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Box 6.1

Reader’s Guide

• Relativity does not enter into this chapter.

• This chapter does not rely in any major way on previous chapters, but it does make
occasional reference to results from Chaps. 4 and 5 about statistical equalibrium
and fluctutions in and away from statistical equilibrium.

• No subsequent chapter relies in any major way on this chapter. However:

– The concepts of spectral density and correlation function, developed in Sec.
6.4, will be used in Ex. 9.7 in treating coherence properties of radiation, in Sec.
11.6.2 in studying thermal noise in solids, in Sec. 15.4 in studying turbulence
in fluids, in Sec. 23.2.1 in treating the quasilinear formalism for weak plasma
turbulence, and in Sec. 28.5.7 in discussing observations of the anisotropy of
the cosmic microwave background radiation.

– The fluctuation-dissipation theorem, developed in Sec. 6.8, will be used in Ex.
11.14 for thermoelastic noise in solids, and in Sec. 12.5 for normal modes of
an elastic body.

– The Fokker-Planck equation, developed in Sec. 6.9, will be referred to in
Sec. 20.4.3 and Ex. 20.8 when discussing thermal equilibration in a plasma
and thermoelectric transport coefficients, and it will be used in Sec. 23.3 in
developing the quasilinear theory of wave-particle interactions in a plasma.
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6.1 Overview

In this chapter we shall analyze, among others, the following issues:

• What is the time evolution of the distribution function for an ensemble of systems that
begins out of statistical equilibrium and is brought into equilibrium through contact
with a heat bath?

• How can one characterize the noise introduced into experiments or observations by
noisy devices such as resistors, amplifiers, etc.?

• What is the influence of such noise on one’s ability to detect weak signals?

• What filtering strategies will improve one’s ability to extract weak signals from strong
noise?

• Frictional damping of a dynamical system generally arises from coupling to many
other degrees of freedom (a bath) that can sap the system’s energy. What is the
connection between the fluctuating (noise) forces that the bath exerts on the system
and its damping influence?

The mathematical foundation for analyzing such issues is the theory of random processes
(i.e. of functions that are random and unpredictable but have predictable probabilities for
their behavior). A portion of the theory of random processes is the theory of stochastic
differential equations (equations whose solutions are probability distributions rather than
ordinary functions). This chapter is an overview of these topics, sprinkled throughout with
applications.

Section 6.2 introduces the concept of a random processes and the various probability
distributions that describe them, it introduces restrictions that we shall adhere to — the
random processes that we study are stationary and ergodic —, and it introduces an example
that we shall return to time and again: a random-walk process, of which Brownian motion is
an example. Section 6.3 discusses two special classes of random processes: Markov processes
and Gaussian processes; it also presents two important theorems: the central limit theorem,
which explains why random processes so often have Gaussian probability distributions, and
Doob’s Theorem, which says that all the statistical properties of a Markov, Gaussian process
are determined by just three parameters. Section 6.4 introduces two powerful mathematical
tools for the analysis of random processes: the correlation function and the spectral density,
and proves the Wiener-Khintchine theorem, which relates them. As applications of these
tools, we use them to prove Doob’s theorem and to discuss optical spectra, noise in inter-
ferometric gravitational wave detectors, and fluctuations of cosmological mass density and
of the distribution of galaxies in the universe. In Secs. 6.6 and 6.7, we introduce another
powerful tool, the filtering of a random process, and we use our tools to develop the theory of
noise and techniques for extracting weak signals from large noise. As applications we study
shot noise (which is important, e.g. in measurements with laser light), frequency fluctuations
of atomic clocks, and also the Brownian motion of a dust particle buffeted by air molecules
and its connection to random walks. In Sec. 6.8, we develop another powerful tool, the
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fluctuation-dissipation theorem, which quantifies the relationship between the fluctuations
and the dissipation (friction) produced by one and the same heat bath. As examples, we
explore Brownian motion (once again), Johnson noise in a resistor and the voltage fluctua-
tions it produces in electric circuits, thermal noise in high-precision optical measurements,
and quantum limits on the accuracy of high-precision measurements and how to circumvent
them. Finally, in Sec. 6.9 we derive and discuss the Fokker-Planck equation, which governs
the evolution of Markov random processes, and we illustrate it with the random motion of
an atom that is being cooled by interaction with laser beams (so-called optical molasses) and
with thermal noise in a harmonic oscillator.

6.2 Fundamental Concepts

In this section we introduce a number of fundamental concepts about random processes

6.2.1 Random Variables and Random Processes

Definition of random variable . A (one-dimensional) random variable is a (scalar) function
y(t), where t is usually time, for which the future evolution is not determined uniquely by
any set of initial data—or at least by any set that is knowable to you and me. In other words,
random variable is just a fancy phrase that means “unpredictable function”. Throughout this
chapter, we shall insist for simplicity that our random variables y take on a continuum of
values ranging over some interval, often but not always −∞ to +∞. The generalization to
y’s with discrete (e.g., integer) values is straightforward.

Examples of random variables are: (i) the total energy E(t) in a cell of gas that is in
contact with a heat bath; (ii) the temperature T (t) at the corner of Main Street and Center
Street in Logan, Utah; (iii) the price per share of Google stock P (t); (iv) the mass flow
rate Ṁ(t) from the Amazon River into the Atlantic Ocean. One can also deal with random
variables that are vector or tensor functions of time; in Track-Two portions of this chapter
we shall do so.

