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A

22.1 Invariance of a Null Interval [by Jeff Atwell]
Let ~eα be an orthonormal basis, so (ẽα, ẽβ) = ηαβ . Let −c be the value of

g̃00 = g̃(~e0, ~e0). Our goal is to show that g̃αβ = cηαβ for all α and β.
Choose some arbitrary spatial basis vector ~ej . The vectors ~e0 + ~ej and ~e0 − ~ej

are both null, so

0 = g̃(~e0 + ~ej , ~e0 + ~ej)− g̃(~e0 − ~ej , ~e0 − ~ej) = 4g̃(~e0, ~ej) = 4g̃0j ,

which means that g̃0j = 0. Similarly,

0 = g̃(~e0 + ~ej , ~e0 + ~ej) = ˜g00 + 2g̃0j + g̃jj = g̃00 + g̃jj ,

and since g̃00 = −c, this means that g̃jj = +c [where there is no summation on
j] for any j = 1, 2, 3.

The remaining components we must compute are g̃jk for j 6= k. Consider
the two different basis vectors ~ej and ~ek. The vector

√
2~e0 + ~ej + ~ek is null.

Therefore

0 = g̃(
√

2~e0 + ~ej + ~ek,
√

2~e0 + ~ej + ~ek)

= 2g̃00 +
√

2g̃0j +
√

2g̃0k + g̃jj + g̃kk + 2g̃jk

= −2c + 0 + 0 + c + c + 2g̃jk = 2g̃jk,

which means that g̃jk vanishes when j 6= k. Combining all our components, we
conclude that g̃αβ = cηαβ = cgαβ.

22.2 Causality [by Alexei Dvoretskii 2000]
Consider two different reference frames - primed and unprimed. Assume

without loss of generality that event P1 occurs at a point (0, 0) in spacetime in
both frames and event P2 at a point (t, 0) in the unprimed frame (i.e. at the
same spacial point) and at a point (t′,x′) in the primed frame. Now recall the
invariance of the interval:

s2 = s′2 = −t2 = −t′2 + x′2,
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and
t′ = ±

√

t2 + x′2

. The transformations from one frame to another are continuous and in the
limit of very small transformations t′ ≈ t. Therefore,

t′ =
√

t2 + x′2 > 0,

and so the temporal order of events is the same in all inertial frames. Of course,
were this not true, causality would be violated.

It’s also obvious that t′ ≥ t and that apart from that there are no limits on
the values of the spacial and temporal separation of the two events.
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Figure 1: Causality

See Fig. 1 for the spacetime diagrams. As the velocity of the primed frame
increases, the time of event P2, t′2 moves up the t′ axis. Clearly t′2 > t2 (c.f.
dashed hyperbola of events all at same interval from P1). Similiar diagram can
be drawn for velocity in the opposite direction. The diagram shows that for t′2,
t2 ≤ t′2 and t′2 can be made arbitrarily large.

B

22.4 Index manipulation rules from duality [by Alexei Dvoretskii 2000]

(a) Let’s expand a given dual basis vector in the original basis:

~eµ = fµβ~eβ.

2



Now to find the coefficients fµβ multiply both sides of the equation by ~eα and
use the duality relation to obtain

~eµ · ~eα = fµβδα
β

g(~eµ, ~eα) = gµα = fµα.

This proves the first relation:
~eµ = gµβ~eβ

The proof of the second relation is similar.

(b) Using the result above,

F µν = F(~eµ, ~eν) = F(gµα~eα, ~eν).

Now use the linearity of the tensor to write

F µν = gµαF(~eα, ~eν) = gµαFα
ν .

The proof of the second relation is similar.

(c) Consider for example the first identity:

F = F µν~eµ ⊗ ~eν .

Now consider

F(~eα, ~eβ) = F µν(~eµ · ~eα)(~eν · ~eβ) = F µνδα
µδβ

ν = F αβ .

