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A

18.1 Boundary of Degeneracy [by Alexander Putilin ’00]
We’ll ignore factors of order unity in what follows.

(a) l = n
−1/3
e � λdB = ~/(momentum) ' ~/

√
mekT , which immediately gives

ne � (mekT )3/2/h3.

(b) Using the uncertainty principle, ∆x ' h/∆p ' h/
√
mekT � n

−1/3
e , which

again reduces to ne � (mekT )3/2/h3.

(c) The quantum mechanical zero-point energy is given by (∆p)2/me '
h2/(l2me) ' h2/(n−2/3

e me)� kT , which reduces to ne � (mekT )3/2/h3.

18.6 Parameters for various plasmas [by Henry Huang ’98]

Text eq. (18.10) λD =
(
ε0kT
ne2

)1/2
= 69

(
T/1K
n/1m−3

)1/2

m.

Text eq. (18.11) ND = n 4π
3 λ

3
D = 1.4× 106 (T/1K)3/2

(n/1m−3)1/2
.

Text eq. (18.13) fp = ωp
2π = 1

2π

(
ne2

ε0me

)1/2

= 56.4
2π

(
n/1m−3

)1/2 Hz.

Text eq. (18.21) teeD = 1
νeeD

= 1
2.5×10−5

(
n/1m−3

)−1 (T/1K)3/2 (ln Λ/10)−1 s.

Using the fact that Λ = 9
2ND (see Exercise 18.2 part (a)), we get teeD = 4 ×

104
(
n/1m−3

)−1 (T/1K)3/2 (ln( 9ND
2 )/10

)−1
s.

And we only need to know T and n to get numerical values of these.

(a) Atomic bomb.
Text eq. (16.57) gives T ∼ 4× 104 (t/1ms)−1.2 K; at t = 1ms, T ∼ 4× 104K.

The discussion above eq. (16.57) gives ρ ∼ 5kg/m3, which means n ∼ ρ
µmp

∼
5kg/m3

29×1.66×10−27kg ∼ 1026m−3.
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(b) Space shuttle
Box 16.2 gives T ∼ 9000K. And since shuttle moves at ∼ 7000m/s �

sound speed 280m/s (all given in Box 16.2), we can use eq. (16.45a) which says
ρ1
ρ2
' γ−1

γ+1 and gives ρ2 ∼ 5ρ1 taking γ ∼ 1.5. The density at the altitude of
70km is ρ1 ∼ ρground exp(−70km/8km) ∼ 10−4kg/m3, which gives n ∼ ρ2

µmp
∼

5ρ1
µmp

∼ 1022m−3.

(c) Expanding universe
Text Fig. 16.1 gives: at recombination threshold, log T ∼ 3.5 ⇒ T ∼

103.5K ∼ 3 × 103K. Also from chapter 26, ρ ∝ T 3 ⇒ ρthen = ρnow

(
Tthen
Tnow

)3

∼

10−29g/cm3
(

3×103K
3K

)3

∼ 10−20g/cm3. So we get n ∼ ρthen
mp
∼ 1010m−3.

Plugging the above values of T and n into the equations on the top of this
page, we get

λD(m) ND fp(Hz) tD(s)
A-bomb 1× 10−9 1 9× 1013 2× 10−14

Shuttle 7× 10−8 10 9× 1011 9× 10−12

Universe 4× 10−2 2× 106 9× 105 4× 10−1

B

18.5 Stopping of alpha particles [by Alexander Putilin ’00]
First calculate the energy loss of an α-particle in a Coulomb collision with

an electron (with impact parameter b). Consider the collision in the electron’s
rest frame. We can approximate the trajectory of the α-particle by a straight
line (take this to be the x-axis). Then the momentum change of the electron is
given by an integral of force over time:

Fy = F sin θ =
2e2

4πε0(b2 + x2)
x√

b2 + x2
(1)

∆pe =
∫
Fydt =

∫ +∞

−∞

dx

v

e2x

2πε0(b2 + x2)3/2
=

e2

πε0vb
. (2)

Then the energy loss is

∆E = −∆p2
e

2me
= −

(
e2

πε0

)2 1
2mev2b2

= −
(
e2

πε0

)2
mα

4meEb2
, (3)
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where mα = 4mp is the mass of an α-particle and E = 1
2mαv

