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A-D

25.4 Behavior of h+ and h× under rotations and boosts [by Xinkai Wu
’02]

(a) Quantities with a tilde denote those in the new basis, and those without
tilde in the old basis. As suggested in equation 25.51 we perform a change of
basis: ẽx + iẽy = (ex + iey)eiψ. Then,

ẽx = ex cosψ − ey sinψ, ẽy = ey cosψ + ex sinψ . (1)

Plugging the above transformation matrix into equation 25.41 we find the com-
ponents of Riemann in the new basis

Rx̃0x̃0 = cos2 ψRx0x0 + sin2 ψRy0y0 − 2 cosψ sinψRx0y0 (2)

= cos 2ψ
(
− 1

2
ḧ+

)
− sin 2ψ

(
− 1

2
ḧ×

)
(3)

on the other hand Rx̃0x̃0 = − 1
2
¨̃
h+, thus we get

h̃+ = (cos 2ψ)h+ − (sin 2ψ)h× (4)

Similarly, by looking at Rx̃0ỹ0, we find

h̃× = (cos 2ψ)h× + (sin 2ψ)h+ (5)

Translated into complex numbers, this is just

h̃+ + ih̃× = (h+ + ih×)e2iψ (6)

(b) The desired boost is a boost along the z direction, which gives

~̃e0 = ~e0 coshβ + ~ez sinhβ, ~̃ez = ~e0 sinhβ + ~ez coshβ (7)
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with ~ex, ~ey unchanged. And the corresponding transformation for the coordi-
nates is

t̃ = t coshβ − z sinhβ, z̃ = −t sinhβ + z coshβ (8)
which gives t̃− z̃ = (coshβ + sinhβ)(t− z) (9)

with x, y unchanged.
Look at components of Riemann in the new basis using the above transfor-

mation matrix, we find

Rx0̃x0̃ = (coshβ − sinhβ)2Rx0x0 =
(
−1
2

)
(coshβ − sinhβ)2ḧ+(t− z) (10)

on the other hand Rx0̃x0̃ =
(−1

2

) ¨̃
h+(t̃− z̃) = (−1/2) ¨̃

h+(t−z)/(coshβ+sinhβ)2.
Equating this with eq. (10) we find

¨̃
h+(t− z) = ḧ+(t− z)⇒ h̃+ = h+ (11)

By looking at Rx0̃y0̃ one can show the invariance of h× in a similar manner.

25.5 Energy-momentum conservation in geometric optics limit [by
Alexander Putilin ’00]

Starting from equation 25.58:

TGWαβ =
1

16π
〈h+,αh+,β + h×,αh×,β〉 (12)

In the geometric optics limit:

h+ =
Q+(τr; θ, φ)

r
, h× =

Q×(τr; θ, φ)
r

(13)

The wave vector ~k ≡ −~∇τr is null, and we have ∇~k~k = 0, ∇~kr = 1
2 (~∇ · ~k)r.

To show T
GW |β
αβ = 0, it’s sufficient to prove that h β

+|β = h β
×|β = 0.

We’ll follow the pattern used in Sec 25.3.6,

h+,β = h+,τr

∂τr
∂xβ

+ h+,β′ = −h+,τrkβ + h+,β′ (14)

where prime denotes derivatives at fixed τr (i.e. h+,β′ = h+,θ
∂θ
∂xβ

+ h+,φ
∂φ
∂xβ

+
h+,r

∂r
∂xβ

)
Differentiating the second time we get

h β
+|β = −h ,β

+,τr kβ − h+,τr (k
|β

β ) + h β
+|β′ (15)

= h+,τrτrk
βkβ − h+,τr|β′k

β − (~∇ · ~k)h+,τr − h+|β′,τrk
β + h β′

+|β′ (16)

= ~k2h+,τrτr − 2kβh+,τr|β′ − (~∇ · ~k)h+,τr + h β′

+|β′ (17)
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~k2 = 0 so the first term vanishes. Notice that in geometric optics limit h+ is a
fast varying function of τr and slowly varying function of θ, φ, r. It means that
derivatives of h+ w.r.t. τr are much larger than derivatives at fixed τr and we
can neglect the last term.

h β
+|β ≈ −2kβh+,τr|β′ − (~∇ · ~k)h+,τr (18)

kβh+,τr|β′ is the directional derivative along ~k (at fixed τr). Since θ, φ are
constant along a ray, only 1/r factors can vary

kβh+,τr|β′ = kβ
(

1
r

∂Q+

∂τr

)
,β′

=
∂Q+

∂τr

(
− 1
r2

)
∇~kr = − 1

r
∇~kr h+,τr (19)

using ∇~kr =
1
2

(~∇ · ~k)r (20)

= − 1
2

(~∇ · ~k)h+,τr (21)

Finally

h β
+|β = (~∇ · ~k)h+,τr − (~∇ · ~k)h+,τr = 0 (22)

The equality h β
×|β = 0 can be derived in exactly the same way.

