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25.4 Behavior of hy and hy under rotations and boosts [by Xinkai Wu
'02]

(a) Quantities with a tilde denote those in the new basis, and those without
tilde in the old basis. As suggested in equation 25.51 we perform a change of
basis: &, +ié, = (e, + ie,)e!¥. Then,

€, = e, cost —eysiny, €, =e,cosy + ezsiny . (1)

Plugging the above transformation matrix into equation 25.41 we find the com-
ponents of Riemann in the new basis

Rioz0 = €08 Y Ry0z0 + sin’ Y Ryoyo — 2 cos 1) sin Y Ryoy0 (2)
1- 1.
= cos 21 (— 2h+) — sin 29 (— 2hx) (3)
on the other hand Rzpz0 = — %}fl+7 thus we get
hy = (cos2)hy — (sin2¢)hy (4)

Similarly, by looking at Rzogo, we find
hy = (cos2)hy + (sin 2¢)h (5)
Translated into complex numbers, this is just

hy +ihy = (hy +ihy)e?™¥ (6)

(b) The desired boost is a boost along the z direction, which gives

-

€0 = @y cosh 8+ &, sinh 3, €, = & sinh § + &, cosh 3 (7)



with €, €, unchanged. And the corresponding transformation for the coordi-
nates is

{ =tcoshB — zsinh3, 3= —tsinh 3+ zcosh 3 (8)
which gives £ — Z = (cosh 3 + sinh ) (¢ — 2) 9)

with x,y unchanged.
Look at components of Riemann in the new basis using the above transfor-
mation matrix, we find

R,5,5 = (cosh 3 — sinh 3)? Ry0.0 = (_21> (cosh 3 — sinh )% (t — 2) (10)

on the other hand R 5,5 = (3) ;L+(f— Z)=(-1/2) .fLJr(t—z)/(cosh B+sinh 3)2.
Equating this with eq. (10) we find

ho(t —2) = ha(t —2) = hy = hy (11)

By looking at R 5,5 one can show the invariance of iy in a similar manner.

25.5 Energy-momentum conservation in geometric optics limit [by
Alexander Putilin "00]
Starting from equation 25.58:

_ L

TS = hioh h,ah 12
of 167r< rahy g+ hxahsx ) (12)
In the geometric optics limit:
s 9) s 0,
h+ _ Q+(T ¢)7 h>< _ QX(T ¢) (13)
r r
The wave vector k = —V7, is null, and we have VEE =0, Vir= %(6 k)
To show Tfﬁwlﬂ = 0, it’s sufficient to prove that hﬂﬁﬁ = hxlﬁﬁ =0.
We'll follow the pattern used in Sec 25.3.6,
ory
hip=hiropg+heg =—hirks+hip (14)
where prime denotes derivatives at fixed 7, (i.e. hy g = hJﬁgaBTolj + h+,¢% +
h+,r%)
Differentiating the second time we get
8 _ 3 1B B
hﬂﬁ = —hy . Uks — h+7TT,(kﬁ )+ h+|ﬁ’ (15)

= hyrr K kig =y gk = (V- By, = hyjer K+ 0 )7 (16)
= FPhyryr, = 26y — (Vo B, +hy (17)



k2 = 0 so the first term vanishes. Notice that in geometric optics limit Ay is a
fast varying function of 7. and slowly varying function of 6, ¢, r. It means that
derivatives of hy w.r.t. 7, are much larger than derivatives at fixed 7, and we
can neglect the last term.

ho P —Zkﬁh%ﬂ,‘g/ - (6 : E)h-‘r,‘r‘r (18)

+18

kPhy . s is the directional derivative along k (at fixed 7). Since 6,¢ are
constant along a ray, only 1/r factors can vary

KBhy o\ = kP (i 8(9%) ) _ aaci: (_ 7»12> Ver=-— %v,;r hy - (19)
using Vir = %(6 - K)r (20)
= - %(ﬁ k)hy ., (21)

Finally
Bl = (9 B, = (V- B, =0 (22)

The equality h | ﬁﬁ = 0 can be derived in exactly the same way.

