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In this book, a central theme will be a Geometric Principle: The laws of physics must
all be expressible as geometric (coordinate-independent and reference-frame-independent) re-
lationships between geometric objects (scalars, vectors, tensors, ...), which represent physical
entitities.

There are three different conceptual frameworks for the classical laws of physics, and
correspondingly three different geometric arenas for the laws; see Fig. 1. General Relativity
is the most accurate classical framework; it formulates the laws as geometric relationships
between geometric objects in the arena of curved 4-dimensional spacetime. Special Relativity
is the limit of general relativity in the complete absence of gravity; its arena is flat, 4-
dimensional Minkowski spacetime1. Newtonian Physics is the limit of general relativity when
(i) gravity is weak but not necessarily absent, (ii) relative speeds of particles and materials are
small compared to the speed of light c, and (iii) all stresses (pressures) are small compared to
the total density of mass-energy; its arena is flat, 3-dimensional Euclidean space with time
separated off and made universal (by contrast with relativity’s reference-frame-dependent
time).

In Parts II–VI of this book (statistical physics, optics, elasticity theory, fluid mechanics,
plasma physics) we shall confine ourselves to the Newtonian formulations of the laws (plus
special relativistic formulations in portions of Track 2), and accordingly our arena will be
flat Euclidean space (plus flat Minkowski spacetime in portions of Track 2). In Part VII, we
shall extend many of the laws we have studied into the domain of strong gravity (general
relativity), i.e., the arena of curved spacetime.

In Parts II and III (statistical physics and optics), in addition to confining ourselves to
flat space (plus flat spacetime in Track 2), we shall avoid any sophisticated use of curvilinear
coordinates. Correspondingly, when using coordinates in nontrivial ways, we shall confine
ourselves to Cartesian coordinates in Euclidean space (and Lorentz coordinates in Minkowski
spacetime).

Part I of this book contains just two chapters. Chapter 1 is an introduction to our ge-
ometric viewpoint on Newtonian physics, and to all the geometric mathematical tools that

1so-called because it was Hermann Minkowski (1908) who identified the special relativistic invariant
interval as defining a metric in spacetime, and who elucidated the resulting geometry of flat spacetime.
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                   universal time
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Fig. 1: The three frameworks and arenas for the classical laws of physics, and their relationship to
each other.
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we shall need in Parts part:StatisticalPhysics and III for Newtonian Physics in its arena, 3-
dimensional Euclidean space. Chapter 2 introduces our geometric viewpoint on Special Rela-
tivistic Physics, and extends our geometric tools into special relativity’s arena, flat Minkowski
spacetime. Readers whose focus is Newtonian Physics will have no need for Chap. 2; and if
they are already familiar with the material in Chap. 1 but not from our geometric viewpoint,
they can successfully study Parts II–VI without reading Chap. 1. However, in doing so, they
will miss some deep insights; so we recommend they at least browse Chap. 1 to get some
sense of our viewpoint, then return to Chap. 1 occasionally, as needed, when encountering
an unfamiliar geometric argument.

In Parts IV, V, and VI, when studying elasticity theory, fluid mechanics, and plasma
physics, we will use curvilinear coordinates in nontrivial ways. As a foundation for this,
at the beginning of Part IV we will extend our flat-space geometric tools to curvilinear
coordinate systems (e.g. cylindrical and spherical coordinates). Finally, at the beginning of
Part VII, we shall extend our geometric tools to the arena of curved spacetime.

Throughout this book, we shall pay close attention to the relationship between classical
physics and quantum physics. Indeed, we shall often find it powerful to use quantum me-
chanical language or formalism when discussing and analyzing classical phenomena. This
quantum power in classical domains arises from the fact that quantum physics is primary
and classical physics is secondary. Classical physics arises from quantum physics, not con-
versely. The relationship between quantum frameworks and arenas for the laws of physics,
and classical frameworks, is sketched in Fig. 2.
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Quantum Field Theory 
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Nonrelativistic

Quantum Mechanics
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classical limit

classical limit

classical limit

no
gravity

low speeds,
small stresses,

add weak gravity

classical limit

Fig. 2: The relationship of the three frameworks for classical physics (on right) to four frameworks
for quantum physics (on left). Each arrow indicates an approximation. All other frameworks are
approximations to the ultimate laws of quantum gravity (whatever they may be — perhaps a variant
of string theory).



Chapter 1

Newtonian Physics: Geometric

Viewpoint

Version 1201.1.K, 7 September 2012

Please send comments, suggestions, and errata via email to kip@caltech.edu, or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 1.1

Reader’s Guide

• This chapter is a foundation for almost all of this book.

• Many readers already know the material in this chapter, but from a viewpoint
different from our geometric one. Such readers will be able to understand almost
all of Parts II–VI of this book without learning our viewpoint. Nevertheless, that
geometric viewpoint has such power that we encourage them to learn it, e.g., by
browsing this chapter and focusing especially on Secs. 1.1.1, 1.2, 1.3, 1.5, 1.7, and
1.8.

• The stress tensor, introduced and discussed in Sec. 1.9 will play an important role
in Kinetic Theory (Chap. 3), and a crucial role in Elasticity Theory (Part IV),
Fluid Mechanics (Part V) and Plasma Physics (Part VI).

• The integral and differential conservation laws derived and discussed in Secs. 1.8
and 1.9 will play major roles throughout this book.

• The Box labeled T2 is advanced material (“Track 2”) that can be skipped in a
time-limited course or on a first reading of this book.

1
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1.1 Introduction

1.1.1 The Geometric Viewpoint on the Laws of Physics

In this book, we shall adopt a different viewpoint on the laws of physics than that in most
elementary and intermediate texts. In most textbooks, physical laws are expressed in terms
of quantities (locations in space, momenta of particles, etc.) that are measured in some
coordinate system. For example, Newtonian vectorial quantities are expressed as triplets
of numbers, e.g., p = (px, py, pz) = (1, 9,−4), representing the components of a particle’s
momentum on the axes of a Cartesian coordinate system; and tensors are expressed as arrays
of numbers, e.g.

I =





Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 (1.1)

for the moment of inertia tensor.
By contrast, in this book, we shall express all physical quantities and laws in a geometric

form, i.e. a form that is independent of any coordinate system or basis vectors.
For example, a particle’s velocity v and the electric and magnetic fields E and B that it
encounters will be vectors described as arrows that live in the 3-dimensional, flat Euclidean
space of everyday experience. They require no coordinate system or basis vectors for their
existence or description—though often coordinates will be useful.

We shall insist that the Newtonian laws of physics all obey a Geometric Principle: they
are all geometric relationships between geometric objects (primarily scalars, vectors and
tensors), expressible without the aid of any coordinates or bases. An example is the Lorentz
force law mdv/dt = q(E+ v×B) — a (coordinate-free) relationship between the geometric
(coordinate-independent) vectors v, E and B and the particle’s scalar mass m and charge
q. As another example, a body’s moment of inertia tensor I can be viewed as a vector-
valued linear function of vectors (a coordinate-independent, basis-independent geometric
object). Insert into the tensor I the body’s angular velocity vector Ω and you will get out
the body’s angular momentum vector: J = I(Ω). No coordinates or basis vectors are needed
for this law of physics, nor is any description of I as a matrix-like entity with components
Iij . Components are secondary; they only exist after one has chosen a set of basis vectors.
Components (we claim) are an impediment to a clear and deep understanding of the laws of
physics. The coordinate-free, component-free description is deeper, and—once one becomes
accustomed to it—much more clear and understandable.

By adopting this geometric viewpoint, we shall gain great conceptual power, and often
also computational power. For example, when we ignore experiment and simply ask what
forms the laws of physics can possibly take (what forms are allowed by the requirement that
the laws be geometric), we shall find that there is remarkably little freedom. Coordinate
independence and basis independence strongly constrain the laws of physics.1

1Examples are the equation of elastodynamics (12.4b) and the Navier-Stokes equation of fluid mechanics
(13.69), which are both dictated by momentum conservation plus the form of the stress tensor [Eqs. (11.18)
and (13.68)] — forms that are dictated by the irreducible tensorial parts (Box 11.2) of the strain and rate
of strain.
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This power, together with the elegance of the geometric formulation, suggests that in
some deep sense, Nature’s physical laws are geometric and have nothing whatsoever to do
with coordinates or components or vector bases.

1.1.2 Purposes of this Chapter

The principal purpose of this foundational chapter is to teach the reader this geometric view-
point.

The mathematical foundation for our geometric viewpoint is differential geometry (also
called “tensor analysis” by physicists). Differential geometry can be thought of as an exten-
sion of the vector analysis with which all readers should be familiar. A second purpose of
this chapter is to develop key parts of differential geometry in a simple form well adapted to
Newtonian classical physics.

