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24.1 Connection coefficients and Riemann tensor in the Schwarzschild
metric [by Alexei Dvoretskii 2000]

(a) From the form of a line element it’s easy read off the covariant diagonal
components of the metric tensor (all off-diagonal ones are obviously zero). Since
the metric tensor is diagonal, the inversion of the tensor to obtain contravariant
components is trivial.

(b) Load the definition of the Schwarzschild metric in GRTensor and use library
functions grcalc(Chr(dn,dn,up); grdisplay(Chr(dn,dn,up)); to calculate
and display the connection coefficients.
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sin(theta)

r 2

Gamma[phi] [phi] = (-r + 2 m) sin(theta)

(c) Since the metric is diagonal the basis vectors are orthogonal. It’s easy to
see that the normalization coefficients guarantee the proper normalization.

(d) Load the definition of basis vectors into GRTensor. Kip pointed me to the
fact that in GRTensor for coordinate basis the connection coefficients defined
in BT are given by rot(bup,bdn,bdn) NOT by Chr(bdn,bdn,bup). Use
grcalc(rot(bup,bdn,bdn)); grdisplay(rot(bup,bdn,bdn)); grcalc(R(bdn,bdn,bdn,bdn);

grdisplay(Chr(bdn,bdn,bdn,bdn)); to calculate and display the connection
coefficients and the components of the Riemann tensor.
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24.2 Bertotti-Robinson solution of Einstein’s field equation [by Alexei
Dvoretskii 99]

(a) Let’s drop the unimportant normalization constant Q and examine the form
of line element

ds2 = −dt2 + sin2 tdz2 + dθ2 + sin2 θdφ2. (1)

Clearly, the metric coefficients have a well-defined sign and hence t is a time-
like coordinate and z, θ, φ are spacelike everywhere. An observer at rest in the
coordinate system (z, θ, φ fixed) experiences proper time dτ =

√
−ds2 = dt, so

t is that observer’s proper time. Now consider the spatial part of the metric.

(b-c) Compare it with the metrics for the surface of a cylinder and a sphere.

ds2 = dz2 + r2(dφ)2

ds2 = r2(dθ2 + sin2 θdφ2). (2)

Evidently, the Bertotti-Robinson metric can be interpreted as a metric on the
3D surface of a cylindrical pipe of unit radius embedded in a 4D space, where the
axial coordinate scale depends on time. The spacetime defined by the Bertotti-
Robinson metric possesses spherical symmetry as it is invariant under rotations
in (θ, φ) and it’s also axially symmetric as it is invariant under rotation in φ
and translation in z.

(d-e) In the (θ, φ) space orthogonal to z the curvature is constant and therefore
such universe is not asymptotically flat. (See the discussion in the notes about
the curvature of a 2-sphere of constant radius embedded in a 3-dimensional
space). For t = 0 the z dimension collapses and the universe becomes 2 dimen-
sional living on the surface of a sphere with constant curvature everywhere. As
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t grows from 0 to π the universe expands in the z direction and then contracts
back in the z direction.

25.3 Schwarzschild Geometry in Isotropic Coordinates [by Xinkai Wu 2000]

(a) We just want to change r → r̄ with t, θ, φ untouched. Then equating the
time-time components of eq. (24.52) and (24.1) suggests the following coordi-
nate change

r = r̄

(
1 +

M

2r̄

)2

. (3)

Plugging the above relation into Eq. (24.1) and using dr = dr
dr̄dr̄ indeed brings

it into the form of Eq. (24.52).

(b) Expanding the metric components to leading order in ( 1
r ) is straightforward,

and we find

(
1−M

2r

1+ M
2r

)2 ≈ 1− 2M
r

(1 + M
2r )4 ≈ 1 + 2M

r .

Thus we see Eq. (24.52) takes the form Eq. (23.113) but with vanishing spin
angular momentum(b/c we don’t have dtdφ term in our metric).