25.6 Transformation to TT gauge [by Alexander Putilin '99 and Keith
Matthews ’05]

(a) Consider the gauge transformation generated by &,:

haﬁ - h;,ﬁ = haﬂ - ga,ﬁ - €ﬁ,a y (23)
or, B B _
ha,@ — hixﬂ - ha[-} - favg - 5[—}701 + naﬁgﬂ' o . (24)
Then
_ 3 _ ,
hlaﬁ = haﬁ 7 ga,ﬁﬁ - fﬁ,aﬁ + gu,al (25)
= hog” —as” (26)
= & p” (27)

where to get the last expression we’ve used the fact that ﬁa ﬂ’ﬂ = 0, since }_Lag
is in Lorentz gauge.

If we want A’/ «p to remain in Lorentz gauge, we see that the generators &,
should satisfy wave equation: & a, 5’6 =0

The general solution of this equation can be written as a sum of plane waves:

ga (t, X) — / (;l7rk)3 [Aa (k)ei(k-xfwt) + B, (k)ei(k-xﬁut)} (28)



The first term describes the wave propagating in the k direction and second one
in —k direction. In our cases we need only the first term (since we consider a
gravitational wave propagating in some particular direction). So

£a(t, ) :/ 4’k A (k)ei(kxfwt) (29)
A (2m)3 "¢
At time ¢ = 0: &,(0,x) = [ (gil)(g,A Je X, or Ay (k) = [ dPx€0(0,x)e™ >

We see that £,(x) are completely determined by four functions of three spa-
tial coordinates: &,(0,x). These functions give initial conditions for the wave
equation at t = 0.

(b) Consider a plane gravitational wave propagating in the z-direction.
hap = hap(t — 2) = hap(T), T=t—2 (30)
ﬁag is in Lorentz gauge, i.e.

ﬁaﬂﬂ = i" ! + hoczvz = _Bat,t + ﬁaz7z = _E:;vt - B:xz (31)
0 (32)

Where prime denotes derivatives with respect to 7, as defined in the previous
problem. Integrating: has = —hgat + const. The constant is irrelevant and we
can set it to zero, thus hg, = —hat.

These four gauge conditions reduce the number of independent components
of EQB from 10 to 6: Btt7 iltx, Ety, ilxx, ilxy, ibyy

Now make additional gauge transformation with

§a = ga(T) = ga(t - Z)? ga,ﬁﬁ =0 (33)

7, new

op = hap = €ap — s+ Map€u™ (34)

We note that £, = —&; +&.. = =& — &L B
We want to choose {, so that hy3" satisfy additional constraints: hi™ =
hiew = B?;W =0, hieV + EZZW = 0.

hi = htt =24 (G +E) =hu+ & - & (35)
E?a'cew = gt,x fm t = hta: fm (36)
}_lnew }_Lty =&y — &yt = iy — fg/, (37)
hos™ = Ry — 2600 — & — €L = hye — & — €L (38)
hEZW = Byy - fé - 5; (39)
hggw = Ny (40)



This gives the system of equations:

& = hes (41)

& = huy (42)
hit + 2 (hyw + R

g = Pt il t ) (43)

These equations have unique solutions (up to an additive constant) given by
simple integrations.

(c) We apply eqns 25.94 and 25.95 where we use zF = €% for n¥. Then
PLP himy = hji — zjhge — 2xhjz + zj2ch. and Pjg P by, = (05 — 2j21) (haa +
hyy). Here are the results:

—_

1
hg{ =hyz —0-0+0— §(hm +hyy) = i(hm - hyy)

1 1
Py = hyy =0 =040 = (g + hyy) = =5 (e — hy)
hZzT:hzz_hzz—hzz-l-hzz—O:O
1

1
hzzT:hzz*O*hxz‘i’Ofi(O):O

hal =hy. —hy. =0

We still have h;VT” =0so hlT = —hlT =TT =0, K1 = —pIT = 0 and
TT _ _pTT _
hi, = —hy, =0.
0 0 0 0
it _ [ 04 by by 0
ik 0 hwy *%(hm - hyy) 0
0 0 0 0

So we find that hIl = —hIT = h, hIT = KT = h, and tr(h*™) = 0 as they
should.