1.1.3 Overview of This Chapter

In this chapter, we lay the geometric foundations for the Newtonian laws of physics in
flat Euclidean space. We begin in Sec. 1.2 by introducing some foundational geometric
concepts: points, scalars, vectors, inner products of vectors, distance between points. Then
in Sec. 1.3, we introduce the concept of a tensor as a linear function of vectors, and we
develop a number of geometric tools: the tools of coordinate-free tensor algebra. In Sec. 1.4,
we illustrate our tensor-algebra tools by using them to describe—without any coordinate
system—the kinematics of a charged point particle that moves through Euclidean space,
driven by electric and magnetic forces.

In Sec. 1.5, we introduce, for the first time, Cartesian coordinate systems and their basis
vectors, and also the components of vectors and tensors on those basis vectors; and we
explore how to express geometric relationships in the language of components. In Sec. 1.6,
we deduce how the components of vectors and tensors transform, when one rotates one’s
Cartesian coordinate axes. (These are the transformation laws that most physics textbooks
use to define vectors and tensors.)

In Sec. 1.7, we introduce directional derivatives and gradients of vectors and tensors,
thereby moving from tensor algebra to true differential geometry (in Euclidean space). We
also introduce the Levi-Civita tensor and use it to define curls and cross products, and we
learn how to use index gymnastics to derive, quickly, formulae for multiple cross products.
In Sec. 1.8, we use the Levi-Civita tensor to define vectorial areas and scalar volumes,
and integration over surfaces. These concepts then enable us to formulate, in geometric,
coordinate-free ways, integral and differential conservation laws. In Sec. 1.9 we discuss,
in particular, the law of momentum conservation, formulating it in a geometric way with
the aid of a geometric object called the stress tensor. As important examples, we use this
geometric conservation law to derive and discuss the equations of Newtonian fluid dynamics,
and the interaction between a charged medium and an electromagnetic field. We conclude
in Sec. 1.10 with some concepts from special relativity that we shall need in our discussions
of Newtonian physics.



4

1.2 Foundational Concepts

The arena for the Newtonian laws is a spacetime composed of the familiar 3-dimensional
Euclidean space of everyday experience (which we shall call 3-space), and a universal time
t. We shall denote points (locations) in 3-space by capital script letters such as P and Q.
These points and the 3-space in which they live require no coordinates for their definition.

A scalar is a single number. We are interested in scalars that represent physical quantities,
e.g., temperature T . These are generally real numbers, and when they are functions of
location P in space, e.g. T (P), we call them scalar fields.

A vector in Euclidean 3-space can be thought of as a straight arrow that reaches from
one point, P, to another, Q (e.g., the arrow ∆x of Fig. 1.1a). Equivalently, ∆x can be
thought of as a direction at P and a number, the vector’s length. Sometimes we shall select
one point O in 3-space as an “origin” and identify all other points, say Q and P, by their
vectorial separations xQ and xP from that origin.

The Euclidean distance ∆σ between two points P and Q in 3-space can be measured
with a ruler and so, of course, requires no coordinate system for its definition. (If one does
have a Cartesian coordinate system, then ∆σ can be computed by the Pythagorean formula,
a precursor to the “invariant interval” of flat spacetime, Sec. 2.2.2.) This distance ∆σ is also
the length |∆x| of the vector ∆x that reaches from P to Q, and the square of that length is
denoted

|∆x|2 ≡ (∆x)2 ≡ (∆σ)2 . (1.2)

Of particular importance is the case when P and Q are neighboring points and ∆x is a
differential (infinitesimal) quantity dx. By traveling along a sequence of such dx’s, laying
them down tail-at-tip, one after another, we can map out a curve to which these dx’s are
tangent (Fig. 1.1b). The curve is P(λ), with λ a parameter along the curve; and the
infinitesimal vectors that map it out are dx = (dP/dλ)dλ.

The product of a scalar with a vector is still a vector; so if we take the change of location
dx of a particular element of a fluid during a (universal) time interval dt, and multiply it by
1/dt, we obtain a new vector, the fluid element’s velocity v = dx/dt, at the fluid element’s
location P. Performing this operation at every point P in the fluid defines the velocity field
v(P). Similarly, the sum (or difference) of two vectors is also a vector and so taking the
difference of two velocity measurements at times separated by dt and multiplying by 1/dt
generates the acceleration a = dv/dt. Multiplying by the fluid element’s (scalar) mass m

P

Q 

P

Q 

x 

x 

x ∆ O
C

(a) (b)

Fig. 1.1: (a) A Euclidean 3-space diagram depicting two points P and Q, their vectorial separations
xP and xQ from the (arbitrarily chosen) origin O, and the vector ∆x = xQ − xP connecting them.
(b) A curve C generated by laying out a sequence of infinitesimal vectors, tail-to-tip.
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gives the force F = ma that produced the acceleration; dividing an electrically produced
force by the fluid element’s charge q gives another vector, the electric field E = F/q, and
so on. We can define inner products [Eq. (1.4a) below] of pairs of vectors at a point (e.g.,
force and displacement) to obtain a new scalar (e.g., work), and cross products [Eq. (1.22a)]
of vectors to obtain a new vector (e.g., torque). By examining how a differentiable scalar
field changes from point to point, we can define its gradient [Eq. (1.15b)]. In this fashion,
which should be familiar to the reader and will be elucidated and generalized below, we can
construct all of the standard scalars and vectors of Newtonian physics. What is important
is that these physical quantities require no coordinate system for their definition. They are
geometric (coordinate-independent) objects residing in Euclidean 3-space at a particular
time.

It is a fundamental (though often ignored) principle of physics that the Newtonian physical
laws are all expressible as geometric relationships between these types of geometric objects,
and these relationships do not depend upon any coordinate system or orientation of axes, nor
on any reference frame (i.e., on any purported velocity of the Euclidean space in which the
measurements are made).2 We shall call this the Geometric Principle for the laws of physics,
and we shall use it throughout this book. It is the Newtonian analog of Einstein’s Principle
of Relativity (Sec. 2.2.2 below).

1.3 Tensor Algebra Without a Coordinate System

In preparation for developing our geometric view of physical laws, we now introduce, in a
coordinate-free way, some fundamental concepts of differential geometry: tensors, the inner
product, the metric tensor, the tensor product, and contraction of tensors.

We have already defined a vector A as a straight arrow from one point, say P, in our space
to another, say Q. Because our space is flat, there is a unique and obvious way to transport
such an arrow from one location to another, keeping its length and direction unchanged.3

Accordingly, we shall regard vectors as unchanged by such transport. This enables us to
ignore the issue of where in space a vector actually resides; it is completely determined by
its direction and its length.

7.95 T 

Fig. 1.2: A rank-3 tensor T.

A rank-n tensor T is, by definition, a real-valued, linear function of n vectors.4 Pictorially

2By changing the velocity of Euclidean space, one adds a constant velocity to all particles, but this leaves
the laws, e.g. Newton’s F = ma, unchanged.

3This is not so in curved spaces, as we shall see in Sec. 25.7.
4This is a different use of the word rank than for a matrix, whose rank is its number of linearly independent

rows or columns.
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we shall regard T as a box (Fig. 1.2) with n slots in its top, into which are inserted n vectors,
and one slot in its end, which prints out a single real number: the value that the tensor T

has when evaluated as a function of the n inserted vectors. Notationally we shall denote the
tensor by a bold-face sans-serif character T

T( , , ,
︸ ︷︷ ︸

) (1.3a)

տ n slots in which to put the vectors.

This is a very different (and far simpler) definition of a tensor than one meets in most
standard physics textbooks [e.g., Thornton and Marion (2004), Goldstein, Poole and Safko
(2002), Griffiths (1999), and Jackson (1999)]. There a tensor is an array of numbers that
transform in a particular way under rotations. We shall learn the connection between these
definitions in Sec. 1.6 below.

If T is a rank-3 tensor (has 3 slots) as in Fig. 1.2, then its value on the vectors A,B,C
is denoted T(A,B,C). Linearity of this function can be expressed as

T(eE+ fF,B,C) = eT(E,B,C) + fT(F,B,C) , (1.3b)

where e and f are real numbers, and similarly for the second and third slots.
We have already defined the squared length (A)2 ≡ A2 of a vector A as the squared

distance between the points at its tail and its tip. The inner product A ·B of two vectors is
defined in terms of this squared length by

A ·B ≡ 1

4

[
(A+B)2 − (A−B)2

]
. (1.4a)

In Euclidean space, this is the standard inner product, familiar from elementary geometry.
One can show that the inner product (1.4a) is a real-valued linear function of each of

its vectors. Therefore, we can regard it as a tensor of rank 2. When so regarded, the inner
product is denoted g( , ) and is called the metric tensor. In other words, the metric tensor
g is that linear function of two vectors whose value is given by

g(A,B) ≡ A ·B . (1.4b)

Notice that, because A ·B = B ·A, the metric tensor is symmetric in its two slots; i.e., one
gets the same real number independently of the order in which one inserts the two vectors
into the slots:

g(A,B) = g(B,A) . (1.4c)

With the aid of the inner product, we can regard any vector A as a tensor of rank one:
The real number that is produced when an arbitrary vector C is inserted into A’s slot is

A(C) ≡ A ·C . (1.4d)

In Newtonian physics, we rarely meet tensors of rank higher than two. However, second-
rank tensors appear frequently—often in roles where one sticks a single vector into the second
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slot and leaves the first slot empty, thereby producing a single-slotted entity, a vector. An
example that we met in Sec. 1.1.1 is a rigid body’s moment-of-inertia tensor I( , ), which
gives us the body’s angular momentum J( ) = I( ,Ω) when its angular velocity Ω is
inserted into its second slot.5 Another example is the stress tensor of a solid, a fluid, a
plasma, or a field (Sec. 1.9 below).