25.4 Star of Uniform Density [by Jeff Atwell]

(a) For a star of uniform density, M = 4
3πρR3. And inside the star, m(r) =

4
3πρr3 = M

R3 r3, and so using Eq. (24.50) we get

z(r) =

∫ r

0

dr′√
r′

2m(r′) − 1
=

∫ r

0

dr′√
R3

2Mr′2 − 1
=

∫ r

0

r′ dr′√
R3

2M − r′2
=

√
R3

2M

[
1−

√
1−

2Mr2

R3

]
. (4)
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Outside a star, m(r) = M . So for r > R we get:

z(r) =

∫ R

0

dr′√
R3

2Mr′2 − 1
+

∫ r

R

dr′√
r′

2M − 1

=

√
R3

2M

[
1−

√
1−

2M

R

]
+
√

8M(r − 2M)−
√

8M(R− 2M). (5)

So outside the star, we get something like z ∼
√

r or r ∼ z2, which looks like a
paraboloid.

(b) Inside the star, we have z ∼
√

c− r2, which is a sphere.

(c) We need to check dz/dr at r = R. Inside the star, after simplifying we have

dz

dr
=

√
2M

R− 2M
.

Outside the star, we have

dz

dr
=

√
2M

R− 2M
.

Now we see that they agree, so there is no kink.

(d) Let’s compute the proper radial distance from the center to the surface:

` =

∫ R

0

dr√
1− 2m(r)

r

=

∫ R

0

dr√
1− 2Mr2

R3

= R

√
R

2M
arcsin

(√
2M

R

)
.

If we use R �M to expand the arcsin , we get:

` = R +
1

3
M.

So R is less than the distance ` by an amount of order M . The difference
turns out to be about 1.5 millimeters for the Earth and about 1 kilometer for a
massive neutron star.

24.5 Gravitational redshift [by Alexei Dvoretskii]
(a) At the origin of the inertial reference frame of the atom the metric is flat:~eα̂ ·
~eβ̂ = ηα̂β̂. This is automatically satisfied if the basis vectors coincide with
those of an orthonormal basis quoted in the problem. See Exercise 24.1 for a
discussion.

(b) In the inertial frame the atom’s 4-velocity is ~u = ~e0̂, so the energy of the
photon as measured by the atom is

E = hνem = −~p · ~u = −~p · ~e0̂ = −p0̂ = p0̂. (6)
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(c) In the orthonormal basis

p0̂ = ~p · ~e0̂ = −hνem, (7)

and since ~et =
√

1− 2M/r~e0̂,

pt = ~p · ~et =
√

1− 2M/R ~p · ~e0̂ = −
√

1− 2M/R hνem. (8)

(d) The metric components do not depend on t and therefore, as was shown in
part (a) of Exercise 23.4, pt is constant.

(e) The observer who is measuring the frequency of the photon, projects the
photon’s 4-momentum on her timelike basis vector,

νrec = −~p · ~e0̂/h. (9)

Since the observer is far away, the metric is flat and the coordinate and orthono-
mal bases are the same. Therefore

νrec = −~p · ~e0/h = −pt/.h (10)

(f) From here it is trivial to calculate that the redshift is equal to

RS =
λrec − λem

λem
=

1√
1− 2M/R

− 1 ≈
M

R
(11)

(g) For the earth,

RS =
4.4× 10−3m

6.4× 106m
≈ 6.9× 10−10. (12)

For the sun,

RS =
1.5× 103m

7.0× 108m
≈ 2.1× 10−6. (13)

For a neutron star,

2M/R = 2
1.4× 1.5× 103m

1.0× 104m
≈ 0.4. (14)

25.7 Implosion of the Surface of a Zero-Pressure Star [by Xinkai Wu 2000]

(a) There is no t-dependence in the metric components, thus −→u · ∂
∂t = ut is

conserved along the particle’s world line.

ut = gttu
t = −(1−

2M

R
)ut = −(1−

2M

R0
)ut(R = R0). (15)
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Also we have the normalization of the 4-velocity:

−1 = −→u 2 = gtt(u
t)2 + grr(u

r)2,

ur(R = R0) = 0, (16)

giving us ut(R = R0) = 1q
1− 2M

Ro

. Thus we find

ut = −
√

1−
2M

Ro
, (17)

and ut = ut

gtt
=

q
1− 2M

Ro

1− 2M
R

.

(b) Plugging ut obtained above into the equation of the 4-velocity normalization
(as written out in part a), we easily get dR

dτ = ur = −[− 2M
R0

+ 2M
R ]1/2. In

Newtonian gravity, energy conservation for a freely falling particle (a particle
on the star’s surface) says

1

2

(
dR

dt

)2

−
M

R
= const = −

M

R0
, (18)

so
dR

dt
= −

[
−

2M

R0
+

2M

R

]1/2

, (19)

which agrees with the GR result.

