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Chapter 5

Statistical Thermodynamics

Version 1205.1.K, 4 October 2012
Please send comments, suggestions, and errata via email to kip@caltech.edu, or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 5.1

Reader’s Guide

• Relativity enters into portions of this chapter solely via the relativistic energies and
momenta of high-speed particles (Sec. 1.10.)

• This chapter relies in crucial ways on Secs. 3.2 and 3.3 of Chap. 3 and on Secs. 4.2–
4.8 of Chap. 4.

• Portions of Chap. 6 rely on Sec. 5.6 of this chapter. Portions of Part V (Fluid
Mechanics) rely on thermodynamic concepts and equations of state treated in this
chapter, but most readers will already have met these in a course on elementary
thermodynamics.

• Other chapters do not depend strongly on this one.

5.1 Overview

In Chap. 4, we introduced the concept of statistical equilibrium and studied, briefly, some
of the properties of equilibrated systems. In this chapter, we shall develop the theory of
statistical equilibrium in a more thorough way.

The title of this chapter, “Statistical Thermodynamics,” emphasizes two aspects of the
theory of statistical equilibrium. The term thermodynamics is an ancient one that predates
statistical mechanics. It refers to a study of the macroscopic properties of systems that
are in or near equilibrium, such as their energy and entropy. Despite paying no attention
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to the microphysics, classical thermodynamics is a very powerful theory for deriving gen-
eral relationships between macroscopic properties. Microphysics influences the macroscopic
world in a statistical manner, so in the late nineteenth century, Willard Gibbs and others
developed statistical mechanics and showed that it provides a powerful conceptual under-
pinning for classical thermodynamics. The resulting synthesis, statistical thermodynamics,
adds greater power to thermodynamics by augmenting to it the statistical tools of ensembles
and distribution functions.

In our study of statistical thermodynamics, we shall restrict attention to an ensemble of
large systems that are in statistical equilibrium. By “large” is meant a system that can be
broken into a large number Nss of subsystems that are all macroscopically identical to the
full system except for having 1/Nss as many particles, 1/Nss as much volume, 1/Nss as much
energy, 1/Nss as much entropy, . . . . (Note that this constrains the energy of interaction
between the subsystems to be negligible.) Examples are one kilogram of plasma in the center
of the sun and a one kilogram sapphire crystal.

The equilibrium thermodynamic properties of any type of large system (e.g. an ideal
gas1) can be derived using any one of the statistical equilibrium ensembles of the last chapter
(microcanonical, canonical, grand canonical, Gibbs). For example, each of these ensembles
will predict the same equation of state P = (N/V )kBT for an ideal gas, even though in one
ensemble each system’s number of particles N is precisely fixed, while in another ensemble
N can fluctuate so that strictly speaking one should write the equation of state as P =
(N̄/V )kBT with N̄ the ensemble average of N . (Here and throughout this chapter, for
compactness we use bars rather than brackets to denote ensemble averages, i.e. N̄ rather
than 〈N〉.) The equations of state are the same to very high accuracy because the fractional

fluctuations of N are so extremely small, ∆N/N ∼ 1/
√
N̄ ; cf. Ex. 5.11.

Although the thermodynamic properties are independent of the equilibrium ensemble,
specific properties are often derived most quickly, and the most insight usually accrues,
from that ensemble which most closely matches the physical situation being studied. In
Secs. 5.2–5.5, we shall use the microcanonical, grand canonical, canonical and Gibbs ensem-
bles to derive many useful results from statistical thermodynamics: fundamental potentials
expressed as statistical sums over quantum states, variants of the first law of thermody-
namics, equations of state, Maxwell relations, Euler’s equation, ... . Table 5.1 summarizes
the most important of those statistical-equilibrium results and some generalizations of them.
Readers are advised to delay studying this table until they have read further into the chapter.

As we saw in Chap. 4, when systems are out of statistical equilibrium, their evolution
toward equilibrium is driven by the law of entropy increase—the second law of thermo-
dynamics. In Sec. 5.5 we formulate the fundamental potential (Gibbs potential) for an
out-of-equilibrium ensemble that interacts with a heat and volume bath, we discover a sim-
ple relationship between that fundamental potential and the entropy of system plus bath;
and from that relationship, we learn that the second law, in this case, is equivalent to a law
of decrease of the Gibbs potential. As applications, we learn how chemical potentials drive
chemical reactions and phase transitions. In Sec. 5.6 we discover how the Gibbs potential
can be used to study spontaneous fluctuations of a system away from equilibrium, when it is

1An ideal gas is one with neglible interactions between its particles.
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Representation Distribution

& Ensemble First Law Bath Function ρ
Energy & Microcanonical dE = TdS + µ̃dN − PdV none const = e−S/kB

(Secs. 4.5 and 5.2) E const in δE
Enthalpy dH = TdS + µ̃dN + V dP V & E const = e−S/kB

(Exs. 5.5 and 5.13) dE = −PdV H const
Physical-Free-Energy & Can- dF = −SdT + µ̃dN − PdV E e(F−E)/kBT

onical (Secs. 4.4.1 and 5.4)
Gibbs dG = −SdT + µ̃dN + V dP E & V e(G−E−PV )/kBT

(Secs. 4.4.2 and 5.5)
Grand Canonical dΩ = −SdT −Ndµ̃− PdV E & N e(Ω−E+µ̃N)/kBT

(Secs. 4.4.2 and 5.3)

Table 5.1: Representations and ensembles for systems in statistical equilibrium, in relativistic
notation. The nonrelativistic formulae are the same but with the rest masses of particles removed
from the chemical potentials, (µ̃ → µ) and from all fundamental potentials except Ω (E → E but
no change of notation for H, F , G). This table will be very hard to understand until after reading
the sections referenced in column one.

coupled to a heat and particle bath. In Sec. 5.7, we employ these tools to explore fluctuations
and the gas-to-liquid phase transition for a model of a real gas due to van der Waals. Out-of-
equilibrium aspects of statistical mechanics (evolution toward equilibrium and fluctuations
away from equilibrium) are summarized in Table 5.2 and discussed in Secs. 5.5.1 and 5.6,
not just for heat and volume baths, but for a variety of baths.

Deriving the macroscopic properties of real materials by statistical sums over thgeir
quantum states can be formidably difficult. Fortunately, in recent years a number of pow-
erful approximation techniques have been devised for performing the statistical sums. In
Secs. 5.8.3 and 5.8.4, we give the reader the flavor of two of these techniques: the renor-
malization group and Monte Carlo methods. We illustrate and compare these techniques by
using them to study a phase transition in a simple model for ferromagnetism called the Ising
model.

5.2 Microcanonical Ensemble and the Energy Represen-

tation of Thermodynamics

5.2.1 Extensive and Intensive Variables; Fundamental Potential

Consider a microcanonical ensemble of large, closed systems that have attained statistical
equilibrium. We can describe the ensemble macroscopically using a set of thermodynamic
variables. These variables can be divided into two classes: extensive variables (Sec. 4.4.1)
which double if one doubles the system’s size (volume, mass, . . .), and intensive variables
(Sec. 4.4.2) whose magnitudes are independent of the system’s size. Familiar examples of
extensive variables are a system’s total energy E , entropy S, volume V , and number of



4

conserved particles of various species NI . Corresponding examples of intensive variables are
temperature T , pressure P , and the chemical potentials µ̃I for various species of particles.

For a large, closed system, there is a complete set of extensive variables that we can
specify independently — usually its volume V , total energy E or entropy S, and number NI

of particles of each species I. The values of the other extensive variables and all the intensive
variables are determined in terms of this complete set by methods that we shall derive.

The particle species I in the complete set must only include those whose particles are
conserved on the timescales of interest. For example, if photons can be emitted and absorbed,
then one must not specify Nγ, the number of photons; rather, Nγ will come to an equilibrium
value that is governed by the values of the other extensive variables. Also, one must omit
from the set {I} any conserved particle species whose numbers are automatically determined
by the numbers of other, included species. For example, gas inside the sun is always charge
neutral to very high precision, and therefore the number of electrons Ne in a sample of gas
is always determined by the number of protons Np and the number of Helium nuclei (alpha
particles) Nα: Ne = Np + 2Nα. Therefore, if one includes Np and Nα in one’s complete set
of extensive variables, one must omit Ne.

As in Chap. 4, we shall formulate the theory relativistically correctly, but shall formulate
it solely in the mean rest frames of the systems and baths being studied. Correspondingly, in
our formulation we shall generally include the particle rest masses mI in the total energy E
and in the chemical potentials µ̃I . For very nonrelativistic systems, however, we shall usually
replace E by the nonrelativistic energy E ≡ E −∑I NImIc

2, and µ̃I by the nonrelativistic
chemical potential µI ≡ µ̃I−mIc

2 (though, as we shall see in Sec. 5.5 when studying chemical
reactions, the identification of the appropriate rest mass mI to subtract is a delicate issue.)

For simplicity, we now shall specialize, temporarily, to a microcanonical ensemble of
one-species systems, which all have identically the same values of a complete set of three
extensive variables: the energy E ,2 number of particles N , and volume V . Suppose that
the microscopic nature of the ensemble’s systems is known. Then, at least in principle and
often in practice, one can identify from that microscopic nature the quantum states that are
available to the system (given its constrained values of E , N , and V ), one can count those
quantum states, and from their total number Nstates one can compute the ensemble’s total
entropy S = kB lnNstates [Eq. (4.34)]. The resulting entropy can be regarded as a function
of the complete set of extensive variables,

S = S(E , N, V ) , (5.1)

and this equation can then be inverted to give the total energy in terms of the entropy and
the other extensive variables

E = E(S,N, V ) . (5.2)

We call the energy E , viewed as a function of S, N , and V , the fundamental thermodynamic
potential for the microcanonical ensemble. When using this fundamental potential, we regard
S, N and V as our complete set of extensive variables rather than E , N and V . From the

2In practice, as was illustrated in Ex. 4.7, one must allow E to fall in some tiny but finite range δE rather
than constraining it precisely, and one must then check to be sure that the results of one’s analysis are
independent of δE .
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fundamental potential, as we shall see, one can deduce all other thermodynamic properties
of the system.

5.2.2 Intensive Variables Identified Using Measuring Devices; First

Law of Thermodynamics

In Sec. 4.4.1, we used kinetic theory considerations to identify the thermodynamic tempera-
ture T of the canonical ensemble [Eq. (4.19)]. It is instructive to discuss how this temperature
arises in the microcanonical ensemble. Our discussion makes use of an idealized thermometer
consisting of an idealized atom that has only two quantum states, |0〉 and |1〉 with energies
E0 and E1 = E0+∆E . The atom, initially in its ground state, is brought into thermal contact
with one of the large systems of our microcanonical ensemble and then monitored over time
as it is stochastically excited and de-excited. The ergodic hypothesis (Sec. 4.5) guarantees
that the atom traces out a history of excitation and deexcitation that is governed statistically
by the canonical ensemble for a collection of such atoms exchanging energy (heat) with our
large system (the heat bath). More specifically, if T is the (unknown) temperature of our
system, then the fraction of the time the atom spends in its excited state, divided by the
fraction spent in its ground state, is equal to the canonical distribution’s probability ratio

ρ1
ρ0

=
e−E1/kBT

e−E0/kBT
= e−∆E/kBT (5.3a)

[cf. Eq. (4.14)].
This ratio can also be computed from the properties of the full system augmented by

the two-state atom. This augmented system is microcanonical with a total energy E + E0,
since the atom was in the ground state when first attached to the full system. Of all the
quantum states available to this augmented system, the ones in which the atom is in the
ground state constitute a total number N0 = eS(E,N,V )/kB ; and those with the atom in the
excited state constitute a total number N1 = eS(E−∆E,N,V )/kB . Here we have used the fact
that the number of states available to the augmented system is equal to that of the original,
huge system with energy E or E −∆E (since the atom, in each of the two cases, is forced to
be in a unique state); and we have expressed that number of states of the original system,
for each of the two cases, in terms of the original system’s entropy function, Eq. (5.1). The
ratio of the number of states N1/N0 is (by the ergodic hypothesis) the ratio of the time that
the augmented system spends with the atom excited, to the time spent with the atom in its
ground state; i.e., it is equal to ρ1/ρ0

ρ1
ρ0

=
N1

N0
=

eS(E−∆E,N,V )/kB

eS(E,N,V )/kB
= exp

[

−∆E
kB

(
∂S

∂E

)

N,V

]

. (5.3b)

By equating Eqs. (5.3a) and (5.3b), we obtain an expression for the original system’s temper-
ature T in terms of the partial derivative (∂E/∂S)N,V of its fundamental potential E(S,N, V )

T =
1

(∂S/∂E)N,V
=

(
∂E
∂S

)

N,V

, (5.3c)
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Box 5.2

Two Useful Relations between Partial Derivatives

Expand a differential increment in the energy E(S,N, V ) in terms of differentials of
its arguments S,N, V

dE(S,N, V ) =

(
∂E
∂S

)

N,V

dS +

(
∂E
∂N

)

V,S

dN +

(
∂E
∂V

)

S,N

dV .

Next expand the entropy S(E , N, V ) similarly and substitute the resulting expression for
dS into the above equation to obtain

dE =

(
∂E
∂S

)

N,V

(
∂S

∂E

)

N,V

dE +

[(
∂E
∂S

)

N,V

(
∂S

∂N

)

E,V

+

(
∂E
∂N

)

S,V

]

dN

+

[(
∂E
∂S

)

N,V

(
∂S

∂V

)

N,E

+

(
∂E
∂V

)

S,N

]

dV ,

Noting that this relation must be satisfied for all values of dE , dN , and dV , we conclude
that (

∂E
∂S

)

N,V

=
1

(∂S/∂E)N,V
, (1)

(
∂E
∂N

)

S,V

= −
(
∂E
∂S

)

N,V

(
∂S

∂N

)

E,V

, (2)

etc.; and similar for other pairs and triples of partial derivatives.

These equations, and their generalization to other variables, are useful in manipu-
lations of thermodynamic equations.

where we have used Eq. (1) of Box 5.2.
A similar thought experiment, using a highly idealized measuring device that can ex-

change one particle ∆N = 1 with the system but cannot exchange any energy with it, gives
for the fraction of the time spent with the extra particle in the measuring device (“state 1”)
and in the system (“state 0”):

ρ1
ρ0

= eµ̃∆N/kBT

=
eS(E,N−∆N,V )/kB

eS(E,N,V )/kB
= exp

[

−∆N

kB

(
∂S

∂N

)

E,V

]

. (5.4a)

Here the first expression is computed from the viewpoint of the measuring device’s equilib-
rium ensemble,3 and the second from the viewpoint of the combined system’s microcanonical

3an ensemble with ρ = constant e−µ̃N/kBT , since only particles can be exchanged with the device’s heat
bath (our system).
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ensemble. Equating these two expressions, we obtain

µ̃ = −T

(
∂S

∂N

)

E,V

=

(
∂E
∂N

)

S,V

. (5.4b)

In the last step we have used Eq. (5.3c) and Eq. (4) of Box 5.2. The reader should be able to
construct a similar thought experiment involving an idealized pressure transducer (Ex. 5.1),
which yields the following expression for the system’s pressure:

P = −
(
∂E
∂V

)

S,N

. (5.5)

Having identifed the three intensive variables T , µ̃, and P as partial derivatives [Eqs. (5.3c),
(5.4b), (5.5)], we now see that the fundamental potential’s differential relation

dE(S,N, V ) =

(
∂E
∂S

)

N,V

dS +

(
∂E
∂N

)

V,S

dN +

(
∂E
∂V

)

S,N

dV . (5.6)

is nothing more nor less than the ordinary first law of thermodynamics

dE = TdS + µ̃dN − PdV ; (5.7)

cf. Table 5.1 above.
Notice the “pairing” of intensive and extensive variables in this first law: Temperature

T is paired with entropy S; chemical potential µ̃ is paired with number of particles N ; and
pressure P is paired with volume V . We can think of each intensive variable as a “generalized
force” acting upon its corresponding extensive variable to change the energy of the system.
We can add additional pairs of intensive and extensive variables if appropriate, calling them
XA, YA (for example an externally imposed magnetic field B and a material’s magnetization
M; Sec. 5.8 ). We can also generalize to a multi-component system, i.e. one that has several
types of conserved particles with numbers NI and associated chemical potentials µ̃I . We
can also convert to nonrelativistic language by subtracting off the rest-mass contributions
(switching from E to E ≡ E −∑NImIc

2 and from µ̃I to µI = µ̃I −mIc
2). The result is the

nonrelativistic, extended first law

dE = TdS +
∑

I

µIdNI − PdV +
∑

A

XAdYA . (5.8)

****************************

EXERCISES

Exercise 5.1 Problem: Pressure-Measuring Device
For the microcanonical ensemble considered in this section, derive Eq. (5.5) for the pressure
using a thought experiment involving a pressure-measuring device.

****************************
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5.2.3 Euler’s Equation and Form of the Fundamental Potential

We can integrate the differential form of the first law to obtain a remarkable, though essen-
tially trivial relation known as Euler’s equation. We discuss this for the one-species system
whose first law is dE = TdS + µ̃dN − PdV . The generalization to other systems should be
obvious.

We decompose our system into a large number of subsystems in equilibrium with each
other. As they are in equilibrium, they will all have the same values of the intensive variables
T, µ̃, P ; and therefore, if we add up all their energies dE to obtain E , their entropies dS to
obtain S, etc., we obtain from the first law (5.7) 4

E = TS + µ̃N − PV . (5.9a)

Since the energy E is itself extensive, Euler’s equation (5.9a) must be expressible as

E = Nf(V/N, S/N) (5.9b)

for some function f . This is a useful functional form for the fundamental potential E(N, V, S).
For example, for a nonrelativistic, classical, perfect gas,5 the Sackur-Tetrode equation (4.41)
can be solved for E to get the following form of the fundamental potential:

E(V, S,N) = N

(
3h2

4πm

)(
V

N

)−2/3

exp

(
2

3kB

S

N
− 5

3

)

. (5.9c)

Here m is the mass of each of the gas’s particles and h is Planck’s constant.

5.2.4 Everything Deducible from First Law; Maxwell Relations

There is no need to memorize a lot of thermodynamic relations; most all relations can be
deduced almost trivially from the functional form of the first law of thermodynamics, the
main formula shown on the first line of Table 5.1.