Definition of random process (also called “stochastic process”): A (one-dimensional)
random process is an ensemble of random variables y(t) that, in a physics context, all rep-
resent the same kind of physical entity. For example, each y(t) could be the longitude of
a particular oxygen molecule undergoing a random walk in the earth’s atmosphere. The
individual random variables y(t) in the ensemble are often called realizations of the random
process.

Figure 6.1 shows (as an example) three realizations y(t) of a random process that repre-
sents the “random walk” of a particle in one dimension. For details, see Ex. 6.4, where the
reader learns how to generate realizations like these on a computer.

6.2.2 Probability Distributions

Probability distributions for a random process. Since the precise time evolution of a random
variable y(t) is not predictable, if one wishes to make predictions, one can do so only proba-
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Fig. 6.1: Three different realizations y(t) of a random process that describes the location y of a
particle at time t, when it is undergoing a random walk in one dimension (e.g. an atmospheric
oxygen molecule’s east-west motion). See Ex. 6.4, where you will generate realizations like these
and compute this random process’s probability distributions.

bilistically. The foundation for probabilistic predictions is a set of probability functions for
the random process, i.e. for the ensemble of its realizations.

More specifically: the most general (one-dimensional) random process is fully character-
ized by the set of probability distributions p1, p2, p3, . . . defined as follows:

pn(yn, tn; . . . ; y2, t2; y1, t1)dyn . . . dy2dy1 (6.1)

tells us the probability that a realization y(t), drawn at random from the process (the
ensemble), (i) will take on a value between y1 and y1+ dy1 at time t1, and (ii) also will take
on a value between y2 and y2 + dy2 at a later time t2, and . . ., and (iii) also will take on a
value between yn and yn+dyn at a later time tn. (Note that the subscript n on pn tells us how
many independent values of y appear in pn, and that earlier times are placed to the right—a
practice common for physicists, particularly when dealing with propagators.) If we knew
the values of all of a process’s probability distributions (an infinite number of pn’s!) then
we would have full information about the process’s statistical properties. Not surprisingly,
it will turn out that, if the process in some sense is in statistical equilibrium, then we can
compute all its probability distributions from a very small amount of information. But that
comes later; first we must develop more formalism.

Ensemble averages. From the probability distributions, we can compute ensemble aver-
ages (denoted by brackets). For example, the quantities

〈y(t1)〉 ≡
∫

y1p1(y1, t1)dy1 σ2
y(t1) ≡

〈

[y(t1)− 〈 y(t1)〉]2
〉

(6.2a)

are the ensemble-averaged value of y and the variance of y at time t1. Similarly,

〈y(t2)y(t1)〉 ≡
∫

y2y1p2(y2, t2; y1, t1)dy2dy1 (6.2b)
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is the average value of the product y(t2)y(t1).
Conditional probabilities. Besides the (absolute) probability distributions pn, we shall

also find useful an infinite series of conditional probability distributions P1, P2, . . ., defined
as follows:

Pn(yn, tn|yn−1, tn−1; . . . ; y1, t1)dyn (6.3)

is the probability that, if y(t) took on the values y1, y2, ..., yn−1 at times t1, t2, ..., tn−1,
then it will take on a value between yn and yn + dyn at a later time tn.

It should be obvious from the definitions of the probability distributions that

pn(yn, tn; . . . ; y1, t1) = Pn(yn, tn|yn−1, tn−1; . . . ; y1, t1) pn−1(yn−1, tn−1; . . . ; y1, tn−1) .

(6.4)
Using this relation, one can compute all the conditional probability distributions Pn from
the absolute distributions p1, p2, . . . . Conversely, using this relation recursively, one can
build up all the absolute probability distributions pn from p1(y1, t1) and all the conditional
distributions P2, P3, . . ..

Stationary random processes. A random process is said to be stationary if and only if its
probability distributions pn depend only on time differences, not on absolute time:

pn(yn, tn + τ ; . . . ; y2, t2 + τ ; y1, t1 + τ) = pn(yn, tn; . . . ; y2, t2; y1, t1) . (6.5)

If this property holds for the absolute probabilities pn, then Eq. (6.4) guarantees it also will
hold for the conditional probabilities Pn.

Nonstationary random processes arise when one is studying a system whose evolution is
influenced by some sort of clock that cares about absolute time. For example, the speeds
v(t) of all the oxygen molecule in downtown St. Anthony, Idaho make up a random processes
regulated in part by the atmospheric temperature and therefore by the rotation of the earth
and the orbital motion of the earth around the sun; and the influence of these clocks makes
v(t) be a nonstationary random process. Stationary random processes, by contrast, arise
in the absence of any regulating clocks. An example is the speeds v(t) of all the oxygen
molecules in a room kept at constant temperature.

Stationarity does not mean “no time evolution of probability distributions”. For example,
suppose one knows that the speed of a specific oxygen molecule vanishes at time t1, and one is
interested in the probability that the molecule will have speed v2 at time t2. That probability,
P2(v2, t2|0, t1) will be sharply peaked around v2 = 0 for small time differences t2−t1, and will
be Maxwellian for large time differences t2− t1 (Fig. 6.2). Despite this evolution, the process
is stationary (assuming constant temperature) in that it does not depend on the specific
time t1 at which v happened to vanish, only on the time difference t2 − t1: P2(v2, t2|0, t1) =
P2(v2, t2 − t1|0, 0).