(c) Integrating Eq. (24.67) and using the initial condition τ = 0, R = R0, one
finds

τ =
R0√
2M

[
R

√
M

R
−

M

R0
+ R0

√
M

R0
arctan

√
R0

R
− 1

]
. (20)

Setting R = 2M and expanding the above expression to leading order in R0 for
R0 >> M , we find

τ ≈
π

2

(
R3

0

2M

)1/2

. (21)

To find out the orbit period at leading order of large R0 we can use Newtonian
mechanics, which gives

τorbit =
2πR0

v
=

2πR0√
M/R0

= 2π

(
R3

0

M

)1/2

, (22)

and we see τ/τorbit = 1/4
√

2.
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(d) In Eddington-Finklestein coordinates, by the same argument as given in
(a), we have the conserved quantity

uet = getetu
et + getru

r

= −(1−
2M

R
)u

et +
2M

R
ur. (23)

The 4-velocity normalization now reads

−1 = −→u 2 = getet(u
et)2 + grr(u

r)2 + 2getru
etur

= −(1−
2M

R
)(u

et)2 + (1 +
2M

R
)(ur)2 +

4M

R
u

etur. (24)

Evaluating the above two equations at R = R0 and noticing that ur(R = R0) =

0, we obtain the value of the conserved quantity uet = −
√

1− 2M
R0

.

Eq. (24) then yields

−
√

1−
2M

R0
= −(1−

2M

R
)u

et +
2M

R
ur. (25)

Using Eq. (25) to express uet in terms of ur and substituting the resulting
expression into Eq. (24), we readily get

dR

dτ
= ur = −

[
−

2M

R0
+

2M

R

]1/2

.

dt̃

dτ
= u

et =
− 2M

R

√
2M
R − 2M

R0

+
√

1− 2M
R0

1− 2M
R

. (26)

Since the expression for ur is the same as in parts (b), τ(R) is given by the
same solution obtained in part (c)[this is expected: because R is the same in
both coordinates (2πR = circumference around star) and τ is the same (proper
time)]. In particular, the proper time τ for the surface to go from R0 to 2M is

the same as in (c). We could write out dt̃/dR = ut̃/ur and then integrate it to
find t̃(R). The integral is doable but the answer is long and not so illuminating.
So we use the following analysis:

The E-F coordinate time t̃ for the surface to go from R0 to 2M is given by

t̃ =
∫ R=2M

R=R0

det
dτ dτ.

det
dτ (R = R0) = 1q

1− 2M
R0

≈ 1 when R0 >> 2M .

det
dτ (R = 2M) =

√
1− 2M

R0

+ 1

2
q

1− 2M
R0

≈ 3
2 when R0 >> 2M.

Thus the E-F coordinate time t̃ for the surface to go from R0 to 2M is finite and

9



of the same order as the proper time given by (24.57). Note that the expression

(24.67) is valid also inside the gravitational radius because as seen above det
dτ is

finite at R = 2M.

By Taylor expansion it’s easy to show that as R → 0, R ∝ [2( 2M
R3

o

)1/2τ − π]2/3,

and det
dτ ∝ R−1/2 ∝ [2( 2M

R3
o

)1/2τ − π]−1/3.

Thus the integral
∫

R=0
det
dτ dτ converges, which means the E-F coordinate time t̃

to reach R=0 is finite and of the order 1
2 (

R3

0

2M )1/2. The proper time is, of course,
of the same order.

(e) dt
dR = ut

ur , det
dR = u

et

ur . and we’ve worked out all these 4-velocity components
in the previous parts. It is then trivial to check that:
det
dR is always negative (in particular, det

dR (R → 0) = −1).
dt
dR < 0 when R > 2M .
−→ ∞ when R −→ 2M
> 0 when R < 2M ,
which verifies that the world lines in E-F coordinates and Schwarzschild coor-
dinates are given by Fig 24.6 (a) and (b), respectively.