For example, in the case of our simple one-species system, the first law dE = TdS +
µ̃dN − PdV tells us that the system energy E should be regarded as a function of the
things that appear as differentials on the right hand side: S, N and V ; i.e., the fundamental
potential must have the form E = E(S,N, V ). By thinking about building up our system
from smaller systems by adding entropy dS, particles dN and volume dV at fixed values

4There are a few (but very few!) systems for which some of the thermodynamic laws, including Euler’s
equation, take on forms different from those presented in this chapter. A black hole is an example (cf Sec.
4.10.2). A black hole cannot be divided up into subsystems, so the above derivation of Euler’s equation fails.
Instead of increasing linearly with the mass MH of the hole, the hole’s extensive variables SH = (entropy)
and JH = (spin angular momentum) increase quadratically with MH ; and instead of being independent of
the hole’s mass, the intensive variables TH = (temperature) and ΩH = (angular velocity) scale as 1/MH . See,
e.g., Tranah & Landsberg (1980) and see Sec. 4.10.2 for some other aspects of black-hole thermodynamics.

5Recall (Ex. 4.6) that a perfect gas is one that is ideal (i.e., has negligible interactions between its
particles) and whose particles have no excited internal degrees of freedom. The phrase “perfect gas” must
not be confused with “perfect fluid”: a fluid whose viscosity is negligible so its stress tensor, in its rest frame,
consists solely of an isotropic pressure.
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of the intensive variables, we immediately deduce, from the first law, the Euler equation
E = TS + µ̃N − PV . By writing out the differential relation (5.6), which is just elementary
calculus, and comparing with the first law, we immediately read off the intensive variables
in terms of partial derivatives of the fundamental potential:

T =

(
∂E
∂S

)

V,N

, µ =

(
∂E
∂N

)

V,S

, P = −
(
∂E
∂V

)

S,N

. (5.10a)

We can then go on to notice that the resulting P (V, S,N), T (V, S,N), and µ(V, S,N) are not
all independent. The equality of mixed partial derivatives (e.g., ∂2E/∂V ∂S = ∂2E/∂S∂V )
together with Eqs. (5.10a) implies that they must satisfy the following Maxwell relations:

(
∂T

∂N

)

S,V

=

(
∂µ

∂S

)

N,V

, −
(
∂P

∂S

)

V,N

=

(
∂T

∂V

)

S,N

,

(
∂µ

∂V

)

N,S

= −
(
∂P

∂N

)

V,S

.

(5.10b)
Additional relations can be generated using the types of identities proved in Box 5.2 —
or they can be generated more easily by applying the above procedure to the fundamental
potentials associated with other ensembles; see Secs. 5.3, 5.4 and 5.5. All equations of state,
i.e. all relations such as Eqs. (4.14) between intensive and extensive variables, must satisfy
the Maxwell relations. For our simple example of a nonrelativistic, classical, perfect gas, we
can substitute our fundamental potential E [Eq. (5.9c)] into Eqs. (5.10a) to obtain

P (V, S,N) =

(
h2

2πm

)(
N

V

)5/3

exp

(
2S

3kBN
− 5

3

)

,

T (V, S,N) =

(
h2

2πmkB

)(
N

V

)2/3

exp

(
2S

3kBN
− 5

3

)

,

µ(V, S,N) =

(
h2

4πm

)(
N

V

)2/3(

5− 2
S

kBN

)

exp

(
2S

3kBN
− 5

3

)

(5.11)

(Ex. 5.2). These clearly do satisfy the Maxwell relations.

****************************

EXERCISES

Exercise 5.2 Derivation: Energy Representation for a Nonrelativistic, Classical, Perfect
Gas

(a) Use the fundamental potential E(V, S,N) for the nonrelativistic, classical, perfect gas
[Eq. (5.9c)] to derive Eqs. (5.11) for the gas’s pressure, temperature, and chemical
potential.

(b) Show that these equations of state satisfy the Maxwell relations (5.10b).
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(c) Combine these equations of state to obtain the ideal-gas equation of state

P =
N

V
kBT , (5.12)

which we derived in Ex. 3.7 using kinetic theory

****************************

5.2.5 Representations of Thermodynamics

The treatment of thermodynamics given in this section is called the energy representation
because it is based on the fundamental potential E(S, V,N) in which the energy is expressed
as a function of the complete set of extensive variables {S, V, N}. This energy represen-
tation, as we have seen, is intimately related to the microcanonical ensemble. In Sec. 5.3,
we shall meet the grand-potential representation for thermodynamics, which is intimately
related to the grand canonical ensemble for systems of volume V in equilibrium with a heat
and particle bath that has temperature T and chemical potential µ̃. Then in Secs. 5.4 and
5.5, we shall meet the two representations of thermodynamics that are intimately related
to the canonical and Gibbs ensembles, and shall discover their special power at handling
certain special issues. And in Ex. 5.5 we shall meet a representation and ensemble based on
enthalpy. These five representations and their ensembles are summarized in Table 5.1 above.

5.3 Grand Canonical Ensemble and the Grand Potential

Representation of Thermodynamics

We now turn to the grand canonical ensemble, and its grand-potential representation of ther-
modynamics, for a semi-closed system that exchanges heat and particles with a thermalized
bath. For simplicity, we shall assume that all the particles are identical (just one particle
species), but wecshall allow them to be relativistic (speeds comparable to the speed of light)
or not, and allow them to have nontrivial internal degrees of freedom (e.g., vibrations and
rotations, Sec. 5.4.2), and allow them to exert forces on each other via an interaction po-
tential that appears in their Hamiltonian (e.g. van der Waals forces; Secs. 5.3.2 and 5.7).
We shall refer to these particles as a gas, though our analysis is more general than gases.
The nonrelativistic limit of all our fundamental equations is trivially obtained by removing
particle rest masses from the chemical potential (µ̃ gets replaced by µ = µ̃ − m), but not
from the Grand potential as it never has rest masses in it [see, e.g., Eq. (5.18) below]

We shall begin in Sec. 5.3.1 by deducing the grand-potential representation of thermo-
dynamics from the grand canonical ensemble, and by deducing a method for computing the
thermodynamic properties of our gas from a grand-canonical sum over the quantum states
available to the system. In Ex. 5.3, the reader will apply this grand canonical formalism to
a relativistic perfect gas. In Sec. 5.3.2, we shall apply the formalism to a nonrelativistic gas
of particles that interact via van der Waals forces, and we shall thereby derive the van der
Waals equation of state, which is surprisingly accurate for many non-ionized gases.
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5.3.1 The Grand Potential Representation, and Computation of

Thermodynamic Properties as a Grand Canonical Sum

Figure 5.1 illustrates the ensemble of systems that we are studying, and its bath. Each
system is a cell of fixed volume V , with imaginary walls, inside a huge thermal bath of
identical particles. Since the cells’ walls are imaginary, the cells can and do exchange energy
and particles with the bath. The bath is characterized by a chemical potential µ̃ for these
particles and by a temperature T . Since we allow the particles to be relativistic, we include
the rest mass in the chemical potential µ̃.

We presume that our ensemble of cells has reached statistical equilibrium with the bath,
so its probabilistic distribution function has the grand canonical form (4.24c):

ρn =
1

Z
exp

(−En + µ̃Nn

kBT

)

= exp

(
Ω− En + µ̃Nn

kBT

)

. (5.13)

Here the index n labels the quantum state |n〉 of a cell, Nn is the number of particles in
that quantum state, En is the total energy of that quantum state (including each particle’s
rest mass, its energy of translational motion, its internal energy if it has internal vibrations
or rotations or other internal excitations, and its energy of interaction with other particles),
and 1/Z ≡ eΩ/kBT is the normalization constant that guarantees

∑

n ρn = 1; i.e.,

Z ≡ exp

( −Ω

kBT

)

≡
∑

n

exp

(−En + µ̃Nn

kBT

)

. (5.14)

This normalization constant, whether embodied in Z or in Ω, is a function of the bath’s
temperature T and chemical potential µ̃, and also of the cells’ common volume V (which
influences the set of available states |n〉). When regarded as a function of T , µ̃, and V ,
the quantity Z(V, µ̃, T ) is called the gas’s grand partition function, and Ω(T, µ̃, V ) is called
its grand potential. The following general argument shows that, once one has computed the
explicit functional form for the grand potential

Ω(V, µ̃, T ) , (5.15)

or equally well for the grand partition function Z(V, µ̃, T ), one can then derive from it all the
thermodynamic properties of the thermally equilibrated system. The argument is so general

Fig. 5.1: An ensemble of cells, each with volume V and imaginary walls, inside a heat and particle
bath.
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that it applies to every grand canonical ensemble of systems, not just to our chosen gas of
identical particles.

We introduce, as key quantities in the argument, the mean energy and mean number of
particles in the ensemble’s systems (cells of Fig. 5.1):

E ≡
∑

n

ρnEn , and N ≡
∑

n

ρnNn . (5.16)

(We denote these with bars Ē rather than brackets 〈E〉 for ease of notation.) Inserting
expression (5.13) for ρn into the log term in the definition of entropy S = −kB

∑

n ρn ln ρn
and using Eqs. (5.16), we obtain

S = −kB
∑

n

ρn ln ρn = −kB
∑

n

ρn

(
Ω− En + µ̃Nn

kBT

)

= −Ω− E + µ̃N

T
; (5.17)

or, equivalently

Ω = E − TS − µ̃N . (5.18)

This can be regarded as a Legendre transformation that leads from the energy representation
of thermodynamics to the grand-potential representation. (Legendre transformations are a
common tool, e.g., in classical mechanics6, for switching from one set of independent variables
to another.) Note that removing rest masses from Ē = Ē +Nm and from µ̃ = µ+m to get
a nonrelativistic formula leaves Ω unchanged.

We now ask how the grand potential will change if the temperature T and chemical
potential µ̃ of the bath and therefore of the ensemble are slowly altered, and the volumes
V of all the ensemble’s boxes are slowly altered. Differentiating Eq. (5.18), we obtain dΩ =
dĒ − TdS − SdT − µ̃dN̄ − N̄dµ̃. Expressing dE in terms of the energy representation’s first
law of thermodynamics (5.7) (with E replaced by Ē and N replaced by N̄), we bring this
into the form

dΩ = −PdV −Ndµ̃− SdT . (5.19)

This is the grand potential representation of the first law of thermodynamics. The quan-
tities P , N̄ , S paired with the independent variables V , µ̃, and T can be thought of as
generalized forces that push on the independent variables as they change, to produce changes
of the grand potential.

From this version of the first law (the key grand-canonical equation listed in the last
line of Table 5.1), we can easily deduce almost all other equations of the grand-potential
representation of thermodynamics. We just follow the same procedure as we used for the
energy representation (Sec. 5.2.4):

The grand-potential representation’s complete set of independent variables is those that
appear as differentials on the right side of the first law (5.19): V , µ̃, and T . From the form
(5.19) of the first law we see that Ω is being regarded as a function of these three independent
variables Ω = Ω(V, µ̃, T ). This is the fundamental potential.

6For example, Goldstein, Poole and Safko (2002).
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The Euler equation of this representation is deduced by building up a system from small
pieces that all have the same values of the intensive variables µ̃, T and P . The first law
(5.19) tells us that this buildup will produce

Ω = −PV . (5.20)

Thus, if we happen to know P as a function of this representation’s independent variables
P (V, µ̃, T ) (actually, P cannot depend on V because µ̃ and T are intensive, and there is
nothing to divide V by so as to produce an intensive P ), then we can simply multiply by V
to get the functional form of the grand potential: Ω(V, µ̃, T ) = P (µ̃, T )V ; see Eqs. (5.24a)
and (5.25) below as a concrete example.

By comparing the grand-potential version of the first law (5.19) with the elementary
calculus equation dΩ = (∂Ω/∂V )dV + (∂Ω/∂µ̃)dµ̃+ (∂Ω/∂T )dT , we infer equations for the
system’s “generalized forces”, the pressure P , mean number of particles N̄ , and entropy S:

N = −
(
∂Ω

∂µ̃

)

V,T

, S = −
(
∂Ω

∂T

)

V,µ̃

, P = −
(
∂Ω

∂V

)

µ̃,T

. (5.21)

By differentiating these relations and equating mixed partial derivatives, we can derive
Maxwell relations analogous to those, (5.10b), of the energy representation; for example,
(∂N̄/∂T )V,µ̃ = (∂S/∂µ̃)V,T . Equations of state are constrained by these Maxwell relations.

If we had begun with a specific functional form of the fundamental potential as a function
of this representation’s complete set of independent variables Ω(V, T, µ̃) [e.g. Eq. (5.24a)
below], then Eqs. (5.21) would tell us the functional forms of almost all the other dependent
thermodynamic variables. The only one we are missing is the mean energy Ē(V, µ̃, T ) in a
cell. If we have forgotten Eq. (5.18) (the Legendre transformation) for that quantity, we can
easily rederive it from the grand canonical distribution function ρ = exp[(Ω−E + µ̃N)/kBT ]
(the other key equation, besides the first law, on the last line of Table 5.1), via the definition
of entropy as S = −kB

∑

n ρn ln ρn = −kBln ρ, as we did in Eq. (5.17) above.
This illustrates the power of the sparse information in Table 5.1. From it and little

else we can deduce all of the thermodynamic equations for each of the representations of
thermodynamics.

It should be easy to convince oneself that the nonrelativistic versions of all the above
equations in this section can be obtained by the simple replacements E → E (removal of rest
masses from total energy) and µ̃ → µ (removal of rest mass from chemical potential).

5.3.2 Nonrelativistic van der Waals Gas

The statistical sum Z ≡ e−Ω/kBT =
∑

n e
(−En+µ̃Nn)/kBT [Eq. (5.14)] is a powerful method for

computing the grand potential Ω(V, µ̃, T ), a method often used in condensed matter physics.
In this section we shall present a non-trivial example: a nonrelativistic, monatomic gas made
of atoms or molecules (we shall call them particles) that interact with so-called van der Waals
forces. In Ex. 5.3, the reader will explore a simpler example: a relativistic, perfect gas.

We shall assume that the heat and particle bath that bathes the cells of Fig. 5.1 has
sufficiently low temperature that the gas’s particles are not ionized (and therefore that they



14

are also nonrelativistic, kBT ≪ mc2), and that the bath has a sufficiently low chemical
potential that the mean occupation number η of the particles’ quantum states is small
compared to unity, so they behave classically, µ ≡ µ̃−mc2 ≪ −kBT [Eq. (3.22d)].

The orbital electron clouds attached to each of the particles repel each other when the
distance r between the particles’ centers of mass is smaller than about the diameter ro of the
particles. At larger separations, the particles’ electric dipoles (intrinsic or induced) attract
each other weakly. The interaction energy (potential energy) u(r) associated with these
forces has a form well approximated by the “Lennard-Jones” potential

u(r) = εo

[(ro
r

)12

−
(ro
r

)6
]

, (5.22a)

where εo is a constant energy. When a gradient is taken, the first term gives rise to the small-
r repulsive force and the second to the larger-r attactive force. For simplicity of analytic
calculations, we shall use the cruder approximation

u(r) = ∞ for r < ro , u(r) = −εo(ro/r)
6 for r > ro , (5.22b)

which has an infinitely sharp repulsion at r = ro (a hard wall). For simplicity, we shall
assume that the mean interparticle separation is much larger than ro (dilute gas) so it is
highly unlikely that three or more particles are close enough together simultaneously, r ∼ ro,
to interact; i.e., we shall confine ourselves to 2-particle interactions.

We shall compute the grand potential Ω(V, µ, T ) for an ensemble of cells embedded in a
bath of these particles (Fig. 5.1), and from Ω(V, µ, T ) we shall compute how the particles’
interaction energy u(r) alters the gas’s equation of state from the form P = (N̄/V )kBT for
an ideal gas [Eq. (3.37b)]. Since this is our objective, any internal degrees of freedom that
the particles might have are irrelevant and we shall ignore them.

For this ensemble, the nonrelativistic grand partition function Z =
∑

n exp[(−En +
µNn)/kBT ] is

Z = e−Ω/kBT =
∞∑

N=0

eµN/kBT

N !

∫
d3Nxd3Np

h3N
exp

[

−
N∑

i=1

p2
i

2mkBT
− 1

2

N∑

i=1

N∑

j=i+1

uij

kBT

]

. (5.23a)

Here we have used Eq. (4.8b) for the sum over states
∑

n (with M = N !, W = 3N and
dΓW = d3Nxd3Np; cf. Ex. 5.3), and we have written En as the sum over the kinetic energies
of the N particles in the cell and the interaction energies

uij ≡ u(rij), rij ≡ |xi − xj | (5.23b)

of the 1
2
N(N − 1) pairs of particles.