So all the components of the tensors on the left-hand side and the right hand
side are equal which proves the identity. Similar proofs can be given in the other
cases.

C

22.6(a-b),22.5b Connection coefficients/Transformation Matrices for
circular polar coordinates [by Alexei Dvoretskii 2000 and Xinkai Wu]
(22.6a) First let’s consider the Coordinate basis

~e$ = ∂$, ~eφ = ∂φ
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[~e$, ~e$] = [~e$, ~eφ] = [~eφ, ~eφ] = 0.

Hence
cαβγ = 0.

The metric tensor is given by

g =

(

1 0
0 $2

)

.

The only non-zero Christoffel symbols are then

Γ$φφ = (−1/2)gφφ,$ = −$

Γφφ$ = Γφ$φ = $,

and the connection coefficients are

Γ$
φφ = −$, Γφ

$φ = Γφ
φ$ = 1/$.

(22.6b) Orthonormal basis:

~e$̂ = ∂$, ~eφ̂ = 1/$∂φ

. In this basis the metric tensor is of course just

g =

(

1 0
0 1

)

.

The commutation coefficients are readily computed from

[~e$̂, ~eφ̂] = [∂$, 1/$∂φ] = −1/$2∂φ = −1/$~eφ̂.

Hence, the only non-zero commutation coefficients are

c$̂φ̂
φ̂ = −1/$, cφ̂$̂

φ̂ = 1/$.

And the Christoffel symbols and the connection coefficients are

Γ$̂φ̂φ̂ = Γ$̂

φ̂φ̂
= −1/$,

Γφ̂$̂φ̂ = Γφ̂

$̂φ̂
= 1/$.

(22.5b)
By the chain rule, we have

∂f

∂$
= cosφ

∂f

∂x
+ sin φ

∂f

∂y

∂f

∂φ
= −$ sin φ

∂f

∂x
+ $ cosφ

∂f

∂y
. (1)
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for any function f . Combining this with

~e$̂ =
∂

∂$
, ~eφ̂ =

1

$

∂

∂φ

~ex =
∂

∂x
, ~ey =

∂

∂y
, (2)

we get the transformation matrix

Lx
$̂ = cosφ, Ly

$̂ = sinφ, Lx

φ̂
= − sin φ, Ly

φ̂
= cosφ, (3)

whose inverse is

L$̂
x = cosφ, Lφ̂

x = − sinφ, L$̂
y = sin φ, Lφ̂

y = cosφ. (4)

D

22.9 Index gymnastics [by Xinkai Wu 2002]
(a) First notice that Pαβuβ = uα + uαuβuβ = 0, using the fact that ~u2 = −1.
Thus

PαβP β
γ = Pαβ(gβ

γ + uβuγ) = Pαγ . (5)

(b) PαβAβuα = 0 because Pαβuα = 0, thus PαβAβ is orthogonal ot ~u. PαβAβ =
Aα + uαuβAβ = Aα if uβAβ = 0.

(c) In the fluid’s local rest frame, gαβ = ηαβ , and uα = δα0. Thus Pαβ is
diagonal in this frame, with P00 = 0, Pjj = 1, j = 1, 2, 3.

(d)
(∇~u~u)α = uβuα;β = −aα~u2 = aα, (6)

where we’ve used Eq. (22.53) and the fact that Pαβ , σαβ , and ωαβ are all
orthogonal to ~u. Thus we see ∇~u~u = ~a. Also

~a · ~u = aαuα = uβuα;βuα

= uβ [(uαuα);β − uαuα;β] = −uβuαuα;β = −~a · ~u. (7)

Thus ~a · ~u = 0.
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(e) Contracting eq. (22.53) with gαβ , using ~a · ~u = 0, tracelessness of σαβ and
ωαβ, and gαβPαβ = gαβgαβ + ~u2 = 3, we immediately get ∇ · ~u = θ.