Henceforth, throughout this chapter, we shall restrict attention to random processes that
are stationary (at least on the timescales of interest to us); and, accordingly, we shall denote

p1(y) ≡ p1(y, t1) , (6.6a)

since it does not depend on the time t1. We shall also denote

P2(y2, t|y1) ≡ P2(y2, t|y1, 0) (6.6b)
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Fig. 6.2: The probability P2(0, t1; v2, t2) that a molecule which has vanishing speed at time t1 will
have speed v2 (in a unit interval dv2) at time t2. Although the molecular speed is a stationary
random process, this probability evolves in time.

for the probability that, if a (realization of a) random process begins with the value y1, then
after the lapse of a time t it has the value y2.

6.2.3 Ergodic Hypothesis

A (stationary) random process (ensemble E of random variables) will be said to satisfy the
ergodic hypothesis, (or, for brevity, it will be called ergodic) if and only if it has the following
property:

Let y(t) be random variable in the ensemble E (i.e., let y(t) be any realization of the
process). Construct from y(t) a new ensemble E ′ whose members are

Y K(t) ≡ y(t+KT ) , (6.7)

where K runs over all integers, negative and positive, and where T is some very large time
interval. Then E ′ has the same probability distributions pn as E—i.e., pn(Yn, tn; . . . ; Y1, t1)
has the same functional form as pn(yn, tn; . . . ; y1, t1)—for all times such that |ti − tj| < T .

This is essentially the same ergodic hypothesis as we met in Sec. 4.6.
Henceforth we shall restrict attention to random processes that satisfy the ergodic hy-

pothesis, i.e. that are ergodic. This, in principle, is a severe restriction. In practice, for a
physicist, it is not severe at all. In physics one’s objective, when defining random variable
that last forever (−∞ < t < +∞) and when introducing ensembles, is usually to acquire
computational techniques for dealing with a single, or a small number of random variables
y(t), studied over finite lengths of time; and one acquires those techniques by defining one’s
conceptual infinite-duration random variables and ensembles in such a way that they satisfy
the ergodic hypothesis.

As in Sec. 4.6, because of the ergodic hypothesis, time averages defined using any real-
ization y(t) of a random process are equal to ensemble averages:

F̄ ≡ lim
T→∞

1

T

∫ T/2

−T/2

F
(

y(t)
)

dt = 〈F (y)〉 ≡
∫

F (y)p1(y)dy , (6.8)

for any function F = F (y). In this sense, each realization of the random process is represen-
tative, when viewed over sufficiently long times, of the statistical properties of the process’s
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entire ensemble—and conversely. Correspondingly, we can blur the distinction between the
random process and specific realizations of it—and we shall often do so.

6.3 Markov Processes and Gaussian Processes

6.3.1 Markov Processes; Random Walk

A random process y(t) is said to be Markov (also sometimes called Markovian) if and only
if all of its future probabilities are determined by its most recently known value:

Pn(yn, tn|yn−1, tn−1; . . . ; y1, t1) = P2(yn, tn|yn−1, tn−1) for all tn ≥ . . . ≥ t2 ≥ t1 . (6.9)

This relation guarantees that any Markov process (which, of course, we require to be sta-
tionary without saying so) is completely characterized by the probabilities

p1(y) and P2(y2, t|y1) ≡
p2(y2, t; y1, 0)

p1(y1)
. (6.10)

From these p1(y) and P2(y2, t|y1) one can reconstruct, using the Markovian relation (6.9) and
the general relation (6.4) between conditional and absolute probabilities, all of the process’s
distribution functions.

Actually, for any random process that satisfies the ergodic hypothesis (which means
all random processes considered in this chapter), p1(y) is determined by the conditional
probability P2(y2, t|y1) [Ex. 6.1], so for any Markov (and ergodic) process, all the probability
distributions follow from P2(y2, t|y1) alone!

An example of a Markov process is the x-component of velocity vx(t) of a dust particle in
an arbitrarily large room1 filled with constant-temperature air. Why? Because the molecule’s
equation of motion is2 mdvx/dt = F ′

x(t), and the force F ′

x(t) is due to random buffeting by
other molecules that are uncorrelated (the kick now is unrelated to earlier kicks); thus, there
is no way for the value of vx in the future to be influenced by any earlier values of vx except
the most recent one.

By contrast, the position x(t) of the particle is not Markov because the probabilities of
future values of x depend not just on the initial value of x, but also on the initial velocity
vx—or, equivalently, the probabilities depend on the values of x at two initial, closely spaced
times. The pair {x(t), vx(t)} is a two-dimensional Markov process.

The Smoluchowski equation. Choose three (arbitrary) times t1, t2, and t3 that are ordered,
so t1 < t2 < t3. Consider a (realization of an) arbitrary random process that begins with a
known value y1 at t1, and ask for the probability P2(y3, t3|y1) (per unit y3) that it will be at
y3 at time t3. Since the realization must go through some value y2 at the intermediate time
t2 (though we don’t care what that value is), it must be possible to write the probability to
reach y3 as

P2(y3, t3|y1, t1) =
∫

P3(y3, t3|y2, t2; y1, t1)P2(y2, t2|y1, t1)dy2 ,

1The room must be arbitrarily large so the effects of the floor, walls and ceiling can be ignored.
2By convention, primes are used to identify stochastic forces, i.e. forces that are random processes.
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where the integration is over all allowed values of y2. This is not a terribly interesting
relation. Much more interesting is its specialization to the case of a Markov process. In that
case P3(y3, t3|y2, t2; y1, t1) can be replaced by P2(y3, t3|y2, t2) = P2(y3, t3−t2|y2, 0)≡ P2(y3, t3−
t2|y2), and the result is an integral equation involving only P2. Because of stationarity, it is
adequate to write that equation for the case t1 = 0:

P2(y3, t3|y1) =
∫

P2(y3, t3 − t2|y2)P2(y2, t2|y1)dy2 . (6.11)

This is the Smoluchowski equation (also called Chapman-Kolmogorov equation). It is valid
for any Markov random process and for times 0 < t2 < t3. We shall discover its power in
our derivation of the Fokker-Planck equation in Sec. 6.9.1 below.

