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22.1 Invariance of a Null Interval [by Jeff Atwell]

Let €, be an orthonormal basis, so (€4,€3) = 743. Let —c be the value of
Joo = &(€p, €p). Our goal is to show that gos = cneg for all o and .
Choose some arbitrary spatial basis vector €;. The vectors &y + € and €y — €}
are both null, so

0 = g(€o + €}, €0 + €;) — g(eo — €5, €0 — €;) = 48(€0, €;) = 4905,
which means that §o; = 0. Similarly,
0 = g(€o + €, €0 + €;) = goo + 2Goj + G55 = Goo + Gjj>

and since goo = —c, this means that §;; = +c [where there is no summation on
j] for any j =1,2,3.

The remaining components we must compute are g, for j # k. Consider
the two different basis vectors €; and €. The vector V2ée, + €j + € is null.
Therefore

0= g(\/igo + gj +5k,\/§€o + gj +5k)
= 2§oo + V2§o; + V2§or + jj + Grk + 23k
= —2c+0+0+c+c+ 2§, = 2§k,

which means that §;; vanishes when j # k. Combining all our components, we
conclude that gog = cnag = cgag-

22.2 Causality [by Alexei Dvoretskii 2000]

Consider two different reference frames - primed and unprimed. Assume
without loss of generality that event P; occurs at a point (0,0) in spacetime in
both frames and event P, at a point (¢,0) in the unprimed frame (i.e. at the
same spacial point) and at a point (¢',x’) in the primed frame. Now recall the
invariance of the interval:

§2 =2 = 2= 2 4 32



and
t = £/t + 22

The transformations from one frame to another are continuous and in the
limit of very small transformations ¢’ = t. Therefore,

t'=Vit2 422 >0,

and so the temporal order of events is the same in all inertial frames. Of course,
were this not true, causality would be violated.

It’s also obvious that ¢’ > ¢ and that apart from that there are no limits on
the values of the spacial and temporal separation of the two events.
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Figure 1: Causality

See Fig. 1 for the spacetime diagrams. As the velocity of the primed frame
increases, the time of event P, ¢, moves up the ¢’ axis. Clearly t§ > to (c.f.
dashed hyperbola of events all at same interval from P;). Similiar diagram can
be drawn for velocity in the opposite direction. The diagram shows that for ¢,
to <ty and t, can be made arbitrarily large.

22.4 Index manipulation rules from duality [by Alexei Dvoretskii 2000]

(a) Let’s expand a given dual basis vector in the original basis:

@ = froeg.



Now to find the coefficients f#? multiply both sides of the equation by € and
use the duality relation to obtain

_ rup
e = frisy
g(e", &) = " = 1.

This proves the first relation:
& =g'ley

The proof of the second relation is similar.
(b) Using the result above,

Fr =F(e" e") = F(g"“€,,e").
Now use the linearity of the tensor to write

FrY = ghoF (Cy, ") = g"“F,".
The proof of the second relation is similar.
(c) Consider for example the first identity:

F=Fe, c¢,.
Now consider
F(e*, &%) = F" (e, -&)(é, &) = F' 6060 = PP,

So all the components of the tensors on the left-hand side and the right hand

side are equal which proves the identity. Similar proofs can be given in the other
cases.

22.6(a-b),22.5b Connection coefficients/Transformation Matrices for
circular polar coordinates [by Alexei Dvoretskii 2000 and Xinkai Wu]
(22.6a) First let’s consider the Coordinate basis

€ = O, €p = Oy



Hence

The metric tensor is given by

(10
g= 0w2 .