The evaluation of the integrals and sum in Eq. (5.23a), with the particles’ interaction
energies given by Eqs. (5.23b) and (5.22b), is a rather complex task, which we relegate to
the Track-Two Box 5.3. The result for the Grand potential Ω = −kBT lnZ, accurate to first
order in the particles’ interactions (in the parameters a and b below) is:

Ω = −kBTV
(2πmkBT )

3/2

h3
eµ/kBT

[

1 +
(2πmkBT )

3/2

h3
eµ/kBT

(
a

kBT
− b

)]

. (5.24a)
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Box 5.3

T2 Derivation of van der Waals Grand Potential

In Eq. (5.23a) the momentum integrals and the space integrals separate, and the N
momentum integrals are identical, so Z takes the form

Z =
∞∑

N=0

eµN/kBT

N !h3N

[

exp

(

−
∫ ∞

0

4πp4dp

2mkBT

)]N

JN =
∞∑

N=0

(ζ/λ3)N

N !
JN , (1)

where

ζ ≡ eµ/kBT , λ ≡ h

(2πmkBT )1/2
, JN =

∫

d3Nx exp

[

−
N∑

i=1

N∑

j=i+1

uij

kBT

]

. (2)

Note that λ is the particles’ thermal deBroglie wavelength. The Boltzmann factor
e−uij/kBT is unity for large interparticle separations rij ≫ ro, so we write

e−uij/kBT ≡ 1 + fij , (3)

where fij is zero except when rij . ro. Using this definition and rewriting the exponential
of a sum as the products of exponentials, we bring JN into the form

JN =

∫

d3Nx
N∏

i=1

N∏

j=i+1

(1 + fij) . (4)

The product contains (i) terms linear in fij that represent the influence of pairs of particles
that are close enough (rij . ro) to interact, plus (ii) quadratic terms such as f14f27 that
are nonzero only if particles 1 and 4 are near each other and 2 and 7 are near each other
(there are so many of these terms that we cannot neglect them!), plus (iii) quadratic
terms such as f14f47 that are nonzero only if particles 1, 4, and 7 are all within a distance
∼ ro of each other (because our gas is dilute, it turns out these three-particle terms can
be neglected), plus (iv) cubic and higher-order terms. At all orders ℓ (linear, quadratic,
cubic, quartic, ...) for our dilute gas, we can ignore terms that require three or more
particles to be near each other, so we shall focus only on terms fijfmn...fpq where all
indices are different. Eq. (33) then becomes

JN =

∫

d3Nx[1+(f12 + f13 + ...)
︸ ︷︷ ︸

n1 terms

+ (f12f34 + f13f24 + ...)
︸ ︷︷ ︸

n2 terms

+ (f12f34f56 + f13f24f56 + ...)
︸ ︷︷ ︸

n3 terms

...] ,

(5)
where nℓ is the number of terms of order ℓ with all 2ℓ particles different. Denoting

Vo ≡
∫

f(r)d3r ∼ r3o , (6)

and performing the integrals, we bring Eq. (5) into the form

JN =

∞∑

ℓ=0

nlV
N−ℓV ℓ

o . (7)

At order ℓ the number of unordered sets of 2ℓ particles that are all different is N(N −
1) · · · (N − 2ℓ+ 1)/ℓ!. The number of ways that these 2ℓ particles can be assembled into
unordered pairs is (2ℓ − 1)(2ℓ − 3)(2ℓ − 5) · · ·1 ≡ (2ℓ − 1)!!. Therefore, the number of
terms of order ℓ that appear in Eq. (7) is
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T2 Box 5.3 Continued

nℓ =
N(N − 1) · · · (N − 2ℓ+ 1)

ℓ!
(2ℓ− 1)!! =

N(N − 1) · · · (N − 2ℓ+ 1)

2ℓℓ!
. (8)

Inserting Eqs. (7) and (8) into Eq. (1) for the partition function, we obtain

Z =

∞∑

N=0

(ζ/λ3)N

N !

[N/2]
∑

ℓ=0

N(N − 1) · · · (N − 2ℓ+ 1)

2ℓℓ!
V N−ℓV ℓ

o , (9)

where [N/2] means the largest integer less than or equal to N/2. Performing a little
algebra and then reversing the order of the summations, we obtain

Z =

∞∑

ℓ=0

∞∑

N=2ℓ

1

(N − 2ℓ)!

(
ζV

λ3

)N−2ℓ
1

ℓ!

(
ζV

λ3

ζVo

2λ3

)ℓ

. (10)

By changing the summation index from N to N ′ = N − 2ℓ, we decouple the two summa-
tions. Each of the sums is equal to an exponential, giving

Z = e−Ω/kBT = exp

(
ζV

λ3

)

exp

(
ζV

λ3

ζVo

λ3

)

= exp

[
ζV

λ3

(

1 +
ζVo

2λ3

)]

. (11)

Therefore, the grand potential for our van der Waals gas is

Ω =
−kBTζV

λ3

(

1 +
ζVo

2λ3

)

. (12)

From kinetic theory [Eq. (3.37a)], we know that for an ideal gas, the mean number density
is N̄/V = ζ/λ3, and this will be a good first approximation also for our van der Waals gas,
which differs from an ideal gas only by the weakly perturbative interaction energy u(r).
This means that ζVo/2λ

3 is equal to 1
2
Vo/(mean volume per particle), which is ≪ 1 by

our dilute-gas assumption. If we had kept three-particle interaction terms such as f14f47,
they would have given rise to fractional corrections of order (ζVo/λ

3)2, which are much
smaller than the leading-order fractional correction ζVo/2λ

3 that we have computed [Eq.
(12)]. The higher-order corrections are derived in statistical mechanics textbooks such as
Pathria and Beale (2011, Chap. 10) and Kardar (2007, Chap. 5) using a technique called
the cluster expansion.
For the “hard-wall” potential (5.22b), f is −1 at r < ro, and assuming that the
temperature is high enough that εo/kBT ≪ 1, then at r > ro, f is very nearly
−u/kBT = (εo/kBT )(ro/r)

6; therefore

Vo

2
≡ 1

2

∫

f(r)d3r =
a

kBT
− b , where b =

2πr3o
3

, a = bεo . (13)

Inserting this expression for Vo/2 and Eqs. (2) for ζ and λ into Eq. (12), we obtain Eqs.
(5.24) for the grand potential of a van der Waals gas.
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Here b is four times the volume of each hard-sphere particle, and a is that volume times the
interaction energy ǫo of two hard-sphere particles when they are touching:

b =
16π

3

(ro
2

)3

, a = bǫ0 . (5.24b)

By differentiating this grand potential, we obtain the following expressions for the pres-
sure P and mean number of particles N̄ in a volume-V cell:

P = −
(
∂Ω

∂V

)

µ,T

= kBT
(2πmkBT )

3/2

h3
eµ/kBT

[

1 +
(2πmkBT )

3/2

h3
eµ/kBT

(
a

kBT
− b

)]

,

N̄ = −
(
∂Ω

∂µ

)

V,T

= V
(2πmkBT )

3/2

h3
eµ/kBT

[

1 + 2
(2πmkBT )

3/2

h3
eµ/kBT

(
a

kBT
− b

)]

.(5.25)

Notice that, when the interaction energy is turned off so a = b = 0, the second equation gives
our standard ideal-gas particle density N̄/V = (2πmkBT )

3/2eµ/kBT/h3 = ζ/λ3. Inserting this
into the square bracketed expression in Eqs. (5.25), taking the ratio of expressions (5.25)
and multiplying by V and expanding to first order in a/kBT − b, we obtain PV/N̄ =
kBT [1 + (N̄/V )(b− a/kBT )] — accurate to first order in (b− a/kBT ). Bringing the a term
to the left side, multiplying both sides by [1 − (N̄/V )b] and linearizing in b, we obtain the
standard van der Waals equation of state

(

P +
a

(V/N̄)2

)

(V/N̄ − b) = kBT . (5.26)

The quantity V/N̄ is called the specific volume (volume per particle).
Comments: (i) The factor (V/N̄ − b) in the equation of state corresponds to an excluded

volume b = (16π/3)(ro/2)
3 that is four times larger than the actual volume of each hard-

sphere particle (whose radius is ro/2). (ii) The term linear in a, P = −aN̄/V = −ǫoN̄/V
is a pressure reduction due to the attactive force between particles. (iii) Our derivation
is actually only accurate to first order in a and b, so it does not justify the quadratic
term P = ab(N̄/V )2 in the equation of state (5.26). That quadratic term, however, does
correspond to the behavior of real gases: a sharp rise in pressure at high densities due to the
short-distance repulsion between particles.

We shall study this van der Waals equation of state in Sec. 5.7 below, focusing on the gas-
to-liquid phase transition that it predicts and on fluctuations of thermodynamic quantities
associated with that phase transition.

In this section we have presented the grand-canonical analysis for a van der Waals gas
not because such a gas is important (though it is), but rather as a concrete example of how
one uses the formalism of statistical mechanics to explore the behavior of realistic systems
made of interacting particles.

****************************

EXERCISES
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Exercise 5.3 Derivation and Example: Grand Canonical Ensemble for a Classical, Rela-
tivistic, Perfect Gas
Consider cells that reside in a heat and particle bath of a classical, relativistic, perfect
gas (Fig. 5.1). Each cell has the same volume V and imaginary walls. Assume that the
bath’s temperature T has an arbitrary magnitude relative to the rest mass-energy mc2 of the
particles, so the thermalized particles might have relativistic velocities, but require kBT ≪
−µ so all the particles behave classically. Ignore the particles’ spin degrees of freedom, if
any.

(a) The number of particles in a chosen cell can be anything from N = 0 to N = ∞.
Restrict attention, for the moment, to a situation in which the cell contains a precise
number of particles, N . Explain why the multiplicity is M = N ! even though the
density is so low that the particles’ wave functions do not overlap, and they are behaving
classically; cf. Ex. 4.8 above.

(b) Still holding fixed the number of particles in the cell, show that the number of degrees
of freedom W , the number density of states in phase space Nstates and the energy EN
in the cell are

W = 3N , Nstates =
1

N !h3N
, EN =

N∑

j=1

(pj
2 +m2)

1

2 , (5.27a)

where pj is the momentum of classical particle number j.

(c) Using Eq. (4.8b) to translate from the formal sum over states
∑

n to a sum over
W = 3N and an integral over phase space, show that the sum over states (5.14) for
the grand partition function becomes

Z = e−Ω/kBT =
∞∑

N=0

V N

N !h3N
eµ̃N/kBT

[
∫ ∞

0

exp

(

−(p2 +m2)
1

2

kBT

)

4πp2dp

]N

. (5.27b)

(d) Evaluate the momentum integral in the nonrelativistic limit kBT ≪ m, and thereby
show that

Ω(T, µ, V ) = −kBTV
(2πmkBT )

3/2

h3
eµ/kBT , (5.28a)

where µ = µ̃−m is the nonrelativistic chemical potential. This is the interaction-free
limit Vo = a = b = 0 of our grand potential (5.24a) for a van der Waals gas.

(e) Show that in the extreme relativistic limit kBT ≫ m, Eq. (5.27b) gives

Ω(T, µ̃, V ) = − 8πV (kBT )
4

h3
eµ̃/kBT . (5.29)

(f) For the extreme relativistic limit use your result (5.29) for the grand potential Ω(V, T, µ̃)
to derive the mean number of particles N , the pressure P , the entropy S, and the mean
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energy E as functions of V , µ̃, and T . Note that for a photon gas, because of the spin
degree of freedom, the correct values of N , E and S will be twice as large as you
obtain in this calculation. Show that the energy density is E/V = 3P (a relation
valid for any ultrarelativistic gas); and that E/N = 3kBT (which is higher than the
2.7011780 . . . kBT for black-body radiation, as derived in Ex. 3.12, because in the
classical regime of η ≪ 1 photons don’t cluster in the same states at low frequency;
that clustering lowers the mean photon energy for black-body radiation.)

****************************

5.4 Canonical Ensemble and the Physical-Free-Energy

Representation of Thermodynamics

In this section we turn to an ensemble of single-species systems that can exchange energy
but nothing else with a heat bath at temperature T . The systems thus have variable total
energy E , but they all have the same, fixed values of the two remaining extensive variables N
and V . We presume that the ensemble has reached statistical equilibrium, so it is canonical
with distribution function (probability of occupying any quantum state of energy E) given
by Eq. (4.19)

ρn =
1

z
e−En/kBT ≡ e(F−En)/kBT . (5.30)

Here, as in the grand canonical ensemble [Eq. (5.13)], we have introduced special notations
for the normalization constant: 1/z = eF/kBT , where z (the partition function) and F (the
physical free energy or Helmholtz free energy) are functions of the systems’ fixed N and V and
the bath’s temperature T . Once the systems’ quantum states |n〉 (with fixed N and V but
variable E) have been identified, the functions z(N, V, T ) and F (N, V, T ) can be computed
from the normalization relation

∑

n ρn = 1:

e−F/kBT ≡ z(T,N, V ) =
∑

n

e−En/kBT . (5.31)

This canonical sum over states, like the grand canonical sum (5.14) that we used for the
van der Waals gas, is a powerful tool in statistical mechanics. As an example, in Secs. 5.8.3
and 5.8.4 we shall use the canonical sum to evaluate the physical free energy F for a model
of ferromagnetism, and shall use the resulting F to explore a ferromagnetic phase transition.

Having evaluated z(T,N, V ) or equivalently F (T,N, V ), one can then proceed as follows
to determine other thermodynamic properties of the ensemble’s systems: The entropy S can
be computed from the standard expression S = −kB

∑

n ρn ln ρn = −kBln ρ, which, with
Eq. (5.30) for ρn, implies S = (Ē − F )/T . It is helpful to rewrite this as an equation for the
physical free energy F

F = Ē − TS . (5.32)

This is the Legendre transformation that leads from the energy representation of thermody-
namics to the physical-free-energy representation:
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Piston
GasHeat
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Fig. 5.2: Origin of the name physical free energy for F (V, T,N).

Suppose that the canonical ensemble’s parameters T, N, V are changed slightly. By
how much will the physical free energy change? Equation (5.32) tells us that dF = dĒ −
TdS−SdT . Because macroscopic thermodynamics is independent of the statistical ensemble
being studied, we can evaluate dĒ using the first law of thermodynamics (5.7) with the
microcanonical exact energy E replaced by the canonical mean energy Ē . The result is

dF = −SdT + µ̃dN − PdV . (5.33)

Equation (5.33) contains the same information as the first law of thermodynamics and
can be thought of as the first law rewritten in the physical-free-energy representation. From
this form of the first law, we can deduce the other equations of the physical-free-energy
representation, by the same procedure as we used for the energy representation in Sec. 5.2.4
and the grand-potential representation in Sec. 5.3.1:

If we have forgotten our representation’s independent variables, we read them off the first
law (5.33); they appear as differentials on the right hand side: T , N and V . The fundamental
potential is the quantity that appears on the left side of the first law: F (T,N, V ). By building
up a full system from small subsystems that all have the same intensive variables T, µ̃, P ,
we deduce from the first law the Euler relation for this representation:

F = µ̃N − PV . (5.34)

From the first law (5.33) we read off equations of state for this representation’s generalized
forces, e.g. −S = (∂F/∂T )N,V . Maxwell relations can be derived from the equality of mixed
partial derivatives.

Thus, as for the energy and grand-potential representations, all the equations of the
physical-free-energy representation are easily deducible from the minimal information in
Table 5.1. And as for those representations, the Newtonian version of this representation’s
fundamental equations (5.30)–(5.34) is obtained by simply removing rest masses from µ̃
(which becomes µ), E (which becomes E), and F (whose notation does not change.)

5.4.1 Experimental Meaning of Physical Free Energy

The name physical free energy for F can be understood using the idealized experiment shown
in Fig. 5.2. Gas is placed in a chamber, one wall of which is a piston; and the chamber comes
into thermal equilibrium with a heat bath, with which it can exchange heat but not particles.
The volume of the chamber has some initial value Vi; and correspondingly, the gas has some
initial physical free energy F (Vi, T, N). The gas is then allowed to push the piston to the
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right sufficiently slowly for the gas to remain always in thermal equilibrium with the heat
bath, at the bath’s temperature T . When the chamber has reached its final volume Vf , the
total work done on the piston by the gas, i.e., the total energy extracted by the piston from
this “engine”, is

Eextracted =

∫ Vf

Vi

−PdV . (5.35a)

Using the first law dF = −SdT + µ̃dN − PdV and remembering that T and N are kept
constant, Eq. (5.35a) becomes

Eextracted = F (Vf , T, N) − F (Vi, T, N) ≡ ∆F . (5.35b)

Thus, F is the energy that is “free to be extracted” in an isothermal, physical expansion of
the gas.7

If the expansion had been done in a chamber that was perfectly thermally insulated, so
no heat could flow in or out of it, then there would have been no entropy change. Cor-
respondingly, with S and N held fixed but V changing during the expansion, the natural
way to analyze the expansion would have been in the energy representation; and that rep-
resentation’s first law dE = −PdV + TdS + µ̃dN would have told us that the total energy
extracted,

∫
−PdV , was the change ∆E of the gas’s total energy. Such a process, which

occurs without any heat flow or entropy increase, is called adiabatic. Thus, the energy E
(or in the nonrelativistic regime E) measures the amount of energy that can be extracted
from an adiabatic engine, by contrast with F , which measures the energy extracted from an
isothermal engine.

5.4.2 Ideal Gas with Internal Degrees of Freedom

As an example of the canonical distribution, we shall explore the influence of internal molec-
ular degrees of freedom on the properties of a nonrelativistic, ideal gas. This example is
complementary to the van der Waals gas that we analyzed in Sec. 5.3.2 using the grand
canonical distribution. There we assumed no internal degrees of freedom, but we allowed
each pair of particles to interact via an interaction potential u(r) that depended on the par-
ticles’ separation r. Here, because the gas is ideal, there are no interactions, but we allow
for internal degrees of freedom — rotational, vibrational, and electron excitations.

(We have previously studied internal degrees of freedom in Sec. 4.4.4, where we proved the
equipartition theorem for those whose generalized coordinates and/or momenta are quadratic
in the Hamiltonian and are classically excited, e.g. the vibrations and rotations of a diatomic
molecule. Here we allow the internal degrees of freedom to have any form whatsoever and
to be excited or nonexcited arbitrarily.)

Our gas is confined to a fixed volume V , it has a fixed number of molecules N , it is in
contact with a heat bath with temperature T , and its equilibrium distribution is therefore

7More generally, the phrase “free energy” means the energy that can be extracted in a process that occurs
in contact with some sort of environment. The nature of the free energy depends on the nature of the
contact. We will meet “chemical free energy” in Sec. 5.5, and the free energy of a body on which a steady
force is acting in Sec. 11.8.
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canonical, ρn = e(F−En)/kBT . The quantum states |n〉 available to the gas can be characterized
by the locations {xi,pi} in phase space of each of the molecules i = 1, ..., N , and by the state
|Ki〉 of each molecule’s internal degrees of freedom. Correspondingly, the partition function
and physical free energy are given by

z = e−F/kBT =
gs
N !

∫
d3Nxd3Np

h3N

∑

K1,K2,...KN

exp

[

−
N∑

i=1

(
p2
i

2mkBT
+

EKi

kBT

)]

. (5.36a)

It is instructive to compare this with Eq. (5.23a) for the grand partition function of the van
der Waals gas. Here there is no interaction energy uij between molecules, and there is no
sum over N and no eµN/kBT because N is fixed and there is no bath. However, we now have
sums over the internal states Ki of each of the molecules, and a factor gs to allow for the
molecules’ gs different spin states in the multiplicity

Because there are no interactions between molecules, the partition function can be split
up into products of independent contributions from each of the molecules; and because there
are no interactions between a molecule’s internal and translational degrees of freedom, the
partition function can be split into a product of tranlational and internal terms; and because
the molecules are all identical, their contributions are all identical, leading to

z = e−F/kBT =
gs
N !