(f) Symmetrizing eq. (22.53) and using the expressions of ~a and θ worked out
in the previous parts, one gets

σαβ =
1

2

(

uα;β + uβ;α + uγuα;γuβ + uγuβ;γuα −
2

3
uγ

;γPαβ

)

. (8)

Antisymmetrizing eq. (22.53), one gets

ωαβ =
1

2
(uα;β − uβ;α + uγuα;γuβ − uγuβ;γuα) . (9)

(g) (i) The four velocity is given by ~u = (γ, γvj), where γ = 1/
√

1− vjvj . So
to first order in vj , we have u0 = 1, and uj = vj . (ii) θ = uα

;α = uα
,α, to first

order in vj , this becomes θ = uj
,j = vj

,j . (iii) The 3rd and 4th terms in the

expression of σjk worked out in part (f) are of higher order in vj and can be
ignored, so we get σjk = 1

2
(vj,k +vk,j)− 1

3
θgjk,which is the fluid’s nonrelativistic

shear. (iv) In the expression for ωjk worked out in part (f), the 3rd and 4th terms
are of higher order, and we get ωjk = 1

2
(vj,k − vk,j), which is the nonrelativstic

rotation.

E

22.10 Gauss’s Law [by Xinkai Wu 2002]
E · dΣ = EjdΣj , where dΣj = ε(~ej , dθ∂/∂θ, dφ∂/∂φ). By the antisymme-

try of ε, only dΣr doesn’t vanish, and is given by εrθφdθdφ = R2 sin θdθdφ.
On the r.h.s. of Eq. (22.55), dΣ was already worked out in the text: dΣ =
r2 sin θdrdθdφ. Thus Eq. (22.55) becomes

∫

r=R

ErR2 sin θdθdφ =

∫

r<R

ρe

ε0
r2 sin θdrdθdφ. (10)

F
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22.11 Stress energy tensor for a perfect fluid [by Alexei Dvoretskii 2000]

(a) If the components of two tensors are equal in a given frame, then they will
be equal in any frame, so we just need to verify that

T = (ρ + P )~u⊗ ~u + Pg

reduces to
T 00 = ρ, T ij = Pδjk

in the rest frame. It’s a trivial exercise given the simple form of ~u in the rest
frame:

~u = (1, 0, 0, 0).

(b) If observer is moving with a speed v much smaller than the speed of light
with respect to the rest frame of the fluid, then the momentum density in this
frame can be written as

T 0j = ρij

inertial
vi,

which is the definition for the inertial mass density. In the limit of small v the
momentum density can be written as

T 0j = (ρ + P )vj

and so
ρij

inertial
= (ρ + P )δij .

(c) For non-relativistic velocities v the 4-velocity can be written as

~u = (1 + v2/2,v).

Also
ρ = ρ0(1 + u).

Calculating to order v2 get

T 0j = (ρ0 + ρ0u + P )(1 + v2/2)vj = (ρ0 + ρ0v
2/2 + ρ0u + P )vj ,

T ij = (ρ0 + ρ0u + P )vivj + Pδij = ρ0v
ivj + Pδij ,

T 00 = (ρ0 + ρ0u + P )(1 + v2/2)2 − P = ρ0 + ρ0u + ρ0v
2.

(d) As in b,
T 0j = ρij

inertial
vi = (ρ + P )vj .
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22.14 Stress-energy tensor for a point particle [by Alexei Dvoretskii 2000]

We want to prove that

pα(ζ0) =

∫

pα(ζ)pβ(ζ)δ(Q, P (ζ))dΣβdζ. (11)

Because of the δ-function the argument of 4-momenta is fixed: ζ = ζ0 and the
right hand side reduces to

RHS = pα(ζ0)p
β(ζ0)

∫

δ(Q, P (ζ))dΣβdζ. (12)

Let xµ be the coordinates of Q (not necessarily Lorentzian ) and yµ(ζ) - co-
ordinates of P in the same coordinate system. Since the expression is Lorentz
invariant we can choose the coordinate system any way we like. To simplify the
calculation we make it satisfy the following requirements:

• The surface Σ is given by the eqn. x0 = 0.