The only non-zero Christoffel symbols are then
Pops = (—1/2)9p,w = —@
Lspo = Lpwg = @,
and the connection coefficients are

Fw¢¢ = —w, F¢w¢ = F¢¢w = 1/w

(22.6b) Orthonormal basis:

—

gﬁ :aw,€¢ = 1/w8¢

. In this basis the metric tensor is of course just

5= (o))

The commutation coefficients are readily computed from

[é'ﬁ,é;a] = [8w, 1/w8¢,] = —1/w26¢ = —1/wé’q;

Hence, the only non-zero commutation coefficients are

Cwqg(b = —1/ZU7 ngw(b = l/w

And the Christoffel symbols and the connection coefficients are

F%z;q; = F%é = —1/7D7

w

_r¢  _
Féw(&—rﬁ&—l/w.
(22.5b)
By the chain rule, we have
of _af . of
o COS(b% —i—smqba—y
of . Of
8_¢_ WSIH¢8z+WCOS¢8y'



for any function f. Combining this with

=9 oL 0

0w Y w 09

S o 0

%= T gy (2)

we get the transformation matrix
L*, =cos¢, LY, =sing, qug = —sin @, Lng = cos ¢, (3)
whose inverse is

L% = cos ¢, L“Z’I = —sin g, L"Z = sin @, L‘;By = cos ¢. (4)

22.9 Index gymnastics [by Xinkai Wu 2002]
(a) First notice that P,gu” = u, + usugu” = 0, using the fact that w2 = —1.
Thus

PogP? = Pop(g®, + uuy) = Po,. (5)

(b) P.sAPu® = 0 because P,su® = 0, thus P,gA” is orthogonal ot 4. P,gA” =
A, + uQUgAﬁ = A, if ugAﬁ =0.

(c) In the fluid’s local rest frame, gag = 7ag, and u® = 6°0. Thus P,z is
diagonal in this frame, with Pyo =0, Pj; =1,7 =1,2,3.

(d)

(Vi) =t tas = —aai® = aq, (6)

where we’ve used Eq. (22.53) and the fact that P,g, 0ag, and wag are all
orthogonal to 4. Thus we see Vi = a. Also

—

a U = ayu uﬁua;ﬁuo‘

(e}
B

a
uP[(uau®)s — uua;p] = —u uSugs = —a- @ (7)

Thus

S
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(e) Contracting eq. (22.53) with g, using @ - @ = 0, tracelessness of 0,5 and
Wag, and g*PPg = g*Pgap + ©? = 3, we immediately get V - @ = 6.

(f) Symmetrizing eq. (22.53) and using the expressions of @ and ¢ worked out
in the previous parts, one gets

1 2
OaB = 5 (“a;ﬁ + uia + U Uayup + U U UG — guv ;'vpaﬁ> ‘ (8)

2
Antisymmetrizing eq. (22.53), one gets
1

wap = 5 (Uasp — Upsa + U Uaryug — W UgyUa) . (9)

2

(g) (i) The four velocity is given by @ = (vy,yv7), where v = 1/v/1 —vivi. So
to first order in v/, we have u® = 1, and v/ = v7. (ii) 6 = u*,, = u® ,, to first

order in v/, this becomes § = v’ ; = v’ ;. (iii) The 3rd and 4th terms in the
expression of o, worked out in part (f) are of higher order in v7 and can be
ignored, so we get ok = 3 (Vj % +Vk,;) — %Ogjk,which is the fluid’s nonrelativistic
shear. (iv) In the expression for w;, worked out in part (f), the 3rd and 4th terms
are of higher order, and we get w;, = l(vjyk — vg,j), which is the nonrelativstic

2
rotation.

22.10 Gauss’s Law [by Xinkai Wu 2002]

E - d¥ = EIdY;, where d¥; = €(€j,d0d/00,dpd/d¢). By the antisymme-
try of €, only d¥, doesn’t vanish, and is given by €,.94d0d¢ = R?sin0dfdg.
On the r.h.s. of Eq. (22.55), d¥ was already worked out in the text: d¥ =
r? sin Odrdfdep. Thus Eq. (22.55) becomes

/ E"R? sin §dfd¢ — / Pe 12 Gin Odrdfde. (10)
r=R r<R €0




22.11 Stress energy tensor for a perfect fluid [by Alexei Dvoretskii 2000]

(a) If the components of two tensors are equal in a given frame, then they will
be equal in any frame, so we just need to verify that

T=(p+Pli®i+ Pg
reduces to
T = p, T = psik
in the rest frame. It’s a trivial exercise given the simple form of « in the rest

frame:
= (1,0,0,0).

