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23.3 Geodesic Equation in an arbitrary coordinate system [by Keith
Matthews *05]
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23.4 Constant of geodesic motion in a spacetime with symmetry [by
Alexander Putilin "99]

(a) Geodesic equation V7 = 0.i.e.

pﬁpa;ﬁ =0 (1)
dz” Opg
(Pa,s — Fﬂaﬁp#)pﬁ =i a8 Fﬂagpupﬁ (2)
dpa
= Taop"p’ = (3)
which gives
dp 1
Tg = i(gua,ﬁ + 9uB,0 — gaﬂ,u)p#pﬁ (4)

where in the brackets the first and the third terms are antisymmetric over (Su)
so their contraction with the symmetric tensor p°p* is zero. Thus

dpa 1

v quﬁ,apupﬂ (5)



Take a to be A and using gog,4 = 0, we find

dpa
-0 (6)

namely p4 is a constant of motion.

(b) Let 27(t) be the trajectory of a particle. Its proper time

dr® = —ds* = dt* [1 420 — (35 + hye)v’v"] ")
4
= d?(1+28 - 5070 4+ 0(5) ®)

thus

1
dr = dt\/1+20 —v2 =dt(1 + ® — 5v2) (9)

where we have omitted terms of order v*/c*(i.e. |®|?). The 4-velocity is given
by

dz® dz®

uOt = —_———-— ]_0
dr dt(1+® — $v?) (10)
dx® 1,

thus in particular u® =1 — ® 4 1v2.
4-momentum: p® = mu®, and in particular p° = mu® = m(1 — ® + 3v?).
And the conserved quantity is then given by

1
Pt = goaP™ = goop® = —(1 +2®)m(1 — & + §V2) (12)
1
= —m— (m® + §mv2) (13)

we see that p; is indeed the non-relativistic energy of a particle aside from an
additive constant —m and an overall minus sign.

23.5 Action Principle for Geodesic Motion [by Xinkai Wu ’00]
The action is given by:

! x® daP
1o () = [ (~a00 5 )20 (1)



a I8
68 = | 0(—gap————)2dA (15)

1 dz® daP dz® daP
| 5 G ) 00 )N (16)

' dx® daxP |50 dat dz¥ dézt dz”
_ Lo axr— ar g/ OGuv o 0L aoxr™
/ 5 ("9 ) {axp 0 N AN I T
dzt dox”
I\ "dx }d

by renaming u < v, and noticing g,, = g,,, we get:

(17)

dx® dz” d;v dz¥ dozt dx¥

1
1 1/2 8guu
= — I 2 v 1

05 /02(95dA ) T M A (18)

Integrating the 2nd term in {...} by parts, we find, after renaming some indices:

! dx® daf d*x"  dg,, dxf dz¥  10g,, dr? dx
68 = | (~gan - ) g g + .
0 d\ dA X dxP d\ dX 2 dxi d\ dA

dIn(— gagdjg\ df)\ W2 da

d\ SN

}5ac“d)\ (19)
Noting that this is true for all variations dz* we know 65 = 0 if and only if
d*z”  Ogu, dxf dx¥  10g,, dzf dz¥

G2 T oxe dh dh 2 Oxk dh dh
clln(—goégWfracdxﬁd)\)l/2 dx

O:

X 9o gy (20)
Contracting both sides with g™, we get
0= A2z +1 89,“, dz” dx¥ 8gp,, dz? dz¥
d)\2 2 8xﬂ A\ dA dxr dX d\
dz® dz® T
dIn(—gap - “ix )1/2di (21)
dX dX
By renaming p < v for the first term in {...}, the above equation becomes
d?z™ 1 dg dg G,y  dzP dx¥
0= ~ T [add Hp o pY
Y e o T e D
dz® dz” T
dln( gaﬁ ax dh )1/2 d.%' (22)

d\ A\



which is just, using the expression for the Christoffel symbols,

2 P A dIn(—gegdes dz?y1/2 gon
Ozda: +Fﬂydidx 3 n(—9as Gx Gx) dz”™ (23)
d\2 PYdN dA dA dA
Now let’s reparametrize the world line, A— > s(\), then the equation becomes,
2" doe da¥ ds ,  da™ d®s  dln(—gap®s 22)1/2 g
0= (L oy WA oy 7 s I gen BT O o
ds ds ds "“dA ds "dA dX dX
Integrating |[...] twice we readily find that [...] vanishes for
5= /A(— di&ﬁ)mdx +B (25)
- oB7gN "dx ’
where A and B are arbitrary constants.
After this reparametrization, we get the familiar geodesic equation:
d?z™ dxP dx”
0. 2 . dzf dx (26)

ds2 " ds ds

23.7 Orders of magnitude of the radius of curvature [by Alexander
Putilin ’99]

Eq. (23.43) tells us that, if a system has characteristic mass M and charac-
teristic length R, order of magnitude estimate gives,

1 GM

R2 " RS

where R is the radius of curvature

R3
R ~ Vi in units G =c=1 (28)

(a) near earth’s surfae: R ~ Rg ~ 6.4 x 10°m (earth’s radius), M ~ Mg ~
4.4mm (earth’s mass), and R ~ 2.4 x 10''m ~ 1 astronomical unit.