From three (or any number of) vectors A, B, C we can construct a tensor, their tensor
product (also called outer product in contradistinction to the inner product A ·B), defined
as follows:

A⊗B⊗C(E,F,G) ≡ A(E)B(F)C(G) = (A ·E)(B · F)(C ·G) . (1.5a)

Here the first expression is the notation for the value of the new tensor, A⊗B⊗C evaluated
on the three vectors E, F, G; the middle expression is the ordinary product of three real
numbers, the value of A on E, the value of B on F, and the value of C on G; and the
third expression is that same product with the three numbers rewritten as scalar products.
Similar definitions can be given (and should be obvious) for the tensor product of any two
or more tensors of any rank; for example, if T has rank 2 and S has rank 3, then

T ⊗ S(E,F,G,H,J) ≡ T(E,F)S(G,H,J) . (1.5b)

One last geometric (i.e. frame-independent) concept we shall need is contraction. We
shall illustrate this concept first by a simple example, then give the general definition. From
two vectors A and B we can construct the tensor product A ⊗ B (a second-rank tensor),
and we can also construct the scalar product A ·B (a real number, i.e. a scalar, i.e. a rank-0
tensor). The process of contraction is the construction of A ·B from A⊗B

contraction(A⊗B) ≡ A ·B . (1.6a)

One can show fairly easily using component techniques (Sec. 1.5 below) that any second-rank
tensor T can be expressed as a sum of tensor products of vectors, T = A⊗B+C⊗D+ . . .;
and correspondingly, it is natural to define the contraction of T to be contraction(T) =
A ·B+C ·D+ . . .. Note that this contraction process lowers the rank of the tensor by two,
from 2 to 0. Similarly, for a tensor of rank n one can construct a tensor of rank n − 2 by
contraction, but in this case one must specify which slots are to be contracted. For example,
if T is a third rank tensor, expressible as T = A ⊗ B ⊗ C + E ⊗ F ⊗ G + . . ., then the
contraction of T on its first and third slots is the rank-1 tensor (vector)

1&3contraction(A⊗B⊗C+ E⊗ F⊗G+ . . .) ≡ (A ·C)B+ (E ·G)F+ . . . . (1.6b)

All the concepts developed in this section (vectors, tensors, metric tensor, inner product,
tensor product, and contraction of a tensor) can be carried over, with no change whatsoever,
into any vector space6 that is endowed with a concept of squared length — for example, to
the four-dimensional spacetime of special relativity (next chapter).

5Actually, it doesn’t matter which slot since I is symmetric.
6or, more precisely, any vector space over the real numbers. If the vector space’s scalars are complex

numbers, as in quantum mechanics, then slight changes are needed.
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1.4 Particle Kinetics and Lorentz Force in Geometric Lan-

guage

In this section, we shall illustrate our geometric viewpoint by formulating Newton’s laws of
motion for particles.

In Newtonian physics, a classical particle moves through Euclidean 3-space as universal
time t passes. At time t it is located at some point x(t) (its position). The function x(t)
represents a curve in 3-space, the particle’s trajectory. The particle’s velocity v(t) is the time
derivative of its position, its momentum p(t) is the product of its mass m and velocity, its
acceleration a(t) is the time derivative of its velocity, and its energy is half its mass times
velocity squared:

v(t) =
dx

dt
, p(t) = mv(t) , a(t) =

dv

dt
=
d2x

dt2
, E(t) =

1

2
mv2 . (1.7a)

Since points in 3-space are geometric objects (defined independently of any coordinate sys-
tem), so also are the trajectory x(t), the velocity, the momentum, the acceleration and the
energy. (Physically, of course, the velocity has an ambiguity; it depends on one’s standard
of rest.)

Newton’s second law of motion states that the particle’s momentum can change only if
a force F acts on it, and that its change is given by

dp/dt = ma = F . (1.7b)

If the force is produced by an electric field E and magnetic field B, then this law of motion
in SI units takes the familiar Lorentz-force form

dp/dt = q(E+ v ×B) . (1.7c)

(Here we have used the vector cross product, which will not be introduced formally until
Sec. 1.7 below.) The laws of motion (1.7) are geometric relationships between geometric
objects.

****************************

EXERCISES

Exercise 1.1 Practice: Energy change for charged particle

Without introducing any coordinates or basis vectors, show that, when a particle with charge
q interacts with electric and magnetic fields, its energy changes at a rate

dE/dt = q v · E . (1.8)

Exercise 1.2 Practice: Particle moving in a circular orbit
Consider a particle moving in a circle with uniform speed v = |v| and uniform magnitude
a = |a| of acceleration. Without introducing any coordinates or basis vectors, show the
following:
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(a) At any moment of time, let n = v/v be the unit vector pointing along the velocity, and
let s denote distance that the particle travels in its orbit. By drawing a picture, show
that dn/ds is a unit vector that points to the center of the particle’s circular orbit,
divided by the radius of the orbit.

(b) Show that the vector (not unit vector) pointing from the particle’s location to the
center of its orbit is (v/a)2a.

****************************

1.5 Component Representation of Tensor Algebra

In the Euclidean 3-space of Newtonian physics, there is a unique set of orthonormal basis
vectors {ex, ey, ez} ≡ {e1, e2, e3} associated with any Cartesian coordinate system {x, y, z} ≡
{x1, x2, x3} ≡ {x1, x2, x3}. [In Cartesian coordinates in Euclidean space, we will usually place
indices down, but occasionally we will place them up. It doesn’t matter. By definition, in
Cartesian coordinates a quantity is the same whether its index is down or up.] The basis
vector ej points along the xj coordinate direction, which is orthogonal to all the other
coordinate directions, and it has unit length (Fig. 1.3), so

ej · ek = δjk . (1.9a)

Any vector A in 3-space can be expanded in terms of this basis,

A = Ajej . (1.9b)

Here and throughout this book, we adopt the Einstein summation convention: repeated
indices (in this case j) are to be summed (in this 3-space case over j = 1, 2, 3), unless
otherwise instructed. By virtue of the orthonormality of the basis, the components Aj of A
can be computed as the scalar product

Aj = A · ej . (1.9c)

[The proof of this is straightforward: A · ej = (Akek) · ej = Ak(ek · ej) = Akδkj = Aj.]

x 
y 

z

e 1 

e 3

e 2 

Fig. 1.3: The orthonormal basis vectors ej associated with a Euclidean coordinate system in
Euclidean 3-space.



10

Any tensor, say the third-rank tensor T( , , ), can be expanded in terms of tensor
products of the basis vectors:

T = Tijkei ⊗ ej ⊗ ek . (1.9d)

The components Tijk of T can be computed from T and the basis vectors by the generalization
of Eq. (1.9c)

Tijk = T(ei, ej, ek) . (1.9e)

[This equation can be derived using the orthonormality of the basis in the same way as
Eq. (1.9c) was derived.] As an important example, the components of the metric are
gjk = g(ej, ek) = ej · ek = δjk [where the first equality is the method (1.9e) of comput-
ing tensor components, the second is the definition (1.4b) of the metric, and the third is the
orthonormality relation (1.9a)]:

gjk = δjk . (1.9f)

The components of a tensor product, e.g. T( , , ) ⊗ S( , ), are easily deduced by
inserting the basis vectors into the slots [Eq. (1.9e)]; they are T(ei, ej, ek)⊗S(el, em) = TijkSlm

[cf. Eq. (1.5a)]. In words, the components of a tensor product are equal to the ordinary
arithmetic product of the components of the individual tensors.

In component notation, the inner product of two vectors and the value of a tensor when
vectors are inserted into its slots are given by

A ·B = AjBj , T(A,B,C) = TijkAiBjCk , (1.9g)

as one can easily show using previous equations. Finally, the contraction of a tensor [say, the
fourth rank tensor R( , , , )] on two of its slots [say, the first and third] has components
that are easily computed from the tensor’s own components:

Components of [1&3contraction of R] = Rijik (1.9h)

Note that Rijik is summed on the i index, so it has only two free indices, j and k, and thus
is the component of a second rank tensor, as it must be if it is to represent the contraction
of a fourth-rank tensor.