****************************

EXERCISES

Exercise 6.1 **Example: Limits of P2

Explain why, for any random process,

lim
t→0

P2(y2, t|y1) = δ(y2 − y1) . (6.12a)

Use the ergodic hypothesis to argue that

lim
t→∞

P2(y2, t|y1) = p1(y2) . (6.12b)

Thereby conclude that, for a Markov Process, all the probability distributions are determined
by the conditional probability P2(y2, t|y1). Give an algorithm for computing them.

Exercise 6.2 Practice: Markov Processes for an Oscillator

Consider a harmonic oscillator (e.g., a pendulum), driven by bombardment with air molecules.
Explain why the oscillator’s position x(t) and velocity v(t) = dx/dt are random processes.
Is x(t) Markovian? Why? Is v(t) Markovian? Why? Is the pair {x(t), v(t)} a 2-dimensional
Markov process? Why? We shall study this 2-dimensional random process in Ex. 6.23.

Exercise 6.3 **Example: Diffusion of a Particle; Random Walk

In Ex. 3.16, we studied the diffusion of particles through an infinite 3-dimensional medium.
By solving the diffusion equation, we found that, if the particles’ number density at time
t = 0 was no(x), then at time t it has become n(x, t) = (1/4πDt)3/2

∫

no(x
′)e−(x−x′)2/4Dtd3x′,

where D is the diffusion coefficient [Eq. (3.71)].

(a) For any one of the diffusing particles, the location y(t) in the y direction (one of three
Cartesian directions) is a one-dimensional random process. From the above n(x, t),
infer that the conditional probability distribution for y is

P2(y2, t|y1) =
1√
4πDt

e−(y2−y1)2/4Dt . (6.13)
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(b) Verify that the conditional probability (6.13) satisfies the Smoluchowski equation (6.11).
[We suggest using symbol-manipulation computer software to do quickly straightfor-
ward calculations like this.]

At first this may seem surprising, since a particle’s position y is not Markovian. How-
ever (as we shall explore explicitly in Sec. 6.7.2), the diffusion equation from which
we derived this P2 treats as negligibly small the timescale τr on which the velocity
dy/dt thermalizes, and thereby it wipes out all information about what the particle’s
actual velocity is, making y be, effectively, Markovian, and forcing its P2 to satisfy the
Smoluchowski equation. See Ex. 6.10, where we shall also discover that this diffusion
is an example of a random walk.

****************************

6.3.2 Gaussian Processes and the Central Limit Theorem; Random

Walk

Gaussian processes. A random process is said to be Gaussian if and only if all of its (absolute)
probability distributions are Gaussian, i.e., have the following form:

pn(yn, tn; . . . ; y2, t2; y1, t1) = A exp

[

−
n
∑

j=1

n
∑

k=1

αjk(yj − ȳ)(yk − ȳ)

]

, (6.14a)

where (i) A and αjk depend only on the time differences t2− t1, t3− t1, . . . , tn− t1; (ii) A is
a positive normalization constant; (iii) [αjk] is a positive-definite matrix (otherwise pn would
not be normalizable); and (iv) ȳ is a constant, which one readily can show is equal to the
ensemble average of y,

ȳ ≡ 〈y〉 =
∫

yp1(y)dy . (6.14b)

Since the conditional probabilities are all computable as ratios of absolute probabilities
[Eq. (6.4)], the conditional probabilities of a Gaussian process will be Gaussians.

Gaussian random processes are very common in physics. For example, the total num-
ber of particles N(t) in a gas cell that is in statistical equilibrium with a heat bath is a
Gaussian random process (Ex. 5.11d). In fact, as we saw in Sec. 5.6, macroscopic variables
that characterize huge systems in statistical equilibrium always have Gaussian probability
distributions. The underlying reason is that, when a random process is driven by a large
number of statistically independent, random influences, its probability distributions become
Gaussian. This general fact is a consequence of the central limit theorem of probability. We
shall state and prove a simple variant of this theorem:

Central limit theorem (a simple version). Let y be a random quantity [not necessarily
a random variable y(t); there need not be any times involved; however, our applications
will be to random variables]. Suppose that y is characterized by an arbitrary probability
distribution p(y) (e.g., that of Fig. 6.3a), so the probability of the quantity taking on a value
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Fig. 6.3: Example of the central limit theorem. The random variable y with the probability
distribution p(y) shown in (a) produces, for various values of N , the variable Y = (y1+ . . . +yN)/N
with the probability distributions p(Y ) shown in (b). In the limit of very large N , p(Y ) is a Gaussian.

between y and y + dy is p(y)dy. Denote by ȳ the mean value of y, and by σy its standard
deviation (also called its rms fluctuation and the square root of its variance):

ȳ ≡ 〈y〉 =
∫

yp(y)dy , (σy)
2 ≡ 〈(y − ȳ)2〉 = 〈y2〉 − ȳ2 . (6.15a)

Randomly draw from this distribution a large number, N , of values {y1, y2, . . . , yN} and
average them to get a number

Y ≡ 1

N

N
∑

i=1

yi . (6.15b)

Repeat this many times, and examine the resulting probability distribution for Y . In
the limit of arbitrarily large N , that distribution will be Gaussian with mean and standard
deviation

Ȳ = ȳ , σY =
σy√
N

; (6.15c)

ı.e., it will have the form

p(Y ) =
1√

2πσY
2
exp

[

− (Y − Ȳ )2

2σY
2

]

(6.15d)

with Ȳ and σY given by Eq. (6.15c). See Fig. 6.3b.