2 is the energy of
an α-particle. When an α-particle travels a distance d`, it loses energy:

dE = ∆E · (number of collisions) =
∫ bmax

bmin

∆E · ne · 2πb · db · d`. (4)

dE

d`
= −

∫ bmax

bmin

(
e2

πε0

)2
mα

4meEb2
· ne · 2πb · db = −πnemα

2meE

(
e2

πε0

)2

ln Λ, (5)

where Λ = bmax/bmin. To estimate bmax, notice that electrons in plastic are not
free but rather are bounded in atoms. It means that there is no Debye shielding
and so a reasonable estimate for bmax is the atomic spacing: bmax ∼ n

−1/3
e ∼

2 · 10−10 m. For bmin, use the usual formula

bmin = Max
[
bo =

2(2e2)
4πε0mαv2

,
~

mαv

]
. (6)

We see that ln Λ depends on the energy E, but since Λ � 1 and ln Λ varies
slowly for large Λ, we can assume ln Λ to be constant equal to its initial value
at E = E0 = 100 MeV. So, bmin ≈ ~

mα
√

2E0/mα
≈ 2.5 · 10−16m, and so finally

ln Λ ≈ 13. Integrating equation (1), we get

1
2
(
E2

0 − E(`)2
)

=
πnemα

2me

(
e2

πε0

)2

ln Λ · `. (7)

The range ` is defined by E(`) = 0, so

` =
(πε0
e2

)2 meE
2
0

πmαne ln Λ
. (8)

Plugging in the numbers, we find ` ≈ 0.5 cm.

18.7 Equilibration Time for a Globular Cluster [by unknown author]

(a) For single deflections when b ≤ b0, σ = πb20. While for cumulative deflec-
tions, in which each deflection has b � b0, then ∆E = −(b0/b)2E for each
deflection. Since we are interested in the case where the test star has high
kinetic energy compared to the field stars, then we add up ∆E linearly.

∆E
E

= −
∫ bmax

bmin

(
b0
b

)2

nvt2πbdb = −2πvtnb20 ln
(
bmax

bmin

)
(9)

where bmin is b0 and bmax is R = the radius of the star cluster. So the energy
change timescale is dominated by cumulative deflections:

tE =
1

2πb20nv ln Λ
(10)
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In the gravitational case, b0 = 2Gm/v2 and we get

tE =
v3

8nG2m2 ln Λ
(11)

To estimate this, use the Virial theorem(e.g. Goldstein) which says that the
cluster’s kinetic energy is half the potential energy, so 1

2Nmv
2 ∼ 1

2
G(Nm)2

R ,

⇒ v ∼
(
GNm
R

)1/2
.

ln Λ = ln
R

b0
= ln

R

2Gm/v2
= lnN = ln 106 = 14 (12)

and

tE =
N3/2

14n(8GmR3)1/2
(13)

Also we can put in n = N/( 4π
3 R

3) to get

tE =
4π
3 N

1/2R3/2

14(8Gm)1/2
= 4× 1017s = 1.3× 1010yr (14)

which is about the age of the universe.

(b) The cluster will try to develop a distribution function that is a function of
the constant of motion (so it satisfies the collisionless Boltzmann equation, i.e.
Liouville’s theorem of chapter 2). The velocity distribution will try to become
isotropic, so

N =
dN

d3xd3p
= f(E) = f(mΦ +

1
2
mv2) (15)

where Φ is the gravitational potential which is less than zero. In true equilib-
rium, this f(E) should become an exponential, so N = C exp(−E/kT ). How-
ever, only stars with E < 0 are gravitationally bound in the cluster; those
with E > 0 escape and fly away. This means that N = 0 for E > 0 and
N ' C exp(−E/kT ) for E < 0.

Stellar encounters then keep kicking stars, occasionally, to energies E > 0,
and those stars evaporate from the cluster. Since the evaporated stars have
larger energy than average, the rest of the cluster keeps shrinking and becoming
more and more tightly bound.