1.5.1 Slot-Naming Index Notation

We now pause, in our development of the component version of tensor algebra, to introduce
a very important new viewpoint:

Consider the rank-2 tensor F( , ). We can define a new tensor G( , ) to be the
same as F, but with the slots interchanged; i.e., for any two vectors A and B it is true
that G(A,B) = F(B,A). We need a simple, compact way to indicate that F and G are
equal except for an interchange of slots. The best way is to give the slots names, say a
and b — i.e., to rewrite F( , ) as F( a, b) or more conveniently as Fab; and then to
write the relationship between G and F as Gab = Fba. “NO!” some readers might object.
This notation is indistinguishable from our notation for components on a particular basis.
“GOOD!” a more astute reader will exclaim. The relation Gab = Fba in a particular basis is
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Box 1.2

T2 Vectors and Tensors in Quantum Theory

The laws of quantum theory, like all other laws of Nature, can be expressed as geometric
relationships between geometric objects. Most of quantum theory’s geometric objects,
like those of classical theory, are vectors and tensors:

The quantum state |ψ〉 of a physical system (e.g. a particle in a harmonic-oscillator
potential) is a Hilbert-space vector—the analog of a Euclidean-space vector A. There
is an inner product, denoted 〈φ|ψ〉, between any two states |φ〉 and |ψ〉, analogous to
B ·A; but, whereas B ·A is a real number, 〈φ|ψ〉 is a complex number (and we add and
subtract quantum states with complex-number coefficients). The Hermitian operators
that represent observables (e.g. the Hamiltonian Ĥ for the particle in the potential) are
two-slotted (second-rank), complex-valued functions of vectors; 〈φ|Ĥ|ψ〉 is the complex
number that one gets when one inserts φ and ψ into the first and second slots of Ĥ . Just
as, in Euclidean space, we get a new vector (first-rank tensor) T( ,A) when we insert the
vector A into the second slot of T, so in quantum theory we get a new vector (physical
state) Ĥ|ψ〉 (the result of letting Ĥ “act on” |ψ〉) when we insert |ψ〉 into the second
slot of Ĥ . In these senses, we can regard T as a linear map of Euclidean vectors into
Euclidean vectors, and Ĥ as a linear map of states (Hilbert-space vectors) into states.

For the electron in the Hydrogen atom, we can introduce a set of orthonormal basis
vectors {|1〉, |2〉, |3〉, ...}, e.g. the atom’s energy eigenstates, with 〈m|n〉 = δmn. But by
contrast with Newtonian physics, where we only need three basis vectors because our
Euclidean space is 3-dimensional, for the particle in a harmonic-oscillator potential we
need an infinite number of basis vectors, since the Hilbert space of all states is infinite
dimensional. In the particle’s quantum-state basis, any observable (e.g. the particle’s
position x̂ or momentum p̂) has components computed by inserting the basis vectors
into its two slots: xmn = 〈m|x̂|n〉, and pmn = 〈m|p̂|n〉. The observable x̂p̂ (which maps
states into states) has components in this basis xjkpkm (a matrix product); and the
noncommutation of position and momentum [x̂, p̂] = i~ (an important physical law) has
components xjkpkm − pjkxkm = i~δmn.

a true statement if and only if “G = F with slots interchanged” is true, so why not use the
same notation to symbolize both? This, in fact, we shall do. We shall ask our readers to
look at any “index equation” such as Gab = Fba like they would look at an Escher drawing:
momentarily think of it as a relationship between components of tensors in a specific basis;
then do a quick mind-flip and regard it quite differently, as a relationship between geometric,
basis-independent tensors with the indices playing the roles of names of slots. This mind-flip
approach to tensor algebra will pay substantial dividends.

As an example of the power of this slot-naming index notation, consider the contrac-
tion of the first and third slots of a third-rank tensor T. In any basis the components of
1&3contraction(T) are Taba; cf. Eq. (1.9h). Correspondingly, in slot-naming index notation
we denote 1&3contraction(T) by the simple expression Taba. We can think of the first and
third slots as “strangling” or “killing” each other by the contraction, leaving free only the
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second slot (named b) and therefore producing a rank-1 tensor (a vector).
We should caution that the phrase “slot-naming index notation” is unconventional (as

are killing and strangling). You are unlikely to find it in any other textbooks. However, we
like it. It says precisely what we want it to say.

1.5.2 Particle Kinetics in Index Notation

As an example of slot-naming index notation, we can rewrite the equations of particle kinetics
(1.7) as follows:

vi =
dxi
dt

, pi = mvi , ai =
dvi
dt

=
d2xi
dt2

, E =
1

2
mvjvj ,

dpi
dt

= q(Ei + ǫijkvjBk) . (1.10)

(In the last equation ǫijk is the so-called Levi-Civita tensor, which is used to produce the
cross product; we shall learn about it in Sec. 1.7 below.)

Equations (1.10) can be viewed in either of two ways: (i) as the basis-independent geo-
metric laws v = dx/dt, p = mv, a = dv/dt = d2x/dt2, E = 1

2
mv2, and dp/dt−q(E+v×B)

written in slot-naming index notation; or (ii) as equations for the components of v, p, a, E
and B in some particular Cartesian coordinate system.

****************************

EXERCISES

Exercise 1.3 Derivation: Component Manipulation Rules

Derive the component manipulation rules (1.9g) and (1.9h).

Exercise 1.4 Example and Practice: Numerics of Component Manipulations

The third rank tensor S( , , ) and vectors A and B have as their only nonzero compo-
nents S123 = S231 = S312 = +1, A1 = 3, B1 = 4, B2 = 5. What are the components of the
vector C = S(A,B, ), the vector D = S(A, ,B) and the tensor W = A⊗B?

[Partial solution: In component notation, Ck = SijkAiBj , where (of course) we sum over
the repeated indices i and j. This tells us that C1 = S231A2B3 because S231 is the only
component of S whose last index is a 1; and this in turn implies that C1 = 0 since A2 = 0.
Similarly, C2 = S312A3B1 = 0 (because A3 = 0). Finally, C3 = S123A1B2 = +1× 3× 5 = 15.
Also, in component notation Wij = AiBj , so W11 = A1 × B1 = 3 × 4 = 12 and W12 =
A1×B2 = 3×5 = 15. Here the × is numerical multiplication, not the vector cross product.]

Exercise 1.5 Practice: Meaning of Slot-Naming Index Notation

(a) The following expressions and equations are written in slot-naming index notation;
convert them to geometric, index-free notation: AiBjk, AiBji, Sijk = Skji, AiBi =
AiBjgij.
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(b) The following expressions are written in geometric, index-free notation; convert them
to slot-naming index notation: T( , ,A); T( ,S(B, ), ).

****************************

1.6 Orthogonal Transformations of Bases

Consider two different Cartesian coordinate systems {x, y, z} ≡ {x1, x2, x3}, and {x̄, ȳ, z̄} ≡
{x1̄, x2̄, x3̄}. Denote by {ei} and {ep̄} the corresponding bases. It is possible to expand the
basis vectors of one basis in terms of those of the other. We shall denote the expansion
coefficients by the letter R and shall write

ei = ep̄Rp̄i , ep̄ = eiRip̄ . (1.11)

The quantities Rp̄i and Rip̄ are not the components of a tensor; rather, they are the elements
of transformation matrices

[Rp̄i] =





R1̄1 R1̄2 R1̄3

R2̄1 R2̄2 R2̄3

R3̄1 R3̄2 R3̄3



 , [Rip̄] =





R11̄ R12̄ R13̄

R21̄ R22̄ R23̄

R31̄ R32̄ R33̄



 . (1.12a)

(Here and throughout this book we use square brackets to denote matrices.) These two
matrices must be the inverse of each other, since one takes us from the barred basis to the
unbarred, and the other in the reverse direction, from unbarred to barred:

Rp̄iRiq̄ = δp̄q̄ , Rip̄Rp̄j = δij . (1.12b)

The orthonormality requirement for the two bases implies that δij = ei · ej = (ep̄Rp̄i) ·
(eq̄Rq̄j) = Rp̄iRq̄j(ep̄ · eq̄) = Rp̄iRq̄jδp̄q̄ = Rp̄iRp̄j. This says that the transpose of [Rp̄i] is its
inverse—which we have already denoted by [Rip̄];

[Rip̄] ≡ Inverse ([Rp̄i]) = Transpose ([Rp̄i]) . (1.12c)

This property implies that the transformation matrix is orthogonal; i.e., the transformation
is a reflection or a rotation [see, e.g., Goldstein, Poole and Safko (2002)]. Thus (as should be
obvious and familiar), the bases associated with any two Euclidean coordinate systems are
related by a reflection or rotation. Note: Eq. (1.12c) does not say that [Rip̄] is a symmetric
matrix. In fact, most rotation matrices are not symmetric; see, e.g., Eq. (1.14) below.

