
Solution 15

16.1 Fluid motions in gravity waves [by Xinkai Wu 2002]
(a) The potential function for the velocity field is given by eq. (15.3)

ψ(x, z, t) = ψ0cosh[k(z + h0)]exp[i(kx− ωt)], (1)

from which we find the velocity v = ∇ψ (upon taking the real part):

vx = −kψ0cosh[k(z+h0)]sin(kx−ωt); vy = 0; vz = kψ0sinh[k(z+h0)]cos(kx−ωt).
(2)

Thus we see that at a given depth z, the fluid element undergoes elliptical mo-
tion.
(b) From the velocity field found in the previous part, we see that the longitu-
dinal and vertical diameters are given by

Dl = 2kψ0cosh[k(z + h0)]; Dv = 2kψ0sinh[k(z + h0)], (3)

with their ratio being
Dv

Dl
= tanh[k(z + h0)]. (4)

(c) For a deep-water wave, kh0 >> 1, and we see that

Dl ≈ kψ0exp[k(z + h0)]; Dv ≈ kψ0exp[k(z + h0)], (5)

namely, the ellipses are all circles with diameters dying out exponentially with
depth.
(d) Although individual fluid elements move in circles as time passes, the veloc-
ity field at any fixed moment of time is not circular; rather, it has a shape that is
more nearly like (roughly like) a set of hyperbolae, which is vorticity free. More
specifically, in the deep water case at t = 0, vx = −αekz sin kx, vz = αekz cos kx
for some constant α. The lines in x,z space to which this velocity field is tangent
look like UUUUUU , not like OOOO. If they looked like OOOO the field would
contain vorticity; since it looks like UUUU they do not contain vorticity.
(e) For a shallow-water, kh0 << 1, we see that

Dl ≈ 2kψ0

[
1 +

1
2
k2(z + h0)2

]
≈ 2kψ0 (6)

Dv ≈ 2kψ0k(z + h0) ≈ 0, (7)

namely the motion is (nearly) horizontal and independent of height z.
(f) The N-S equation in our case is

∂v
∂t

= − ∇P
ρ

+ ge. (8)
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Writing the pressure as the sum of an unperturbed part P0 and a perturbation
δP

P (x, z, t) = P0(z) + δP (x, z, t) (9)

and plug it into the z component of the N-S equation, we get

∂P0

∂z
= −ρge (10)

∂δP

∂z
= −ρ∂vz

∂t
. (11)

Integrating the second equation from z = 0 to z gives

δP (z) = δP (z = 0)−
∫ z

0

ρ
∂vz

∂t
, (12)

where the first term corresponds to the weight of the overlying fluid, and the
second term corresponds to the contribution from the vertical acceleration of
the fluid.

Using the expression for vz worked out in part (a) as well as the boundary
condition

δP (z = 0) = ρgeξ = −ρ∂ψ
∂t
|z=0 = −ρωψ0 sin(kx− ωt)cosh[kh0], (13)

where we have used eq. (15.5) for ξ, the surface’s vertical displacement from
equilibrium, we find that

δP (x, z, t) = −ρωψ0sin(kx− ωt)cosh[kh0] (14)
−ρωψ0 sin(kx− ωt) {cosh[k(z + h0)]− cosh[kh0]} (15)

= −ρωψ0 sin(kx− ωt)cosh[k(z + h0)]. (16)

For shallow water, the vertical fluid acceleration term (the second term in the
first line of the above expression) is ∝ kh0 and can be ignored, and the pressure
is basically determined by the first term, i.e. the weight of the overlying fluid.
For general depth the second term is no longer negligible.

16.2 Shallow-water waves with variable depth; tsunamis. [by Xinkai
Wu 2000]

We can treat this as a 2-dimensional problem, i.e., only consider the hori-
zontal components of the velocity, which are almost independent of z. In what
follows, ∇ is the 2-dimensional derivative operator.

(a) The mass per unit area is ρ(h0 + ξ), and the mass flux per unit length is
ρ(h0 + ξ)v ≈ ρh0v, to the first order in perturbation. Then by mass conserva-
tion,

∂[ρ(h0 + ξ)]/∂t+∇ · (ρh0v) = 0
⇒ ∂ξ/∂t+∇ · (h0v) = 0, (17)
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assuming constant ρ.
The Navier-Stokes equation in this case is:

∂v/∂t = −∇P/ρ+ ge,

whose vertical component tells us P = ρge(ξ − z), and whose horizontal com-
ponents then tell us

∂v/∂t = −ge∇ξ. (18)