(b) If observer is moving with a speed v much smaller than the speed of light
with respect to the rest frame of the fluid, then the momentum density in this
frame can be written as y
J 7
™ =p iilertialvi’
which is the definition for the inertial mass density. In the limit of small v the
momentum density can be written as

Toj = (p+ P)Uj
and so

ij — j
Pinertial — (p + P)o".

(c) For non-relativistic velocities v the 4-velocity can be written as
i=(1+0v%/2,v).
Also
p = po(1l+u).
Calculating to order v? get
T% = (po + pou+ P)(1 4+ v?/2)v7 = (po + pov?/2 + pou + P)v?,
T = (po + pou + P)v'v? + P& = pov'v? + P,
T% = (po + pou + P)(1 +v?/2)* = P = po + pou + pov*.

(d) As in b,

T — i
PinertialV?

= (p-i—P)vj.



22.14 Stress-energy tensor for a point particle [by Alexei Dvoretskii 2000]

We want to prove that

P (Go) = / P (OP*(Q)8(Q. P(C))dSsd. (11)

Because of the o-function the argument of 4-momenta is fixed: ¢ = (o and the
right hand side reduces to

RHS = p*((0)p™ (o) / 5(Q, P(C))dSsdc. (12)

Let z* be the coordinates of @ (not necessarily Lorentzian ) and y*({) - co-
ordinates of P in the same coordinate system. Since the expression is Lorentz
invariant we can choose the coordinate system any way we like. To simplify the
calculation we make it satisfy the following requirements:

e The surface X is given by the eqn. 2% = 0.
e The world line of the particle intersects ¥ at =7 = 0.

e The coordinate system is local Lorentz one at the point of intersection
= 0.

Then the surface element d¥g has only one non-vanishing component:
d¥o = d®x = dxtdx?da?, d¥; =0, j=1,2,3, (13)
and the d-function can be written as a product
3(Q. P(¢)) = 8(z0 — y0(¢))8° (x = ¥(¢)) = 8(y0(¢))8° (x — ¥(¢)). (14)

The resulting integral can be easily calculated.

RHS = p°(Go)p°(Go) / 5O(0))5% (x — y(0))dxdC =

1
= (@ (G) [ SO = P ()8 (o) g7
Tgko
But C{d—ygko = p°({p) by definition of momentum, so
RHS = p*(Co). (15)



22.15 Proper Reference Frame [by Alexei Dvoretskii 2000]
(a) It’s fairly straightforward to obtain the transformation law in differential
form (the hats on the right-hand side are dropped to simplify notation):

dx = dx + az®dz® 4 (Q x dx)2® + (Q x x)dz°

dz® = dz®(1 + a-x) 4 2% - dx.
Squaring and only keeping terms linear in x we get
dx? = dx? 4 2a - dxz'dz® + 2(Q x x) - dxda”,
(dz®)? = (dz®)?(1 4 2a - x) + 2a - dxzdz®.
Given this it’s easy to see that the new metric is indeed
ds®* = —(1 +2a-x)(dz)? + 2(Q x x) - dxda® + dx>.
(b) Recall that the components of the metric in the proper frame are (again
dropping the hats for simplicity of notation)
goo = —(1+2a;27), go; = € Va*, g = 0k, (16)

and to linear order in 27, the inverse metric gh¥ is given by taking 2/ — —a7 in
guv- To compute the connection coefficients along the world line, we only need
the inverse metric at 7 = 0, which is just n*¥. We have

1
T a0 =05 (9v0.0 = gao,); (17)
which gives

Also it’s not hard to see that T'* ij all vanish. The above results can be verified
by, say, GRtensor, which is straightforward and we omit here.