(27)

(b) near sun’s surface: R ~ Rgun ~ 7 X 108m, M ~ Mg, ~ 1.5km, and
R ~5x10"m ~ 1AU.

(c) near the surface of a white-dwarf star: R ~ 5000km, M ~ Mg, ~ 1.5km,
and R ~ 3 x 10%m ~ 3 (sun radius).

(d) near the surface of a neutron star: R ~ 10km, M ~ Mg, ~ 3km, and
R ~ 20km.

(e) near the surface of a one-solar-mass black hole: M ~ Mg, ~ 1.5km,
R ~ 2M ~ 3km, and R ~ 4km.



(f) in intergalactic space: R ~ 10x(galaxy diameter) ~ 10° light-year,
M ~(galaxy mass)~ 0.03 light-year (for Milky way), and R ~ 6 x 10° light-years
~ Hubble Distance.

23.8 Components of Riemann in an arbitrary basis [by Xinkai Wu ’02]

pa;'y& _pa;é'y = _Raﬂ'yﬁpﬁ (29)

we have
Pos = (0% = (0% + P10 ) (30)
= (0% + P, )5 + s (0", +P"T7,) — Fuwi(poiu +p'T%,) (31)

interchaging v and § in the above expression and then taking the difference, we
get

P = P%y = (T = T%64 + FQMF#BW - Faﬂvruﬁé)]?ﬁ =+ (32)
+(IFs, =T OT%,0" + (0%,5 — P%5,) + (T, — T 5)p*(33)

= (D95 = D5y + T, = T, TViss)p” + (34)

+e, i T%,0° + (0%5 — P%s,) + ¢, 4'D%, (35)

where in the last step we've used ¢ 5 =TI, —T" ; (eq. (23.44)). We can see
that the last two terms cancel, because

P°ys —P%y = V& Ve, p® — Ve Ve, p® (36)
= Vig,.2, 10" = ¢, Ve, 0 (37)
= et = e 0, )

where to get to the second line, we’ve used the fact that for any scalar f,

ViVl = VVif = A%B fp)a — B’ (A" f.a)is (39)
= A°BP f.p0 + A*BP f5 — B A" f.o5 — BP A%, f.0 (40)

= (AaBﬂ,a - BaAﬁ;a)f;ﬁ (41)

= [4,B) .4 (42)

= V[&B’}f . (43)

(note f.o3 = f.pa by the “torsion free” condition).
Thus we finally conclude that

Raﬁvé = Faﬁﬁ,’y — Faﬁ,y’(; + FQH,YFNB(S — FO‘WSFM&Y — F(XBHC’Y(;M (44)



23.9 Curvature of the surface of a sphere [by Alexander Putilin ’99]

(a) We read off the metric components from the line element:

goo = GQ, Job = a? sin? 0, Jop = 0 (45)
1 1

9 - — g9 =_—_——_ ¢ =0 46

9= g ! (46)

There are six independent connection coefficients

1
T, = ¢"°Tgp9 = 9995909,9 =0 (47)
11
[, = T = 9" Tooy = o 5(999@ + 906,06 — 964,6) = 0 (48)
1 1 . .
F0¢¢ = 9965(2ge¢,¢ — Gp,0) = — 2a2( 25in? ) y = —sin6 cos o (49)
1
D% = g¢¢§( 90,0 — 9oo,) =0 (50)
¢ _ o
T 06 = F¢9
o0 1 1 2 i 2
= 9775 (90,0 + 9o0.6 — 9p0,6) = 55—z, (a"sin"0) g =cotd (51)
2 2a? sin“ 6
1
e, = 9¢¢§9¢¢,¢ =0 (52)

(b) We can think of the Riemann tensor as a symmetric matrix Rk with
indices [ij] and [kl]. Since R;ji; is antisymmetric in the first and the second
pairs of indices, the only nontrivial component is [ij] = [06], [kl] = [06]

Rogop = —Ropo0p = —Ropso = Reogo (53)

(c) Using eq. (23.57) and the fact that in a coordinate basis the cw{“s all vanish,
we get

0 _ 10 0 0 0
Rs00 = o060 = on.0 T 10000 = TuoT o (54)
1 .