25.8 Gore at the singularity [by Alexei Dvoretskii 99]
(a) See Fig. 24.6 of the text. For r < 2M let’s continue to work in the
Schwarzschild metric. Its advantage is that it is by now quite familiar and has
a simple form. (The angular coodinates are assumed to be fixed.)

ds2 = −
dr2

2M/r − 1
+ (2M/r − 1)dt2. (27)

Thus the t and r coordinates have “switched places” and now have a somewhat
counterintuitive meaning, r being timelike and t being spacelike. However, the
light cones are still given by ds2 = 0 and so

dt/dr =
1

2M/r − 1
. (28)

The geodesics of the matter molecules must lie inside them and as they approach
the singularity the light cones become narrower and narrower so that at r = 0,
dt/dr = 0.

(b) The curve to which the worldline asymptotes (t, θ, φ) = const is a timelike
geodesic since it is (1) timelike (2) radial (3) has Pt = 0 = const.

(c) It’s straightforward to compute gµ̂ν̂ using Eq. (24.68) and the gµν in
Schwarzschild coordinates. One finds g0̂0̂ = −1, g1̂1̂ = g2̂2̂ = g3̂3̂ = 1, thus Eq.
(24.68) gives the basis vectors of the infalling observer’s local Lorentz frame.
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The components of Riemann in this basis are related to those given in Box 24.1
by linear transformation and are

R0̂1̂0̂1̂ = −R2̂3̂2̂3̂ = −
2M

r3

R2̂1̂2̂1̂ = R3̂1̂3̂1̂ = −R0̂3̂0̂3̂ = −R0̂2̂0̂2̂ = −
M

r3
. (29)

The geodesic deviation equation is Eq. (23.42)

d2ξ ĵ

dτ2
= −Rĵ

0̂k̂0̂
ξk̂, (30)

and in our case

d2ξ1̂

dτ2
= −R1̂

0̂1̂0̂
ξ1̂ =

2M

r3
ξ1̂

d2ξ2̂

dτ2
= −R2̂

0̂2̂0̂
ξ2̂ = −

M

r3
ξ2̂

d2ξ3̂

dτ2
= −R3̂

0̂3̂0̂
ξ3̂ = −

M

r3
ξ3̂, (31)

thus we see the radial direction gets stretched and the tangential ones get
squeezed. When r → 0 the r.h.s. of the above expressions diverge, giving
an infinite stretching/squeezing force.

(e) The acceleration measured in earthly g⊕’s the observer is experiencing can
be estimated as

a/g⊕ ≈
(M/M⊕)

(r/r⊕)3
h

r⊕
, (32)

substituting

M = 5× 109M� = (5× 109) · (3× 105)M⊕ = 1.5× 1015M⊕. (33)

r⊕ = 0.01r� = 0.01 · 2.3× 105(2M�)

= 0.01 · 2.3× 105 2M

5× 109
= 5× 10−7(2M), (34)

h = 2 meters = 3× 10−7r⊕, (35)

and we get

a/g⊕ = 6× 10−11

(
2M

r

)3

. (36)

A typical observer could only withstand a few g⊕’s so she would normally die
at r† ≈ 2× 10−4(2M) = 106(2M�) = 10 s, in other words deep inside the black
hole.
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Now, in this region the interval is

ds2 = −dτ2 = −
dr2

2M/r − 1
+ (2M/r − 1)dt2 ≈ −(r/2M)dr2. (37)

Integrating from r† to 0 gives

τ † =
2r†

3

√
r†

2M
= 0.01r† = 0.1s. (38)

one can also use the expression τ(R) worked out in part (c) of Exercise 24.7 to
find out this τ †, which is given by τ(R = 0)− τ(R = r†), expanded to O[(R0)

0]
for large R0. This gives the same answer as obtained above.) Thus the observer
is torn apart by tidal force about 0.1 second before hitting the singularity.

24.9 Wormholes [by Alexei Dvoretskii 99] .
For the line element in isotropic coordinates

ds2 =

(
1 +

M

2r̄

)4

(dr̄2 + r̄2dφ2) (39)

substitute ρ =
(

M
2

)2
/r̄ to get

(
1 +

M

2ρ

)4

(dρ2 + ρ2dφ2). (40)

which has precisely the same form as the first equation but with r̄ replaced by
ρ. Thus there are two asymptotically flat spaces, at r → ∞ and ρ → ∞ with
the intermediate region connecting them together. Topologically, this wormhole
could look like Figure 31.5 of MTW. (Both top and bottom halves have the form
given in Eq. (24.51).)

