Solution for Problem Set 19 (Ch 18)

(compiled by Nate Bode)
April 8, 2009

18.1 Boundary of Degeneracy [by Alexander Putilin '00]
We'll ignore factors of order unity in what follows.

(a)l= ne'’® > Aap = h/(momentum) ~ h/v/mkT, which immediately gives
ne < (mekT)3/? /h3.

b) Using the uncertainty principle, Ax ~ h/Ap ~ h/\/mkT < ne_l/?’7 which
( g y principle, p Vv
again reduces to n, < (m.kT)3/2 /3.

(c) The quantum mechanical zero-point energy is given by (Ap)?/m. =~
h2/(12m.) ~ h%/(ne**m.) < kT, which reduces to n, < (mekT)3/2/h3.

18.6 Parameters for various plasmas [by Henry Huang ’98]

1/2
Text eq. (18.10) A\p = (%)1/2 _ 69( T/1K ) -

n/lm=—3

)
Text eq. (18.11) Np = n4FX}, = 1.4 x 106 T
)

1/2
Text eq. (18.13) f, = 32 = 5 ( ne? ) _ 5o (n/lm_g)l/z Ha.

271 \ €gMee
Text eq. (18.21) #% = L = 1 (n/1m=3) " (T/1K)** (In A/10) " s.
< .
Using the fact ichat A = 2Np (see Exercilse 18.2 part (a)), we get t55 = 4 x
10* (n/1m~3) " (T/1K)** (In(2%2)/10) " s.
And we only need to know 7" and n to get numerical values of these.

(a) Atomic bomb.
Text eq. (16.57) gives T ~ 4 x 10* (t/1ms) "?K; at ¢ = Ims, T ~ 4 x 10*K.

The discussion above eq. (16.57) gives p ~ 5kg/m?, which means n ~ m’;p ~

5kg/m? 26, —3
39%1.66x10-27kg ~ 107 M7



(b) Space shuttle

Box 16.2 gives T ~ 9000K. And since shuttle moves at ~ 7000m/s >>
sound speed 280m/s (all given in Box 16.2), we can use eq. (16.45a) which says
% ~ % and gives ps ~ 5p; taking v ~ 1.5. The density at the altitude of
70km is p1 ~ Pground €xp(—70km/8km) ~ 10~*kg/m3, which gives n ~ #% ~
L~ 107,
(c) Expanding universe

Text Fig. 16.1 gives: at recombination threshold, log7 ~ 3.5 = T ~

3
103°K ~ 3 x 103K. Also from chapter 26, p & T2 = pithen = Pnow (%) ~

3
—29 3 ( 3x10°K —20 3 Pthen 10,,,—3
10~*?g/cm 3K ~ 107%%g/cm?. So we get n ~ e 10*%m—>.

Plugging the above values of T" and n into the equations on the top of this
page, we get

)\D (In) ND fp(HZ) tD (S)
A-bomb | 1x107Y |1 9x 1013 [ 2x10714
Shuttle | 7x 108 | 10 9x 10T [ 9 x 10712
Universe | 4 x 1072 | 2x10° | 9x 10° | 4 x 1071

18.5 Stopping of alpha particles [by Alexander Putilin ’00]

First calculate the energy loss of an a-particle in a Coulomb collision with
an electron (with impact parameter b). Consider the collision in the electron’s
rest frame. We can approximate the trajectory of the a-particle by a straight
line (take this to be the x-axis). Then the momentum change of the electron is
given by an integral of force over time:
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Then the energy loss is
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where m, = 4m,, is the mass of an a-particle and E = %mav2 is the energy of

an a-particle. When an a-particle travels a distance d¢, it loses energy:

bmax
dE = AE - (number of collisions) = / AE -n,-27b-db - dl. (4)
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— ] ——= ne-2wb-db=— — ] InA, (b
(7‘(‘60) dmeEb? ¢ 2m.FE <7T60) )
where A = byax/bmin. To estimate byax, notice that electrons in plastic are not
free but rather are bounded in atoms. It means that there is no Debye shielding
and so a reasonable estimate for by,.y is the atomic spacing: byax ~ ne 173 o
2-107m. For byy,, use the usual formula

(6)

2
boin = Max [bo _ 22 f ] .

Aregmav?’ mau

We see that In A depends on the energy E, but since A > 1 and In A varies
slowly for large A, we can assume In A to be constant equal to its initial value

at E = Eg = 100MeV. So, bpin ~ w#% ~ 2.5-107%m, and so finally

In A = 13. Integrating equation (1), we get

% (E2 - B(0)?) = T2ce (62>21HA-4. (7)

2me, )
The range ¢ is defined by E(£) = 0, so
meo\2  meE:
(= (5) e
e? TMaNe In A (8)

Plugging in the numbers, we find ¢ ~ 0.5 cm.

