




Solution for Problem Set 21

(compiled by Nate Bode)
April 24, 2009

A

21.1 Non-resonant Particle Energy in Wave [by Keith Matthews adapted
from Chris Hirata]

The rate of change of the non-resonant electron kinetic energy is given by

dUe
dt

=
d

dt

∫
1
2
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2F0dv

Insert eq. (21.20)
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)
We note that Dnon−res is independent of v, integrate by parts twice, and

then simply integrate to get

dUe
dt

= meD

∫
F0dv = menD

Insert eq. (21.23) for D = Dnon−res

dUe
dt

=
1
2

∫ ∞
0

2ωiεkdk

which is the desired eq. (21.24).

21.2 Energy Conservation [by Alexander Putilin/ ’99]
The electron kinetic energy density and momentum density are given by
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∫
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and we have
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Now using eq. (21.22) for the resonant electrons

D =
e2π

ε0m2
e

∫
dkEkδ(ωr − kv) (6)

we find
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which becomes, upon using eq. (21.12) F ′0
(
ωr

k

)
= 2ε0me

πe2
k2

ωr
ωi,

−
∫
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using eq. (21.18) (9)

= −∂U
w

∂t
− ∂Swz
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(10)

where we’ve used the facts that
∫
dkEk is the wave’s energy density Uw, and∫

dkEk ∂ωr

∂k is the wave’s energy flux Swz .
Thus we finally have

∂Ue

∂t
+
∂Sez
∂z

= − ∂Uw

∂t
− ∂Swz

∂z
(11)

which is the energy conservation law.

21.3 Cerenkov Power in Electrostatic Waves [by Alexander Putilin ’99]
The emission rate of plasmons is given by (21.43)

W =
πe2ωr
ε0k2~

δ(ωr − k · v) (12)

Each plasmon has energy ~ωr, so the radiated power per unit time is

P =
1

(2π)3

∫
d3kW~ωr =

e2

8π2ε0

∫
d3k

ω2
r

k2
δ(ωr − k · v) (13)
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The integration is over the region k < kmax(outside this region waves are
strongly Landau damped). A good estimate of kmax is the inverse Debye length:
kmax ∼ 1/λD(see the discussion at the end of Sec. 21.3.5). Since kλD < 1, we
can approximate ωr(k) by a constant ωp.

Choosing v to point along z-axis, we have
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p

8π2ε0

∫
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d3k
1
k2
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=
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Note that P depends on kmax logarithmically. So if v is sufficiently large, it
doesn’t make much difference what particular definition we use for kmax.

21.4 Electron Fokker-Planck Equation [by Xinkai Wu ’02]
It’s very straightforward to carry out the Taylor expansion in ~ to second

order, so we don’t bother to write down all the formulae here. Rather we’ll just
point out a few things worth noticing in the expansion. Fristly you may find it’s
easier to use component notation rather than tensor notation. Secondly, you
may want to group terms coming out of expanding the r.h.s. of eq. (21.47) into
three categories: f terms, ∂f

∂vj terms, and ∂2f
∂vj∂vn terms. Thirdly, to get the final

answer, notice that in the classical limit both η and W are large, i.e. of order
1/~. After all these, you can set ~→ 0 and recover eq. (21.48).

21.5 Three-Wave Mixing [by Xinkai Wu ’02]

(a) Diagram (b) in Fig. 21.5 gives the rate of creation of B,(
dηB
dt

)
creation

=
∫
WC→ABηC(1 + ηA)(1 + ηB)

dVkA

(2π)3
dVkC

(2π)3
(19)

where in the above expression, the unity in (1+ηA) corresponds to spontaneous
emission and ηA corresponds to induced emission. Similarly for (1 + ηB).

Diagram (a) in Fig. 21.5 gives the rate of destruction of B,(
dηB
dt

)
destruction

= −
∫
WAB→C(ηC + 1)ηAηB

dVkA

(2π)3
dVkC

(2π)3
(20)
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The net rate of change is given by the sum of these two, and by the principle
of detailed balance WAB→C = WC→AB . So we get

dηB
dt

=
∫
WAB↔C [(1 + ηA + ηB)ηC − ηAηB ]

dVkA

(2π)3
dVkC

(2π)3
(21)

(b) Under the approximation stated in the problem, we have

ηC(1 + ηA + ηB)− ηAηB ≈ ηB(ηC − ηA) (22)

Also let’s change notation: kB ≡ k, kC ≡ k′, ηB(kB) ≡ ηia(k), ηA(kA) ≡
ηL(kA), ηC(kC) ≡ ηL(k′), also change ωA and ωC to ωL. Then using the Taylor
expansion

ηL(k′)− ηL(k′ − k) ≈ k ·∇k′ηL(k′) (23)
ωL(k′ − k)− ωL(k′) ≈ −k ·∇k′ωL(k′) = −k ·Vg(k′) (24)

we easily get eq. (21.59).