24.11 Penrose process, Hawking radiation, and black-hole thermody-
namics. [by Kip Thorne and Xinkai Wu 2002]

(a) Consider the event P inside the ergosphere at which the plunging particle
is created. At P ∂/∂t is spacelike. Choose a local Lorentz frame in which it
lies in the plane spanned by ~e0̂ and ~e1̂. Then by performing a boost in the ~e1̂

direction we can make ~e1̂ point in the same direction as ∂/∂t, so ∂/∂t = K~e1̂

for some K > 0. We are free to choose the direction of ~pplunge, so long as it is
timelike. Any choice for which the plunging particle moves in the positive ~e1̂

direction, so p1̂ = ~p ·~e1̂ > 0 will lead to pt = ~p ·∂/∂t = ~p · (K~e1̂) = Kp1̂ > 0 and
hence E = −pt < 0.
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(b) In the Kerr coordinate basis, ξt = 1, ξr = ξθ = 0, ξφ = ΩH . And the hori-
zon’s generators are the world lines given in eq. (25.77), r = rH , θ = const, φ =

ΩH t+ const whose tangent vectors are ut(1, 0, 0, ΩH). So we see ~ξ is tangent to
the horizon’s generators. On the horizon, ∆ = 0, which means α2 = 0, and the
norm of any vector field ~χ is then given by

~χ2 =
ρ2

∆
(χr)

2
+ ρ2

(
χθ
)2

+ $2
(
χφ − ΩHχt

)2
(41)

Each of the three terms on the r.h.s. of the above equation is ≥ 0, i.e. the norm
of ~χ becomes zero(null vector field) only when χr = 0, χθ = 0 and χφ = ΩHχt

which is the case of ~ξ, for all other vectors this norm is positive, i.e. those
vectors are all spacelike.

(c) Since the Kerr metric is independent of t and φ(time-translation symmetry
and axisymmetry), we have the two conserved quantities E ≡ −pt and L ≡
pφ which are interpreted as energy and angular momentum of the particle,
respectively. We have ∆M = E and ∆JH = L, hence

∆M − ΩH∆JH = E − ΩHL = −pt − ΩHpφ (42)

On the other hand −~p · ~ξH = −pt − ΩHpφ using the expression for ~ξ given in
part (b). Thus Eq. (24.89) is true.

(d) Choose a Lorentz frame in which the timelike vector ~A points in the time

direction so ~A = A0~e0 with A0 > 0, and the null vector ~K points in the ~e1

direction so ~K = K0(~e1 + ~e0) with K0 > 0, thus ~A · ~K = −A0K0 < 0. Thus

−~pplunge · ~ξH is positive (~pplunge is timelike, future directed, and ~ξH is null.)

(e) Combining the results of part (c) and (d), we have ∆M − ΩH∆JH > 0,
which implies ∆JH < ∆M/ΩH . Thus ∆M < 0 implies ∆JH < 0.

(f) ΩH , JH , gH , AH are all functions of (M, a) with the explicit expressions given
in the text. Thus one can express the r.h.s. of eq. (25.90) in terms of ∆M and
∆a in a staightforward manner. ∆a terms cancel, and the ∆M terms sum to
give ∆M , which is the l.h.s. of Eq. (24.90).

(g) TH∆SH = ~

2πkB
gH∆SH = gH

8π ∆AH implies SH = kB

4
AH

~
. Restoring G and

c, this becomes SH = kB

4
AH

l2p
.

(h) Recall that M� ≈ 1.5km ≈ 0.5× 10−5s. Thus we find for a ten solar mass
black hole TH ≈ 6× 10−9degrees Kelvin, and its entropy SH ≈ 1× 1079kB .

25.12 Slices of simultaneity in Schwarzschild spacetime [by Alexei Dvoret-
skii 99.]
The Schwarzschild spacetime can be sliced by surfaces t = const. Since the

13



Schwarzschild coordinates are orthogonal to each other the world lines of ob-
servers with constant spacelike coordinates and varying t will be orthogonal to
those surfaces and therefore for those observers the surfaces will be simultane-
ities. If t is kept constant as the black hole horizon is crossed the form of the line
element is changed and t becomes spacelike. Therefore slices of t = const can
no longer be viewed as simultaneities. For Eddington-Finklestein coordinates
no such problem exists and the simultaneities cover the interior as well as the
exterior of the black hole. (See Fig. 24.4 in the text.)
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