The fact that a vector A is a geometric, basis-independent object implies that A =
Aiei = Ai(ep̄Rp̄i) = (Rp̄iAi)ep̄ = Ap̄ep̄; i.e.,

Ap̄ = Rp̄iAi , and similarly Ai = Rip̄Ap̄ ; (1.13a)

and correspondingly for the components of a tensor

Tp̄q̄r̄ = Rp̄iRq̄jRr̄kTijk , Tijk = Rip̄Rjq̄Rkr̄Tp̄q̄r̄ . (1.13b)
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It is instructive to compare the transformation law (1.13a) for the components of a vector
with those (1.11) for the bases. To make these laws look natural, we have placed the
transformation matrix on the left in the former and on the right in the latter. In Minkowski
spacetime (Chap. 2), the placement of indices, up or down, will automatically tell us the
order.

If we choose the origins of our two coordinate systems to coincide, then the vector x

reaching from the common origin to some point P, whose coordinates are xj and xp̄, has
components equal to those coordinates; and as a result, the coordinates themselves obey the
same transformation law as any other vector

xp̄ = Rp̄ixi , xi = Rip̄xp̄ . (1.13c)

The product of two rotation matrices, [Rip̄Rp̄¯̄s] is another rotation matrix [Ri¯̄s], which
transforms the Cartesian bases e¯̄s to ei. Under this product rule, the rotation matrices form
a mathematical group: the rotation group, whose group representations play an important
role in quantum theory.

****************************

EXERCISES

Exercise 1.6 **Example and Practice: Rotation in x, y Plane7

Consider two Cartesian coordinate systems rotated with respect to each other in the x, y
plane as shown in Fig. 1.4.

(a) Show that the rotation matrix that takes the barred basis vectors to the unbarred basis
vectors is

[Rp̄i] =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



 , (1.14)

7Exercises marked with double stars are important expansions of the material presented in the text.

φ
x

x

y

y

ex

ey

ex
ey

Fig. 1.4: Two Cartesian coordinate systems {x, y, z} and {x̄, ȳ, z̄} and their basis vectors in Eu-
clidean space, rotated by an angle φ relative to each other in the x, y plane. The z and z̄ axes point
out of the paper or screen and are not shown.
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and show that the inverse of this rotation matrix is, indeed, its transpose, as it must
be if this is to represent a rotation.

(b) Verify that the two coordinate systems are related by Eq. (1.13c).

(c) Let Aj be the components of a vector that lies in the x, y plane so Az = 0. The two
nonzero components Ax and Ay of this vector can be regarded as describing the two
polarizations of an electromagnetic wave propagating in the z direction. Show that
Ax̄ + iAȳ = (Ax + iAy)e

−iφ. One can show (cf. Sec. 27.3.3) that the factor e−iφ implies
that the quantum particle associated with the wave, i.e. the photon, has spin one; i.e.,
spin angular momentum ~ =(Planck’s constant)/2π.

(d) Let hjk be the components of a symmetric tensor that is trace-free (its contraction hjj
vanishes) and is confined to the x, y plane (so hzk = hkz = 0 for all k). Then the only
nonzero components of this tensor are hxx = −hyy and hxy = hyx. As we shall see in Sec.
27.3.1, this tensor can be regarded as describing the two polarizations of a gravitational
wave propagating in the z direction. Show that hx̄x̄ + ihx̄ȳ = (hxx + ihxy)e

−2iφ. The
factor e−2iφ implies that the quantum particle associated with the gravitational wave
(the graviton) has spin two (spin angular momentum 2~); cf. Eq. (27.30) and Sec.
27.3.3.

****************************

1.7 Directional Derivatives, Gradients, Levi-Civita Ten-

sor, Cross Product and Curl

Consider a tensor field T(P) in Euclidean 3-space, and a vector A. We define the directional
derivative of T along A by the obvious limiting procedure

∇AT ≡ lim
ǫ→0

1

ǫ
[T(xP + ǫA)− T(xP)] (1.15a)

and similarly for the directional derivative of a vector field B(P) and a scalar field ψ(P).
[Here we have denoted points, e.g. P, by the vector xP that reaches from some arbitrary
origin to the point, and T(xP) denotes the field’s dependence on location in space; T’s slots
and dependence on what goes into the slots are suppressed from the notation.] In definition
(1.15a), the quantity in square brackets is simply the difference between two linear functions
of vectors (two tensors), so the quantity on the left side is also a tensor with the same rank
as T.

It should not be hard to convince oneself that this directional derivative ∇AT of any
tensor field T is linear in the vector A along which one differentiates. Correspondingly, if T

has rank n (n slots), then there is another tensor field, denoted ∇T, with rank n + 1, such
that

∇AT = ∇T( , , , A) . (1.15b)
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Here on the right side the first n slots (3 in the case shown) are left empty, and A is put
into the last slot (the “differentiation slot”). The quantity ∇T is called the gradient of T.
In slot-naming index notation, it is conventional to denote this gradient by Tabc;d, where in
general the number of indices preceding the semicolon is the rank of T. Using this notation,
the directional derivative of T along A reads [cf. Eq. (1.15b)] Tabc;jAj .

It is not hard to show that in any Cartesian coordinate system, the components of the
gradient are nothing but the partial derivatives of the components of the original tensor,
which we denote by a comma:

Tabc;j =
∂Tabc
∂xj

≡ Tabc,j . (1.15c)

In a non-Cartesian basis (e.g. the spherical and cylindrical bases often used in electromag-
netic theory), the components of the gradient typically are not obtained by simple partial
differentiation [Eq. (1.15c) fails] because of turning and/or length changes of the basis vec-
tors as we go from one location to another. In Sec. 11.5 we shall learn how to deal with
this by using objects called connection coefficients. Until then, we shall confine ourselves to
Cartesian bases, so subscript semicolons and subscript commas (partial derivatives) can be
used interchangeably.

Because the gradient and the directional derivative are defined by the same standard
limiting process as one uses when defining elementary derivatives, they obey the standard
(Leibniz) rule for differentiating products:

∇A(S ⊗ T) = (∇AS)⊗ T + S ⊗∇AT ,

i.e. (SabTcde);jAj = (Sab;jAj)Tcde + Sab(Tcde;jAj) ; (1.16a)

and

∇A(fT) = (∇Af)T + f∇AT , i.e. (fTabc);jAj = (f;jAj)Tabc + fTabc;jAj . (1.16b)

In an orthonormal basis these relations should be obvious: They follow from the Leibniz rule
for partial derivatives.

Because the components gab of the metric tensor are constant in any Cartesian coordinate
system, Eq. (1.15c) (which is valid in such coordinates) guarantees that gab;j = 0; i.e., the
metric has vanishing gradient:

∇g = 0 , i.e., gab;j = 0 . (1.17)

From the gradient of any vector or tensor we can construct several other important
derivatives by contracting on slots: (i) Since the gradient ∇A of a vector field A has two
slots, ∇A( , ), we can contract its slots on each other to obtain a scalar field. That scalar
field is the divergence of A and is denoted

∇ ·A ≡ (contraction of ∇A) = Aa;a . (1.18)

(ii) Similarly, if T is a tensor field of rank three, then Tabc;c is its divergence on its third slot,
and Tabc;b is its divergence on its second slot. (iii) By taking the double gradient and then
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contracting on the two gradient slots we obtain, from any tensor field T, a new tensor field
with the same rank,

∇2T ≡ (∇ ·∇)T , or, in index notation, Tabc;jj . (1.19)

Here and henceforth, all indices following a semicolon (or comma) represent gradients (or
partial derivatives): Tabc;jj ≡ Tabc;j;j, Tabc,jk ≡ ∂2Tabc/∂xj∂xk. The operator ∇2 is called the
Laplacian.

The metric tensor is a fundamental property of the space in which it lives; it embodies
the inner product and thence the space’s notion of distance. In addition to the metric, there
is one (and only one) other fundamental tensor that describes a piece of Euclidean space’s
geometry: the Levi-Civita tensor ǫ, which embodies the space’s notion of volume:

In a Euclidean space with dimension n, the Levi-Civita tensor ǫ is a completely antisym-
metric tensor with rank n (with n slots). A parallelopiped whose edges are the n vectors A,
B, ... , F, is said to have the volume

Volume = ǫ(A,B, ...,F) . (1.20)

(We will justify this definition in Sec. 1.8.) Notice that this volume can be positive or
negative, and if we exchange the order of the parallelopiped’s legs, the volume’s sign changes:
ǫ(B,A, ...,F) = −ǫ(A,B, ...,F) by antisymmetry of ǫ.