25.6 Transformation to TT gauge [by Alexander Putilin ’99 and Keith
Matthews ’05]

(a) Consider the gauge transformation generated by ξα:

hαβ → h′αβ = hαβ − ξα,β − ξβ,α , (23)

or,
h̄αβ → h̄′αβ = h̄αβ − ξα,β − ξβ,α + ηαβξ

,µ
µ . (24)

Then

h̄′
,β

αβ = h̄ ,β
αβ − ξ β

α,β − ξ β
β,α + ξ µ

µ,α (25)

= h̄ ,β
αβ − ξ β

α,β (26)

= −ξ β
α,β (27)

where to get the last expression we’ve used the fact that h̄ ,β
αβ = 0, since h̄αβ

is in Lorentz gauge.
If we want h̄′αβ to remain in Lorentz gauge, we see that the generators ξα

should satisfy wave equation: ξ β
α,β = 0

The general solution of this equation can be written as a sum of plane waves:

ξα(t,x) =
∫

d3k
(2π)3

[
Aα(k)ei(k·x−ωt) +Bα(k)ei(k·x+ωt)

]
(28)
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The first term describes the wave propagating in the k direction and second one
in −k direction. In our cases we need only the first term (since we consider a
gravitational wave propagating in some particular direction). So

ξα(t,x) =
∫

d3k
(2π)3

Aα(k)ei(k·x−ωt) (29)

At time t = 0: ξα(0,x) =
∫

d3k
(2π)3Aα(k)eik·x, or Aα(k) =

∫
d3xξα(0,x)e−ik·x.

We see that ξα(x) are completely determined by four functions of three spa-
tial coordinates: ξα(0,x). These functions give initial conditions for the wave
equation at t = 0.

(b) Consider a plane gravitational wave propagating in the z-direction.

h̄αβ = h̄αβ(t− z) = h̄αβ(τ), τ ≡ t− z (30)

h̄αβ is in Lorentz gauge, i.e.

h̄ ,β
αβ = h̄ ,t

αt + h̄ ,z
αz = −h̄αt,t + h̄αz,z = −h̄′αt − h̄′αz (31)

= 0 (32)

Where prime denotes derivatives with respect to τr as defined in the previous
problem. Integrating: h̄αz = −h̄αt + const. The constant is irrelevant and we
can set it to zero, thus h̄αz = −h̄αt.

These four gauge conditions reduce the number of independent components
of h̄αβ from 10 to 6: h̄tt, h̄tx, h̄ty, h̄xx, h̄xy, h̄yy.

Now make additional gauge transformation with

ξα = ξα(τ) = ξα(t− z), ξ β
α,β = 0 (33)

h̄new
αβ → h̄αβ − ξα,β − ξβ,α + ηαβξµ

,µ (34)

We note that ξµ,µ = −ξt,t + ξz,z = −ξ′t − ξ′z.
We want to choose ξα so that h̄new

αβ satisfy additional constraints: h̄new
tt =

h̄new
tx = h̄new

ty = 0, h̄new
xx + h̄new

yy = 0.

h̄new
tt = h̄tt − 2ξt,t + (ξ′t + ξ′z) = h̄tt + ξ′z − ξ′t (35)
h̄new
tx = h̄tx − ξt,x − ξx,t = h̄tx − ξ′x (36)
h̄new
ty = h̄ty − ξt,y − ξy,t = h̄ty − ξ′y (37)

h̄new
xx = h̄xx − 2ξx,x − ξ′t − ξ′z = h̄xx − ξ′t − ξ′z (38)
h̄new
yy = h̄yy − ξ′t − ξ′z (39)

h̄new
xy = h̄xy (40)
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This gives the system of equations:

ξ′x = h̄tx (41)
ξ′y = h̄ty (42)

ξ′t =
h̄tt + 1

2 (h̄xx + h̄yy)
2

(43)

ξ′z =
−h̄tt + 1

2 (h̄xx + h̄yy)
2

(44)

These equations have unique solutions (up to an additive constant) given by
simple integrations.