(c) [Thorne/Matthews ’05] Eq. (21.59) becomes almost identical to eq. (21.42)
upon ηia(k)→ η(k), and ηL(k′)→ f(v).

Cerenkov radiation occurs when the emitting particle travels faster than
the group velocity of the emitted wave (provided there exists a process that
couples the two.) As a result the emitting particle generates a shockwave like
that produced by a supersonic aircraft. This shockwave takes on a form almost
independent of the type of source and the waves generated.

The formation of this shockwave depends upon the emitted plasmons having
much lower energy than the source and following boson statistics. This causes
them to have much higher number density than the emitting plasmons which
facilitates stimulated emission.

In the same manner in which fast electrons generate a shockwave of Langmuir
waves, Langmuir wave excitations are plasmons (i.e. particles) that travel faster
than ion-acoustic modes and generate a shockwave in them.

These similarities, exceeding speed, low emitted plasmon energy and stimu-
lated emission are the physical source of the similarity between the two results.

(d) Keith and Kip hope to provide a solution to this part by Monday of next
week.

21.6 Three-Wave Mixing - Langmuir Evolution [by Xinkai Wu ’02]

(a) See Fig. 1 for the four relevant diagrams. The desired rate of change for
the Langmuir occupation number is given by the sum/difference of these four
diagrams:
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Figure 1: Diagrams for the change of Langmuir occupation number (we use solid
lines to denote Langmuir plasmons, and dashed lines ion acoustic plasmons)

dηL(k′)
dt

=
∫

d3k
(2π)6

[(1) + (2)− (3)− (4)] (25)

where

(1) = ηL(k′ + k)[1 + ηL(k′)][1 + ηia(k)]R(k′ + k,k,k′)δ(ωL(k′ + k)− ωL(k′)− ωia(k))(26)
(2) = ηL(k′ − k)ηia(k)[1 + ηL(k′)]R(k′ − k,k,k′)δ(ωL(k′)− ωL(k′ − k)− ωia(k)) (27)
(3) = ηL(k′)[1 + ηL(k′ − k)][1 + ηia(k)]R(k′ − k,k,k′)δ(ωL(k′)− ωL(k′ − k)− ωia(k))(28)
(4) = ηL(k′)ηia(k)[1 + ηL(k′ + k)]R(k′ + k,k,k′)δ(ωL(k′ + k)− ωL(k′)− ωia(k)) (29)

(b) Now under the approximation stated in ex. 21.5 part b, all the δ-functions
in the previous part reduce to the same expression δ(ωia(k) − k ·Vg(k′)). We
also have(dropping this δ-function for the moment being)

(1)− (4) = {ηL(k′ + k)[1 + ηL(k′) + ηia(k)]− ηL(k′)ηia(k)}R(k′ + k,k,k′)(30)
≈ [ηL(k′ + k)− ηL(k′)]R(k′ + k,k,k′)ηia(k) (31)
≈ k ·∇k′ηL(k′ + k)R(k′ + k,k,k′)ηia(k) (32)

and
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(2)− (3) = {ηL(k′ − k)ηia(k)− ηL(k′)[1 + ηL(k′ − k) + ηia(k)]}R(k′ − k,k,k′)(33)
≈ [ηL(k′ − k)− ηL(k′)]R(k′ − k,k,k′)ηia(k) (34)
≈ −k ·∇k′ηL(k′)R(k′,k,k′ − k)ηia(k) (35)

where to reach the last expression in the above equation, we’ve used the fact
that R is symmetric w.r.t. the two Langmuir wave momenta.

It’s not hard to see that (1) − (4) and (2) − (3) are the same expression of
K evaluated at K = k′ + k and k′ respectively So integrating their sum over
phase space we immediately get the desired answer

dηL(k′)
dt

= ∇k′ · [D(k′) ·∇k′ηL(k′)] (36)

with

D(k′) ≡
∫

d3k
(2π)6

ηia(k)k⊗ k R(k′,k,k′ − k)δ(ωia(k)− k ·Vg(k′)) (37)

(c) See above, ex. 21.5c. For the same reasons that the evolution equation
for the emitted particles is characteristic, so is the evolution of the emitting
particles.
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