Proof of Central Limit Theorem: The key to proving this theorem is the Fourier transform
of the probability distribution. (That Fourier transform is called the distribution’s characteristic

function, but we shall not in this chapter delve into the details of characteristic functions.) Denote
the Fourier transform of p(y) by3

p̃y(f) ≡
∫ +∞

−∞

ei2πfyp(y)dy =
∞
∑

n=0

(i2πf)n

n!
〈yn〉 . (6.16a)

The second expression follows from a power series expansion of ei2πfy in the first. Similarly, since a
power series expansion analogous to (6.16a) must hold for p̃Y (k) and since 〈Y n〉 can be computed

3See the beginning of Sec. 6.4.2 for the conventions we use for Fourier transforms.
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from

〈Y n〉 = 〈N−n(y1 + y2 + . . . + yN )n〉

=

∫

N−n(y1 + . . . + yN)np(y1)...p(yN )dy1...dyN , (6.16b)

it must be that

p̃Y (f) =
∞
∑

n=0

(i2πf)n

n!
〈Y n〉

=

∫

exp[i2πfN−1(y1 + . . . + yN )]p(y1) . . . p(yN )dy1 . . . dyn

=

[
∫

ei2πfy/Np(y)dy

]N

=

[

1 +
i2πfȳ

N
− (2πf)2〈y2〉

2N2
+O

(

1

N3

)]N

= exp

[

i2πfȳ − (2πf)2(〈y2〉 − ȳ2)

2N
+O

(

1

N2

)]

. (6.16c)

Here the last equality can be obtained by taking the logarithm of the preceding quantity, expanding

in powers of 1/N , and then exponentiating. By inverting the Fourier transform (6.16c) and using

(σy)
2 = 〈y2〉 − ȳ2, we obtain for p(Y ) the Gaussian (6.15d). QED

[Note: This proof is a good example of the power of Fourier transforms, a power that we
shall exploit extensively in this chapter.]

As an important example, to which we shall return later, Ex. 6.4 analyzes the simplest
version of a random walk.

****************************

EXERCISES

Exercise 6.4 ** Example: Random Walk With Discrete Steps of Identical Length

This exercise is designed to make random processes seem more concrete, and also designed
to illustrate the central limit theorem.

A “particle” travels in one dimension, along the y axis, making a sequence of steps ∆yj
(labeled by the integer j), each of which is ∆yj = +1 with probability 1/2, or ∆yj = −1
with probability 1/2.

(a) After N ≫ 1 steps, the particle has reached location y(N) = y(0) +
∑N

j=1∆yj. What
does the Central Limit theorem predict for the probability distribution of y(N)? What
are its mean and its standard deviation?

(b) Viewed on lengthscales ≫ 1, y(N) looks like a continuous random process, so we
shall rename N ≡ t. Using the (pseudo)random number generator from your favorite
computer software language, compute a few concrete realizations of y(t) for 0 < t < 104

and plot them.4 Figure 6.1 above shows one realization of this random process.

4If you use Mathematica, the command RandomInteger[] generates a pseudorandom number that is 0 with
probability 1/2 or 1 with probability 1/2. Therefore, the following simple script will carry out the desired com-
putation: y = Table[0, {10000}]; For[t = 1, t < 10000, t++, y[[t+ 1]] = y[[t]] + 2RandomInteger[]− 1];
ListPlot[y, Joined−> True]. This was used to generate Fig. 6.1.
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(c) Explain why this random process is Markovian.

(d) Use the central limit theorem to infer that the conditional probability P2 for this
random process is

P2(y2, t|y1) =
1√
2π t

exp

[

−(y2 − y1)
2

2 t

]

. (6.17)

(e) Notice that this is the same probability distribution as we encountered in our diffusion
exercise, Ex. 6.3 above, but with D = 1/2. Why did this have to be the case?

(f) Using an extension of the computer program you wrote in part (b), evaluate y(t = 104)
for one thousand realizations of this random process, each with y(0) = 0; then bin the
results in bins of width δy = 10, and plot the number of realizations y(104) that wind
up in each bin. Repeat for ten thousand realizations. Compare your plots with the
probability distribution (6.17).

****************************

6.3.3 Doob’s Theorem for Gaussian, Markov Processes; Brownian

Motion

A large fraction of the random processes that one meets in physics are Gaussian, and many
are Markov. Therefore, the following remarkable theorem is very important: Any one-
dimensional random process y(t) that is both Gaussian and Markov has the following form
for its conditional probability distribution P2:

P2(y2, τ |y1) =
1

[2πσyτ
2]

1

2

exp

[

− (y2 − ȳτ)
2

2σyτ
2

]

. (6.18a)

where the mean ȳτ and variance σ2
yτ at time τ are given by

ȳτ = ȳ + e−τ/τr(y1 − ȳ) , σ2
yτ = (1− e−2τ/τr)σy

2 . (6.18b)

Here ȳ and σy
2 are the process’s equilibrium mean and variance (the values at τ → ∞) and

τr is called its relaxation time. This result is Doob’s theorem.5 We shall prove it in Ex. 6.5,
after we have developed some necessary tools.