18.7 Equilibration Time for a Globular Cluster [by unknown author]

(a) For single deflections when b < by, ¢ = 7b3. While for cumulative deflec-
tions, in which each deflection has b > by, then AE = —(by/b)?E for each
deflection. Since we are interested in the case where the test star has high
kinetic energy compared to the field stars, then we add up AF linearly.

A /bm‘“‘
E

min

bO 2 2 bmax
" nut2mwbdb = —2mvtnbj In A 9)

min

where by, is by and byax is R = the radius of the star cluster. So the energy
change timescale is dominated by cumulative deflections:

1

- 10
2mb3nv In A (10)
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In the gravitational case, by = 2Gm/v? and we get

3
v
te 8nG2m2In A (11)

To estimate this, use the Virial theorem(e.g. Goldstein) which says that the

cluster’s kinetic/ energy is half the potential energy, so %N mv? ~ %G(NTW,
GNm\1/2
o ()1
R R
mA=In—=In———=IN=In10°=14 12
n n b n 3Gmo? n n (12)
and
N3/2
tp = ——————= 13
B 14n(8GmR3)1/2 (13)
Also we can put in n = N/(3FR?) to get
4lN1/2R3/2
_ 3 _ 17, _ 10
te = Tiagmye = 4 X 1075 =13 x 100 (14)

which is about the age of the universe.

(b) The cluster will try to develop a distribution function that is a function of
the constant of motion (so it satisfies the collisionless Boltzmann equation, i.e.
Liouville’s theorem of chapter 2). The velocity distribution will try to become
isotropic, so
dN

- Brd3p
where @ is the gravitational potential which is less than zero. In true equilib-
rium, this f(E) should become an exponential, so N' = Cexp(—FE/kT). How-
ever, only stars with F < 0 are gravitationally bound in the cluster; those
with E > 0 escape and fly away. This means that Y = 0 for £ > 0 and
N ~ Cexp(—E/kT) for E < 0.

Stellar encounters then keep kicking stars, occasionally, to energies E > 0,
and those stars evaporate from the cluster. Since the evaporated stars have
larger energy than average, the rest of the cluster keeps shrinking and becoming
more and more tightly bound.

= f(E) = f(m® + %mﬁ) (15)




18.4 Dependence on thermal equilibration on charge and mass [by
Alexander Putilin "00]

The ion equilibration rate for a pure He3 plasma is derived by the same
method as proton-proton equilibration rate. We start with electron-electron
equilibration rate (B.T. eq. (18.27))

—3/2
Ve = neorcln A [ kT (16)
23/ Mec?

_neCIDASI 2 20T \ T2 (17)
2y 3 \dmegmec? MeC?

Replace electron charge, density, and mass with corresponding values for He?
ions: e — 2e, Ne — Nyge = %ne, Me — MHe = 3My. We get

nuecIn A 87 4e? 2 kT O\ 32 (18)
v = — —
He He 23/ 3 \4megmpec? MHeC?
16 [mengeorcIn A (kT —3/2 (19)
V3\m, 27 Mec?
16 nH T\ 2 /InA
= 258 x 10777 () (o a2 20
/3 o s s ) Uk 10 (20)
and we have ng. = = 0.5 x 1020 =3 T = 108K. Now estimate InA.
A = 2 with Ap = (nH Z;Te)g) — 4.9 x 107°m, and by, = Max[by =
m(i:};, i), where v =~ /35T We find by = 4.4 x 107"®m and I =
2x107"m. Thus we take byin = 4.4x 1073 m, which gives In A = In % ~
18.
Plugging it into the formula for vy, g we get
UHe He ~ 500 s (21)

18.11 Adiabatic indices for rapid compression of a magnetized plasma
[by unknown author]

(a) The amount of momentum that passes through a surface AA normal to the
z direction per time At is m.v, for each electron, and only those electrons (with
velocity v,) which are in the region of volume AAv,At pass through, so the



total amount is neme(v2)AAAtL. Since T, is this number divided by AAA,
then
Py =T..= Neme (v2).

Similarly,
Pl = neme(v?) = neme@i),

and since (v2) 4 (v7) = (v, [?), then

1
P, = ineme<|vl|2>'

(b) From Box 10.1, we see that
© =80+ Syy + 5.2

and 5 .
Y = §Szz - g (Szx + Syy) .
Invert to get that S,, = %@ + 2., and Spp + Syy = %@ — Y., so that one sees
that
dé/dt  dS.. ld(a d¥,,

¢ dt  3dt | dt

1 .
=30+ o7kb,by,

and
dA/dt _ d(Sgz + Syy) 24O dY,,

A dt T3 dt dt

9 .
= 30— "bjr.