= — S(sin20) 6 — 0, I, (55)
= —cos(260) — (—sinf cos ) cot O (56)
= sin? 4 (57)

and thus
R9¢9¢ = g99R0¢9¢ = (12 SiIl2 0 (58)
(d) The new basis is related to the old by é; = L¢j, €3 = ——&s. Thus by the



multilinearity of tensors in their slots, we have

1 1
90 = g0 = 1 960 = rgzgee T 1 906 Grgmg e 0
Le. gz = 6515. We also have:
1 1
Ré‘;’% - at sin? GR%W) a2
Ry = 9" " Ryji = 0" Rk

thus

1
6660 T Rogo = ogos = 2

_ 1
namely, R;; = Y50

23.10 Geodesic deviation on a sphere [by Alexander Putilin 99|

(a) The line element is given in problem 23.9: ds? = a?(df? +sin® d¢?). Then,

on the equator, § = 7, dl? = a%d¢?, | = a¢ is the proper distance.

-

£ = —R(...,, €, p), with
d_19
dl a

(b) Geodesic deviation eqn: Vj

1
ap9:07 p¢:7

p= o a

At 6 = T, connection coefficients vanish (see Ex. 23.9)

VipVig® = cT?( )i = @( ')

gg;qb = 50,¢ + Fewﬁu = 594) — sin 6 cos E?
€, =€, +1° 6" =, + cote?
thus

. 1
ViVe? = (§07¢ — sin # cos 954’)@ lo=z = ﬁ§97¢¢

a
1 1
V;V5E? = pel (E% +cot9§9)’¢ o=z = aﬁgdiw

™



Figure 1: geodesic deviation on a sphere

On the other hand

N 1 1
ViVt = =Rl p"p7 = = 5 R5,8" = — ROy, (72)
)
sin” § 1
=- 2 o=z =— ;fg (73)
thus -
L o Lo d€ 0
= > =t (74)
1 d2¢?
_ ¢ _ —
ViVt = =5 R, = 0= a5z =0 (75)

(c) Initial conditions (note that the geodesics are parallel at ¢ = 0):
£°(0) =b, £°(0) = 0; £%(0) =0, £€°(0) =0 (76)
This gives £ = A¢ + B = 0. And
€%(¢) = A’ cos ¢+ B'sin = bcos ¢ (77)

Let 8 = 0(¢) be the eqn. for a “tilted” great circle. It’s given by n-x = 0, where
n = (—sinAf,0,cos Af) ~ (—A0,0,1) is the orthogonal vector and Af = &

a’

while x = (asind cos ¢, asinfsin ¢, acosf). n-x = a(—sinfcos ¢-Af+cosf) =
0 then gives: cotd = Afcos¢p =tan(§ —0) = 5 —0,ie. 0 =75 — Afcos¢.



From Fig. (1) we see that the separation vectors points along 6-direction
(i.e. £ =0), and its magnitude is £ = a(% — 6) = aAf cos ¢ = bcos ¢, which
is precisely what we got before.

23.12 Newtonian limit of general relativity [by Alexander Putilin 99]
(a) We are given that gog = 1ag + hag and |heg| < 1. Proper time:
dr? = —gapdr®ds’ ~ —n,pde®de’ ~ dt* — dx® ~ dt* . (78)

where the last approximation is because in the non-relativistic limit, |dz|/|dt| ~
|v/c| < 1). Thus dr = dt, and

dz® dxz® , dt - dad dad ;
= N— i =—cLv=——r—=2. 79
YT T a T T T T (79)
(b) Geodesics eqn: d;: = —Faﬁvuﬁu"y.
du? dv? ; 1
P —I = —Tjoo = — 5(291'0,0 — 900,5) (80)
1 1
= —hjo0 + ihOO,j ~ ihOO,J (81)

where in the last step we've used |hap ¢ < |hags ;|-

dv’ , o’ ovd d 0
TIPS 2
T T e i TR (82)

dv?
% = —@)j = hoo = —20.