Note the great power of Doob’s theorem: Because y(t) is Markov, all of its probability
distributions are computable from this P2 (Ex. 6.1), which in turn is determined by ȳ, σy, and
τr. Correspondingly, all statistical properties of a Gaussian, Markov process are determined
by just three parameters: its (equilibrium) mean ȳ and variance σy

2, and its relaxation time
τr. As an example, the first absolute probability distribution is

p1(y) = lim
τ→∞

P2(y, τ |y1) =
1

√

2πσy
2
exp

[

− (y − ȳ)2

2σy
2

]

, (6.18c)
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y
1

y
2y

t = ∞ t = tr

t = 0.2 tr

t = 0.02 tr

t = 0

σy

Fig. 6.4: Evolution of the conditional probability P2(y2, t|y1) for a Gaussian Markov random
process [Eq. (6.18a)], as predicted by Doob’s Theorem. The correlation function and spectral
density for this process are shown in Fig. 6.8 below.

The time evolution of P2 [Eq. (6.18a)] is plotted in Fig. 6.4. At τ = 0 it is a delta function
at y1, in accord with Eq. (6.12a). As τ increases, its peak (its mean) moves toward ȳ, and
it spreads out. Ultimately, at τ = ∞, its peak asymptotes to ȳ and its standard deviation
(half width) asymptotes to σy, so P2 → p1 — in accord with Eqs. (6.12b) and (6.18c).

An example that we shall explore in Sec. 6.7.2 below is a dust particle being buffeted by
air molecules in a large, constant-temperature room (Brownian motion). As we discussed
near the beginning of Sec. 6.3.1, any Cartesian component v of the dust particle’s velocity is
a Markov process. It is also Gaussian (because its evolution is influenced solely by the inde-
pendent forces of collisions with a huge number of independent air molecules), so P2(v, τ |v1)
is given by Doob’s theorem. In equilibrium, positive and negative values of the Cartesian
velocity component v are equally probable, so v̄ = 0, which means that 1

2
mσv

2 = 1
2
mv2,

which is the equilibirum mean kinetic energy — a quantity we know to be 1
2
kBT from the

equipartition theorem (Sec. 4.4.4); thus, v̄ = 0 and σv =
√

kBT/m. The relaxation time τr
is the time required for the particle to change its velocity substantially, due to collisions with
dust particles; we shall compute it in Sec. 6.8.1 using the fluctuation-dissipation theorem.

5It is so named because it was firstformulated and proved by J. L. Doob (1942).
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6.4 Correlation Functions and Spectral Densities

6.4.1 Correlation Functions; Proof of Doob’s Theorem

Let y(t) be a (realization of a) random process with time average ȳ. Then the correlation
function of y(t) is defined by

Cy(τ) ≡ [y(t)− ȳ][y(t+ τ)− ȳ] ≡ lim
T→∞

1

T

∫ +T/2

−T/2

[y(t)− ȳ][y(t+ τ)− ȳ]dt . (6.19)

This quantity, as its name suggests, is a measure of the extent to which the values of y at
times t and t + τ tend to be correlated. The quantity τ is sometimes called the delay time,
and by convention it is taken to be positive. [One can easily see that, if one also defines
Cy(τ) for negative delay times τ by Eq. (6.19), then Cy(−τ) = Cy(τ). Thus, nothing is lost
by restricting attention to positive delay times.]

As an example, for a Gaussian Markov process, with P2 given by Doob’s formula (6.18a)
(Fig. 6.4), we can compute C(τ) by replacing the time average in Eq. (6.19) with an ensemble
average: Cy(τ) =

∫

y2 y1 p2(y2, τ ; y1) dy1 dy2. If we use p2(y2, τ ; y1) = P2(y2, τ ; y1) p1(y1) [Eq.
(6.10)], insert P2 and p1 from Eqs. (6.18), and perform the integrals, we obtain

Cy(τ) = σy
2e−τ/tr . (6.20)

This correlation function has two properties that are quite general: (i)

Cy(0) = σy
2 . (6.21a)

This is true for all (ergodic, stationary) random processes, as one can see by replacing
time averages with ensemble averages in definition (6.19); in particular, Cy(0) ≡ (y − ȳ)2 =
〈(y − ȳ)2〉, which by definition is the variance σy

2 of y. (ii)

Cy(τ) asymptotes to zero for τ > τr , (6.21b)

where τr is called the process’s relaxation time or correlation time. This is true for all ergodic,
stationary random processes, since our definition of ergodicity in Sec. 6.2.3 above relies on
each realization y(t) losing its memory of earlier values after some sufficiently long time T ;

σ
y
2

Cy (τ)

τ
τr

Fig. 6.5: Properties (6.21) of correlation functions.
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otherwise, it would not be possible to construct the ensemble E ′ of random variables Y K(t)
[Eq. (6.7)] and have them behave like independent random variables.

As an example of how one can use correlation functions, in Ex. 6.5 we use them to prove
Doob’s theorem.

****************************

EXERCISES

Exercise 6.5 Derivation: Proof of Doob’s Theorem

Prove Doob’s Theorem. More specifically, for any Gaussian, Markov random process, show
that P2(y2, τ |y1) is given by Eq. (6.18a).

Hints: For ease of notation, set ynew = (yold − ȳold)/σyold , so ȳnew = 0, σynew = 1. If the
theorem is true for ynew, then by the rescalings inherent in the definition of P2(y2, τ |y1), it
will also be true for yold.

(a) Show that ynew has probability distributions

p1(y) =
1√
2π

e−y2/2 , (6.22a)

p2(y2, t2; y1, t1) =
1

√

(2π)2(1− C21
2)

exp

[

− y1
2 + y2

2 − 2C21y1y2

2(1− C21
2)

]

; (6.22b)

and show that the constant C21 that appears here is the correlation function C21 =
Cy(t2 − t1).