[∫
d3xd3p

h3
e−p2/kBT

]N
[
∑

K

e−EK/kBT

]N

. (5.36b)

The
∫
d3xd3p h−3e−p2/kBT integral is the same as we encountered in the grand-canonical

analysis; it gives V/λ3 where λ = h/(2πmkBT ) [cf. Eq. (1)]. The sum over internal states
gives a contribution that is some function of temperature,

f(T ) ≡
∑

K

e−EK/kBT . (5.37)

Correspondingly [using Stirling’s approximation N ! ≃ 2πN1/2(N/e)N ] the physical free en-
ergy becomes

F (N, V, T ) = NkBT ln

[
N

e

h3

(2πmkBT )3V

]

−NkBT ln f(T ) . (5.38)

Note that because the molecules’ translational and internal degrees of freedom are decoupled,
their contributions to the free energy are additive. We could have computed them separately,
and then simply added their free energies.

Notice that, because the contribution of the internal degrees of freedom depends only on
temperature and not on volume, the ideal gas’s pressure

P = −(∂F/∂V )N,T = (N/V )kBT (5.39)

is unaffected by the internal degrees of freedom. By contrast, the entropy and the total
energy in the box do have internal contributions, which depend on temperature but not on
the gas’s volume and thence not on its density N/V :

S = − (∂F/∂T )N,V = Stranslational +NkB(ln f + d ln f/d lnT ) , (5.40)
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where the entropy Stranslational can straightforwardly be shown to be equivalent to the Sackur-
Tetrode formula (4.41)8; and

Ē = F + TS = NkBT

(
3

2
+

d ln f

d lnT

)

. (5.41)

For degrees of freedom that are classical and quadratic, the internal contribution NkBTd ln f/d lnT
gives 1

2
kBT for each quadratic term in the Hamiltonian, in accord with the equipartition the-

orem (Sec. 4.4.4).
If there is more than one particle species present (e.g. electrons and protons at high

temperatures so hydrogen is ionized), then the contributions of the species to F , P , S, and
E simply add, just as the contributions of internal and translational degrees of freedom
added in Eq. (5.38) above.

****************************

EXERCISES

Exercise 5.4 Example and Derivation: Adiabatic Index for Ideal Gas

In Part V, when studying fluid dynamics, we shall encounter an adiabatic index

Γ ≡ −
(
∂ lnP

∂ lnV

)

S

(5.42)

[Eq. (13.2)] that describes how the pressure P of a fluid changes when it is compressed
adiabatically, i.e. compressed at fixed entropy (with no heat being added or removed). Derive
an expression for Γ for an ideal gas that may have internal degrees of freedom, e.g., the Earth’s
atmosphere. More specifically:

(a) Consider a fluid element (a small sample of the fluid) that contains N molecules.
These molecules can be of various species; all species contribute equally to the ideal
gas’s pressure P = (N/V )kBT and contribute additively to its energy. Define the fluid
element’s specific heat at fixed volume to be the amount of heat TdS that must be
inserted to raise its temperature by an amount dT while the volume V is held fixed:

CV ≡ T (∂S/∂T )V,N = (∂E/∂T )V,N . (5.43)

Deduce the second equality from the first law of thermodynamics. Show that in an
adiabatic expansion the temperature T drops at a rate given by CV dT = −PdV . [Hint:
use the first law of thermodynamics and the fact that for an ideal gas the energy of a
fluid element depends only on its temperature and not on its volume (or density), Eq.
(5.41).]

(b) Combine the temperature change dT = (−P/CV )dV for an adiabatic expansion with
the equation of state PV = NkBT to obtain Γ = (CV +NkB)/CV .

8except that the factor gs in that formula is an internal-degree-of-freedom factor and so here appears in
f .
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(c) To interpret the numerator CV + NkB, imagine adding heat to a fluid element while
holding its pressure fixed (which requires a simultaneous volume change). Show that
in this case the ratio of heat added to temperature change is

CP ≡ T (∂S/∂T )P,N = CV +NkB . (5.44)

Combining with (b), conclude that the adiabatic index for an ideal gas is given by

Γ = γ ≡ CP/CV , (5.45)

a standard result in elementary thermodynamics.

Exercise 5.5 T2 Example: The Enthalpy Representation of Thermodynamics

(a) Enthalpy H is a macroscopic thermodynamic variable defined by

H ≡ E + PV . (5.46)

Show that this definition can be regarded as a Legendre transformation that converts
from the energy representation of thermodynamics with E(V, S,N) as the fundamental
potential, to an enthalpy representation with H(P, S,N) as the fundamental potential.
More specifically, show that the first law, reexpressed in terms of H , takes the form

dH = V dP + TdS + µ̃dN ; (5.47)

and then explain why this first law dictates that H(P, S,N) be taken as the funda-
mental potential.

(b) For a nonrelativistic system, it is conventional to remove the particle rest masses from
the enthalpy just as one does from the energy, but by contrast with energy, we do not
change notation for the enthalpy:

Hnonrelativistic ≡ Hrelativistic −Nm = E + PV . (5.48)

What, is the form of the first law (5.47) for the nonrelativistic H?

(c) There is an equilibrium statistical mechanics ensemble associated with the enthalpy
representation. Show that each system of this ensemble (fluctuationally) exchanges
volume and energy with a surrounding bath but does not exchange heat or particles, so
the exchanged energy is solely that associated with the exchanged volume, dE = −PdV ,
and the enthalpy H does not fluctuate.

(d) Show that this ensemble’s distribution function is ρ = e−S/kB =constant for those states
in phase space that have a specified number of particles N and a specified enthalpy H .
Why do we not need to allow for a small range δH of H , by analogy with the small
range E for the microcanonical ensemble (Sec. 4.5 and Ex. 4.7)?
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(e) What equations of state can be read off from the enthalpy first law? What are the
Maxwell relations between these equations of state?

(f) What is the Euler equation for H in terms of a sum of products of extensive and
intensive variables?

(g) Show that the sys tem’s enthalpy is equal to its total (relativistic) inertial mass (mul-
tiplied by the speed of light squared); cf. Exs. 2.26 and 2.27.

(h) As another interpretation of the enthalpy, think of the system as enclosed in an imper-
meable box of volume V . You are asked to inject into the box a “sample” of additional
material of the same sort as is already there. (It may be helpful to think of the material
as a gas.) The sample is to be put into the same thermodynamic state, i.e. macrostate,
as that of the box’s material; i.e., it is to be given the same values of temperature T ,
pressure P , and chemical potential µ̃. Thus, the sample’s material is indistinguishable
in its thermodynamic properties from the material already in the box, except that its
extensive variables (denoted by ∆’s) are far smaller: ∆V/V = ∆E/E = ∆S/S ≪ 1.
Perform the injection by opening up a hole in one of the box’s walls, pushing aside
the box’s material enough to make a little cavity of volume ∆V equal to that of the
sample, inserting the sample into the cavity, and then closing the hole in the wall.
The box now has the same volume V as before, but its energy has changed. Show
that the energy change, i.e., the energy required to create the sample and perform the
injection, is equal to the enthalpy ∆H of the sample. Thus, enthalpy has the physical
interpretation of “energy of injection at fixed volume V ”.

****************************

5.5 Gibbs Ensemble and Representation of Thermody-

namics; Phase Transitions and Chemical Reactions

Turn attention, next, to systems in which the temperature T and pressure P are both being
controlled by an external environment (bath) and thus are treated as independent variables
in the fundamental potential. This is the situation in most laboratory experiments and
geophysical situations.

Each of the systems, in this case, has a fixed number of particles NI for the various
independent species I, and it can exchange heat and volume with its surroundings. (We
shall explicitly allow for more than one particle species because a major application of the
Gibbs representation will be to chemical reactions.) There might be a membrane separating
each system from its bath — a membrane impermeable to particles but through which heat
can pass, and with negligible surface tension so the system and the bath can buffet each
other freely, causing fluctuations in the system’s volume. This is the case, e.g., for a so-
called “constant-pressure balloon” of the type used to lift scientific payloads into the upper
atmosphere. Usually, however, there is no membrane between system and bath. Instead,
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gravity might hold the system together because it has higher density than the bath (e.g. a
liquid in a container), or solid-state forces might hold the system together (e.g. a crystal),
or we might just introduce a conceptual, imaginary boundary around the system of interest
— one that comoves with some set of particles.

The equilibrium ensemble, for this type of system, is that of Gibbs, with distribution
function

ρ = eG/kBT e−(E+PV )/kBT , (5.49)

[Eq. (4.24b) to which we have added the normalization constant eG/kBT ]. As for the canonical
and grand canonical distributions, the quantity G in the normalization constant becomes
the fundamental potential for the Gibbs representation of thermodynamics. It is called the
Gibbs potential, and also, sometimes, the Gibbs free energy or chemical free energy ; and it
is a function of the systems’ fixed numbers of particles NI and of the bath’s temperature T
and pressure P , which appear in the Gibbs distribution function: G = G(NI , T, P ).

The Gibbs potential can be evaluated by a sum over quantum states that follows from
∑

n ρn = 1:

e−G/kBT =
∑

n

e−(En+PVn)/kBT . (5.50)

See Ex. 5.7 for an example. This sum has proved to be less useful than the canonical
and grand canonical sums, so in most statistical mechanics textbooks there is little or no
discussion of the Gibbs ensemble. By contrast, the Gibbs representation of thermodynamics
is extremely useful as we shall see, so textbooks pay a lot of attention to it.

We can deduce the equations of the Gibbs representation by the same method as we used
for the canonical and grand canonical representations:

We begin by writing down a Legendre transformation that takes us from the energy
representation to the Gibbs representation. As for the canonical and grand canonical cases,
that Legendre transformation can be inferred from the equilibrium ensemble’s entropy, S =
−kBln ρ = −(G− Ē + P V̄ )/T [cf. Eq. (5.49) for ρ]. Solving for G, we get

G = Ē + P V̄ − TS . (5.51)

Once we are in the thermodynamic domain (as opposed to statistical mechanics), we can
abandon the distinction between expectation values of quantities and fixed values, i.e. we
can remove the bars and write this Legendre transformation as G = E − TS + PV .

Differentiating this Legendre transformation and combining with the energy representa-
tion’s first law (5.8), we obtain the first law in the Gibbs representation:

dG = V dP − SdT +
∑

I

µ̃IdNI . (5.52)

From this first law we read out the independent variables of the Gibbs representation, namely
{P, T,NI} (in case we have forgotten them!) and the values of its generalized forces (equa-
tions of state), e.g. V = (∂G/∂P )T,NI

; and from the equality of mixed partial derivatives,
we read off Maxwell relations. By imagining building up a large system from many tiny
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subsystems (all with the same, fixed, intensive variables P , T and µ̃I) and applying the first
law (5.52) to this buildup, we obtain the Euler relation

G =
∑

I

µ̃INI . (5.53)

This Euler relation will be very useful in Sec. 5.5.3, when we discuss chemical reactions.
As with previous representations of thermodynamics, to obtain the Newtonian version of

all of this section’s equations, we simply remove the particle rest masses from µ̃I (which then
becomes µI), from E (which then becomes E), and from G (which does not change notation).

****************************

EXERCISES

Exercise 5.6 Problem: Gibbs Free Energy
In Sec. 5.4.1, we explained the experimental meaning of the physical free energy F . Give a
similar experimental interpretation of the Gibbs free energy (chemical free energy) G.

Exercise 5.7 Problem and Practice: Ideal Gas Equation of State from Gibbs Ensemble
For a nonrelativistic, classical, ideal gas (no interactions between particles), evaluate the
statistical sum (5.50) to obtain G(P, T,N), and from it deduce the standard formula for the
ideal-gas equation of state P V̄ = NkBT .

****************************

5.5.1 Out-of-Equilibrium Ensembles and their Fundamental

Thermodynamic Potentials and Minimum Principles

Despite its lack of usefulness in practical computations of the Gibbs potential G, the Gibbs
ensemble plays an important conceptual role in a minimum principle for G, which we shall
now derive.

Consider an ensemble of systems, each of which is immersed in an identical heat and vol-
ume bath, and assume that the ensemble begins with some arbitrary distribution function
ρn, one that is not in equilibrium with the baths. As time passes, each system will interact
with its bath and will evolve in response to that interaction; and correspondingly the ensem-
ble’s distribution function ρ will evolve. At any moment of time the ensemble’s systems will
have some mean (ensemble-averaged) energy Ē ≡ ∑n ρnEn and volume V̄ ≡ ∑

n ρnVn, and
the ensemble will have some entropy S = −kB

∑

n ρn ln ρn. From these quantities (which are
well defined even though the ensemble may be very far from statistical equilibrium), we can
compute a Gibbs potential G for the ensemble. This out-of-equilibrium G is defined by the
analog of the equilibrium definition (5.51)

G ≡ Ē + PbV̄ − TbS , (5.54)
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where Pb and Tb are the pressure and temperature of the identical baths with which the
ensemble’s systems are interacting.9 Now, as the evolution proceeds, the total entropy of
the baths’ ensemble plus the systems’ ensemble will continually increase, until equilibrium is
reached. Suppose that during a short stretch of evolution the systems’ mean energy changes
by ∆Ē , their mean volume changes by ∆V̄ , and the entropy of the ensemble changes by
∆S. Then, by conservation of energy and volume, the baths’ mean energy and volume must
change by

∆Ēb = −∆Ē , ∆V̄b = −∆V̄ . (5.55a)

Because the baths (by contrast with the systems) are in statistical equilibrium, we can apply
to them the first law of thermodynamics for equilibrated systems

∆Ēb = −Pb∆V̄b + Tb∆Sb + µ̃∆Nb . (5.55b)

Since Nb is not changing (the systems cannot exchange particles with their baths) and since
the changes of bath energy and volume are given by Eqs. (5.55a), Eq. (5.55b) tells us that
the baths’ entropy changes by

∆Sb =
−∆Ē − Pb∆V̄

Tb
. (5.55c)

Correspondingly, the sum of the baths’ entropy and the systems’ entropy changes by the
following amount, which cannot be negative:

∆Sb +∆S =
−∆Ē − Pb∆V̄ + Tb∆S

Tb
≥ 0 . (5.55d)

Because the baths’ pressure Pb and temperature Tb are not changing (the systems are so tiny
compared to the baths that the energy and volume they exchange with the baths cannot have
any significant effect on the baths’ intensive variables), the numerator of expression (5.55d) is
equal to the evolutionary change in the ensemble’s out-of-equilibrium Gibbs potential (5.54):

∆Sb +∆S =
−∆G

Tb
≥ 0 . (5.56)

Thus, the second law of thermodynamics for an ensemble of arbitrary systems in contact
with identical heat and volume baths is equivalent to the law that the systems’ out-of-

equilibrium Gibbs potential can never increase. As the evolution proceeds and the
entropy of baths plus systems continually increases, the Gibbs potential G will be driven

9Notice that, because the number N of particles in the system is fixed as is the bath temperature Tb, the
evolving Gibbs potential is proportional to

g ≡ G

NkBTb
=

Ē

NkBTb
+

PbV̄

NkBTb
− S

NkB
.

This quantity is dimensionless and generally of order unity. Note that the last term is the dimensionless
entropy per particle [Eq. (4.43) and associated discussion].
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smaller and smaller, until ultimately, when statistical equilibrium with the baths is reached,
G will stop at its final, minimum value.

The ergodic hypothesis guarantees that this minimum principle applies not only to an
ensemble of systems, but also to a single, individual system when that system is averaged
over times long compared to its internal timescales τint (but times that might be very short
compared to the timescale for interaction with the heat and volume bath): The system’s
time-averaged energy Ē and volume V̄ , and its entropy S (as computed, e.g., by examining the
temporal wandering of its state on timescales ∼ τint), combine with the bath’s temperature
Tb and pressure Pb to give an out-of-equilibrium Gibbs potential G = Ē+PbV̄ −TbS. This G
evolves on times long compared to the averaging time used to define it; and that evolution
must be one of continually decreasing G. Ultimately, when the system reaches equilibrium
with the bath, G achieves its minimum value.

At this point we might ask about the other thermodynamic potentials. Not surpris-
ingly, associated with each of them there is an extremum principle analogous to “minimum
G”: (i) For the energy potential E(V, S,N), one focuses on closed systems and switches to
S(V, E , N); and the extremum principle is then the standard second law of thermodynamics:
An ensemble of closed systems of fixed E , V , N must evolve always toward increasing entropy
S; and when it ultimately reaches equilibrium, the ensemble will be microcanonical and will
have maximum entropy. (ii) For the physical free energy F (Tb, V, N) one can derive, in a
manner perfectly analogous to the Gibbs derivation, the following minimum principle: For an
ensemble of systems interacting with a heat bath, the out-of-equilibrium physical free energy
F = Ē −TbS will always decrease, ultimately reaching a minimum when the ensemble reaches
its final, equilibrium, canonical distribution. (iii) The grand-potential Ω(V, Tb, µ̃b) (Sec. 5.3)
satisfies the analogous minimum principle: For an ensemble of systems interacting with a
heat and particle bath, the out-of-equilibrium grand potential Ω = Ē − µ̃bN̄ − TbS will always
decrease, ultimately reaching a minimum when the ensemble reaches its final, equilibrium,
grand-canonical distribution. (iv) For the enthalpy H(Pb, S,N) (Ex. 5.5) the analogous ex-
tremum principle is a bit more tricky; see Ex. 5.13: For an ensemble of systems interacting
with a volume bath, as for an ensemble of closed systems, the bath’s entropy remains con-
stant, so the systems’ entropy S will always increase, ultimately reaching a maximum when
the ensemble reaches its final equilibrium distribution.

In Table 5.2 we summarize these extremum principles. The first column lists the quanti-
ties that a system exchanges with its bath. The second column shows the out-of-equilibrium
fundamental potential for the system, which depends on the bath variables and the system’s
out-of-equilibrium distribution function ρ (shown explicitly) and also on whatever quanti-
ties are fixed for the system (e.g. its volume V and/or number of particles N ; not shown
explicitly). The third column expresses the total entropy of system plus bath in terms of the
bath’s out-of-equilibrium fundamental potential. The fourth column expresses the second
law of thermodynamics for bath plus system in terms of the fundamental potential. We shall
discuss the fifth column when we study fluctuations away from equilibrium, in Sec. 5.6.
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Fundamental Total Entropy Second Fluctuational

Bath Potential S+ Sb Law Probability

None S(ρ) with E const S+ const dS ≥ 0 ∝ eS/kB

V & E with S(ρ) S+ const dS ≥ 0 ∝ eS/kB

dE = −PbdV with H = E + PbV const (see Ex. 5.13)

Heat F (Tb; ρ) = Ē − TbS −F/Tb + const dF ≤ 0 ∝ e−F/kBTb

Heat & Volume G(Tb, Pb; ρ) = Ē + PbV̄ − TbS −G/Tb+ const dG ≤ 0 ∝ e−G/kBTb

Heat & Particle Ω(Tb, µ̃b, ρ) = Ē − µ̃bN̄ − TbS −Ω/Tb + const dΩ ≤ 0 ∝ e−Ω/kBTb

Table 5.2: Descriptions of out-of-equilibrium ensembles with distribution function ρ, from which
one computes S = −kB

∑

n ρn ln ρn, Ē =
∑

n ρnEn, V̄ =
∑

n ρnVn, and N̄n =
∑

n ρnNn. The
systems of each ensemble are in contact with the bath shown in column one, and Tb, Pb, µ̃b are the
bath’s temperature, pressure and chemical potential. For ensembles in statistical equilibrium see
Table 5.1. As there, so also here, the nonrelativistic formulae are the same as above but with the
rest masses of particles removed from the chemical potentials, (µ̃ → µ) and from all fundamental
potentials except Ω (E → E but no change of notation for H, F , G).