(c) The amount of kinetic energy corresponding to motion in the z direction in

the fluid element is neAK%me@ﬁ). Due to energy conservation, if the element

expands, doing work at rate P d(volume)/dt = neme<vﬁ>A(d€/dt), then the
energy must drop accordingly, so

1 d(vf)
neAﬂime pm

de
dt’

= —neme(vﬁ>A

SO 9
(1A 240

() dt —edr

Following the same argument for the perpendicular contribution to the energy
gives
1 d{?) 1 dA
Al—m,—EL = ——nom (V2 )0—
neAlsme—- 2n4m‘<vl> e

so
1 d{v?) 1dA

W2y dat —  Adt’




Due to particle number conservation, n.A¢ is a constant (equals the number of
particles in the fluid element). So setting d(n.Af)/dt to zero, and dividing both
sides by n.AZ, yields:

1dn.  1dl 1dA

ne dt  Ldt  Adt’

(d) Using the above results,

1 dPy  1dn, , 1 d{vj dejdt  dAjdt 5 .
I _ = n - < H> :—3L—7/:—79—20'jkbjbk,
PeH dt Ne dt <’UH> dt l A 3
1 dP..  1dn. 1 d@?)  dejdt _dAjdt 5, .
= — =— -2 =—=0 TEb by,
Pl dt  mdt (%) dt ] A g0 TRt
(e) When there is no expansion along B, we can set the d¢ = 0. Using the
results from part (d) and mass conservation (which says that dln A = —dIn p)
respectively,

d(InP.; ) = —2d(In A) = 2d(In p)

or
d(nP..)

9(Inp)

And similarly,
d(In P,) = —d(In A) = d(In p)

or
8(ln PeH )
d(Inp)
When there is no expansion perpendicular to B, we can set the dA = 0. Using
the results from part (d) and mass conservation respectively,

d(lnP,; ) = —d(In¢) = d(Iln p)
or
OIlnP.1)
dnp)
And similarly,
d(In Pyj) = —3d(Inf) = 3d(In p)
or
a(ln PeH)
d(Inp)

(f) Finally, using the results of part (d),

d(In (P?P))) = 2d(In P,) + d(In P) = —5d(In A) — 5d(In ¢) = 5d(Inn, ),



so, integrating gives
P? Py o n.

Also,
d(lnPy) = —d(In¢) — 2d(In A) = d(lnn.) — d(ln A) = d(lnn.) + d(In B),
because the flux AB through a circle is constant. So, integrating gives

P, xn.B.

18.8 Thermoelectric transport coefficients [by Jeff Atwell]

(a) Basically a temperature gradient creates an electric current and an electric
field causes heat flow because the carriers of both currents (electric and heat)
are electrons, which always carry both energy and charge.

Suppose that initially the electrons on the left side of a room are hotter than
those on the right side of the room. This means that initially the electrons on
the left side are moving faster, on average. If we then let the room equilibrate,
the electrons initially on the left side will penetrate faster to the right side,
on average, then the right side electrons penetrate to the left side. Then we
would say that both heat and charge have flowed from left to right (because
electrons carry both energy and charge). Now, after the room has equilibrated,
let’s suppose that we turn on an electric field which causes the electrons to
accelerate to the right. This clearly will cause heat to flow to the right.

(b) The distribution function f(x,v) is defined by the relation
f(x,v)dxdv = Number of particles in dxdv.

Recall from Chapter 2 the Boltzmann transport equation:

af dv _(9f
o PV Vg va—(atlon‘

Now recall from exercise 2.13 that it is often valid to use the “collision-time

approximation”:
(31”) __f-f
ot coll tD ’



where fj is the distribution function in thermal equilibrium. We are interested
in the steady state, so that 9f/0t = 0, and so now the Boltzmann transport
equation reads

dv I =

vaf""i Vof=- P
D

For simplicity, suppose there is an electric field E in the x direction and a
temperature gradient d7'/dz. Then the transport equation becomes

eBOf | Of _ _J—Jo

m Ovy, or tp
Rewriting this, we have
eE Of af
fjbb<m%f%m>

We now assume weak fields and small temperature gradients, that is, we assume
(f — fo)/fo < 1. To this approximation

cEofy  0fo
m Ovg Tor )

fh—m( (22)