(c) Using the connection coefficients we obtained the previous part, we find

Vgéo =" e, =" o€; = d'é; = a (19)

and
Ve =T ;08 = re jo€o + r jo€i (20)
= ajgo—i-éikjgkgi = (dgj)ﬁ+€(ﬁ,ﬁ,gj,) (21)



(d) Now we are away from the world line, 27 # 0. However, we see that at
our order of approximation , I'* 5 and I'* ;; are still given by the expressions
worked out in part (b). Plugging them into Eq. (22.95), we readily get

d?x

W:—a—Qva. (22)

22.16 Uniformly accelerated observer [by Jeff Atwell]

(a) The proper time is the time measured by a clock that the observer carries.
A small change in proper time is equal to the lapse in coordinate time of its
momentary rest frame. If one decides to work in a different Lorentz coodinate
system (such as the one we are given in this problem), then a small change in
proper time may be computed from the invariant interval. So, consider two
nearby events:

1 1
t1 = — sinh = — cosh
1= —sin (a1), x1 s (a1),

and 1 .
to = —sinh (a(7 + A7)), x2 = — cosh (a(T + AT)).
a a

Working to first order in At
1. 1.
At = —sinh (a(7 + A7)) — —sinh (a1) = cosh (a7) AT,
a a

and
1 1
Ax = o cosh (a(T + AT)) — o cosh (ar) ~ sinh (a7)Ar.

So

V—As2 = /A2 — Az? = AT\/cosh2 (at) — sinh? (a1) = AT.
This shows that 7 is the proper time.

First compute the observer’s 4-velocity: u® = 4 = cosh(ar), u! = % =
. d d T 7—.
sinh (a7), v = % = 0, and v® = £ = 0. Now for the 4-acceleration:
0_ du® _ 1_ du' _ 2 _ du® _ 3 _ du® _
cSL = %= =asinh(ar), a' = €= = acosh (ar), a® = G= =0,and a®> = G= = 0.
o

F.d= —(a0)2 + (a1)2 = —a?sinh? (at) + a? cosh? (at) = a’.

10



This shows that the constant parameter a in Eq. (22.97) is the magnitude of
the observer’s 4-acceleration.

(b) Notice that 2 — t? = a=2. So the world line is a hyperbola in a spacetime
diagram. Equation (22.83) in the notes tells us that €; = @, where the compo-
nents of # are given in part (a). Also notice that the 4-acceleration from part
(a) is orthogonal to the 4-velocity: @-@ = 0. It follows that €; = 1a@. Also
€5 and €3 are the same as the Lorentz coordinate basis vectors €3 and €3. The
resulting spacetime diagram is:

t

Figure 2:

t
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t 2
t, X
X
X’

(c) QG = 0 for this proper reference frame. The basis vectors in the 3-plane
orthogonal to the observer’s world line do not rotate.

(d) Let the displacement vector from the origin of the original inertial frame
to the position of the observer at proper time 7 be Z(7). At that point the

—

observer has three spacelike basis vectors €;(7), €5(7), €3(7). A typical point Z

11



near the observer in the hyperplane spanned by these three basis vectors can be
represented in the form

7 = 21 (r) + 228,(1) + 2°8(7) + (7).
Now use the basis vectors described in part (b):
€, = (cosh (at),sinh (a7),0,0),
€; = (sinh (ar), cosh (a7),0,0),
€, =(0,0,1,0),

= (07 O’ 07 1) )
and eq. (23.97):
= 1. 1
Z(r) = (— sinh (a1), — cosh (a7), 0, 0) ,
a a

in the above ¥ equation to get

sinh (a7)

H
7N
@I»—‘
\_/

cosh (aT)

H
7N\
@I»—‘
\_/

This is the coordinate transformation. Now compute the metric:
— (dx0)2 + (dm1)2 + (dx2)2 + (dm3)2
. . 2
=— [dxl sinh (at) + (1 + axl) cosh (aT)dT} +
. - 2 AN 2 AN 2
[dxl cosh (ar) + (1 + axl) sinh ((Jﬂ')dT} + (dx2> + (dx3>

N2 N\ 2 AN 2 AN 2

=— (1 + axl) dr® + (d:vl) + (d:v2> + (dx3>
N\ 2
To make this look like eq. (23.86), expand (1 + axl) and only keep the first

order term to get
N2 A\ 2 A\ 2
(1 + 2ax ) dr?® + (dzl) + (172) + (dz?’)

This agrees with Eq. (22.86) since in this frame a - x = az!.

12
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