C

4



18.4 Dependence on thermal equilibration on charge and mass [by
Alexander Putilin ’00]

The ion equilibration rate for a pure He3 plasma is derived by the same
method as proton-proton equilibration rate. We start with electron-electron
equilibration rate (B.T. eq. (18.27))

νee =
neσT c ln Λ

2
√
π

(
kT

mec2

)−3/2

(16)

=
nec ln Λ

2
√
π

8π
3

(
e2

4πε0mec2

)2(
kT

mec2

)−3/2

(17)

Replace electron charge, density, and mass with corresponding values for He3

ions: e→ 2e, ne → nHe = 1
2ne, me → mHe = 3mp. We get

νHe He =
nHec ln Λ

2
√
π

8π
3

(
4e2

4πε0mHec2

)2(
kT

mHec2

)−3/2

(18)

=
16√

3

√
me

mp

nHeσT c ln Λ
2
√
π

(
kT

mec2

)−3/2

(19)

=
16√

3
· 5.8× 10−7s−1

( nHe

1m−3

)( T

1K

)−3/2( ln Λ
10

)
(20)

and we have nHe = 1
2ne = 0.5 × 1020m−3, T = 108K. Now estimate ln Λ.

Λ = λD
bmin

, with λD =
(

ε0kT
nHe(2e)2

)1/2

= 4.9 × 10−5m, and bmin = Max[b0 =
2(2e)2

mHev2
, ~
mHev

], where v '
√

3kT
mHe

. We find b0 = 4.4 × 10−13m and ~
mHev

=

2×10−14m. Thus we take bmin = 4.4×10−13m, which gives ln Λ = ln 4.9×10−5

4.4×10−13 '
18.

Plugging it into the formula for νHe He we get

νHe He ' 500 s−1 (21)

18.11 Adiabatic indices for rapid compression of a magnetized plasma
[by unknown author]

(a) The amount of momentum that passes through a surface ∆A normal to the
z direction per time ∆t is mevz for each electron, and only those electrons (with
velocity vz) which are in the region of volume ∆Avz∆t pass through, so the
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total amount is neme〈v2
z〉∆A∆t. Since Tzz is this number divided by ∆A∆t,

then
Pe‖ = Tzz = neme〈v2

z〉.

Similarly,
Pe⊥ = neme〈v2

x〉 = neme〈v2
y〉,

and since 〈v2
x〉+ 〈v2

y〉 = 〈|v⊥|2〉, then

Pe⊥ =
1
2
neme〈|v⊥|2〉.

(b) From Box 10.1, we see that

Θ = Sxx + Syy + Szz

and
Σzz =

2
3
Szz −

1
3

(Sxx + Syy) .

Invert to get that Szz = 1
3Θ + Σzz and Sxx + Syy = 2

3Θ−Σzz, so that one sees
that

d`/dt

`
=
dSzz
dt

=
1
3
dΘ
dt

+
dΣzz
dt

=
1
3
θ + σjkbjbk

and
dA/dt

A
=
d(Sxx + Syy)

dt
=

2
3
dΘ
dt
− dΣzz

dt
=

2
3
θ − σjkbjbk.

(c) The amount of kinetic energy corresponding to motion in the z direction in
the fluid element is neA` 1

2me〈v2
‖〉. Due to energy conservation, if the element

expands, doing work at rate P d(volume)/dt = neme〈v2
‖〉A(d`/dt), then the

energy must drop accordingly, so

neA`
1
2
me

d〈v2
‖〉

dt
= −neme〈v2

‖〉A
d`

dt
,

so
1
〈v2
‖〉
d〈v2
‖〉

dt
= −2

`

d`

dt
.

Following the same argument for the perpendicular contribution to the energy
gives

neA`
1
2
me

d〈v2
⊥〉
dt

= −1
2
neme〈v2

⊥〉`
dA

dt
,

so
1
〈v2
⊥〉

d〈v2
⊥〉
dt

= − 1
A

dA

dt
.
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Due to particle number conservation, neA` is a constant (equals the number of
particles in the fluid element). So setting d(neA`)/dt to zero, and dividing both
sides by neA`, yields:

1
ne

dne
dt

= −1
`

d`

dt
− 1
A

dA

dt
.

(d) Using the above results,

1
Pe‖

dPe‖

dt
=

1
ne

dne
dt

+
1
〈v2
‖〉
d〈v2
‖〉

dt
= −3

d`/dt

`
− dA/dt

A
= −5

3
θ − 2σjkbjbk,

1
Pe⊥

dPe⊥
dt

=
1
ne

dne
dt

+
1
〈v2
⊥〉

d〈v2
⊥〉
dt

= −d`/dt
`
− 2

dA/dt

A
= −5

3
θ + σjkbjbk.

(e) When there is no expansion along B, we can set the d` = 0. Using the
results from part (d) and mass conservation (which says that d lnA = −d ln ρ)
respectively,

d(lnPe⊥) = −2d(lnA) = 2d(ln ρ)

or
∂(lnPe⊥)
∂(ln ρ)

= 2.