• The world line of the particle intersects Σ at xj = 0.

• The coordinate system is local Lorentz one at the point of intersection
xµ = 0.

Then the surface element dΣβ has only one non-vanishing component:

dΣ0 = d3x = dx1dx2dx3, dΣj = 0, j = 1, 2, 3, (13)

and the δ-function can be written as a product

δ(Q, P (ζ)) = δ(x0 − y0(ζ))δ3(x− y(ζ)) = δ(y0(ζ))δ3(x− y(ζ)). (14)

The resulting integral can be easily calculated.

RHS = pα(ζ0)p
0(ζ0)

∫

δ(y0(ζ))δ3(x− y(ζ))d3xdζ =

= pα(ζ0)p
0(ζ0)

∫

δ(y0(ζ))dζ = pα(ζ0)p
0(ζ0)

1
dy0

dζ
|ζ0

.

But dy0

dζ
|ζ0

= p0(ζ0) by definition of momentum, so

RHS = pα(ζ0). (15)
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22.15 Proper Reference Frame [by Alexei Dvoretskii 2000]
(a) It’s fairly straightforward to obtain the transformation law in differential
form (the hats on the right-hand side are dropped to simplify notation):

dx = dx + ax0dx0 + (Ω× dx)x0 + (Ω× x)dx0

dx0 = dx0(1 + a · x) + x0a · dx.

Squaring and only keeping terms linear in x we get

dx2 = dx2 + 2a · dxx0dx0 + 2(Ω× x) · dxdx0,

(dx0)2 = (dx0)2(1 + 2a · x) + 2a · dxx0dx0.

Given this it’s easy to see that the new metric is indeed

ds2 = −(1 + 2a · x)(dx0)2 + 2(Ω× x) · dxdx0 + dx2.

(b) Recall that the components of the metric in the proper frame are (again
dropping the hats for simplicity of notation)

g00 = −(1 + 2ajx
j), g0i = εijkΩjxk, gjk = δjk , (16)

and to linear order in xj , the inverse metric gµν is given by taking xj → −xj in
gµν . To compute the connection coefficients along the world line, we only need
the inverse metric at xj = 0, which is just ηµν . We have

Γµ
α0 = ηµν 1

2
(gν0,α − gα0,ν), (17)

which gives

Γ0
00 = 0, Γ0

j0 = aj ; Γj
00 = aj , Γi

j0 = εikjΩ
k. (18)

Also it’s not hard to see that Γµ
ij all vanish. The above results can be verified

by, say, GRtensor, which is straightforward and we omit here.

(c) Using the connection coefficients we obtained the previous part, we find

∇~U
~e0 = Γµ

00~eµ = Γi
00~ei = ai~ei = ~a (19)

and

∇~U
~ej = Γµ

j0~eµ = Γ0
j0~e0 + Γi

j0~ei (20)

= aj~e0 + εikjΩ
k~ei = (~a · ~ej)~U + ε(~U, ~Ω, ~ej , ...). (21)
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(d) Now we are away from the world line, xj 6= 0. However, we see that at
our order of approximation , Γi

00 and Γi
j0 are still given by the expressions

worked out in part (b). Plugging them into Eq. (22.95), we readily get

d2x

(dx0)2
= −a− 2Ω× v. (22)

I

22.16 Uniformly accelerated observer [by Jeff Atwell]
(a) The proper time is the time measured by a clock that the observer carries.
A small change in proper time is equal to the lapse in coordinate time of its
momentary rest frame. If one decides to work in a different Lorentz coodinate
system (such as the one we are given in this problem), then a small change in
proper time may be computed from the invariant interval. So, consider two
nearby events:

t1 =
1

a
sinh (aτ), x1 =

1

a
cosh (aτ),

and

t2 =
1

a
sinh (a(τ + ∆τ)), x2 =

1

a
cosh (a(τ + ∆τ)).