It is easy to see (Ex. 1.7) that (i) the volume vanishes only if the legs are all linearly
independent, (ii) once the volume has been specified for one parallelopiped (one set of linearly
independent legs), it is thereby determined for all parallelopipeds, and therefore (iii) we
require only one number plus antisymmetry to determine ǫ fully. If the chosen parallelopiped
has legs that are orthonormal (all are orthogonal to each other and all have unit length —
properties determined by the metric g), then it must have unit volume, or more precisely
volume ±1. This is a compatibility relation between g and ǫ. This means that ǫ is fully
determined by its antisymmetry, compatibility with the metric, and a single sign: the choice
of which parallelopipeds have positive volume and which negative (Ex. 1.7). It is conventional
in Euclidean 3-space to give right-handed parallelopipeds positive volume and left-handed
ones negative volume; i.e., ǫ(A,B,C) is positive if, when we place our right thumb along C

and the fingers of our right hand along A, then bend our fingers, they sweep toward B and
not −B.

These considerations dictate that in a right-handed orthonormal basis of Euclidean 3-
space, the only nonzero components of ǫ are

ǫ123 = +1 ,

ǫabc = +1 if a, b, c is an even permutation of 1, 2, 3

= −1 if a, b, c is an odd permutation of 1, 2, 3

= 0 if a, b, c are not all different ; (1.21)

and in a left-handed orthonormal basis the signs of these components are reversed.
The Levi-Civita tensor is used to define the cross product and the curl:

A×B ≡ ǫ( ,A,B) i.e., in slot-naming index notation, ǫijkAjBk ; (1.22a)
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∇×A ≡ (the vector field whose slot-naming index form is ǫijkAk;j) . (1.22b)

[Equation (1.22b) is an example of an expression that is complicated if stated in index-free
notation; it says that ∇ ×A is the double contraction of the rank-5 tensor ǫ ⊗∇A on its
second and fifth slots, and on its third and fourth slots.]

Although Eqs. (1.22a) and (1.22b) look like complicated ways to deal with concepts that
most readers regard as familiar and elementary, they have great power. The power comes
from the following property of the Levi-Civita tensor in Euclidean 3-space [readily derivable
from its components (1.21)]:

ǫijmǫklm = δijkl ≡ δikδ
j
l − δilδ

j
k . (1.23)

Here δik is the Kronecker delta. Examine the 4-index delta function δijkl carefully; it says that
either the indices above and below each other must be the same (i = k and j = l) with
a + sign, or the diagonally related indices must be the same (i = l and j = k) with a −
sign. [We have put the indices ij of δijkl up solely to facilitate remembering this rule. Recall
(first paragraph of Sec. 1.5) that in Euclidean space and Cartesian coordinates, it does not
matter whether indices are up or down.] With the aid of Eq. (1.23) and the index-notation
expressions for the cross product and curl, one can quickly and easily derive a wide variety
of useful vector identities; see the very important Exercise 1.8.

****************************

EXERCISES

Exercise 1.7 Derivation: Properties of the Levi-Civita Tensor

From its complete antisymmetry, derive the properties of the Levi-Civita tensor, in n-
dimensional Euclidean space, that are claimed in the text: (i) The volume (1.20) of a
parallelopiped vanishes only if its legs are all linearly independent. (ii) Once the volume
has been specified for one parallelopiped (one set of linearly independent legs), it is thereby
determined for all parallelopipeds. (iii) Therefore, we require only one number plus antisym-
metry to determine ǫ fully. (iv) Compatibility with the metric (the fact that orthonormal
parallelopipeds have volume ±1) means that ǫ is fully determined by its antisymmetry and
a single sign: the choice of which parallelopipeds have positive volume and which negative.

Exercise 1.8 **Example and Practice: Vectorial Identities for the Cross Product and Curl

Here is an example of how to use index notation to derive a vector identity for the double cross
product A×(B×C): In index notation this quantity is ǫijkAj(ǫklmBlCm). By permuting the
indices on the second ǫ and then invoking Eq. (1.23), we can write this as ǫijkǫlmkAjBlCm =
δlmij AjBlCm. By then invoking the meaning (1.23) of the 4-index delta function, we bring
this into the form AjBiCj − AjBjCi, which is the slot-naming index-notation form of (A ·
C)B− (A ·B)C. Thus, it must be that A× (B×C) = (A ·C)B− (A ·B)C.

Use similar techniques to evaluate the following quantities:

(a) ∇× (∇×A)
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(b) (A×B) · (C×D)

(c) (A×B)× (C×D)

Exercise 1.9 **Example and Practice: Levi-Civita Tensor in Two Dimensional Euclidean
Space

In Euclidean 2-space, let {e1, e2} be an orthonormal basis with positive volume.

(a) Show that the components of ǫ in this basis are

ǫ12 = +1 , ǫ21 = −1 , ǫ11 = ǫ22 = 0 . (1.24a)

(b) Show that
ǫikǫjk = δij . (1.24b)

****************************

1.8 Volumes, Integration and Integral Conservation Laws

In Cartesian coordinates of 2-dimensional Euclidean space, the basis vectors are orthonormal,
so (with a conventional choice of sign) the components of the Levi-Civita tensor are given
by Eqs. (1.24a). Correspondingly, the area (i.e. 2-dimensional volume) of a parallelogram
whose sides are A and B is

2-Volume = ǫ(A,B) = ǫabAaBb = A1B2 −A2B1 = det

[
A1 B1

A2 B2

]

, (1.25)

a relation that should be familiar from elementary geometry. Equally familiar should be the
following expression for the 3-dimensional volume of a parallelopiped with legs A, B, and C

[which follows from the components (??) of the Levi-Civita tensor]:

3-Volume = ǫ(A,B,C) = ǫijkAiBjCk = A · (B×C) = det





A1 B1 C1

A2 B2 C2

A3 B3 C3



 . (1.26)

Our formal definition (1.20) of volume is justified by the fact that it gives rise to these
familiar equations.

Equations (1.25) and (1.26) are foundations from which one can derive the usual formulae
dA = dx dy and dV = dx dy dz for the area and volume of elementary surface and volume
elements with Cartesian side lengths dx, dy and dz (Ex. 1.10).

In Euclidean 3-space, we define the vectorial surface area of a 2-dimensional parallelogram
with legs A and B to be

Σ = A×B = ǫ( ,A,B) . (1.27)
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This vectorial surface area has a magnitude equal to the area of the parallelogram and a
direction perpendicular to it. Notice that this surface area ǫ( ,A,B) can be thought of
as an object that is waiting for us to insert a third leg, C, so as to compute a 3-volume
ǫ(C,A,B)—the volume of the parallelopiped with legs C, A, and B.

A parallelogram’s surface has two faces (two sides), called the positive face and the
negative face. If the vector C sticks out of the positive face, then Σ(C) = ǫ(C,A,B) is
positive; if C sticks out of the negative face, then Σ(C) is negative.

Such vectorial surface areas are the foundation for surface integrals in 3-dimensional
space, and for the familiar Gauss theorem

∫

V3

(∇ ·A)dV =

∫

∂V3

A · dΣ (1.28a)

(where V3 is a compact 3-dimensional region and ∂V3 is its closed two-dimensional boundary)
and Stokes theorem

∫

V2

∇×A · dΣ =

∫

∂V2

A · dl (1.28b)

(where V2 is a compact 2-dimensional region, ∂V2 is the 1-dimensional closed curve that
bounds it, and the last integral is a line integral around that curve).

This mathematics is illustrated by the integral and differential conservation laws for
electric charge and for particles: The total charge and the total number of particles inside a
three dimensional region of space V3 are

∫

V3

ρedV and
∫

V3

ndV , where ρe is the charge density
and n the number density of particles. The rates that charge and particles flow out of V3 are
the integrals of the current density j and the particle flux vector S over its boundary ∂V3.
Therefore, the integral laws of charge conservation and particle conservation say

d

dt

∫

V3

ρedV +

∫

∂V3

j · dΣ = 0 ,
d

dt

∫

V3

ndV +

∫

∂V3

S · dΣ = 0 . (1.29)

Pull the time derivative inside each volume integral (where it becomes a partial deriva-
tive), and apply Gauss’s law to each surface integral; the results are

∫

V3

(∂ρe/∂t+∇·j)dV = 0
and similarly for particles. The only way these equations can be true for all choices of V3 is
by the integrands vanishing:

∂ρe/∂t +∇ · j = 0 , ∂n/∂t +∇ · S = 0 . (1.30)

These are the differential conservation laws for charge and for particles. They have a stan-
dard, universal form: the time derivative of the density of a quantity plus the divergence of
its flux vanishes.

Note that the integral conservation laws (1.29) and the differential conservation laws
(1.30) required no coordinate system or basis for their description; and no coordinates or
basis were used in deriving the differential laws from the integral laws. This is an example of
the fundamental principle that the Newtonian physical laws are all expressible as geometric
relationships between geometric objects.



21

****************************

EXERCISES

Exercise 1.10 Derivation and Practice: Volume Elements in Cartesian Coordinates

Use Eqs. (1.25) and (1.26) to derive the usual formulae dA = dxdy and dV = dxdydz for the
2-dimensional and 3-dimensional integration elements in right-handed Cartesian coordinates.
Hint: Use as the edges of the integration volumes dx ex, dy ey, and dz ez.