(c) We apply eqns 25.94 and 25.95 where we use zk = ekẑ for nk. Then
P ljP

m
k hlm = hjk− zjhkz− zkhjz + zjzkhzz and PjkP lmhlm = (δjk− zjzk)(hxx+

hyy). Here are the results:

hTTxx = hxx − 0− 0 + 0− 1
2

(hxx + hyy) =
1
2

(hxx − hyy)

hTTyy = hyy − 0− 0 + 0− 1
2

(hxx + hyy) = −1
2

(hxx − hyy)

hTTzz = hzz − hzz − hzz + hzz − 0 = 0

hTTxy = hxy −
1
2

(0) = hxy

hTTxz = hxz − 0− hxz + 0− 1
2

(0) = 0

hTTyz = hyz − hyz = 0

We still have hTT νµν, = 0 so hTTtt = −hTTtz = hTTzz = 0, hTTxt = −hTTxz = 0 and
hTTty = −hTTyz = 0.

hTTjk =


0 0 0 0
0 1

2 (hxx − hyy) hxy 0
0 hxy − 1

2 (hxx − hyy) 0
0 0 0 0


So we find that hTTxx = −hTTyy = h+, hTTxy = hTTyx = h× and tr(hTT ) = 0 as they
should.

25.9 Energy removed by gravitational radiation reaction [by Keith
Matthews ’05]

dM

dt
= −1

5

∫
ρ
dxj

dt

(
∂5Ilm
∂t5

xlxm
)
, j

d3x = −2
5
I5
jl

∫
ρ
dx(j

dt
xl)d3x (45)
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Where I5 indicates ∂5I
∂t5

and it comes out of the integral because it is not a
function of ~x. To evaluate the integral on the right we consider

I1
jk =

∂

∂t
Ijk =

d

dt
Ijk = 2

∫
ρ
dx(j

dt
xl)d3x− 1

3
δjl
∫
ρ
d(r2)
dt

d3x (46)

Because δijxixj = r2 and δijδij = 3, as applied below, we find that the second
integral above doesn’t contribute.

IijIij =
∫ ∫

ρ(~x)ρ(~x′)(xixj − 1
3
δijr2)(x′ix′j − 1

3
δijr′

2)d3x d3x′ (47)

=
∫ ∫

ρ(~x)ρ(~x′)(xixjx′ix′j − 2
3
r2r′

2 +
1
9
δijδijr2r′

2)d3x d3x′ (48)

=
(∫

ρ(~x)(xixj − 1
3
δijr2)d3x

)(∫
ρ(~x′)x′ix′jd3x′

)
(49)

So
dM

dt
=
d 〈M〉
dt

= −1
5
〈
I5
jlI1

jl

〉
(50)

which we integrate by parts twice to give

dM

dt
=
d 〈M〉
dt

= −1
5
〈
I3
jlI3

jl

〉
(51)

which is the desired result.

25.10 Propagation of waves through an expanding universe [by Alexan-
der Putilin ’00]

ds2 = b2[−dη2 + dχ2 + χ2(dθ2 + sin2 θdφ2)], where b = b0η
2 . (52)

(a) We can prove that curves of constant θ, φ, η − χ satisfy geodesic equation
by explicit calculation of connection coefficients. But the easier way is to use
symmetry. Spherical symmetry implies that a radial curve η = η(ζ), χ = χ(ζ),
θ, φ = const must be a geodesic for some parameter ζ. Since a geodesic is null

we have −
(
dη
dζ

)2

+
(
dχ
dζ

)2

= 0, dηdζ = dχ
dζ , ⇒ η − χ = const along a geodesic.

(b) Symmetry also helps here. Spherical symmetry guarantees that∇~k~eθ̂ cannot
point in χ or φ direction. So ∇~k~eθ̂ = a~eθ̂ + b~k. ~k = kη~eη̂ + kχ~eχ̂ = kη(~eη̂ + ~eχ̂),
since ~k2 = 0 implies kη = kχ. But ~eθ̂ · ∇~k~eθ̂ = a = 1

2∇~k(~eθ̂ · ~eθ̂) = 1
2∇~k(1) = 0

gives a = 0. and ∇~k~eθ̂ = b~k = bkη(~eη̂ + ~eχ̂).