And similarly,
d(lnPe‖) = −d(lnA) = d(ln ρ)

or
∂(lnPe‖)
∂(ln ρ)

= 1.

When there is no expansion perpendicular to B, we can set the dA = 0. Using
the results from part (d) and mass conservation respectively,

d(lnPe⊥) = −d(ln `) = d(ln ρ)

or
∂(lnPe⊥)
∂(ln ρ)

= 1.

And similarly,
d(lnPe‖) = −3d(ln `) = 3d(ln ρ)

or
∂(lnPe‖)
∂(ln ρ)

= 3.

(f) Finally, using the results of part (d),

d(ln (P 2
⊥P‖)) = 2d(lnP⊥) + d(lnP‖) = −5d(lnA)− 5d(ln `) = 5d(lnne),
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so, integrating gives
P 2
⊥P‖ ∝ n5

e.

Also,

d(lnP⊥) = −d(ln `)− 2d(lnA) = d(lnne)− d(lnA) = d(lnne) + d(lnB),

because the flux AB through a circle is constant. So, integrating gives

P⊥ ∝ neB.

D

18.8 Thermoelectric transport coefficients [by Jeff Atwell]

(a) Basically a temperature gradient creates an electric current and an electric
field causes heat flow because the carriers of both currents (electric and heat)
are electrons, which always carry both energy and charge.

Suppose that initially the electrons on the left side of a room are hotter than
those on the right side of the room. This means that initially the electrons on
the left side are moving faster, on average. If we then let the room equilibrate,
the electrons initially on the left side will penetrate faster to the right side,
on average, then the right side electrons penetrate to the left side. Then we
would say that both heat and charge have flowed from left to right (because
electrons carry both energy and charge). Now, after the room has equilibrated,
let’s suppose that we turn on an electric field which causes the electrons to
accelerate to the right. This clearly will cause heat to flow to the right.

(b) The distribution function f(x,v) is defined by the relation

f(x,v)dxdv = Number of particles in dxdv.

Recall from Chapter 2 the Boltzmann transport equation:

∂f

∂t
+ v ·∇xf +

dv
dt
·∇vf =

(
∂f

∂t

)
coll

.

Now recall from exercise 2.13 that it is often valid to use the “collision-time
approximation”: (

∂f

∂t

)
coll

= −f − f0

tD
,
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where f0 is the distribution function in thermal equilibrium. We are interested
in the steady state, so that ∂f/∂t = 0, and so now the Boltzmann transport
equation reads

v ·∇xf +
dv
dt
·∇vf = −f − f0

tD
.

For simplicity, suppose there is an electric field E in the x direction and a
temperature gradient dT/dx. Then the transport equation becomes

eE

m

∂f

∂vx
+ vx

∂f

∂x
= −f − f0

tD
.

Rewriting this, we have

f = f0 − tD
(
eE

m

∂f

∂vx
+ vx

∂f

∂x

)
.

We now assume weak fields and small temperature gradients, that is, we assume
(f − f0)/f0 � 1. To this approximation

f = f0 − tD
(
eE

m

∂f0

∂vx
+ vx

∂f0

∂x

)
. (22)

For the Maxwell-Boltzmann distribution, f0 is a function of the energy E and
the temperature T , so

∂f0

∂x
=
∂f0

∂T

dT

dx
,

and
∂f0

∂vx
=
∂f0

∂E
dE
dvx

= mvx
∂f0

∂E
.

If we suppose that dT/dx = 0, then equation 22 reduces to

f = f0 − etDEvx
∂f0

∂E
.

The electric current density is given by

Jx =
∫
evxfd

3v = −tDe2E

∫
v2
x

∂f0

∂E
d3v,

as
∫
vxf0d

3v = 0 because f0 is an even function of the velocity component vx.
Similarly, the heat flux is given by

qx =
∫
Evxfd3v = −tDeE

∫
Ev2

x

∂f0

∂E
d3v.

We work with the Maxwell-Boltzmann distribution

f0 = n
( m

2πkT

)3/2

e−mv
2/2kT .
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Notice that
∂f0

∂E
= − 1

kT
f0,

so

Jx =
tDe

2E

kT

∫
v2
xf0d

3v,

and
qx =

tDeE

kT

∫
Ev2

xf0d
3v.