5.5.2 Phase Transitions

The minimum principle for the Gibbs potential G is a powerful tool in understanding phase
transitions: “Phase” in the phrase “phase transitions” refers to a specific pattern into which
the atoms or molecules of a substance organize themselves. For the substance H2O there are
three familiar phases: water vapor, liquid water, and solid ice. Over one range of pressure P
and temperature T , the H2O molecules prefer to organize themselves into the vapor phase;
over another, the liquid phase; and over another, the solid ice phase. It is the Gibbs potential
that governs their preference.

To understand this role of the Gibbs potential, consider a cup of water in a refrigerator
(and because the water molecules are highly nonrelativistic, adopt the nonrelativistic view-
point with the molecules’ rest masses removed from their energy E and chemical potential
µH2O and also from their Gibbs potential). The refrigerator’s air forms a heat and volume
bath for the water in the cup (the system). There is no membrane between the air and the
water, but none is needed. Gravity, together with the density difference between water and
air, serves to keep the water molecules in the cup and the air above the water’s surface, for
all relevant purposes.

Allow the water to reach thermal and pressure equilibrium with the refrigerator’s air; then
turn down the refrigerator’s temperature slightly and wait for the water to reach equilibrium
again; and then repeat the process. Pretend that you are clever enough to compute from first-
principles the Gibbs potential G for the H2O at each step of the cooling, using two alternative
assumptions: that the H2O molecules organize themselves into the liquid water phase; and
that they organize themselves into the solid ice phase. Your calculations will produce curves
for G, as a function of the common bath and H2O temperature Tb = T at fixed (atmospheric)
pressure, with the shapes shown in Fig. 5.3. At temperatures T > Tc = 273K the liquid
phase has the lower Gibbs potential G, and at T < Tc the solid phase has the lower G.
Correspondingly, when the cup’s temperature sinks slightly below 273K, the H2O molecules
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Fig. 5.3: The Gibbs potential G(T, P,N) for H2O as a function of temperature T with fixed P
and N , near the freezing point T = Tc = 273K. The solid curves correspond to the actual path
traversed by the H2O if the phase transition is allowed to proceed. The dotted curves correspond
to superheated solid ice and supercooled liquid water that are unstable against the phase transition
because their Gibbs potentials are higher than those of the other phase. Note that G tends to
decrease with increasing temperature. This is caused by the −TS term in G = E + PV − TS.

have a statistical preference for reorganizing themselves into the solid phase. The water
freezes, forming ice.

It is a familiar fact that ice floats on water, i.e. ice is less dense than water, even when they
are both precisely at the phase-transition temperature of 273K. Correspondingly, when our
sample of water freezes, its volume increases discontinuously by some amount ∆V ; i.e., when
viewed as a function of the Gibbs potential G, the volume V of the statistically preferred
phase is discontinous at the phase-transition point; see Fig. 5.4a. It is also a familiar fact
that when water freezes, it releases heat into its surroundings. This is why the freezing
requires a moderately long time: the solidifying water can remain at or below its freezing
point and continue to solidify only if the surroundings carry away the released heat, and
the surroundings typically cannot carry it away quickly. The heat ∆Q released during the
freezing (the latent heat) and the volume change ∆V are related to each other in a simple
way; see Ex. 5.8, which focuses on the latent heat per unit mass ∆q and the density change
∆ρ instead of on ∆Q and ∆V .

Phase transitions like this one, with finite volume jumps ∆V 6= 0 and finite latent heat
∆Q 6= 0, are called first-order. The van der Waals gas (Sec. 5.3.2) provides an analytic model
for another first-order phase transition: that from water vapor to liquid water; but we shall
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Fig. 5.4: The changes of volume (plotted rightward) with increasing Gibbs function (plotted
upward) at fixed P and N for a first-order phase transition [diagram (a)] and a second-order phase
transition [diagram (b)]. Gc is the critical value of the Gibbs potential at which the transition
occurs.
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Barium

Oxygen
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Fig. 5.5: (a) The unit cell for a BaTiO3 crystal at relatively high temperatures. (b) The displace-
ments of the titanium and oxygen ions relative to the corners of the unit cell, that occur in this
crystal with falling temperature when it undergoes its second-order phase transition. The magni-
tudes of the displacements are proportional to the amount Tc−T by which the temperature T drops
below the critical temperature Tc, for small Tc − T .

delay studying this model (Sec. 5.7) until we have learned about fluctuations of systems in
statistical equilibrium (Sec. 5.6), which the van der Waals gas also illustrates.

Less familiar, but also important, are second-order phase transitions. In such transitions,
the volumes V of the two phases are the same at the transition point, but their rates of
change dV/dG are different (and this is so whether one holds P fixed as G decreases, or
holds T fixed, or holds some combination of P and T fixed); see Fig. 5.4b.

Crystals provide examples of both first-order and second-order phase transitions. A crys-
tal can be characterized as a 3-dimensional repetition of a “unit cell”, in which ions are
distributed in some fixed way. For example, Fig. 5.5a shows the unit cell for a BaTiO3 (bar-
ium titanate) crystal at relatively high temperatures. This unit cell has a cubic symmetry.
The full crystal can be regarded as made up of such cells stacked side by side and one upon
another. A first-order phase transition occurs when, with decreasing temperature, the Gibbs
potential G of some other ionic arrangement, with a distinctly different unit cell, drops be-
low the G of the original arrangement. Then the crystal can spontaneously rearrange itself,
converting from the old unit cell to the new one with some accompanying release of heat
and some discontinuous change in volume.

BaTiO3 does not behave in this way. Rather, as the temperature falls a bit below a
critical value, the unit cell begins to elongate parallel to one of its edges; i.e., the cell’s
atoms get displaced as indicated in Fig. 5.5b. If the temperature is only a tiny bit below
critical, they are displaced by only a tiny amount. When the temperature falls further, their
displacements increase. If the temperature is raised back up above critical, the ions return to
the standard, rigidly fixed positions shown in Fig. 5.5a. The result is a discontinuity, at the
critical temperature, in the rate of change of volume dV/dG (Fig. 5.4b), but no discontinuous
jump of volume and no latent heat.

This BaTiO3 example illustrates a frequent feature of phase transitions: When the tran-
sition occurs, i.e., when the atoms start to move, the unit cell’s cubic symmetry gets broken.
The crystal switches, discontinuously, to a lower type of symmetry, a tetragonal one in this
case. Such symmetry breaking is a common occurence in phase transitions.

Bose-Einstein condensation of a bosonic atomic gas in a magnetic trap (Sec. 4.9) is
another example of a phase transition. As we saw in Ex. 4.13, for Bose condensation the
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specific heat of the atoms changes discontinuously (in the limit of an arbitrarily large number
of atoms) at the critical temperature; this, or often a mild divergence of the specific heat,
is characteristic of second-order phase transitions. Ferromagnetism also exhibits a second-
order phase transition, which we shall explore in Secs. 5.8.3 and 5.8.4 using two powerful
computational techiques: the renormalization group, and Monte Carlo methods.

****************************

EXERCISES

Exercise 5.8 Example: The Clausius-Clapeyron Equation for Two Phases in Equilibrium
with Each Other

(a) Consider H2O in contact with a heat and volume bath with temperature T and pressure
P . For certain values of T and P the H2O will be liquid water; for others, ice; for others,
water vapor—and for certain values it may be a two- or three-phase mixture of water,
ice, and/or vapor. Show, using the Gibbs potential and its Euler equation, that, if
two phases a and b are present and in equilibrium with each other, then their chemical
potentials must be equal : µa = µb. Explain why, for any phase a, µa is a unique function
of T and P . Explain why the condition µa = µb for two phases to be present implies
that the two-phase regions of the T − P plane are lines and the three-phase regions
are points; see Fig.5.6. The three-phase region is called the “triple point”. The volume
V of the two- or three-phase system will vary depending on how much of each phase
is present, since the density of each phase (at fixed T and P ) is different.

(b) Show that the slope of the ice-water interface curve in Fig. 5.6 (the “melting curve”) is
given by the “Clausius-Clapeyron equation”

(
dP

dT

)

melt

=
∆qmelt

T

(
ρice ρwater
ρice − ρwater

)

, (5.57a)

where ρ is density (mass per unit volume) and ∆qmelt is the latent heat per unit mass
for melting (or freezing), i.e., the amount of heat required to melt a unit mass of ice, or
the amount released when a unit mass of water freezes. Notice that, because ice is less
dense than water, the slope of the melting curve is negative. [Hint : compute dP/dT
by differentiating µa = µb, and then use the thermodynamic properties of Ga = µaNa

and Gb = µbNb.]
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Fig. 5.6: Phase diagram for H2O.
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(c) Suppose that a small amount of water is put into a closed container of much larger
volume than the water. Initially there is vacuum above the water’s surface, but as
time passes some of the H2O evaporates to give vapor-water equilibrium. The vapor
pressure will vary with temperature in accord with the Clausius-Clapeyron equation

dPvapor

dT
=

∆qevaporate
T

(
ρwater ρvapor
ρwater − ρvapor

)

. (5.57b)

Now, suppose that a foreign gas (not water vapor) is slowly injected into the container.
Assume that this gas does not dissolve in the liquid water. Show that, as the pressure
Pgas of the foreign gas gradually increases, it does not squeeze water vapor into the
water, but rather it induces more water to vaporize:

(
dPvapor

dPtotal

)

T fixed

=
ρvapor
ρwater

> 0 , (5.57c)

where Ptotal = Pvapor + Pgas.

****************************

5.5.3 Chemical Reactions

A second important application of the Gibbs potential is to the study of chemical reactions.
Under the term “chemical reactions”, we include any change in the constituent particles of
the material being studied, including the joining of atoms to make molecules, the liberation
of electrons from atoms in an ionization process, the joining of two atomic nuclei to make
a third kind of nucleus, the decay of a free neutron to produce an electron and a proton, ...
. In other words, the “chemical” of chemical reactions encompasses the reactions studied by
nuclear physicists and elementary particle physicists as well as those studied by chemists.
The Gibbs representation is the appropriate one for discussing chemical reactions, because
such reactions generally occur in an environment (“bath”) of fixed temperature and pressure.

As a specific example, consider in the earth’s atmosphere the breakup of two molecules
of water vapor to form two hydrogen molecules and one oxygen molecule, 2H2O → 2H2+O2.
The inverse reaction 2H2+O2 → 2H2O also occurs in the atmosphere, and it is conventional
to write down the two reactions simultaneously in the form

2H2O ↔ 2H2 +O2 . (5.58)

A chosen (but arbitrary) portion of the atmosphere, with idealized walls to keep all its
molecules in, can be regarded as a “system”. (The walls are unimportant in practice, but are
pedagogically useful.) The kinetic motions of this system’s molecules reach and maintain
statistical equilibrium, at fixed temperature T and pressure P , far more rapidly than chemical
reactions can occur. Accordingly, if we view this system on timescales short compared to
that τreact for the reactions (5.58) but long compared to the kinetic relaxation time, then
we can regard the system as in partial statistical equilibrium, with fixed numbers of water
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molecules NH2O, hydrogen molecules NH2
, and oxygen molecules NO2

, and with a Gibbs
potential whose value is given by the Euler relation (5.53)

G = µ̃H2ONH2O + µ̃H2
NH2

+ µ̃O2
NO2

. (5.59)

(Here, even though the Earth’s atmosphere is highly nonrelativistic, we include rest masses
in the chemical potentials and in the Gibbs potential; the reason will become evident at the
end of this section.)

When one views the sample over a longer timescale, ∆t ∼ τreact, one discovers that
these molecules are not inviolate; they can change into one another via the reactions (5.58),
thereby changing the value of the Gibbs potential (5.59). The changes of G are more readily
computed from the Gibbs representation of the first law dG = V dP −SdT +

∑

I µ̃IdNI than
from the Euler relation (5.59). Taking account of the constancy of P and T and the fact
that the reactions entail transforming two water molecules into two hydrogen molecules and
one oxygen molecule (or conversely) so

dNH2
= −dNH2O , dNO2

= −1

2
dNH2O , (5.60a)

the first law says

dG = (2µ̃H2O − 2µ̃H2
− µ̃O2

)
1

2
dNH2O . (5.60b)

The reactions (5.58) proceed in both directions, but statistically there is a preference for
one direction over the other. The preferred direction, of course, is the one that reduces the
Gibbs potential (i.e., increases the entropy of the molecules and their bath). Thus, if 2µ̃H2O

is larger than 2µ̃H2
+ µ̃O2

, then water molecules preferentially break up to form hydrogen
plus oxygen; but if 2µ̃H2O is less than 2µ̃H2

+ µ̃O2
, then oxygen and hydrogen preferentially

combine to form water. As the reactions proceed, the changing NI ’s produce changes in the
chemical potentials µ̃I . [Recall the intimate connection

NI =
(2πmIkBT )

3/2

h3
eµI/kBTV (5.61)

between µI = µ̃I − mIc
2 and NI for a gas in the nonrelativistic regime]. These changes

in the NI ’s and µ̃I ’s lead ultimately to a macrostate (thermodynamic state) of minimum
Gibbs potential G—a state in which the reactions (5.58) can no longer reduce G. In this
final state of full statistical equilibrium, the dG of expression (5.60b) must be zero; and
correspondingly, the combination of chemical potentials appearing in it must vanish:

2µ̃H2O = 2µ̃H2
+ µ̃O2

. (5.62)

The above analysis shows that the “driving force” for the chemical reactions is the com-
bination of chemical potentials in the dG of Eq. (5.60b). Notice that this combination has
coefficients in front of the µ̃I ’s that are identical to the coefficients in the reactions (5.58)
themselves; and the equilibrium relation (5.62) also has the same coefficients as the reac-
tions (5.60b). It is easy to convince oneself that this is true in general:
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Consider any chemical reaction. Write the reaction in the form

∑

j

νL
j A

L
j ↔

∑

j

νR
j A

R
j . (5.63)

Here the superscripts L and R denote the “left” and “right” sides of the reaction, the Aj’s
are the names of the species of particle or atomic nucleus or atom or molecule involved in
the reaction, and the νj ’s are the number of such particles (or nuclei or atoms or molecules)
involved. Suppose that this reaction is occurring in an environment of fixed temperature and
pressure. Then to determine the direction in which the reaction preferentially goes, examine
the chemical-potential sums for the two sides of the reaction,

∑

j

νL
j µ̃

L
j ,

∑

j

νR
j µ̃

R
j . (5.64)

The reaction will proceed from the side with the larger chemical-potential sum to the side
with the smaller; and ultimately the reaction will bring the two sides into equality. That final
equality is the state of full statistical equilibrium. Exercises 5.9 and 5.10 illustrate this.

When dealing with chemical reactions between highly nonrelativistic molecules and atoms—
e.g. water formation and destruction in the Earth’s atmosphere—one might wish to omit rest
masses from the chemical potentials. If one does so, and if one wishes to preserve the crite-
rion that the reaction goes in the direction of decreasing dG = (2µH2O− 2µH2

−µO2
)1
2
dNH2O

[Eq. (5.60b) with tildes removed], then one must choose as the “rest masses” to be subtracted
values that do not include chemical binding energies; i.e. one must define the rest masses
in such a way that 2mH2O = 2mH2

+ mO2
. One can avoid this delicacy by simply using

the relativistic chemical potentials. The derivation of the Saha equation (Ex. 5.10) is an
example.

****************************

EXERCISES

Exercise 5.9 **Example: Electron-Positron Equilibrium at “Low” Temperatures

Consider hydrogen gas in statistical equilibrium at a temperature T ≪ mec
2/kB ≃

6× 109K. Electrons at the high-energy end of the Boltzmann energy distribution can
produce electron-positron pairs by scattering off protons

e− + p → e− + p+ e− + e+ . (5.65)

[There are many other ways of producing pairs, but in analyzing statistical equilibrium
we get all the information we need (a relation among the chemical potentials) by
considering just one way.]

(a) In statistical equilibrium, the above reaction and its inverse must proceed at the same
rate, on average. What does this imply about the relative magnitudes of the electron
and positron chemical potentials µ̃− and µ̃+ (with rest masses included)?
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Fig. 5.7: The temperature Tp at which electron-positron pairs form in a dilute hydrogen plasma,
plotted as a function of density ρ. This is the correct upper limit (upper dashed curve in Fig. 3.7)
on the region where the plasma can be considered fully nonrelativistic. Above this curve, although
T may be ≪ mec

2/kB ≃ 6 × 109 K, a proliferation of electron-positron pairs radically changes the
properties of the plasma.

(b) Although these reactions require an e− that is relativistic in energy, almost all the
electrons and positrons will have kinetic energies of magnitude E ≡ E −mc2 ∼ kBT ≪
mc2, and thus will have E ≃ mc2 + p2/2m. What are the densities in phase space
N± = dN±/d

3xd3p for positrons and electrons in terms of p, µ̃±, and T ? Explain why
for a hydrogen gas we must have µ̃− > 0 and µ̃+ < 0.

(c) Assume that the gas is very dilute so that η ≪ 1 for both electrons and positrons.
Then integrate over momenta to obtain the following formula for the number densities
in physical space of electrons and positrons

n± =
2

h3
(2πmkBT )

3/2 exp

(
µ̃± −mc2

kBT

)

. (5.66)

In cgs units, what does the dilute-gas assumption η ≪ 1 correspond to in terms of n±?
What region of hydrogen mass density ρ and temperature T is the dilute-gas region?