Applying ∂t to both sides of eqn. (21) and then plugging in eqn (22), we get

∂2ξ/∂2t− ge∇ · (h0∇ξ) = 0. (19)

(b) Plugging a plane wave solution to the wave equation, we get the dispersion
relation

ω = k
√
geh0

√
1− i∇h0

h0
· k
k2
, (20)

the imaginary part in the square root is of order λ/L << 1, with λ being the
wave length and L being the scale over which h0 varies, and we’ve used the fact
the h0 is varying very slowly. Thus the dispersion relation is

ω = Ω(k,x) ≈ k
√
geh0(x). (21)

Our intuition for geometric optics thus tells us that water waves propagate in the
ocean with a “refractive index” n ∝ h

−1/2
0 . Hence as waves approach a beach,

their propagation directions get closer and closer to the normal direction, by
Snell’s law, since smaller h0 corresponds to larger n.

(c) What you have to do is create some kind of mountain on the ocean floor
(which gives smaller h0 and thus larger n) with the shape of a lens, with Japan
and LA at the object point and image point, respectively.

(d) The energy flux must be independent of location. The energy flux in
this case is F = −ghoξ̇∇ξ (Eq. 15.94 in the notes). In magnitude this is
(1/2)ghoωkξ

2
o , where ξo is the wave amplitude. The wave frequency ω will be

conserved but the wave number k will not be conserved as the waves come in to-
ward shore, so we need to look at how k changes as well as how ho changes. Now
ω/k =

√
gho so k ∝ 1/

√
ho, which means F ∝

√
hoξ

2
o . Since F is conserved, as

ho decreases, ξo ∝ 1/h1/4
o increases.

For a tsunami the wavelength is roughly 100 km out at sea where the depth
is 4km. Near shore at depth of, say, 10 meters, the amplitude has grown
from about 1 meter to about 1 meter× (400)1/4 ∼ 5 meters and the wavelength
has decreased to 100 km/

√
400 ∼ 5 km which is so large that geometric optics

is now failing (the change of depth near shore is generally on a lengthscale
short compared to 5 km). To propagate on inward we must abandon geometric
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optics, but the amplitude will continue to grow and the wavelength will continue
to decrease.

16.7 Boat waves [by Xinkai Wu 2000]
(a) Consider a plane wave with frequency ω0 and wave vector k0 as measured in
the water’s frame, and ω and k as measured in the boat’s frame. For an observer
with position x0 in the water’s frame and x in the boat’s frame, the phase he
measures is k0 · x0 −ω0t in terms of water’s frame variables and k · x − ωt in
terms of boat’s frame variables.

Since the phase is invariant under the change of reference frame, we can
equate the above two expressions and then differentiate both sides with respect
to t, noting that for an observer moving together with the boat, dx0/dt =
u, dx/dt = 0, we get:

ω = ω0 − k0 · u. (22)

By looking at Fig 15.3 and use k to denote the wave vector as measured in the
water’s frame(as the text does), we get

ω = ω0 + uk cosφ. (23)

(b) θ is the angle between Vg0 − u and u, elementary trigonometry then gives
tan θ = Vg0 sinφ/(u+ Vg0 cosφ). For a stationary wave pattern ω = 0, so using
the ω(k) we got in part (a), we see that

ω0(k) = −uk cosφ. (24)

(c) For capillary waves,

ω0 ≈
√

(γ/ρ)k3,

Vg0 = ∂ω0/∂k = (3/2)
√

(γ/ρ)k. (25)

Plugging these and u = −ω0/(k cosφ) into the expression for tan θ, we get
tan θ = (3 tanφ)/(1 − 2 tan2 φ). A capillary wave pattern for a given θ exists
only when we can find some φ ∈ (π/2, π) (i.e. only forward waves can contribute
to the pattern) satisfying the above equation. And it’s easy to show that indeed
for any θ we can find such a φ given by:

tanφ = (−3−
√

9 + 8 tan2 θ)/(4 tan θ) when θ < π/2.

and

tanφ = (−3 +
√

9 + 8 tan2 θ)/(4 tan θ) when θ > π/2.

(d) For gravity waves, ω0 ≈
√
gek, and Vg0 = (1/2)

√
ge/k, and we get tan θ =

(− tanφ)/(1 + 2 tan2 φ). Only when θ < arcsin(1/3) can we find some φ ∈
(π/2, π) satisfying this equation, which is:
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tanφ = (−1±
√

1− 8 tan2 θ)/(4 tan θ) (both solutions are valid).

This means that the gravity-wave pattern is

confined to a trailing wedge with an opening angle θgw = 2 arcsin(1/3).
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