Exercise 1.11 Example and Practice: Integral of a Vector Field Over a Sphere

Integrate the vector field A = zez over a sphere with radius a with center at the origin
of the Cartesian coordinate system, i.e. compute

∫
A · dΣ. Hints:

(a) Introduce spherical polar coordinates on the sphere, and construct the vectorial in-
tegration element dΣ from the two legs adθ eθ̂ and a sin θdφ eφ̂. Here eθ̂ and eφ̂ are
unit-length vectors along the θ and φ directions. Explain the factors adθ and a sin θdφ
in the definitions of the legs. Show that

dΣ = ǫ( , eθ̂, eφ̂)a
2 sin θdθdφ . (1.31)

(b) Using z = a cos θ and ez = cos θer̂ − sin θeφ̂ on the sphere (where er̂ is the unit vector

pointing in the radial direction), show that A · dΣ = a cos2 θ ǫ(er̂, eθ̂, eφ̂) a
2 sin θdθdφ.

(c) Explain why ǫ(er̂, eθ̂, eφ̂) = 1.

(d) Perform the integral
∫
A · dΣ over the sphere’s surface to obtain your final answer

(4π/3)a3. This, of course, is the volume of the sphere. Explain pictorially why this
had to be the answer.

Exercise 1.12 Example: Faraday’s Law of Induction

One of Maxwell’s equations says that ∇×E = −∂B/∂t, where E and B are the electric
and magnetic fields. This is a geometric relationship between geometric objects; it requires
no coordinates or basis for its statement. By integrating this equation over a two-dimensional
surface V2 with boundary curve ∂V2 and applying Stokes’ theorem, derive Faraday’s law of
induction — again, a geometric relationship between geometric objects.

****************************
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1.9 The Stress Tensor and Momentum Conservation

Press your hands together in the y–z plane and feel the force that one hand exerts on the
other across a tiny area A — say, one square millimeter of your hands’ palms (Fig. 1.5).
That force, of course, is a vector F. It has a normal component (along the x direction). It
also has a tangential component: if you try to slide your hands past each other, you feel a
component of force along their surface, a “shear” force in the y and z directions. Not only is
the force F vectorial; so is the 2-surface across which it acts, Σ = A ex. (Here ex is the unit
vector orthogonal to the tiny area A, and we have chosen the negative side of the surface to
be the −x side and the positive side to be +x. With this choice, the force F is that which
the negative hand, on the −x side, exerts on the positive hand.)

z

x y

Fig. 1.5: Hands, pressed together, exert a stress on each other.

Now, it should be obvious that the force F is a linear function of our chosen surface Σ.
Therefore, there must be a tensor, the stress tensor, that reports the force to us when we
insert the surface into its second slot:

F( ) = T( ,Σ) , i.e., Fi = TijΣj . (1.32)

Newton’s law of action and reaction tells us that the force that the positive hand exerts
on the negative hand must be equal and opposite to that which the negative hand exerts on
the positive. This shows up trivially in Eq. (1.32): By changing the sign of Σ, one reverses
which hand is regarded as negative and which positive; and since T is linear in Σ, one also
reverses the sign of the force.

The definition (1.32) of the stress tensor gives rise to the following physical meaning of
its components:

Tjk =

(
j-component of force per unit area
across a surface perpendicular to ek

)

=





j-component of momentum that crosses a unit
area which is perpendicular to ek, per unit time,

with the crossing being from −xk to +xk



 . (1.33)

The stresses inside a table with a heavy weight on it are described by the stress tensor T,
as are the stresses in a flowing fluid or plasma, in the electromagnetic field, and in any other
physical medium. Accordingly, we shall use the stress tensor as an important mathematical
tool in our study of force balance in kinetic theory (Chap. 3), elasticity theory (Part IV),
fluid mechanics (Part V), and plasma physics (Part VI).
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Fig. 1.6: The shear forces exerted on the left, right, front and back faces of a vanishingly small
cube. The resulting torque about the z direction will set the cube into rotation with an arbitrarily
large angular acceleration unless the stress tensor is symmetric.

It is not obvious from its definition, but the stress tensor T is always symmetric in its two
slots. To see this, consider a small cube with side L in any medium (or field) (Fig. 1.6). The
medium outside the cube exerts forces, and thence also torques, on the cube’s faces. The
z-component of the torque is produced by the shear forces on the front and back faces and
on the left and right. As shown in the figure, the shear forces on the front and back faces
have magnitudes TxyL

2 and point in opposite directions, so they exert identical torques on
the cube, Nz = TxyL

2(L/2) (where L/2 is the distance of each face from the cube’s center).
Similarly, the shear forces on the left and right faces have magnitudes TyxL

2 and point in
opposite directions, thereby exerting identical torques on the cube, Nz = −TyxL2(L/2).
Adding the torques from all four faces and equating them to the rate of change of angular
momentum, 1

12
ρL5dΩz/dt (where ρ is the mass density, 1

12
ρL5 is the cube’s moment of inertia,

and Ωz is the z component of its angular velocity), we obtain (Tyx − Txy)L
3 = 1

12
ρL5dΩz/dt.

Now, let the cube’s edge length become arbitrarily small, L → 0. If Tyx − Txy does not
vanish, then the cube will be set into rotation with an infinitely large angular acceleration,
dΩz/dt ∝ 1/L2 → ∞ — an obviously unphysical behavior. Therefore Tyx = Txy, and
similarly for all other components; the stress tensor is always symmetric under interchange
of its two slots.

Two examples will make the stress tensor more concrete:

Electromagnetic field: See Ex. 1.14 below.

Perfect fluid: A perfect fluid is a medium that can exert an isotropic pressure P but no
shear stresses, so the only nonzero components of its stress tensor in a Cartesian basis are
Txx = Tyy = Tzz = P . (Examples of nearly perfect fluids are air and water, but not molasses.)
We can summarize this by Tij = Pδij or equivalently, since δij are the components of the
Euclidean metric, Tij = Pgij. The frame-independent version of this is

T = Pg or, in slot-naming index notation, Tij = Pgij . (1.34)

Note that, as always, the formula in slot-naming index notation looks identically the same
as the formula Tij = Pgij for the components in our chosen Cartesian coordinate system.

To check Eq. (1.34), consider a 2-surface Σ = An with area A oriented perpendicular to
some arbitrary unit vector n. The vectorial force that the fluid exerts across Σ is, in index
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notation, Fj = TjkΣk = PgjkAnk = PAnj; i.e. it is a normal force with magnitude equal to
the fluid pressure P times the surface area A. This is what it should be.

The stress tensor plays a central role in the Newtonian law of momentum conservation
because (by definition) the force acting across a surface is the same as the rate of flow of
momentum, per unit area, across the surface; i.e., the stress tensor is the flux of momentum.

Consider the three-dimensional region of space V3 used above in formulating the integral
laws of charge and particle conservation (1.29). The total momentum in V3 is

∫

V3

GdV , where
G is the momentum density. This changes as a result of momentum flowing into and out of
V3. The net rate at which momentum flows outward is the integral of the stress tensor over
the surface ∂V3 of V3. Therefore, by analogy with charge and particle conservation (1.29),
the integral law of momentum conservation says

d

dt

∫

V3

GdV +

∫

∂V3

T · dΣ = 0 . (1.35)

By pulling the time derivative inside the volume integral (where it becomes a partial
derivative) and applying the vectorial version of Gauss’s law to the surface integral, we
obtain

∫

V3

(∂G/∂t+∇ · T)dV = 0. This can be true for all choices of V3 only if the integrand
vanishes:

∂G

∂t
+∇ · T = 0 , i.e.

∂Gj

∂t
+ Tjk;k = 0 . (1.36)

This is the differential law of momentum conservation. It has the standard form for any local
conservation law: the time derivative of the density of some quantity (here momentum), plus
the divergence of the flux of that quantity (here the momentum flux is the stress tensor), is
zero. We shall make extensive use of this Newtonian law of momentum conservation in Part
IV (elasticity theory), Part V (fluid mechanics) and Part VI (plasma physics).

****************************

EXERCISES

Exercise 1.13 **Example: Equations of Motion for a Perfect Fluid

(a) Consider a perfect fluid with density ρ, pressure P , and velocity v that vary in time
and space. Explain why the fluid’s momentum density is G = ρv, and explain why its
momentum flux (stress tensor) is

T = Pg + ρv ⊗ v , or, in slot-naming index notation, Tij = Pgij + ρvivj .

(1.37a)

(b) Explain why the law of mass conservation for this fluid is

∂ρ

∂t
+∇ · (ρv) = 0. (1.37b)
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(c) Explain why the derivative operator

d

dt
≡ ∂

∂t
+ v ·∇ (1.37c)

describes the rate of change as measured by somebody who moves locally with the
fluid, i.e. with velocity v. This is sometimes called the fluid’s advective time derivative
or convective time derivative.