Working to first order in ∆τ ,

∆t =
1

a
sinh (a(τ + ∆τ)) − 1

a
sinh (aτ) ≈ cosh (aτ)∆τ,

and

∆x =
1

a
cosh (a(τ + ∆τ)) − 1

a
cosh (aτ) ≈ sinh (aτ)∆τ.

So
√

−∆s2 =
√

∆t2 −∆x2 = ∆τ

√

cosh2 (aτ) − sinh2 (aτ) = ∆τ.

This shows that τ is the proper time.

First compute the observer’s 4-velocity: u0 = dt
dτ

= cosh (aτ), u1 = dx
dτ

=

sinh (aτ), u2 = dy
dτ

= 0, and u3 = dz
dτ

= 0. Now for the 4-acceleration:

a0 = du0

dτ
= a sinh (aτ), a1 = du1

dτ
= a cosh (aτ), a2 = du2

dτ
= 0, and a3 = du3

dτ
= 0.

So
~a · ~a = −(a0)2 + (a1)2 = −a2 sinh2 (aτ) + a2 cosh2 (aτ) = a2.
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This shows that the constant parameter a in Eq. (22.97) is the magnitude of
the observer’s 4-acceleration.

(b) Notice that x2 − t2 = a−2. So the world line is a hyperbola in a spacetime
diagram. Equation (22.83) in the notes tells us that ~e0̂ = ~u, where the compo-
nents of ~u are given in part (a). Also notice that the 4-acceleration from part
(a) is orthogonal to the 4-velocity: ~a · ~u = 0. It follows that ~e1̂ = 1

a
~a. Also

~e2̂ and ~e3̂ are the same as the Lorentz coordinate basis vectors ~e2 and ~e3. The
resulting spacetime diagram is:
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(c) ~Ω = 0 for this proper reference frame. The basis vectors in the 3-plane
orthogonal to the observer’s world line do not rotate.

(d) Let the displacement vector from the origin of the original inertial frame
to the position of the observer at proper time τ be ~z(τ). At that point the
observer has three spacelike basis vectors ~e1̂(τ), ~e2̂(τ), ~e3̂(τ). A typical point ~x
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near the observer in the hyperplane spanned by these three basis vectors can be
represented in the form

~x = x1̂~e1̂(τ) + x2̂~e2̂(τ) + x3̂~e3̂(τ) + ~z(τ).

Now use the basis vectors described in part (b):

~e0̂ = (cosh (aτ), sinh (aτ), 0, 0) ,

~e1̂ = (sinh (aτ), cosh (aτ), 0, 0) ,

~e2̂ = (0, 0, 1, 0) ,

~e3̂ = (0, 0, 0, 1) ,

and eq. (23.97):

~z(τ) =

(

1

a
sinh (aτ),

1

a
cosh (aτ), 0, 0

)

,

in the above ~x equation to get

x0 =

(

1

a
+ x1̂

)

sinh (aτ),

x1 =

(

1

a
+ x1̂

)

cosh (aτ),

x2 = x2̂,

x3 = x3̂.

This is the coordinate transformation. Now compute the metric:

−
(

dx0
)2

+
(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2

= −
[

dx1̂ sinh (aτ) +
(

1 + ax1̂
)

cosh (aτ)dτ
]2

+

[

dx1̂ cosh (aτ) +
(

1 + ax1̂
)

sinh (aτ)dτ
]2

+
(

dx2̂
)2

+
(

dx3̂
)2

= −
(

1 + ax1̂
)2

dτ2 +
(

dx1̂
)2

+
(

dx2̂
)2

+
(

dx3̂
)2

.

To make this look like eq. (23.86), expand
(

1 + ax1̂
)2

and only keep the first

order term to get

= −
(

1 + 2ax1̂
)

dτ2 +
(

dx1̂
)2

+
(

x2̂
)2

+
(

dx3̂
)2

.

This agrees with Eq. (22.86) since in this frame a · x = ax1̂.
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