25.9 Energy removed by gravitational radiation reaction [by Keith
Matthews ’05]

dM 1 [ do? (T 5 2 dz
— = | p—== ol g™ - _Z27° SOP 4
- 5/pdt<8t5 'z )’jdx 5J/pdtxdx (45)




Where Z° indicates 2 t5I and it comes out of the integral because it is not a

function of #. To evaluate the integral on the right we consider

0 d dal 1 d(r?)
g — T =2 —flm3—7&Z/ d? 4
ik T gtk T gtk /p ar T3 P dr (46)

Because 692’27 = r? and 66" = 3, as applied below, we find that the second
integral above doesn’t contribute.

U7 = // Y(zted — 35”7“2)(36” 2. (5” 2 Yd3x dPa’ (47)
_ Gt 1J 2502 7ijig2/23 3./
= (lada’ x 3T —|—955 Y x d®x" (48)
= (/ p(Z)(z'z? — 36ijr2)d3x> (/ p(f’)x’im’jd?’w’> (49)
50 M Ay 1
_ _ 5 71
R A e (50)
which we integrate by parts twice to give
dM  d (M) 1, 5. 4
=Y = 72T 1
dt dt 5 L ) (51

which is the desired result.

25.10 Propagation of waves through an expanding universe [by Alexan-
der Putilin ’00]

ds® = b*[—dn* + dx* + x*(d6? + sin® 0d¢?)], where b = byn?* . (52)

(a) We can prove that curves of constant 6, ¢,n — x satisfy geodesic equation
by explicit calculation of connection coefficients. But the easier way is to use
symmetry. Spherical symmetry implies that a radial curve n = n(¢), x = x(¢),
0, ¢ = const must be a geodesic for some parameter (. Since a geodesic is null

2 2
we have — (3—2) + (%) =0, ‘;—Z = 3—2‘, = 1 — x = const along a geodesic.

(b) Symmetry also helps here. Spherical symmetry guarantees that V&, cannot
point in x or ¢ direction. So Ve = aéy + bk. k= ke, + kXéy = k(€5 + €x),
since k2 = 0 implies k7 = kX. But € Vi€ =a=3Vz(€ &) =1Vz(1)=0
gives a = 0. and Ve, = bk = bk (€5 + €%).

&y = bk(&; + &) (53)

[e3

&2 _ papi
k ee;d—kf P

Take a dot product of this eqn with €:



bk = koT sl = kafiéd = kﬁ(rxéﬁ+r>2§>2)’ sob=T,5,+T5,. Now we

need only to calculate two connection coefficients to verify that F)Z(;ﬁ = Ff((;f< =0,
so that b=0 = Vpe; = 0. The proof that Vié€; = 0 is very simular.

(c) The general solutions are, in the geometric optics limit:

h+ _ Q+(T;,9,¢)7 h>< _ QX(T;707¢) (54)

where k = —V7, and Vir = %(6 k).
To fix 7. = 7.(n — x) notice that at x = 0 (or correspondingly r = 0)
7 =t —1r =t, where t is a proper time at y = 0.

dt* = —ds? = b2dn? = bin*dn?

1
dt = bon?dn =t = gbor]?’

1
T (n) =t= *b0773

3
SO )
7 (1= X) = 3bo(n = x)°
k=-Vr :>l<:77:k><:M (55)
T b0n4
Vik) = —=W-9k"a=—"= (V-9 k")y+(-gk* 56
(V-k) \/_—g(\/g ), \/_—g[( 9k + (V=g k) 5] (56)
2
= 2(n = x) 5(77 + 20 (after some calculations) (57)
bon°x
Then
1 - —
Vir = g(v Ry =K"r, +7y) (58)
reduces to
0 0 1 2
—+—|r=(—+—-)r 59
(877 8X) <>< 77) )
changing variables: a =7 — x,b =n + x, we get:
9] 1 2
81)r_<b—a+b+a)r (60)
r(a,b) = Cla)e) ®(Fatws) = C(a)(b — a) (b + a)? (61)
= r(x,n) = Cln— x)xn° (62)



where C'(n — x) is an arbitrary function.
Consider the region 1 = 19, x << 79. In this region we should have:

r(xn) =7 (63)

where dr? = ds* = b*dx* = byngda?®, v = bomgx, = Clmo)xng = bomgx, =
C(no) = bg. So finally we get

r = bon’x (64)

To determine @, Q«, compare them to the solution of gravitational wave eqn.
in the near zone: n =~ ng,x <<mno (7 =t —7r)

hy = % [féé(f - T)} e % {féé(ﬂ’)] o (65)
hy = % {fég,(t - T)]TT = % [fgtg,(Tr)}TT (66)
=
TT
Qi (:0,6) = 2 | I35(r)] (67)
. "
Qx(7,0,6) = 2 [I35(7)] (68)

25.11 Gravitational waves emitted by a linear oscillator [by Alexander
Putilin "00]

Since the mass is moving along the z direction the second moment of mass
distribution has only a zz-component.