(b) From the relationship between absolute and conditional probabilities, show that

P2(y2, t2|y1, t1) =
1

√

2π(1− C21
2)

exp

[

− (y2 − C21y1)
2

2(1− C21
2)

]

. (6.22c)

(c) Show that for any three times t3 > t2 > t1,

C31 = C32C21 ; i.e. Cy(t3 − t1) = Cy(t3 − t2)Cy(t2 − t1) . (6.22d)

To show this, you could (i) use the relationship between absolute and conditional proba-
bilities and the Markovian nature of the random process to infer that p3(y3, t3; y2, t2; y1, t1) =
P3(y3, t3|y2, t2; y1, t1)p2(y2, t2; y1, t1) = P2(y3, t3|y2, t2)p2(y2, t2; y1, t1); then (ii) compute
the last expression explicitly, getting

1
√

2π(1− C32
2)

exp

[

− (y3 − C32y2)
2

2(1− C32
2)

]

× 1
√

(2π)2(1− C21
2)

exp

[

− (y1
2 + y2

2 − 2C21y1y2)

2(1− C21
2)

]

;

(iii) then using this expression, evaluate

Cy(t3 − t1) ≡ C31 ≡ 〈y(t3)y(t1)〉 =
∫

p3(y3, t3; y2, t2; y1, t1)y3y1dy3dy2dy1 . (6.22e)

The result should be C31 = C32C21.
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(d) Argue that the unique solution to this equation, with the “initial condition” that
Cy(0) = σy

2 = 1, is Cy(τ) = e−τ/τr , where τr is a constant (which we identify as
the relaxation time). Correspondingly, C21 = e−(t2−t1)/τr .

(e) By inserting this into Eq. (6.22c), complete the proof for ynew(t), and thence conclude
that Doob’s Theorem is also true for our original, un-rescaled yold(t).

****************************

6.4.2 Spectral Densities

There are several different normalization conventions for Fourier transforms. In this chapter,
we adopt a normalization that is commonly (though not always) used in the theory of random
processes, and that differs from the one common in quantum theory. Specifically, instead of
using the angular frequency ω, we use the ordinary frequency f ≡ ω/2π; and we define the
Fourier transform of a function y(t) and its inverse by

ỹ(f) ≡
∫ +∞

−∞

y(t)ei2πftdt , y(t) ≡
∫ +∞

−∞

ỹ(f)e−i2πftdf . (6.23)

Notice that with this set of conventions, there are no factors of 1/2π or 1/
√
2π multiplying

the integrals. Those factors have been absorbed into the df of (6.23), since df = dω/2π.
Fourier transforms are not very useful when dealing with random processes. The reason

is that a random process y(t) is generally presumed to go on and on and on forever; and,
as a result, its Fourier transform ỹ(f) is divergent. One gets around this problem by crude
trickery: (i) From y(t) construct, by truncation, the function

yT (t) ≡ y(t) if − T/2 < t < +T/2 , and yT (t) ≡ 0 otherwise . (6.24a)

Then the Fourier transform ỹT (f) is finite; and by Parseval’s theorem it satisfies

∫ +T/2

−T/2

[y(t)]2dt =

∫ +∞

−∞

[yT (t)]
2dt =

∫ +∞

−∞

|ỹT (f)|2df = 2

∫

∞

0

|ỹT (f)|2df . (6.24b)

Here in the last equality we have used the fact that because yT (t) is real, ỹ∗T (f) = ỹT (−f)
where ∗ denotes complex conjugation; and, consequently, the integral from −∞ to 0 of
|ỹT (f)|2 is the same as the integral from 0 to +∞. Now, the quantities on the two sides of
(6.24b) diverge in the limit as T → ∞, and it is obvious from the left side that they diverge
linearly as T . Correspondingly, the limit

lim
T→∞

1

T

∫ +T/2

−T/2

[y(t)]2dt = lim
T→∞

2

T

∫

∞

0

|ỹT (f)|2df (6.24c)

is convergent.
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Spectral density . These considerations motivate the following definition of the spectral
density (also sometimes called the power spectrum) Sy(f) of the random process y(t):

Sy(f) ≡ lim
T→∞

2

T

∣

∣

∣

∣

∫ +T/2

−T/2

[y(t)− ȳ]ei2πftdt

∣

∣

∣

∣

2

. (6.25)

Notice that the quantity inside the absolute value sign is just ỹT (f), but with the mean of y
removed before computation of the Fourier transform. (The mean is removed so as to avoid
an uninteresting delta function in Sy(f) at zero frequency.) Correspondingly, by virtue of our

motivating result (6.24c), the spectral density satisfies
∫

∞

0
Sy(f)df = limT→∞

1
T

∫ +T/2

−T/2
[y(t)−

ȳ]2dt = (y − ȳ)2 = σy
2; i.e.

∫

∞

0

Sy(f)df = Cy(0) = σ2
y . (6.26)

In words: The integral of the spectral density of y over all positive frequencies is equal to
the variance of y.

By convention, our spectral density is defined only for nonnegative frequencies f . This
is because, were we to define it also for negative frequencies, the fact that y(t) is real would
imply that Sy(f) = Sy(−f), so the negative frequencies contain no new information. Our
insistence that f be positive goes hand in hand with the factor 2 in the 2/T of the definition
(6.25): that factor 2 folds the negative-frequency part over onto the positive-frequency part.
This choice of convention is called the single-sided spectral density. Sometimes one encounters
a double-sided spectral density,

Sdouble−sided
y (f) =

1

2
Sy(|f |) (6.27)

in which f is regarded as both positive and negative and frequency integrals generally run
from −∞ to +∞ instead of 0 to ∞; see, e.g., Ex. 6.7..