kα̂~eθ̂;α̂ = kα̂Γµ̂
θ̂α̂
~eµ̂ = bkη̂(~eη̂ + ~eχ̂) (53)

Take a dot product of this eqn with ~eχ̂:
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bkη̂ = kα̂Γµ̂
θ̂α̂
ηχ̂µ̂ = kα̂Γχ̂θ̂α̂ = kη̂(Γχ̂θ̂η̂+Γχ̂θ̂χ̂), so b = Γχ̂θ̂η̂+Γχ̂θ̂χ̂. Now we

need only to calculate two connection coefficients to verify that Γχ̂θ̂η̂ = Γχ̂θ̂χ̂ = 0,
so that b = 0 ⇒ ∇~k~eθ̂ = 0. The proof that ∇~k~eφ̂ = 0 is very similar.

(c) The general solutions are, in the geometric optics limit:

h+ =
Q+(τr, θ, φ)

r
, h× =

Q×(τr, θ, φ)
r

(54)

where ~k = −~∇τr and ∇~kr = 1
2 (~∇ · ~k)r.

To fix τr = τr(η − χ) notice that at χ = 0 (or correspondingly r = 0)
τr = t− r = t, where t is a proper time at χ = 0.

dt2 = −ds2 = b2dη2 = b20η
4dη2

dt = b0η
2dη ⇒ t =

1
3
b0η

3

τr(η) = t =
1
3
b0η

3

so
τr(η − χ) =

1
3
b0(η − χ)3

~k = −~∇τr ⇒ kη = kχ =
(η − χ)2

b0η4
(55)

(~∇ · ~k) =
1√
−g

(
√
−g kα),α =

1√
−g
[
(
√
−g kη),η + (

√
−g kχ),χ

]
(56)

=
2(η − χ)2(η + 2χ)

b0η5χ
(after some calculations) (57)

Then

∇~kr =
1
2

(~∇ · ~k)r = kη(r,η + r,χ) (58)

reduces to (
∂

∂η
+

∂

∂χ

)
r =

(
1
χ

+
2
η

)
r (59)

changing variables: a = η − χ, b = η + χ, we get:

∂

∂b
r =

(
1

b− a
+

2
b+ a

)
r (60)

r(a, b) = C(a)e
R
db( 1

b−a+ 2
b+a ) = C(a)(b− a)(b+ a)2 (61)

⇒ r(χ, η) = C(η − χ)χη2 (62)

7



where C(η − χ) is an arbitrary function.
Consider the region η = η0, χ << η0. In this region we should have:

r(χ, η) = r (63)

where dr2 = ds2 = b2dχ2 = b20η
4
0dx

2, r = b0η
2
0χ, ⇒ C(η0)χη2

0 = b0η
2
0χ, ⇒

C(η0) = b0. So finally we get

r = b0η
2χ (64)

To determine Q+, Q×, compare them to the solution of gravitational wave eqn.
in the near zone: η ≈ η0, χ << η0 (τr = t− r)

h+ =
2
r

[
Ïθ̂θ̂(t− r)

]TT
=

2
r

[
Ïθ̂θ̂(τr)

]TT
(65)

h× =
2
r

[
Ïθ̂φ̂(t− r)

]TT
=

2
r

[
Ïθ̂φ̂(τr)

]TT
(66)

⇒

Q+(τr, θ, φ) = 2
[
Ïθ̂θ̂(τr)

]TT
(67)

Q×(τr, θ, φ) = 2
[
Ïθ̂φ̂(τr)

]TT
(68)

25.11 Gravitational waves emitted by a linear oscillator [by Alexander
Putilin ’00]

Since the mass is moving along the z direction the second moment of mass
distribution has only a zz-component.

Izz(t) = mz2(t) = ma2 cos2 Ωt (69)

or

I(t) = ma2 cos2 Ωt ~ez ⊗ ~ez (70)

and we have

hTTjk = 2

[
Ïjk(t− r)

r

]TT
(71)

which gives

hTT =
2
r
ma2−4Ω2 cos 2Ω(t− r)

2
[~ez ⊗ ~ez]TT (72)

= − 4mΩ2a2

r
cos (2Ω(t− r)) [~ez ⊗ ~ez]TT (73)
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To perform TT-projection notice that ~ez = cos θ~er̂ − sin θ~eθ̂, and thus