(d) Let n be the number density of protons. Then by charge neutrality n = n− − n+

will also be the number density of “ionization electrons” (i.e., of electrons that have
been ionized off of hydrogen). Show that the ratio of positrons (and hence of pairs) to
ionization electrons is given by

n+

n
=

1

2y[y + (1 + y2)
1

2 ]
(5.67a)

where

y ≡ 1

4
nλ3emc2/kBT , and λ ≡ h√

2πmkBT
(5.67b)

is the thermal deBroglie wavelength of the electrons. Fig. 5.7 shows the temperature
Tp at which, according to this formula, n+ = n (and y = 0.354), as a function of mass
density ρ ≃ mprotonn. This Tp can be thought of as the “temperature at which pairs
form” in a dilute plasma. Somewhat below Tp there are hardly any pairs; somewhat
above, the pairs are profuse.
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(e) Note that at low densities pairs form at temperatures T ∼ 108K ≃ 0.02mec
2/kB.

Explain in terms of “available phase space” why the formation temperature is so low.

Exercise 5.10 **Example: Saha Equation for Ionization Equilibrium

Consider an optically thick hydrogen gas in statistical equilibrium at temperature T .
(By “optically thick” is meant that photons can travel only a distance small compared
to the size of the system before being absorbed, so they are confined by the hydrogen
and kept in statistical equilibrium with it.) Among the reactions that are in statistical
equilibrium are H + γ ↔ e + p (ionization and recombination of Hydrogen H, with
the H in its ground state) and e+ p ↔ e+ p+ γ (emission and absorption of photons
by “bremsstrahlung”, i.e., by the coulomb-force-induced acceleration of electrons as
they fly past protons). Let µ̃γ, µ̃H, µ̃e, and µ̃p be the chemical potentials including
rest mass-energies; let mH, me, mp be the rest masses; denote by φ ≡ (13.6 electron
volts) the ionization energy of hydrogen, so that mHc

2 = mec
2 + mpc

2 − φ; denote
µj ≡ µ̃j − mjc

2; and assume that T ≪ mec
2/kB ≃ 6 × 109K, and that the density

is low enough that the electrons, protons, and Hydrogen atoms can be regarded as
nondegenerate (i.e., as distinguishable, classical particles).

(a) What relationships hold between the chemical potentials µ̃γ, µ̃H, µ̃e, and µ̃p?

(b) What are the number densities nH, ne, and np expressed in terms of T and µ̃H, µ̃e,
µ̃p—taking account of the fact that the electron and proton both have spin 1

2
, and

including in H all possible electron and nuclear spin states?

(c) Derive the Saha equation for ionization equilibrium

nenp

nH

=
(2πmekBT )

3/2

h3
e−φ/kBT . (5.68)

This equation is widely used in astrophysics and elsewhere.

****************************

5.6 Fluctuations Away From Statistical Equilibrium

As we saw in Chap. 4, statistical mechanics is built on a distribution function ρ that is equal
to the probability of finding a chosen system in a quantum state at some chosen location in
the system’s phase space. For systems in statistical equilibrium, this probability is given by
the microcanonical or canonical or grand canonical or Gibbs or . . . distribution, depending
on the nature of the system’s interactions with its surroundings. Classical thermodynamics
makes use of only a tiny portion of the information in this probability distribution: the
mean values of a few macroscopic parameters (energy, entropy, volume, pressure, . . .). Also
contained in the distribution function, but ignored by classical thermodynamics, is detailed
information about fluctuations of a system away from its mean values.
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As an example, consider a microcanonical ensemble of boxes, each with volume V and
each containing precisely N identical, nonrelativistic, classical gas particles and containing
energy (excluding rest mass) between E and E + δE, where δE ≪ E. (Remember the
“kludge” that was necessary in Ex. 4.7). Focus attention on a quantity y that is not fixed by
the set E, V, N . That quantity might be discrete; e.g., the total number NR of particles in
the right half of the box. Alternatively, it might be continuous; e.g., the total energy ER in
the right half.

In the discrete case, the total number of quantum states that correspond to specific values
of y is related to the entropy S by the standard microcanonical relation Nstates(E, V,N ; y) =
exp[S(E, V,N ; y)/kB]; and correspondingly, since all states are equally probable in the micro-
canonical ensemble, the probability of finding a system of the ensemble to have the specific
value y is

p(E, V,N ; y) =
Nstates(E, V,N ; y)

∑

y Nstates(E, V,N ; y)
= const× exp

[
S(E, V,N ; y)

kB

]

. (5.69a)

Here the entropy S is to be computed via statistical mechanics (or, when possible, via
thermodynamics) not for the original ensemble of boxes in which y was allowed to vary, but
for an ensemble in which y is fixed at a chosen value.

The continuous case (e.g., y = ER) can be converted into the discrete case by divid-
ing the range of y into intervals that all have the same infinitesimal width δy. Then the
probability of finding y in one of these intervals is [dp(E, V,N ; y in δy)/dy]δy = const ×
exp[S(E, V,N, y in δy)]. Dividing both sides by δy and absorbing δy on the right side into
the constant, we obtain

dp(E, V,N ; y)

dy
= const× exp

[
S(E, V,N ; y in δy)

kB

]

. (5.69b)

Obviously, if we are interested in the joint probability for a set of y’s, some discrete (e.g.
y1 = NR) and some continuous (e.g. y2 = ER), that will be given by

dp(E, V,N ; y1, y2, ...yr)

dyq...dyr
= const× exp

[
S(E, V,N ; yj)

kB

]

, (5.69c)

where we keep in mind, but now omit from our notation, the fact that continous variables
are to be given values yj in some arbitrary but fixed infinitesimal range δyj.

The probability distribution (5.69c), though “exact,” is not terribly instructive. To get
better insight we expand S in powers of the deviations of the yj from the values ȳj that
maximize the entropy (these will turn out also to be the means of the distribution). Then
for small |yj − ȳj|, Eq. (5.69c) becomes

dp(E, V,N ; yj)

dyq . . . dyr
= const × exp

[
1

2kB

(
∂2S

∂yj∂yk

)

(yj − ȳj)(yk − ȳk)

]

. (5.69d)

Here the second partial derivative of the entropy is to be evaluated at the maximum-entropy
location, where yj = ȳj for all j. Expression (5.69d) is a (multidimensional) Gaussian
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probability distribution for which the means are obviously ȳj as predicted. (That this had
to be Gaussian follows from the central limit theorem, Sec. 6.3.2.)

The last entry in the first line of Table 5.2 summarizes the above equations: For a closed
system, the probability of some fluctuation away from equilibrium is proportional to eS/kB ,
where S is the total entropy for the out-of-equilibrium fluctuational macrostate, e.g., the
macrostate with NR particles in the right half box.

For the specific example where y1 ≡ NR =(number of perfect-gas particles in right half of
box) and y2 ≡ ER =(amount of energy in right half of box), we can infer S(E, V,N ;NR, ER)
from the Sackur-Tetrode equation (4.41) as applied to the two halves of the box and then
added:10

S(E, V,N ;ER, NR) = kBNR ln

[(
4πm

3h2

)3/2

e5/2
V

2

E
3/2
R

N
5/2
R

]

+ kB(N −NR) ln

[(
4πm

3h2

)3/2

e5/2
V

2

(E − ER)
3/2

(N −NR)5/2

]

. (5.70a)

It is straightforward to compute the values ĒR and N̄R of ER and NR that maximize this
entropy:

ĒR =
E

2
, N̄R =

N

2
. (5.70b)

Thus, in agreement with intuition, the mean values of the energy and particle number in
the right half box are equal to half of the box’s total energy and particle number. It is
also straightforward to compute from expression (5.70a) the second partial derivatives of the
entropy with respect to ER and NR, evaluate them at ER = ĒR and NR = N̄R, and plug
them into the probability distribution (5.69d). The result is

dpNR

dER

= const× exp

(−(NR −N/2)2

2(N/4)
+

−[(ER −E/2)− (E/N)(NR −N/2)]2

2(N/6)(E/N)2

)

. (5.70c)

This Gaussian distribution has the following interpretation: (i) there is a correlation between
the energy ER and the particle number NR in the right half of the box, as one might
have expected: if there is an excess of particles in the right half, then we must expect
an excess of energy there as well. (ii) The quantity that is not correlated with NR is
ER− (E/N)NR, as one might have expected. (iii) For fixed NR, dpNR

/dER is Gaussian with
mean ĒR = E/2 + (E/N)(NR −N/2) and with rms fluctuation (standard deviation; square
root of variance) σER

= (E/N)
√

N/6. (iv) After integrating over ER, we obtain

pNR
= const× exp

[−(NR −N/2)2

2N/4

]

. (5.70d)

This is Gaussian with mean N̄R = N/2 and rms fluctuation σNR
=
√

N/4. By contrast, if
the right half of the box had been in equilibrium with a bath far larger than itself, NR would

10Note that the derivation of Eq. (4.41), as specialized to the right half of the box, requires the same
kind of infinitesimal range δy2 = δER as we utilized above in deriving our fluctuational probability equation
(5.69d)].
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have had an rms fluctuation equal to the square root of its mean, σNR
=
√

N/2 [see Ex.
5.11]. The fact that the “companion” of the right half has only the same size as the right
half, rather than being far larger, has reduced the rms fluctuation of the number of particles
in the right half from

√

N/2 to
√

N/4.
Notice that the probability distributions (5.70c), and (5.70d) are exceedingly sharply

peaked about their means: Their standard deviations divided by their means, i.e., the mag-
nitude of their fractional fluctuations, are all of order 1/

√
N̄ , where N̄ is the mean number

of particles in a system; and in realistic situations N̄ is very large. (For example, N̄ is of
order 1026 for a cubic meter of the Earth’s atmosphere, and thus the fractional fluctuations
of thermodynamic quantities are of order 10−13.) It is this extremely sharp peaking that
makes classical thermodynamics insensitive to the choice of type of equilibrium ensemble—
i.e., sensitive only to means and not to fluctuations about the means.

The generalization of this example to other situations should be fairly obvious; see Table
5.2. When a system is in some out-of-equilibrium macrostate, the total entropy S+Sb of the
system and any bath with which it may be in contact is, up to an additive constant, either
the system’s entropy S, or the negative of its out-of-equilibrium potential divided by the
bath’s temperature (−F/Tb+const, −G/Tb+const, or = −Ω/Tb+const (column 3 of Table
5.2). Correspondingly, the probability of a fluctuation, from statistical equilbrium, into this
out-of-equilibrium macrostate is proportional to the exponential of this quantity in units of
Boltzmann’s constant (e−S/kB , e−F/kBTb, e−G/kBTb or e−Ω/kBTb; column 5 of Table 5.2). By
expanding the quantity in the exponential around the equilibrium state, to second order in
the fluctuations, one obtains a Gaussian probability distribution for the fluctuations.

As examples: in Ex. 5.11 we study fluctuations in the number of particles in a cell that
is immersed in a heat and particle bath, so the starting point is the out-of-equilibrium grand
potential Ω. And in Ex. 5.12, we study temperature and volume fluctuations for a system in
contact with a heat and volume bath; so the starting point is the out-of-equilibrium Gibbs
function G.

****************************

EXERCISES

Exercise 5.11 Example: Probability Distribution for the Number of Particles in a Cell

Consider a cell with volume V , like those of Fig. 5.1, that has imaginary walls and is immersed
in a bath of identical, nonrelativistic, classical, perfect-gas particles with temperature T and
chemical potential µ. Suppose that we make a large number of measurements of the number
of particles in the cell and that from those measurements we compute the probability pN for
that cell to contain N particles.

(a) How widely spaced in time must the measurements be to guarantee that the measured
probability distribution is the same as that which one computes, by the methods of
this section, from an ensemble of cells (Fig. 5.1) at a specific moment of time?

(b) Assume that the measurements are widely enough separated for this criterion to be



42

satisfied. Show that pN is given by

pN ∝ exp

[−Ω(V, Tb, µb;N)

kBTb

]

≡ 1

N !

∫
d3Nxd3Np

h3N
exp

[−En − µbNn

kBTb

]

(5.71)

=
1

N !

∫
d3Nxd3Np

h3N
exp

[

(
∑N

i=1 p
2
i /2m)− µbN

kBTb

]

,

where Ω(V, Tb, µb;N) is the grand potential for the ensemble of cells, with each cell
constrained to have precisely N particles in it (cf. the last entry in Table 5.2).

(c) By evaluating Eq. (5.71) exactly and then computing the normalization constant, show
that the probability pN for the cell to contain N particles is given by the Poisson
distribution

pN = e−N̄(N̄N/N !) , (5.72a)

where N̄ is given is the mean number of particles in a cell, N̄ = (
√
2πmkBTb/h)

3eµ/kBTbV
[Eq. (3.37a)].

(c) Show that for the Poisson distribution (5.72a), the expectation value is 〈N〉 = N̄ , and
the root mean square deviation from this is

σN ≡ 〈(N − N̄)2〉 1

2 = N̄
1

2 . (5.72b)

(d) Show that for N − N̄ . σN , this Poisson distribution is exceedingly well approximated
by a Gaussian with mean N̄ and variance σN .

Exercise 5.12 Example: Fluctuations of Temperature and Volume in an Ideal Gas

Consider a gigantic container of gas made of identical particles that might or might not
interact. Regard this gas as a bath, with temperature Tb and pressure Pb. Pick out at
random a sample of the bath’s gas containing precisely N particles, with N ≫ 1. Measure
the volume V of the sample and the temperature T inside the sample. Then pick another
sample of N particles and measure its V and T , and repeat over and over again. Thereby
map out a probability distribution dp/dTdV for V and T of N -particle samples inside the
bath.

(a) Explain in detail why

dp

dTdV
= const×exp

[

− 1

2kBTb

(
∂2G

∂V 2
(V−V̄ )2+

∂2G

∂T 2
(T−Tb)

2+2
∂2G

∂T∂V
(V−V̄ )(T−Tb)

)]

,

(5.73a)
where G(N, Tb, Pb;T, V ) = E(T, V,N) + PbV − TbS(T, V,N) is the out-of-equilibrium
Gibbs function for a sample of N particles interacting with this bath (next to last line
of Table 5.2), V̄ is the equilibrium volume of the sample when its temperature and
pressure are those of the bath, and the double derivatives in Eq. (5.73a) are evaluated
at the equilibrium temperature Tb and pressure Pb.
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(b) Show that the derivatives, evaluated at T = Tb and V = V̄ , are given by
(
∂2G

∂T 2

)

V,N

=
CV

Tb

,

(
∂2G

∂V 2

)

T,N

=
1

κ
,

(
∂2G

∂T∂V

)

N

= 0 , (5.73b)

where CV is the gas samples’ specific heat at fixed volume and κ is its compressibility
at fixed temperature:

CV ≡
(
∂E

∂T

)

V,N

= T

(
∂S

∂T

)

V,N

, κ ≡ −
(
∂V

∂P

)

T,N

, (5.73c)

both evaluated at temperature Tb and pressure Pb. [Hint: Write G = Geq + (Pb −
P )V − (Tb − T )S, where Geq is the equilibrium Gibbs function for the gas samples.]
Thereby conclude that

dp

dTdV
= const× exp

[

−(V − V̄ )2

2kBTbκ
− CV (T − Tb)

2

2kBT
2
b

]

. (5.73d)

(d) This probability distribution says that the temperature and volume fluctuations are
uncorrelated. Is this physically reasonable? Why?

(e) What are the rms fluctuations of the samples’ temperature and volume, σT and σV ?
Show σT scales as 1/

√
N and σV as

√
N , where N is the number of particles in the

samples. Are these physically reasonable? Why?

Exercise 5.13 T2 Example and Derivation: Evolution and Fluctuations of a System in
Contact with a Volume Bath
Exercise 5.5 explored the enthalpy representation of thermodynamics for an equilibrium
ensemble of systems in contact with a volume bath. Here we extend that analysis to an
ensemble out of equilibrium. We denote by Pb the bath pressure.

(a) The systems exchange volume with the bath but not heat or particles. Explain why,
even though the ensemble may be far from equilibrium, any system’s volume change
dV must be accompanied by an energy change dE = −PbdV . This implies that the
system’s enthalpy H = E+PbV is conserved. All systems in the ensemble are assumed
to have the same enthalpy H and the same number of particles N .

(b) Using equilibrium considerations for the bath, show that interaction with a system
cannot change the bath’s entropy.

(c) Show that the ensemble will always evolve toward increasing entropy S, and that
when the ensemble finally reaches statistical equilibrium with the bath, its distribution
function will be that of the enthalpy ensemble (Table 5.1): ρ = e−S/kB = const for all
regions of phase space that have the specified particle number N and enthalpy H .

(d) Show that fluctuations away from equilibrium are described by the probability dis-
tributions (5.69a) and (5.69c), but with the system energy E replaced by the system
enthalpy H ; cf. Table 5.2.

****************************
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Fig. 5.8: (a) The van der Waals equation of state P (N,V, T ) plotted as pressure P versus specific
volume V/N at fixed temperature T , for various values of the temperature T . (b) The route of a
phase transition in the van der Waals gas. The transition is a discontinuous jump from point A to
point B.

5.7 Van der Waals Gas: Volume Fluctuations, and Gas-

To-Liquid Phase Transition

The van der Waals gas studied in Sec. 5.3.2 provides a moderately realistic model for real
gases such as H2O and their condensation (phase transition) into liquids such as water.

The equation of state for a van der Waals gas is
(

P +
a

v2

)

(v − b) = kBT (5.74)

[Eq. (5.26)]. Here a and b are constants and v ≡ V/N is the specific volume (the inverse of
the number density of gas particles). In Fig. 5.8a we depict this equation of state as curves
(isotherms) of pressure P versus specific volume v at fixed temperature T . Note [as one can
easily show from Eq. (5.74)] that there is a critical temperature Tc = 8a/27bkB such that, for
T > Tc the isotherms are monotonic decreasing; for T = Tc they have an inflection point (at
v = vc ≡ 3b and P = Pc = a/27b2); and for T < Tc they have a maximum and a minimum.