L..(t) = mz*(t) = ma® cos® Qt (69)
or
I(t) = ma®cos® Qt €, ® &, (70)
and we have
Lt o
T =2 lj’“(r T)] (71)

which gives

102 _
pr _ 2 0 —40 COS;Q“ iz o e (72)
T
2.2
o AmYa 00— ) [ @ ] (73)
T



To perform TT-projection notice that €, = cos €z — sin 0€,, and thus
€. ® &, = cos’ 0é; ® & — cosfsin (¢ ® €+ E;®é) + sin? be; @ e; (74)

TT-projection on (€, €;) plane gives:

1
ol = a0 (G eq - 08) (75)
SO
2mO2a?
pIT — _$ sin? 0 cos(2(t — 1)) (é*é ©E - eﬂ) (76)
2mO2a®
= T in2g cos(2Q(t — 1)) e™ (77)
T
It follows immediately from the result above that:
2 QQ 2
hy(t,r,0,¢) = — ¥s1n29c03(29(t ) (78)
hy(t,r,0,8) = 0 (79)
In conventional units
2GmQ2a?
hy(t,r0,0) = — %sinzecos(%l(t —7)) (80)

25.12 Gravitational waves from waving arms [by Xinkai Wu ’02]

(a) Take the frequency to be f ~ 2Hz, then the wavelength is A ~ ¢/f ~
1 x 10®m. The major contribution to the gravitational wave comes from the
mass quadrupole moment and is given by equation 25.112: Ay ~ hy ~ C% MTUZ,
and we take M ~ 10kg, v ~ Lf ~ 1m x 2Hz ~ 2m/s(where L is the length of

the arm), and r ~ XA ~ 10%m, this gives hy ~ hy ~ 1071,

(b) The total power %€ is given by equation 25.113. Restoring G, ¢, we get

di
2,6 . . .
%’ ~ C% MLZ}’ ~ 107%%] /s, and the number of gravitons emitted per second is

h;ﬂ 7 ‘Z—f ~ 10716Hz, which means the gravitational waves emitted are so weak

that they can’t really be treated as classical waves.

25.14 Light in an interferometric gravitational wave detector in TT
gauge [by Xinkai Wu ’02]

(a) This expression for ¢ gives

% — [1 + %h(t —2)— ;h(t)] (81)
% = —wp [—1 - %h(t - w)] (82)



Ignoring terms quadratic (and higher) in h, we find
~(5) +n-no1(5) = e at - o) - no)
+[1 = h(t)]wi[l + h(t —z)] (83)
=0 (84)

(b) Setting x = 0, we get % = —wp.

(c)
(VEE)U = kuvykv (85)
= k'Y, V,¢ (86)
= k'V, V.6 (87)
= k'Y, k, (88)
= SV (k) (39)
=0 (90)

(d) The null geodesic of the photon is given by 0 = ds? = —dt? + [1 + h(t)]dz?,
which gives %2 = 1— 1h(t). Now p, = —9¢/dx = —wo[1+ h(t — )], and along
the null geodesic we have

‘% = 7w0%h(t — ) (1 - Zf) = *woéh(t — ) (;h(t)) =0 (91

up to linear order in h. Thus we see p, is indeed conserved along the geodesic.

(e) The observer at rest has 4-velocity @ = (1,0,0,0), thus the photon’s energy
measured by him is w = —k - @ = —kqu® = —k; = —0¢ /0t = wo[1+ Sh(t —z) —

1 dw __ Ow Ow dx : Ow : .
sh(t)). G =52+ %= 5. Since §2 is already of order h, we can approximate

% as unity, and thus getting fl—“t’ = (% + (%)w. And this is

dw 0 0]

w (9,9 P

dt <8t * aa:> v (92)

1. 1. 1.
1 .
= — iwoh(t) (94)

as desired.

10
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