~ez ⊗ ~ez = cos2 θ~er̂ ⊗ ~er̂ − cos θ sin θ(~er̂ ⊗ ~eθ̂ + ~eθ̂ ⊗ ~er̂) + sin2 θ~eθ̂ ⊗ ~eθ̂ (74)

TT-projection on (~eθ̂, ~eφ̂) plane gives:

[~ez ⊗ ~ez]TT =
1
2

sin2 θ
(
~eθ̂ ⊗ ~eθ̂ − ~eφ̂ ⊗ ~eφ̂

)
(75)

so

hTT = −2mΩ2a2

r
sin2 θ cos(2Ω(t− r))

(
~eθ̂ ⊗ ~eθ̂ − ~eφ̂ ⊗ ~eφ̂

)
(76)

= −2mΩ2a2

r
sin2 θ cos(2Ω(t− r)) e+ (77)

It follows immediately from the result above that:

h+(t, r, θ, φ) = − 2mΩ2a2

r
sin2 θ cos(2Ω(t− r)) (78)

h×(t, r, θ, φ) = 0 (79)

In conventional units

h+(t, r, θ, φ) = − 2GmΩ2a2

rc4
sin2 θ cos(2Ω(t− r)) (80)

25.12 Gravitational waves from waving arms [by Xinkai Wu ’02]

(a) Take the frequency to be f ∼ 2Hz, then the wavelength is λ ∼ c/f ∼
1 × 108m. The major contribution to the gravitational wave comes from the
mass quadrupole moment and is given by equation 25.112: h+ ∼ h× ∼ G

c4
Mv2

r ,
and we take M ∼ 10kg, v ∼ Lf ∼ 1m × 2Hz ∼ 2m/s(where L is the length of
the arm), and r ∼ λ ∼ 108m, this gives h+ ∼ h× ∼ 10−51.

(b) The total power dE
dt is given by equation 25.113. Restoring G, c, we get

dE
dt ∼

G
c5

M2v6

L2 ∼ 10−49J/s, and the number of gravitons emitted per second is
1

~2πf
dE
dt ∼ 10−16Hz, which means the gravitational waves emitted are so weak

that they can’t really be treated as classical waves.

25.14 Light in an interferometric gravitational wave detector in TT
gauge [by Xinkai Wu ’02]

(a) This expression for φ gives

∂φ

∂t
= −ω0

[
1 +

1
2
h(t− x)− 1

2
h(t)

]
(81)

∂φ

∂x
= −ω0

[
−1− 1

2
h(t− x)

]
(82)
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Ignoring terms quadratic (and higher) in h, we find

−
(
∂φ

∂t

)2

+ [1− h(t)]
(
∂φ

∂x

)2

= −ω2
0 [1 + h(t− x)− h(t)]

+[1− h(t)]ω2
0 [1 + h(t− x)] (83)

= 0 (84)

(b) Setting x = 0, we get ∂φ
∂t = −ω0.

(c)

(∇~k~k)ν = kµ∇µkν (85)
= kµ∇µ∇νφ (86)
= kµ∇ν∇µφ (87)
= kµ∇νkµ (88)

=
1
2
∇ν(kµkµ) (89)

= 0 (90)

(d) The null geodesic of the photon is given by 0 = ds2 = −dt2 + [1 + h(t)]dx2,
which gives dx

dt = 1− 1
2h(t). Now px = −∂φ/∂x = −ω0[1+ 1

2h(t−x)], and along
the null geodesic we have

dpx
dt

= −ω0
1
2
ḣ(t− x)

(
1− dx

dt

)
= −ω0

1
2
ḣ(t− x)

(
1
2
h(t)

)
= 0 (91)

up to linear order in h. Thus we see px is indeed conserved along the geodesic.

(e) The observer at rest has 4-velocity ~u = (1, 0, 0, 0), thus the photon’s energy
measured by him is ω = −~k ·~u = −kαuα = −kt = −∂φ/∂t = ω0[1 + 1

2h(t−x)−
1
2h(t)]. dω

dt = ∂ω
∂t + ∂ω

∂x
dx
dt . Since ∂ω

∂x is already of order h, we can approximate
dx
dt as unity, and thus getting dω

dt ≈ ( ∂∂t + ∂
∂x )ω. And this is

dω

dt
≈
(
∂

∂t
+

∂

∂x

)
ω (92)

= ω0

[
1
2
ḣ(t− x)− 1

2
ḣ(t)− 1

2
ḣ(t− x)

]
(93)

= − 1
2
ω0ḣ(t) (94)

as desired.
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