(c) We can write:

Iy = 29 M (Guprt9uy.8—9pva) = 3" “(hyup+ Py, 5=y, ) FO(R) . (83)

And the Riemann tensor is:

R%.5 = T%;s —T% s+ 0(I?) (84)
1 « 1 «
= 577 “(hug,s + hus,p — hgspu) vy — 577 H(hugy + Puvy, — Bgyp)6 + O(hz)
1 « « « (o] o «
= §(h 505+ 1% 5y = has® = h%.5, — W% 55 + hpy® 5) + O(h?) (85)

Notice that in the last line the first and fourth terms cancel. Thus we get

1

5(has,py + hgy,a6 — Pavy,65 — hgsav) (86)

Raﬁ'st ~ 2



(d) RjOkQ = %(hj&ko + hkO,jO — hjk700 — hOO,jk)- Recall that in non-relativistic
limit, time derivatives are small compared to spatial ones, thus the last term in
the brackets dominates. And we get

1
Rjoro =~ — §h00,jk =P ;i (87)

23.13 Gauge transformation in linearized theory [by Alexander Putilin
’99]

(a) Thew = Thyq + &7,

ox",, Oz
gnew T _ old old g Told 88
5 (o) = gl T g o) (59)

Evaluate l.h.s. and r.h.s. up to linear order in £ and hqg:

Lh.s. = Nag + hg%w(xold + f) X Nap + hg%w(mold) (89)

rhs. = (6%, =& ,)(6" — & 5) 9w (To1a) (90)
= Gap(Told) = 9up(To1a)€" o — Gar (Ta1a)€” 5 (91)
R Mo + hog — 1up€ta — M€’ s (92)
X 1ap + ho5 (To1d) — a,8(Told) — 8.0 (To1d) (93)
= haG = h%§ = €ap — Epa (94)

(b)

7, new new 1 new 7,0 a
h#l/ - hm/ o ih M = hull? - gﬂvl’ - 5”7# + 77!“’6 ,Q (95)

Lorentz gauge: h,7"" = 0.

znew,v __ pold,v v v o
h,ul/ - h,ul/ - f,u,u - gu,u + fa,p =0 (96)
thus we need -
O¢u =&, = hyg” (97)

(c) In Lorentz gauge, all terms on the L.h.s. of eq. (23.102) vanish except the
first one, thus it reduces to

— By = 167T), (98)
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23.14 External Field of a Stationary, Linearized Source [by Keith
Matthews ’05]
dx?

We start by examining the role of Gauss’s law. Because 57 = (xj) B = 5jk
and T# , = T"" | = 0 we find (T"/z*) , = T#* Then

/T“k d%:/ (TH9 %) jd3x:/T“ja:kdEj =0 (99)
%4 % ’ S

where the third equality comes from choosing a surface of integration entirely
outside of the source where 7' = 0. Similarly (T*z7zF) | = THia? + Tz so

/(Tﬂjxk +T;kaj)d31, _ / TH Ik 4y, = 0. (100)
v s

(a) There is a typo in (23.107),the z] is meant to be an z’. We make use of the
standard formula from E-M (23.109)

k.1

1 1 z-& x a,

|X—X/|:; rs

1
+...=—+ + ...
r

r3

By inserting (23.109) into (23.107) for pv =00
. T / k.t
hoo(z) = 4/%65333/ +4/Too(9€/)%d3$/

4 . 4k .
- 7/T00d‘3x' + %/TOO zhd3z
T T

AM  4Dya*
=—+

r r3

We have the freedom to choose the origin of our coordinates to coincide with
the center of mass of our source. T.opm = ﬁ f pZd3z =0 where p = T = Ty,.

Thus D = M Zeom = 0. This gives us the desired result.

(b) We have
_ 4 4ot
hmziﬁmﬁf+{%/nmw%’

The first term is %Pi. Our gauge condition taken at order O(T%) gives

—0pu —00 —0k
hou=h oth =0
4zt 1
— 22D, 0+ 4PFO,(-)
T T

4 R 4 .
= —sz,Omk — ?pkxk
r r

=Dy o—P,=0

11



So P, = Dy, o = 0 makes the first term go to zero.
We can insert (100) into the second term

4ok 1
=y Toix'y, — i(TOixlk + Tora';)d*z’
) k
= iS Tol'x/k — Tokl'/idgﬂfl
r
2™ ;
== / 5167 (Tos'y — Tona' ) da’
T
22™ ; .
== / (6787, — 6163 ) Toja’ nd®a’
T
2™ ,
= %/eimre]mTojx’nd‘ga?/
2 ,
= _ﬁeijkijk

(c) Using (99) we find that the O(2) term is zero. We can construct a combi-
nation of divergences that will allow us to evaluate the second integral.

(T2 2%) | + (T2 | — (T”“xixj)vl = 2T gk

Then by applying Gauss’s law we find that the second integral goes to zero also.
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