For the Maxwell-Boltzmann distribution, f; is a function of the energy £ and
the temperature T, so

dfy  0fodT
dr  OT dz’
and
Ofo _ 0fy dE 9fo

v, OF dv, T OE
If we suppose that dT'/dx = 0, then equation 22 reduces to

9fo

— etpEv,
f=1r etpBvs o

The electric current density is given by

Iz —/evzfd v = tDeQE/ 2 fo

as [ v, fod*>v = 0 because fj is an even function of the velocity component v,.
Similarly, the heat flux is given by

0
Qe = /Evafdgv = —tDeE/&)I 8?

We work with the Maxwell-Boltzmann distribution

m 3/2 2
fO =n ( ) e~ ™Y /2kT.
2nkT




Notice that

0f 1,
oE kT’
SO 2 g
t
J:c = Dk‘; szOdBVa
and

E
0= 28 / €02 fodv.

Doing the integrals on mathematica using this fy, and dropping coefficients of
order unity, I find:

2
t
J, ~ 2D
m
and

netpkT
qx ~

E,
m
which agrees with equations (18.33). Now, from (18.31)
e2 ET\*?  [mc2\® ¢ KT \*?  (kT)%/?
fre ™ orcemin A (m02> - ( €2 ) cmlnA <m62> ~ e2y/min A’
where T have used (18.28) for the Thomson cross section. Then from (18.33)

ntD62
Ke ~

717627712(l<:T/7’n)3/2

m netln A

(kT)3/2
e2y/mn A’

where I have used (18.21) for ¢tp. Notice that these two k. expressions agree

m
(c) When E = 0, equation 22 reads

dz 0T
Then we have L0
Jr = /e’uzfd v = ftDe—/ fO

dr 0 fo
T — T d3 = *t - 2
Again, doing the integrals on mathematica, I find agreement with equations
(18.34). Now, from (18.31):

and

oo e (RTNTE(meNE ke (RTNTPRGT)Y?
orln A \ mc? 2 InA \ mc? etymin A’

where T have again used (18.28) for the Thomson cross section. Then from
(18.34):

. ntpk®T  nk*>T m?(KT/m)3/?

m m netln A
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where I have again used (18.21) for tp. Notice that these two k expressions
agree.

(d)

af () (Bme) 1~ 0.581

and

kT

kTt
ol + —kKe ~ et +
e

e kKT e e
— T —_— O~ = ~
KL= gpP~ gt h

= BB+

(e) Look at the heat flow when J, = k.E + a%L =0, or when E = —-2 4L Tt

Ke dT
follows that T T
qw:_ﬁi_ﬁE:_ 1-— Oéﬁ K—.
dx Kek dz

18.12 Mirror machine [by Alexander Putilin '00]

(a) Since u = mv? /(2B) is conserved, then since B increases by a factor of 10
from center to end, then v? must increase by a factor of 10 as a particle goes
from center to edge. So

2 _ 2
V] final — 1OUJ_,initia17

and by conservation of energy
2 _ 2 2
V| inal = Y|\, initial — T initial-

So, they escape when vﬁ final > 0, so only those particles released that have,
initially, ’Uﬁ > 9v% escape. That is, only a fraction given by

/7‘(/2 3
cosada =1 — —— = 0.0513
tan —13 \/ﬁ

escape.

(b) The distribution function dN/d|z| as a function of the pitch angle «, aver-
aging over particles at all locations throughout the bottle, will be zero beyond
tan ~13 (because these particles would have escaped). For small values of «,
dN/d|z| will be pretty flat, which corresponds to the fact that at o = 0 (the
mirror points), « changes linearly with time for a particle. The distribution
function will drop off rapidly as the value |a| = tan 13 is approached.

If we just look at the middle of the bottle, then assuming the particles
are released continuously in time (over the time period of many cycles for the
particles to bounce from one mirror point to another), then for all times later,
the distribution will remain isotropic there, except for the removal of all particles
with sin o > 0.95 = sin tan ~13.
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(c) Since the diffusion time is independent of «, and the hole is so large in «
space (from tan =13 to 7/2, about 0.32 radians, which is (0.32)/(7/2) = 1/5 of
a space), then one out of five collisions scatter a particle out of the bottle, so it
leaks out (e-folds) in approximately time 5¢p.

(d) Wouldn’t it seem more reasonable that particles shouldn’t diffuse with diffu-
sion time independent of o but rather sin o to account for solid angle properly?
In such case, then in part (c), all occurrences of « should be replaced by sin ¢,
and since sina goes from 0 to 1 particles that scatter into sina > 0.95 get
lost. In which case, 1/20 of all particles scatter out of the bottle in time tp (as
opposed to 1/5 as computed in part (c)), so the e-folding time is 20¢p.
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