From Eq. (5.73d), derived in Ex. 5.12, we can infer that the probability dp/dv for fluc-
tuations of the specific volume of a portion of this gas containing N particles is

dP

dv
= const× exp

[
N(∂P/∂v)T

2kBT
(v − v̄)2

]

. (5.75)

This probability is controlled by the slope (∂P/∂v)T of the isotherms. Where the slope is
negative, the volume fluctuations are small; where it is positive, the fluid is unstable: its
volume fluctuations grow. Therefore, for T < Tc, the region of an isotherm between its
minimum M and its maximum X (Fig. 5.8b) is unphysical; the fluid cannot exist stably
there. Evidently, at T < Tc there are two phases: one with low density (v > vX) is gaseous;
the other with high density (v < vM < vc = 3b) is liquid. [Recall, from comment (i) at
the end of Sec. 5.3.2, that b/4 is the volume of each of the material’s particles, so in the
high-density phase the particles’ separations are not much larger than their diameter; this
is characteristic of a fluid.]
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Hold the temperature T fixed at T < Tc, and gradually increase the density from zero
(decrease the specific volume v from infinity). At low densities, the material will be gaseous,
and at high densities, it will be liquid. The phase transition from gas to liquid involves a
discontinuous jump from some point B in Fig. 5.8b to another point A. The Gibbs potential
controls the location of those points:

Since the two phases are in equilibrium with each other at A and B, their Gibbs potential
G = µN must be the same, which means their chemical potentials must be the same,
µA = µB—as, of course must be their temperatures TA = TB (they lie on the same isotherm);
and this in turn implies their pressures must be the same, PA = P (µA, T ) = P (µB, T ) = PB.
Therefore, the points A and B in Fig 5.8b are connected by a horizontal line (the dashed
line). Let us use the first law of thermodynamics in the Gibbs representation to compute the
change in the chemical potential µ as one moves along the isotherm from point A to point
B. The first law says dG = −SdT + V dP + µdN . Focusing on a sample of the material
containing N particles, and noting that along the isotherm the sample has G = µN , dN = 0,
dT = 0 and V = vN , we obtain dµ = vdP . Integrating this along the isotherm from A to
B, we obtain

0 = µB − µA =

∫ B

A

dµ =

∫ B

A

vdP . (5.76)

This integral is the area of the right stippled region in Fig. 5.8b minus the area of the left
stippled region. Therefore, these two areas must be equal—and this tells us the location
of the points A and B that identify the two phases, liquid and gaseous, when the phase
transition occurs.

Returning to volume fluctuations: wherever an isotherm is flat, there are large volume
fluctuations. For T < Tc, it is flat at the minimum M and the maximum X, but these do
not occur in nature—unless the phase transition is somehow delayed as one compresses or
expands the material. However, for T = Tc, the isotherm is flat at its inflection point v = vc,
P = Pc (the material’s “critical point” C in Fig. 5.8a); so the volume fluctuations will be
very large there.

At some termperatures and pressures, T and P , it is possible for two phases, liquid and
gas, to exist; and at other T and P , only one phase. The dividing line, in the T − P plane
between these two regions is called a catastrophe — a term that comes from catastrophe
theory. We shall explore this in Ex. 7.13, after first introducing some ideas of catastrophe
theory in the context of optics.

****************************

EXERCISES

Exercise 5.14 ***Example: Out-of-Equilibrium Gibbs Potential for Water; Surface Ten-
sion and Nucleation
[Exercise adapted from Ex. 11.3 and Sec. 11.3 of Sethna (2006).] Water and its vapor (liquid
and gaseous H2O) can be described moderately well by the van der Waals model, with the
parameters a = 1.52 × 10−38Jm3 and b = 5.05 × 10−29m3 determined by fitting to the
measured pressure and temperature at the critical point (inflection point C in Fig. 5.8a:
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Pc = a/27b2 = 22.09MPa, Tc = 8a/27bkB = 647.3K. [Note: MPa is 106 Pascal; and one
Pascal is the SI unit of pressure, 1kgm s−2.]

(a) For an out-of-equilibrium sample of N atoms of H2O at tempature T and pressure P ,
which has fluctuated to a specific volume v, the van-der-Waals-modeled Gibbs potential
is

G(N, T, P ; v) = N [−kBT+Pv−a/v+kBT ln[λ3/(v−b)] , λ ≡ h/
√

2πmkBT . (5.77)

Verify that this Gibbs potential is minimized when v satisfies the van der Waals equa-
tion of state (5.74).

(b) Plot the chemical potential µ = G/N as a function of v at room temperature, T =
300K, for various pressures in the vicinity of one atmosphere = 0.1013MPa. Adjust
the pressure so that the two phases, liquid and gaseous, are in equilibrium, i.e. so the
two minima of the curve have the same height. [Answer: the required pressure is about
3.6 atmospheres, and the chemical-potential curve is shown in Fig. 5.9. If the gas is
a mixture of air and H2O rather than pure H2O, then the required pressure will be
lower.]

(c) Compare the actual densities of liquid water and gaseous H2O with the predictions of
Fig. 5.9. They agee moderately well but not very well.

(d) At the liquid’s surface there is a surface layer, a few molecules thick, in which the
attractive force between the water molecules, F = −6εor

6
o/r

7 = −(27/2π2)ab/r7 [Eqs.
(5.22b) and (5.24b)], produces surface tension. This surface tension is a force per unit
length, γ, that the surface molecules on one side of any line lying in the surface exert
on the molecules on the other side (Box 16.4). Explain by a simple physical argument
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Fig. 5.9: The out-of-equilibrium chemical potential for a van der Waals gas, with its parameters
fitted to the properties of H2O, and with temperature T = 300K and pressure P = 3.6atm at the
liquid-gas interface.
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why there is an energy γA associated with this surface tension, stored in any area A
of the surface. This is a free energy at fixed T, P (a Gibbs free energy) in excess of
the free energy that the surface’s water molecules would have, if they were in the bulk
liquid or the bulk gas. This excess free energy shows up in the chemical potential of
Fig. 5.9, and the numbers in that figure can be used to estimate the water’s surface
tension γ. Show that γ ∼ ∆µh/v, where h and v are the thickness and specific volume
of the surface layer, and ∆µ is the difference between the chemical potential in the
surface layer and in the bulk water and gas. Estimate γ using numbers from Fig. 5.9
and compare with the measured surface tension, γ ≃ 0.0723N/m at T = 300K.

(e) In a cloud or fog, when water vapor is cooled below its equilibrium temperature with
liquid water Te, water drops try to form, i.e. nucleate. However, there is a potential
barrier against nucleation due to the surface tension of an incipient drop: If R is the
drop’s radius, show that the Gibbs free energy of a droplet (sum of contributions from
its surface layer and its interior), minus the free energy that the droplet’s molecules
will have if they remain gaseous, is

∆G = 4πR2γ −
(
4π

3
R3

)
q∆T

vℓTe
. (5.78)

Here q is the latent heat per molecule that is released when the vapor liquifies, vℓ is the
liquid’s specific volume, and ∆T is the amount by which the temperature has dropped
below the equilibrium point Te for the two phases. Plot this G(R), and explain why
(i) there is a minimum droplet radius Rminfor nucleation to succeed, and (ii) for the
droplet to form with this minimum size, thermal fluctuations must put into it some
excess energy, B, above statistical equilibrium. Derive these formulas:

Rmin =
2γTevℓ
q∆T

, B =
16πγ3T 2

e v
2
ℓ

3q2∆T 2
. (5.79)

Explain why the rate at which nucleation occurs must scale as exp(−B/kBT ), which
is generally an exceedingly small number. Show that, if the nucleation occurs on a
leaf or blade of grass or on the surface of a dust grain, so the drop’s interface with the
vapor is a hemisphere rather than a sphere, then the energy barrier B is reduced by a
factor 8, and the rate of nucleation is enormously increased. That is why nucleation of
water droplets almost always occurs on solid surfaces.

****************************

5.8 T2 Magnetic Materials: Paramagnetism, Ising Model

for Ferromagnetism, Renormalization Group

and Monte Carlo Methods

The methods we have developed in this chapter can be applied to systems very different from
the gases and liquids we have studied thus far. In this section, we focus on magnetic materials
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as an example, and we use this example to illustrate two powerful, modern computational
techniques: the renormalization group, and Monte Carlo methods.

We consider, for concreteness, the simplest type of magnetic material: one consisting of a
cubic lattice of N identical atoms, each with spin 1/2 and magnetic moment mo. The material
is immersed in a uniform external magnetic field B, so each atom (labeled by an index i) has
two possible quantum states: one with its spin parallel to B (quantum number si = +1),
the other antiparallel to B (si = −1). The energies of these states are Esi = −moBsi. The
atoms interact with each others’ magnetic fields with a pairwise interaction energy Esisj

that we shall make more concrete in Sec. 5.8.2 below. The material’s total energy, when the
atoms are in the state |n〉 = |s1, s1, . . . , sn〉 is En −MnB, where

En =

N∑

i 6=j

N∑

j=1

Esisj , Mn = mo

N∑

j=1

sj . (5.80a)

are the material’s self-interaction energy (internal energy) and magnetization.
The atoms interact with a heat bath that has temperature T and with the external

magnetic field B which can be thought of as part of the bath. When they reach statistical
equilibrium with this heat and magnetic bath, the probability for the material (all N atoms)
to be in state |n〉 = |s1, s1, . . . , sn〉 is, of course,

pn = eG(N,B,T )/kBT e−(En−BMn)/kBT . (5.80b)

Here the first term is the normalization constant, which depends on the number N of atoms
in the sample and the bath’s B and T , and G(N,B, T ) is the fundamental thermodynamic
potential for this system, which acts as the normalizing factor for the probability:

e−G(N,B,T )/kBT =
∑

n

e−(En−BMn)/kBT . (5.80c)

We have denoted this potential G because it is analogous to the Gibbs potential for a gas,
but with the gas’s volume Vn replaced by minus the magnetization −Mn, and the gas bath’s
pressure P replaced by the material bath’s magnetic field strength B. Not surprisingly, the
Gibbs thermodynamic formalism for this magnetic material is essentially the same as for a
gas, but with V → −M and P → B.

5.8.1 T2 Paramagnetism; the Curie Law

Paramagnetic materials have sufficiently weak self-interaction that we can set En = 0 and
focus solely on the atoms’ interaction with the external B field. The magnetic interaction
tries to align each atom’s spin with B, while thermal fluctuations try to randomize the
spins. As a result, the stronger is B (at fixed temperature), the larger will be the mean
magnetization M̄ . From Eq. (5.80b) for the spins’ probability distribution we can compute
the mean magnetization:

M̄ =
∑

n

pnMn = EG/kBT
∑

n

eBMn/kBT = eG/kBT

(
∂

∂B

)

N,T

∑

n

eBMn/kBT . (5.81a)
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The last sum is equal to e−G/kBT [Eq. (5.80c) with En = 0, so Eq. (5.81a) becomes

M̄ = −
(
∂G

∂B

)

N,T

. (5.81b)

This is obviously our material’s analog of V̄ = (∂G/∂P )N,T for a gas [which follows from the
Gibbs representation of the first law, Eq. (5.52)].

To evaluate M̄ explicitly in terms of B, we must first compute the Gibbs function from
the statistical sum (5.80c) with En = 0. Because the magnetization Mn in state |n〉 =
|s1, s2, . . . , sN〉 is the sum of contributions from individual atoms [Eq. (5.80a)], this sum can
be rewritten as the product of identical contributions from each of the N atoms:

e−G/kBT =
(
e−Bmo + e+Bmo

)N
= [2 cosh(Bmo/kBT )]

N . (5.81c)

(In the second expression, the first term is from state si = +1 and the second from si = −1.)
Taking the logarithm of both sides, we obtain

G(B, T,N) = −kBT ln[2 cosh(Bmo/kBT )] . (5.82)

Differentiating with respect to B [Eq. (5.81b)], we obtain for the mean magnetization

M̄ = Nmo tanh(Bmo/kBT ) . (5.83)

At high temperatures, kBT ≫ Bmo, the magnetization increases linearly with the applied
magnetic field (the atoms begin to align with B) so the magnetic susceptibility is independent
of B,

χM ≡
(
∂M̄

∂B

)

T.N

≃ Nm2
o/kBT ; (5.84)

This χM ∝ 1/T for a paramagnetic material at high temperature is called Curie’s law.
At low termperatures kBT ≪ Bmo, the atoms are essentially all aligned with B and the
magnetization saturates at M̄ = Nmo.

5.8.2 T2 Ferromagnetism: The Ising Model

Turn now to a magnetic material for which the spins’ interactions are strong, and there is no
external B field. In such a material, at high temperatures the spin directions are random,
while at low enough temperatures, the interactions drive neighboring spins to align with
each other, producing a net magnetization. This is called ferromagnetism because it occurs
rather strongly in iron. The transition between the two regimes is sharp, i.e., it is a phase
transition.

In this section, we introduce a simple model for the spins’ interaction: the Ising model.11

For simplicity, we shall idealize to two spatial dimensions. The corresponding three-dimensional
model is far more difficult to analyze.

11Named for E. Ising, who first investigated it, in 1925.
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In this model, the atoms are confined to a square lattice that lies in the x, y plane, and
their spins can point up (along the +z direction) or down. The pairwise interaction energy
is nonzero only for nearest neighbor atoms:

Esi,sj = −Jsisj for nearest neighbors ; (5.85)

it vanishes for all other pairs. Here J is a positive constant (which depends on the lattice’s
specific volume v = V/N , but that will not be important for us). Note that the interaction
energy −Jsisj is negative if the spins are aligned (si = s′j) and positive if they are opposite
(si = −sj), so like spins attract and opposite spins repel. Although the Ising model does
not explicitly include more distant interactions, they are present indirectly: the “knock-on”
effect from one spin to the next, as we shall see, introduces long range organization that
propagates across the lattice when the temperature is reduced below a critical value Tc,
inducing a second-order phase transition.

We will use the dimensionless parameter

K ≡ J/kBT (5.86)

to characterize the phase transition. For K ≪ 1 (i.e., kBT ≫ J), the spins will be almost
randomly aligned and the total interaction energy will be close to zero. When K ≫ 1
(i.e., kBT ≪ J), the strong coupling will drive the spins to align over large (2-dimensional)
volumes. At some critical intermediate temperature Kc ∼ 1 (and corresponding temperature
Tc = J/kBKc), the phase transition will occur.

We shall compute this critical Kc, and macroscopic properties of the material near it,
using two modern, sophisticated computatioal techniques: renormalization methods in Sec.
5.8.3, and Monte Carlo methods in Sec. 5.8.4; and we shall examine the accuracy of these
methods by comparing our results with an exact solution for the 2-dimensional Ising model,
derived in a celebrated paper by Lars Onsager (1944).

5.8.3 T2 Renormalization Group Methods for The Ising Model

[This section is based in part on Maris and Kadanoff (1978) and on Sec. 5.7 of Chandler
(1987).]

The key idea behind the renormalization group approach to the Ising model is to try to
replace the full lattice by a sparser lattice that has similar thermodynamic properties, and
then to iterate, making the lattice more and more sparse; see Fig. 5.10.

We shall implement this procedure using the statistical sum (5.80c) for the Gibbs poten-
tial, except that here the external magnetic field B vanishes, so the bath is purely thermal
and its potential is F (N, V, T ), the physical free energy, not G; and the statistical sum (5.80c)
reads e−F/kBT ≡ z =

∑

n e
−En/kBT . For our Ising model, with its nearest-neighbor interaction

energies (5.85), this becomes

e−F (N,V,T )/kBT ≡ z =
∑

{s1=±1,s2=±1,...}

eKΣ1sisj . (5.87a)
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Here in the exponential Σ1 means a sum over all pairs of nearest neighbor sites {i, j}. The
dependence on the material’s number of atoms N appears in the number of terms in the big
sum; and the dependence on V/N and on T is contained in the parameter K = J(V/N)/kBT .

The first step in the renormalization group method is to rewrite Eq. (5.87a) so that each
of the open-circle spins of Fig. 5.10, e.g. s5, appears in only one term in the exponential, and
then explicitly sum each of those spins over ±1 so they no longer appear in the summations:

z =
∑

{...,s4=±1,s5=±1,s6=±1,...}

· · · eK(s1+s2+s3+s4)s5 · · ·

=
∑

{...s4=±1,s6=±1...}

· · ·
[
eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

]
· · · . (5.87b)

(This rewriting of z is possible because each open-circle spin interacts only with solid-circle
spins.) The partition function is now a product of terms like those in the square brackets,
one for each open-circle lattice site that we have “removed”. We would like to rewrite each
square bracketed term in a form involving solely nearest-neighbor interactions of the solid-
circle spins, so that we can then iterate our procedure. Such a rewrite, however, is not
possible; after some experimentation, one can verify that the rewrite also requires next-
nearest-neighbor interactions and four-site interactions:

[
eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

]

= f(K)e
1

2
K1(s1s2+s2s3+s3s4+s4s1)+K2(s1s3+s2s4)+K3s1s2s3s4 . (5.87c)

We can determine the four functions K1(K), K2(K), K3(K), f(K) by substituting each of
the four possible distinct combinations of {s1, s2, s3, s4}, into Eq. (5.87c). Those four com-
binations, arranged in the pattern of the solid circles of Fig. 5.10, are ++

+
+, −+

+
−, ++

−
−,

and ++
+
−. [Rotating the pattern or changing all signs leaves both sides of Eq. (5.87c) un-

changed.] By inserting these combinations into Eq. (5.87c)) and performing some algebra,

1

2 5 4

3

Fig. 5.10: Partition of a square lattice into two interlaced square lattices (solid circles and open
circles). In the renormalization group approach, the open-circle spins are removed from the lattice,
and all their interactions are replaced by modified interactions between the remaining solid-circle
spins. The new lattice is rotated by π/4 with respect to the original lattice and the lattice spacing
increases by a factor

√
2.
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we obtain

K1 =
1

4
ln cosh(4K) ,

K2 =
1

8
ln cosh(4K) ,

K3 =
1

8
ln cosh(4K)− 1

2
ln cosh(2K) ,

f(K) = 2[cosh(2K)]1/2[cosh(4K)]1/8 . (5.87d)

By inserting expression (5.87c) and the analogous expressions for the other terms into
Eq. (5.87b), we obtain the partition function for our original N -spin lattice of open and
closed circles, expressed as a sum over the N/2-spin lattice of closed circles:

z(N,K) = [f(K)]N/2
∑

e[K1Σ1sisj+K2Σ2sisj+K3Σ3sisjsksl] . (5.87e)

Here the symbol Σ1 still represents a sum over all nearest neighbors but now in the N/2
lattice, Σ2 is a sum over the four next nearest neighbors and Σ3 is a sum over spins located
at the vertices of a unit cell. [The reason we defined K1 with the 1/2 in Eq. (5.87c) was
because each nearest neighbor interaction appears in two adjacent squares of the solid-circle
lattice, thereby converting the 1/2 to a 1 in Eq. (5.87e).]