(d) Show that the fluid’s law of mass conservation (1.37b) can be rewritten as

1

ρ

dρ

dt
= −∇ · v , (1.37d)

which says that the divergence of the fluid’s velocity field is minus the fractional rate
of change of its density, as measured in the fluid’s local rest frame.

(e) Show that the differential law of momentum conservation (1.36) for the fluid can be
written as

ρ
dv

dt
= −∇P (1.37e)

This is called the fluid’s Euler equation. Explain why this Euler equation is Newton’s
second law of motion, “F=ma”, written on a per unit volume basis.

In Part V of this book, we shall use Eqs. (1.37) to study the dynamical behaviors of fluids.
For many applications, the Euler equation will need to be augmented by the force per unit
volume exerted by the fluid’s internal viscosity.

Exercise 1.14 **Problem: Electromagnetic Stress Tensor

(a) An electric field E exerts (in SI units) a pressure ǫoE
2/2 orthogonal to itself and a

tension of this same magnitude along itself. Similarly, a magnetic field B exerts a
pressure B2/2µo = ǫoc

2B2/2 orthogonal to itself and a tension of this same magnitude
along itself. Verify that the following stress tensor embodies these stresses:

T =
ǫo
2

[
(E2 + c2B2)g − 2(E⊗E+ c2B⊗B)

]
. (1.38)

(b) Consider an electromagnetic field interacting with a material that has a charge density
ρe and a current density j. Compute the divergence of the electromagnetic stress tensor
(1.38) and evaluate the derivatives using Maxwell’s equations. Show that the result is
the negative of the force density that the electromagnetic field exerts on the material.
Use momentum conservation to explain why this had to be so.

****************************
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1.10 Geometrized Units and Relativistic Particles for New-

tonian Readers

Readers who are skipping the relativistic parts of this book will need to know two important
pieces of relativity: (i) geometrized units, and (ii) the relativistic energy and momentum of
a moving particle.

Geometrized Units: The speed of light is independent of one’s reference frame (i.e.
independent of how fast one moves. This is a fundamental tenet of special relativity, and
in the era before 1983, when the meter and the second were defined independently, it was
tested and confirmed experimentally with very high precision. By 1983, this constancy had
been become so universally accepted that it was used to redefine the meter (which is hard
to measure precisely) in terms of the second (which is much easier to measure with modern
technology8): The meter is now related to the second in such a way that the speed of light
is precisely c = 299, 792, 458 m s−1 ; i.e., one meter is the distance traveled by light in
(1/299, 792, 458) seconds. Because of this constancy of the light speed, it is permissible
when studying special relativity to set c to unity. Doing so is equivalent to the relationship

c = 2.99792458× 108ms−1 = 1 (1.39a)

between seconds and centimeters; i.e., equivalent to

1 second = 2.99792458× 108 m . (1.39b)

We shall refer to units in which c = 1 as geometrized units, and we shall adopt them
throughout this book, when dealing with relativistic physics, since they make equations look
much simpler. Occasionally it will be useful to restore the factors of c to an equation, thereby
converting it to ordinary (SI or Gaussian-cgs) units. This restoration is achieved easily using
dimensional considerations. For example, the equivalence of mass m and relativistic energy
E is written in geometrized units as E = m. In SI units E has dimensions of joule = kg
m2 sec−2, while m has dimensions of kg, so to make E = m dimensionally correct we must
multiply the right side by a power of c that has dimensions m2/sec2, i.e. by c2; thereby we
obtain E = mc2.

Energy and momentum of a moving particle. A particle with rest mass m, moving
with velocity v = dx/dt and speed v = |v|, has a relativistic energy E (including its rest-
mass), relativistic kinetic energy E (excluding its rest mass) and relativistic momentum p

given by

E =
m√
1− v2

≡ m
√

1− v2/c2
≡ E +m , p = Ev =

mv√
1− v2

; so E =
√

m2 + p2 .

(1.40)

8The second is defined as the duration of 9,192,631,770 periods of the radiation produced by a certain
hyperfine transition in the ground state of a 133Cs atom that is at rest in empty space. Today (2013) all
fundamental physical units except mass units (e.g. the kilogram) are defined similarly in terms of fundamental
constants of nature.
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In the low-velocity, Newtonian limit, the energy E with rest mass removed (kinetic energy)
and the momentum p take their familiar, Newtonian forms:

When v ≪ c ≡ 1, E → 1

2
mv2 and p → mv . (1.41)

A particle with zero rest mass (a photon or a graviton9) always moves with the speed of
light v = c = 1, and like other particles it has momentum p = Ev, so the magnitude of its
momentum is equal to its energy: |p| = Ev = Ec = E .

When particles interact (e.g. in chemical reactions, nuclear reactions, and elementary-
particle collisions) the sum of the particle energies E is conserved, as is the sum of the particle
momenta p.

For further details and explanations, see Chap. 2.

****************************

EXERCISES

Exercise 1.15 Practice: Geometrized Units
Convert the following equations from the geometrized units in which they are written to SI
units:

(a) The “Planck time” tP expressed in terms of Newton’s gravitation constant G and
Planck’s constant ~, tP =

√
G~. What is the numerical value of tP in seconds? in

meters?

(b) The energy E = 2m obtained from the annihilation of an electron and a positron, each
with rest mass m.

(c) The Lorentz force law mdv/dt = e(E+ v ×B).

(d) The expression p = ~ωn for the momentum p of a photon in terms of its angular
frequency ω and direction n of propagation.

How tall are you, in seconds? How old are you, in meters?

****************************

Bibliographic Note

Most of the concepts developed in this chapter are treated, though from rather different
viewpoints, in intermediate and advanced textooks on classical mechanics or electrodynamics,

9We do not know for sure that photons and gravitons are massless, but the laws of physics as currently
understood require them to be massless and there are tight experimental limits on their rest masses.
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Box 1.3

Important Concepts in Chapter 1

• Geometric Principle for laws of physics: last paragraph of Sec. 1.2

• Geometric objects: points, scalars, vectors, tensors, length: Secs. 1.2 and 1.3

• Operations on geometric objects: Inner product, Eq. (1.4a); tensor product (outer
product), Eqs. (1.5); contraction, Eqs. (1.6)

• Component representation of tensor algebra: Sec. 1.5

• Slot-naming index notation: Sec. 1.5.1

• Orthogonal transformations: Sec. 1.6

• Differentiation of tensors: Sec. 1.7

• Levi-Civita tensor: Sec. 1.7

– Relation to volume: Eqs. (1.20), (1.25), (1.26)

– Components: Eqs (1.21) in 3 dimensions and (1.24a) in 2 dimensions

– Vector cross product and curl defined using Levi-Civita tensor: Eqs. (1.22)

– Contraction of Levi-Civita tensor with itself: Eqs. (1.23) in 3 dimensions and
(1.24b) in 2 dimensions

• Integration of vectors; Gauss and Stokes theorems: Sec. 1.8

• Conservation laws — integral and differential:

– general form of a differential conservation law: Eq. (1.30) and sentences fol-
lowing it.

– charge and particle conservation: Eqs. (1.29), (1.30)

– momentum conservation: Eqs. (1.35) and (1.36)

• Stress tensor: Sec. 1.9

– for a perfect fluid: Eq. (1.37a)

– for electric and magnetic fields: Eq. (1.38)

• Geometrized units: Sec. 1.10

• Energy and momentum of a relativistic, moving particle: Eqs. (1.40), (1.41)
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e.g. Thornton and Marion (2004), Goldstein, Poole and Safko (2002), Griffiths (1999), and
Jackson (1999).

The geometric viewpoint on the laws of physics, which we present and advocate in this
chapter, is not common (but it should be because of its great power). For example, the vast
majority of mechanics and electrodynamics textbooks, including all those listed above, define
a tensor as a matrix-like entity whose components transform under rotations in the manner
described by Eq. (1.13b). This is a complicated definition that hides the great simplicity of
a tensor as nothing more than a linear function of vectors, and hides the possibility to think
about tensors geometrically, without the aid of any coordinate system or basis.

The geometric viewpoint comes to the physics community from mathematicians, largely
by way of relativity theory; by now, most relativity textbooks espouse it. See the Bibliog-
raphy to Chap. 2. Fortunately, this viewpoint is gradually seeping into the nonrelativitic
physics curriculum. We hope that this chapter will accelerate that seepage.

Bibliography

Goldstein, Herbert, Poole, Charles and Safko, John 2002. Classical Mechanics, New
York: Addison Wesley, third edition.

Griffiths, David J. 1999. Introduction to Electrodynamics, Upper Saddle River NJ:
Prentice-Hall, third edition.

Jackson, John David 1999. Classical Electrodynamics, New York: Wiley, third edition.

Thornton, Stephen T. and Marion, Jerry B. 2004. Classical Dynamics of Particles and
Systems, Belmont, CA, Brooks/Cole—Thomson Learning, fifth edition.