Doing the integrals on mathematica using this f0, and dropping coefficients of
order unity, I find:

Jx ∼
ne2tD
m

E,

and
qx ∼

netDkT

m
E,

which agrees with equations (18.33). Now, from (18.31):

κe ∼
e2

σT cm ln Λ

(
kT

mc2

)3/2

∼
(
mc2

e2

)2
e2

cm ln Λ

(
kT

mc2

)3/2

∼ (kT )3/2

e2
√
m ln Λ

,

where I have used (18.28) for the Thomson cross section. Then from (18.33):

κe ∼
ntDe

2

m
∼ ne2

m

m2(kT/m)3/2

ne4 ln Λ
∼ (kT )3/2

e2
√
m ln Λ

,

where I have used (18.21) for tD. Notice that these two κe expressions agree.

(c) When E = 0, equation 22 reads

f = f0 − tDvx
dT

dx

∂f0

∂T
.

Then we have
Jx =

∫
evxfd

3v = −tDe
dT

dx

∫
v2
x

∂f0

∂T
d3v,

and
qx =

∫
Evxfd3v = −tD

dT

dx

∫
Ev2

x

∂f0

∂T
d3v.

Again, doing the integrals on mathematica, I find agreement with equations
(18.34). Now, from (18.31):

κ ∼ kc

σT ln Λ

(
kT

mc2

)5/2

∼
(
mc2

e2

)2
kc

ln Λ

(
kT

mc2

)5/2

∼ k(kT )5/2

e4
√
m ln Λ

,

where I have again used (18.28) for the Thomson cross section. Then from
(18.34):

κ ∼ ntDk
2T

m
∼ nk2T

m

m2(kT/m)3/2

ne4 ln Λ
∼ k(kT )5/2

e4
√
m ln Λ

,
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where I have again used (18.21) for tD. Notice that these two κ expressions
agree.

(d)
αβ

κeκ
∼
(
e
kT κ

) (
kT
e κe

)
κeκ

∼ 1 ≈ 0.581,

and

αT +
kT

e
κe ∼

e

kT
κT +

kT

e

e

kT
β ∼ e

k
κ+ β ∼ enkT tD

m
+ β ∼ β + β ≈ β.

(e) Look at the heat flow when Jx = κeE + αdTdx = 0, or when E = − α
κe

dT
dx . It

follows that

qx = −κdT
dx
− βE = −

(
1− αβ

κeκ

)
κ
dT

dx
.

18.12 Mirror machine [by Alexander Putilin ’00]

(a) Since µ = mv2
⊥/(2B) is conserved, then since B increases by a factor of 10

from center to end, then v2
⊥ must increase by a factor of 10 as a particle goes

from center to edge. So
v2
⊥,final = 10v2

⊥,initial,

and by conservation of energy

v2
‖,final = v2

‖,initial − 9v2
⊥,initial.

So, they escape when v2
‖,final > 0, so only those particles released that have,

initially, v2
‖ > 9v2

⊥ escape. That is, only a fraction given by∫ π/2

tan−13

cosαdα = 1− 3√
10

= 0.0513

escape.

(b) The distribution function dN/d|x| as a function of the pitch angle α, aver-
aging over particles at all locations throughout the bottle, will be zero beyond
tan−13 (because these particles would have escaped). For small values of α,
dN/d|x| will be pretty flat, which corresponds to the fact that at α = 0 (the
mirror points), α changes linearly with time for a particle. The distribution
function will drop off rapidly as the value |α| = tan−13 is approached.

If we just look at the middle of the bottle, then assuming the particles
are released continuously in time (over the time period of many cycles for the
particles to bounce from one mirror point to another), then for all times later,
the distribution will remain isotropic there, except for the removal of all particles
with sinα > 0.95 = sin tan−13.
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(c) Since the diffusion time is independent of α, and the hole is so large in α
space (from tan−13 to π/2, about 0.32 radians, which is (0.32)/(π/2) = 1/5 of
α space), then one out of five collisions scatter a particle out of the bottle, so it
leaks out (e-folds) in approximately time 5tD.

(d) Wouldn’t it seem more reasonable that particles shouldn’t diffuse with diffu-
sion time independent of α but rather sinα to account for solid angle properly?
In such case, then in part (c), all occurrences of α should be replaced by sinα,
and since sinα goes from 0 to 1 particles that scatter into sinα > 0.95 get
lost. In which case, 1/20 of all particles scatter out of the bottle in time tD (as
opposed to 1/5 as computed in part (c)), so the e-folding time is 20tD.
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