(f ′2 + ff ′′) = 0 (35)

which can rewritten as

f ′′′ +
a

3bν
(ff ′)′ = 0 (36)

Integrating once we get

f ′′ +
a

3bν
ff ′ + C1 = 0 (37)

We have the boundary conditions vy(y = 0) = 0⇒ f(0) = 0 and ∂vx

∂y (y = 0) =
0⇒ f ′′(0) = 0, using which tells us C1 = 0.
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Integrating again gives

f ′ +
a

6bν
f2 − C2 = 0 (38)

solving which gives

f =

√
6bν
a
C2 tanh

[√
C2a

6bν
(ξ + C3)

]
(39)

The boundary condition f(0) = 0 gives C3 = 0. Using this result we find

vx = (C2a)bx−1/3sech2

(√
C2a

6bν
ξ

)
(40)

Now using the normalization condition

F =
∫ +∞

−∞
ρv2
xdy (41)

we find

C2a =
(

3F
4ρ
√

6ν

)2/3 1
b

(42)

which when plugged into the expression for vx gives the final answer

vx =
(

3F2

32ρ2νx

)1/3

sech2(ξ) =
(

3F2

32ρ2νx

)1/3

sech2

([
F

48ρν2x2

]1/3

y

)
(43)

14.5 Spreading of a 2-dimensional turbulent jet [by H.W. Lee and Kip
Thorne]

(a) By now the following analysis should be very familiar to us:

x component of the N-S equation gives w ∼
(
νtx
vx

)1/2

; Conservation of mo-

mentum gives vx ∼ w−1/2; and we take νt ∼ vxw. Combining these three facts
we easily get

w ∼ x, vx ∼ x−1/2 (44)

E
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14.3 Reynolds Stress and Weak Turbulence Theory [by Alexei Dvoretskii
’99]

(a) Let’s write the Navier-Stokes equation

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇P + νρ∇2v

Decompose the velocity into a steady and a small fluctuating part

v = v̄ + δv

And insert into the Navier-Stokes equation.

ρ
∂

∂t
δv+ρ(v̄·∇)v̄+ρ(v̄·∇)δv+ρ(δv·∇)v̄+ρ(δv·∇)δv = −∇P+νρ∇2v̄+νρ∇2δv

(45)
Taking the time average and using δv = 0 get

ρ(v̄ · ∇)v̄ = −ρ(δv · ∇)δv−∇P̄ + νρ∇2v̄

The first term on the right-hand side can be rewritten as −∇ · TR where
TR = ρδv⊗ δv.

(b) To find the evolution of this tensor we take its time derivative

∂TR

∂t
= ρ

∂δv
∂t
⊗ δv + ρδv⊗ ∂δv

∂t

Since ∂δv
∂t involves averages of double products of velocity fluctuations, the

time derivative of the velocity tensor will contain tensors that are time averages
of triple products of velocity fluctuations. If we were to consider the time
evolution of those tensors, because of the non-linearity of the equations, we’d
have to consider such tensors of higher and higher rank. To close the sequence
it would be necessary to truncate it by specifying a priori the tensors of some
rank.

(c) We can rewrite the time-averaged Navier-Stokes equation as

−∇P̄ = ρ(δv · ∇)δv− νρ∇2v̄ + ρ(v̄ · ∇)v̄ (46)

and plug it back in into the full Navier-Stokes, note that P = P̄ + δP , equation
(14.22a) then follows immediately.

(d) Multiplying by δv and taking the time average we get

v̄ · ∇(
1
2
ρδv2) + Tij

R v̄i,j +∇ ·
(

1
2
ρδv2δv + δPδv

)
= νρδv · (∇2δv)

Regroup terms
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v̄ · ∇(
1
2
ρδv2) +∇ ·

(
1
2
ρδv2δv + δPδv

)
= νρδv · (∇2δv)−Tij

R v̄i,j

The terms on the left hand side are the convective time derivative and the
divergence of the flow of turbulent energy density typical of conservation laws.
On the right hand side are possible sources of energy or its dissipation. In this
case the first term is energy dissipation due to molecular viscosity and the second
term is due to energy exchange between the ordered and turbulent motion.

(e) This can be seen if we take the Navier-Stokes equation and perform a
similar transformation to get the law of ordered motion energy conservation

∇ · ((1
2
ρv̄2)v̄) +∇ · (P v̄) = νρv̄ · ∇2v̄− v̄ · ∇TR

For incompressible fluid the full divergence ∇ · (v̄TR) = 0 and so we can
rewrite

∇ · ((1
2
ρv̄2)v̄) +∇ · (P v̄) = νρv̄ · ∇2v̄ + Tij

R v̄i,j

We see that, indeed, the last term describes the exchange of energy between
ordered and turbulent motion.
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