So far, what we have done is exact. We now make two drastic approximations that are
designed to simplify the remainder of the calculation and thereby elucidate the renormaliza-
tion group method. First, in evaluating the partition function (5.87e), we drop completely
the quadruple interaction (i.e. we set K3 = 0). This is likely to be decreasingly accurate as
we lower the temperature and the spins become more aligned. Second, we assume that near
the critical point, in some average sense, the degree of alignment of next nearest neighbors (of
which there are as many as nearest neighbors) is “similar” to that of the nearest neighbors,
so that we can set K2 = 0 but increase K1 to

K ′ = K1 +K2 =
3

8
ln cosh(4K). (5.88)

(If we simply ignored K2 we would not get a phase transition.) This substitution ensures
that the energy of a lattice with N/2 aligned spins, and therefore N nearest neighbor and N
next nearest neighbor bonds, namely −(K1 +K2)NkBT , is the same as that of a lattice in
which we just include the nearest neighbor bonds, but strengthen the interaction from K1 to
K ′. Clearly this will be unsatisfactory at high temperature, but we only need it to be true
near the phase transition’s critical temperature.

These approximations bring the partition function (5.87e) into the form

z(N,K) = [f(K)]N/2z(N/2, K ′) , (5.89a)

which relates the partition function for our original Ising lattice of N spins and interaction
constant K to that of a similar lattice with N/2 spins and interaction constant K ′.
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As the next key step in the renormalization procedure, we note that because the free
energy, F = −kBT ln z, is an extensive variable, ln z must increase in direct proportion to
the number of spins; i.e, it must have the form

−F/kBT ≡ ln z(N,K) = Ng(K) , (5.89b)

for some function g(K). By combining Eqs. (5.89a) and (5.89b), we obtain a relation for the
function g(K) (the free energy, aside from constants) in terms of the function f(K):

g(K ′) = 2g(K)− ln f(K) , where f(K) = 2[cosh(2K)]1/2[cosh(4K)]1/8 (5.90)

[cf. Eq. (5.87d)].
Equations (5.88) and (5.90) are the fundamental equations that allow us to calculate

thermodynamic properties. They are called the renormalization group equations because
their transformations form a mathematical group, and they are a scheme for determining
how the effective coupling parameter K changes (gets renormalized) when one views the
lattice on larger and larger distance scales. Renormalization group equations like these have
been widely applied in elementary particle theory, condensed matter theory, and elsewhere.
Let us examine these in detail.

The iterative map (5.88) expresses the coupling constant K ′ for a lattice of enlarged
physical size and reduced number of particles N/2 in terms of K for the smaller lattice with
N particles. (And the associated map (5.90) expresses the free energy when the lattice is
viewed on the larger scale in terms of that for a smaller scale.) The map (5.88) has a fixed
point that is obtained by setting K ′ = K; i.e., Kc =

3
8
ln cosh(4Kc), which implies

Kc = 0.507 . (5.91)

This fixed point corresponds to the critical point for the phase transition, with critical
temperature Tc such that Kc = J/kBTc.

We can infer that this is the critical point by the following physical argument: Suppose
that T is slightly larger than Tc, so K is slightly smaller than Kc. Then, when we make
successive iterations, because dK ′/dK > 1 at K = Kc, K decreases with each step, moving
farther from Kc; the fixed point is unstable. What this means is that, when T > Tc, as
we look on larger and larger scales, the effective coupling constant K becomes weaker and
weaker, so the lattice becomes more disordered. Conversely, below the critical temperature
(T < Tc and K > Kc), the lattice become more ordered with increasing scale. Only when
K = Kc does the lattice appear to be comparably disordered on all scales. It is here that
the increase of order with length scale changes from greater order at smaller scales (for high
temperature) to greater order at larger scales (for low temperature).

To demonstrate more explicitly that K = Kc is the location of a phase transition, we
shall compute the lattice’s specific heat in the vicinity of Kc. The first step is to compute
the lattice’s entropy, S = −(∂F/∂T )V,N . Recalling that K ∝ 1/T at fixed V,N [Eq. (5.86)]
and using expression (5.89b) for F , we see that

S = −
(
∂F

∂T

)

V,N

= NkB

[

g −K

(
dg

dK

)]

. (5.92a)
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The specific heat at constant volume is then, in turn, given by

CV = T

(
∂S

∂T

)

V,N

= NkBK
2 d

2g

dK2
. (5.92b)

Next we note that, because the iteration (5.88) is unstable near Kc, the inverse iteration

K =
1

4
cosh−1[exp(8K ′/3)] (5.92c)

is stable. The corresponding inverse transformation for the function g(K) is obtained from
Eq. (5.90), with f from (5.87d) and K in that f converted to K ′ using (5.87d):

g(K) =
1

2
g(K ′) +

1

2
ln{2 exp(2K ′/3)[cosh(4K ′/3)]1/4} . (5.92d)

Now, we know that at low temperature, T ≪ Tc and K ≫ Kc, all the spins are aligned;
correspondingly, in the statistical sum (5.87a) the two terms with all s’s identical dominate,
giving z = e−F/kBT = eNg = 2e2NK , whence g(K) ≃ 2K. Conversely, at high temperature,
there is complete disorder and K → 0. This means that every one of the 2N terms in
the statistical sum (5.87a) is unity, giving z = eNg = 2N , whence g(K) ≃ ln 2. We can
therefore use the iterative map, Eqs. (5.92c), (5.92d), to approach K = Kc from either
side starting with the high temperature and low temperature limits of g(K) and evaluating
thermodynamic quantities at each step. More specifically, at each step, we evaluate g(K),
dg/dK and d2g/dK2 numerically, and from them we compute F , S and CV using Eqs. (5.89b),
(5.92a), and (5.92b).

The iterated values of these quantities are plotted as points in Fig. 5.11. Note that the
entropy S is continuous at Kc [panel (c)], but its derivative, the specific heat [panel (d)],
diverges at Kc, as K → Kc from either side. This is characteristic of a second order phase
transition.

In order to calculate the explicit form of this divergence, suppose that g(K) is a sum of
an analytic (infinitely differentiable) function and a non-analytic part. Suppose that near
the critical point, the nonanalytic part behaves as g(K) ∼ |K − Kc|2−α for some “critical
exponent” α. This implies that CV diverges ∝ |K − Kc|−α ∝ |T − Tc|−α. Now, from
Eq. (5.92d), we have that

|K ′ −Kc|2−α = 2|K −Kc|2−α, (5.93a)

or equivalently,
dK ′

dK
= 21/(2−α). (5.93b)

Evaluating the derivative at K = Kc from Eq. (5.92c), we obtain

α = 2− ln 2

ln(dK ′/dK)c
= 0.131 , (5.93c)

which is consistent with the numerical calculation.
The exact Onsager (1944) analysis of the Ising model gives Kc = 0.441 compared to our

Kc = 0.507, and CV ∝ − ln |T − Tc| compared to our CV ∝ |T − Tc|−0.131. Evidently, our
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renormalization group approach gives a fair approximation to the correct answers, but not
a good approximation.

Our approach appears to have a serious problem in that it predicts a negative value
for the entropy in the vicinity of the critical point [panel (c) of Fig. 5.11]. This is surely
unphysical. (The entropy becomes positive further away, on either side of the critical point.)
This is an artificiality associated with our approach’s ansatz [i.e., associated with our setting
K2 = K3 = 0 and K ′ = K1 +K2 in Eq. (5.88)]. It does not seem easy to cure this within a
renormalization group approach. Nonetheless, our calculations exhibit the physical essentials
of the renormalization group approach to phase transitions.

Why did we bother to go through this cumbersome procedure when Onsager has given
us an exact analytical solution to the Ising model? The answer is that it is not possible to
generalize the Onsager solution to more complex and realistic problems. In particular, it
has not even been possible to find an Onsager-like solution to the three-dimensional Ising
model. However, once the machinery of the renormalization group has been mastered, it
can produce approximate answers, with an accuracy that can be estimated, for a variety of
problems. In the following section we shall look at a quite different approach to the same
2D Ising problem with exactly the same motivation in mind.

****************************

EXERCISES

Exercise 5.15 T2 Example: One-Dimensional Ising Lattice

(a) Write down the partition function for a one dimensional Ising lattice as a sum over
terms describing all possible spin organisations.
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Fig. 5.11: (a) Iteration map K(K ′) in the vicinity of the critical point. (b) Free energy per spin
(c) Entropy per spin, (d) Specific heat per spin. Recall that J/kBT = K.
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(b) Show that by separating into even and odd numbered spins, it is possible to factorize
the partition function and relate z(N,K) exactly to z(N/2, K ′). Specifically show that

z(N,K) = f(K)N/2z(N/2, K ′) (5.94)

where K ′ = ln[cosh(2K)]/2 and f(K) = 2[cosh(2K)]1/2.

(c) Use these relations to demonstrate that the one dimensional Ising lattice does not
exhibit a second order phase transition.

****************************

5.8.4 T2 Monte Carlo Methods for the Ising Model

In this section, we shall explore the phase transition of the 2-dimensional Ising model using
our second general method: the Monte Carlo approach.12 This method, like the renor-
malization group, is a powerful tool for a much larger class of problems than just phase
transitions.

The Monte Carlo approach is much more straightforward in principle than the renormal-
ization group. We set up a square lattice of atoms and initialize their spins randomly.13 We
imagine that our lattice is in contact with a heat bath with a fixed temperature T (it is one
member of a canonical ensemble of systems), and we drive it to approach statistical equilib-
rium and then wander onward through an equilibrium sequence of states |n1〉, |n2〉 , ... in a
prescribed, ergodic manner. Our goals are to visualize typical equilibrium states (Fig. 5.12
below), and to compute thermodynamic quantities using X̄ = z−1

∑

n e
−En/kBTXn, where

the sum is over the sequence of states |n1〉, |n2〉 , ... . For example, we can compute the
specific heat (at constant volume) from

CV =
dĒ

dT
=

∂

∂T

(∑

n e
−En/kBTEn

∑

n e
−En/kBT

)

=
E2 − Ē2

kBT 2
.

[Note that a singularity in the specific heat at a phase transition will be associated with large
fluctuations in the energy, just as it is associated with large fluctuations of temperature; Eq.
(5.73d)].

In constructing our sequence of lattice states |n1〉, |n2〉 , ... , we obviously cannot visit
every all 2N states even just once; so we must sample them fairly. How can we prescribe the
rule for changing the spins when going from one state in our sample to the next, so as to
produce a “fair” sampling? There are many answers to this question; we shall just describe
and use one of the simplest, due to Metropolis et al (1953). In order to understand this, we

12The name “Monte Carlo” is a laconic reference to the casino whose patrons believe they will profit by
exploiting random processes.

13This and other random steps that follow are performed numerically and require a (pseudo) random
number generator. Most programming languages supply this utility, which is mostly used uncritically,
occasionally with unintended consequences. Defining and testing randomness is an important topic which,
unfortunately, we shall not address. See, for example, Press et al (2007).
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must appreciate that we don’t need to comprehend the detailed dynamics by which a spin
in a lattice actually flips. All that is required is that the rule we adopt, for going from one
state to the next, should produce a sequence that is in statistical equilibrium.

Let us denote by pnn′ the conditional probability that, if the lattice is in state |n〉, then the
next step will take it to state |n′〉. For statistical equlilibrium, it must be that the probability
that any randomly observed step takes us out of state |n〉 is equal to the probability that it
takes us into that state:

ρn
∑

n′

pnn′ =
∑

n′

ρn′pn′n . (5.95)

(Here ρn is the probability that the lattice was is state |n〉 just before the transition.) Now, we
know that in equilibrium, ρn′ = ρn e(En−En′ )/kBT , so our conditional transition probabilities
must satisfy

∑

n′

pnn′ =
∑

n′

pn′ne
(En−En′)/kBT . (5.96)

The Metropolis rule is simple:

if En > Em, then pnm = 1; and if En < Em, then pnm = exp[(En − Em)/kBT ]. (5.97)

It is easy to show that this satisfies the statistical equilibrium condition (5.96) and that it
drives an initial out-of-equilibrium system towards equilibrium.

The numerical implementation of the Metropolis rule (5.97) is this: Start with the lattice
in an initial, random state, and then choose one spin, at random, to make a trial flip. If the
new configuration has a lower energy, we always accept the change. If it has a higher energy,
we only accept the change with a probability given by exp[−∆E/kBT ], where ∆E > 0 is the
energy change.14 In this way, we produce a sequence of states that will ultimately have the
equilibrium distribution function, and we can perform our thermodynamic averages using
this sequence in an unweighted fashion. This is a particularly convenient procedure for the
Ising problem because, by changing just one spin at a time, ∆E can only take one of 5 values
(−4,−2, 0,+2,+4 in units of J), and it is possible to change from one state to the next very
quickly. (It also helps to store the two acceptance probabilities e−2J/kBT and e−4J/kBT for
making an energy-gaining transition, so as to avoid evaluating exponentials at every step.)

How big a lattice do we need and how many states should we consider? The lattice size
can be surprisingly small to get qualitatively correct results, if we adopt periodic boundary
conditions. That is to say, we imagine a finite tiling of our actual finite lattice and every
time we need to know the spin at a site beyond the tiling’s last column (or row), we use
the corresponding spin an equal distance beyond the first column (or row). This device
minimizes the effects of the boundary on the final answer. Lattices as small as 32× 32 can
be useful. The length of the computation depends on the required accuracy. (In practice,
this is usually implemented the other way round. The time available on a computer of
given speed determines the accuracy.) One thing should be clear. It is necessary that

14Actually, there is a small subtlety here. The probability of making a given transition is actually the
product of the probability of making the trial flip and of accepting the trial. However, the probability of
making a trial flip is the same for all the spins that we might flip (1/N), and these trial probabilities cancel,
so it is only the ratio of the probabilities of acceptance that matters.
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T = 1 T = 2 T = 3

Fig. 5.12: Typical equilibrium Ising lattices for temperatures T = 1, 2, 3 in units of J/kB . The
black regions have spins s = +1; the white, s = −1.

we explore a reasonable volume of state space in order to be able to sample it fairly and
compute meaningful estimates of thermodynamic quantities. The final lattice should exhibit
no vestigial patterns from the state when the computation was half complete. In practice,
it is this consideration that limits the size of the lattice, and it is one drawback of the
Metropolis algorithm that the step sizes are necessarily small. There is a large bag of tricks
for Monte Carlo simulations that can be used for variance reduction and estimation, but we
only concern ourselves here with the general method.

Returning to the Ising model, we show in Fig. 5.12 typical equilibrium states (snapshots)
for three temperatures, measured in units of J/kB). Recall that the critical temperature is
Tc = J/(kBKc) = 2.268J/kB. Note the increasingly long range order as the temperature is
reduced below Tc.

We have concluded this chapter with an examination of a very simple system that can
approach equilibrium according to specified rules and that can exhibit strong fluctuations.
In the following chapter, we shall examine fluctuations more systematically.

****************************

EXERCISES

Exercise 5.16 T2 Practice: Direct Computation of Thermodynamic Integrals
Estimate how long it would take a PC to compute the partition function for a 32× 32 Ising
lattice by evaluating every possible state.

Exercise 5.17 T2 Example: Monte Carlo Approach to Phase Transition
Write a simple computer program to compute the energy and the specific heat of a 2 di-
mensional Ising lattice as described in the text. Examine the accuracy of your answers by
varying the size of the lattice and the number of states sampled. (You might also try to
compute a formal variance estimate.)

Exercise 5.18 T2 Problem: Ising Lattice with an Applied Magnetic Field
Modify your computer program from Ex 5.17 to deal with the 2-dimensional Ising model
augmented by an externally imposed, uniform magnetic field [Eqs. (5.80)]. Compute the
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magnetization and the magnetic susceptibility for wisely selected values of moB/J and K =
J/kBT .

****************************

Bibliographic Note

Most statistical mechanics textbooks include much detail on statistical thermodynamics.
Among those we have found useful at an elementary level are Kittel and Kroemer (1980),
and at more advanced levels, Chandler (2007), Kardar (2007), Pathria and Beale (2011),
Reif (1965), and Sethna (2006). Chandler (2007) and Sethna (2006) are particularly good
for phase transitions; our treatment of the renormalization group in Sec. 5.8.3 is adapted in
part from Chandler.
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Box 5.4

Important Concepts in Chapter 5

• Representations of thermodynamics and their equilibrium ensembles and

distributions

– Summary: Table 5.1, Sec. 5.2.5

– Thermodynamic concepts: extensive and intensive variables, fundamental po-
tential and its independent variables, Legendre transformations, generalized
forces, Euler’s equation, Maxwell relations, Secs. 5.2–5.5

– Measuring devices for intensive variables, Sec. 5.2.2

– Energy representation and microcanonical distribution, Sec. 5.2
– Grand-potential representation and grand-canonical distribution, Sec. 5.3

– Physical Free-energy representation and canonical distribution, Sec. 5.4
– Gibbs representation and Gibbs distribution, Sec. 5.5

– T2 Enthalpy representation and enthalpy distribution: Ex. 5.5

• Systems out of equilibrium

– Entropy increase for each ensemble, expressed in terms of out-of-equilibrium
fundamental potentials, Table 5.2, Sec. 5.5.1

– Partial statistical equilibrium, Sec. 5.5.3

– Fluctuations away from statistical equilibrium, Table 5.2, Sec. 5.6, Exs. 5.11
and 5.12

• Computational techniques

– most important statistical sums for fundamental potentials, Eqs. (5.17), (5.31)

– thermodynamic equations deduced from first law in each representation, Sec.
5.2.4, ends of Secs. 5.3.1, 5.4, 5.5

– T2 renormalization group, Sec. 5.8.3

– T2 Monte Carlo calculations, Sec. 5.8.4

• Important applications

– phase transitions; first order and second order, Sec. 5.5.2
– Chemical reactions—the direction they go and their equilibria, Sec. 5.5.3

– Electron-positron pairs in thermal equilibrium, Ex. 5.9
– Saha equation for ionization equilibrium, Ex. 5.10

– van der Waals gas, Sec. 5.3.2; its fluctuations, gas-to-liquid phase transition,
surface tension and nucleation of droplets, Sec. 5.7 and Ex. 5.14

– T2 Paramagnetism and Curie’s law, Secs. 5.8 and 5.8.1

– T2 Ferromagnetic phase transition and Ising model, Secs. 5.8.2, 5.8.3 and
5.8.4