Notice that the spectral density has units of y2 per unit frequency; or, more colloquially
(since frequency f is usually measured in Hertz, i.e., cycles per second) its units are y2/Hz.

6.4.3 Physical Meaning of Spectral Density; Light Spectra, and

Noise in a Gravitational Wave Detector

We can infer the physical meaning of the spectral density from previous experience with light
spectra. Specifically, consider the scalar electric field6 E(t) of a plane-polarized light wave
entering a telescope from a distant star or galaxy or nebula. (We must multiply this E(t)
by the polarization vector to get the vectorial electric field.) This E(t) is a superposition
of emission from an enormous number of atoms and molecules and high-energy particles
in the source, so it is a Gaussian random process. It is not hard to convince oneself that
E(t)’s spectral density SE(f) is proportional to the light power per unit frequency dE/dtdf
(the light’s power spectrum) entering the telescope. When we send the light through a

6In this section, and only here, E represents the electric field rather than (nonrelativistic) energy.
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HαHβHγHδ

frequency, f

Fig. 6.6: A spectrum obtained by sending light through a diffraction grating. The intensity of the
image is proportional to dE/dtdf which, in turn, is proportional to the spectral density SE(f) of
the electric field E(t) of the light that entered the diffraction grating.

diffraction grating, we get this power spectrum spread out as a function of frequency f , in
the form of spectral lines superposed on a continuum, as in Fig. 6.6. The amount of light
power in this spectrum, in some narrow bandwidth ∆f centered on some frequency f , is
(dE/dtdf)∆f ∝ SE(f)∆f (assuming SE is nearly constant over that band).

Another way to understand this role of the spectral density SE(f) is by examining the
equation for the variance of the oscillating electric field E as an integral over frequency,
σE

2 =
∫

∞

0
SE(f)df . If we filter the light so only that portion at frequency f , in a narrow

bandwidth ∆f , gets through the filter, then the variance of the filtered, oscillating electric
field will obviously be that portion of the integral that comes from this freqency band. The
rms value of the filtered electric field will be the square root of this — and similarly for any
other random process y(t):

(

rms value of y’s oscillations

at frequency f in bandwidth ∆f

)

=
√

Sy(f)∆f . (6.28)

(In Sec. 6.7.1 below, will develop a mathematical formalism to describe this type of filtering).
As a practical example, consider the output of an interferometric gravitational wave

detector (to be discussed in Secs. 9.5 and 27.6). The gravitational waves from some distant
source (e.g. two colliding black holes) push two mirrors (hanging by wires) back and forth
with respect to each other. Laser interferometry is used to monitor the difference ξ(t) =
L1−L2 between the two arm lengths. (Here L1 is the separation between the mirrors in one
arm of the interferometer, and L2, that in the other arm; see inset in Fig. 6.7. The measured
ξ(t) is influenced by noise in the instrument as well as by gravitational waves. Figure 6.7
shows the square root of the spectral density of the noise-induced fluctuations in ξ(t). Note
that this

√

Sξ(f) has units meters/
√
Hz (since ξ has units of meters).

The minimum of the noise power spectrum is at f ≃ 150 Hz. If one is searching, amidst
this noise, for a broad-band gravitational-wave signal, then one might filter the interferometer
output so one’s data analysis sees only a frequency band of order the frequency of interest:
∆f ≃ f . Then the rms noise in this band will be

√

Sξ(f)× f ≃ 10−19m/
√
Hz×

√
150Hz ≃

10−18 m, which is ∼ 1/1000 the diameter of the nucleus of an atom. If a gravitational wave
with frequency ∼ 150 Hz changes the mirrors’ separations by much more than this miniscule
amount, it should be detectable!
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Fig. 6.7: The square root of the spectral density of the time-varying arm-length difference ξ(t) =
L1 − L2 (see inset), in the LIGO gravitational-wave interferometer at Hanford, Washington, as
measured on February 22, 2010. See Sec. 9.5 and Fig. 9.11. The black curve is the noise that
was specified as this instrument’s goal. The narrow spectral lines (sharp spikes in the spectrum
produced by internal resonances in the instrument) contain negligible power, and so can be ignored
for our purposes. At high frequencies, f & 150Hz, the noise is due to randomness in arrival times
of photons used to measure the mirror motions (photon shot noise, Sec. 6.7.4). At intermediate
frequencies, 40Hz . f . 150Hz, it is primarily thermal noise (end of Sec. 6.8.2). At low frequencies,
f . 40Hz, it is primarily mechanical vibrations that sneak through a vibration isolation system
(“seismic” noise).

6.4.4 The Wiener-Khintchine Theorem; Cosmological Density Fluc-

tuations

The Wiener-Khintchine Theorem says that, for any random process y(t) the correlation
function Cy(τ) and the spectral density Sy(f) are the cosine transforms of each other and
thus contain precisely the same information

Cy(τ) =

∫

∞

0

Sy(f) cos(2πfτ)df , Sy(f) = 4

∫

∞

0

Cy(τ) cos(2πfτ)dτ . (6.29)

The factor 4 results from our folding negative frequencies into positive in our definition of
the spectral density.

Proof of Wiener-Khintchine Theorem: This theorem is readily proved as a consequence of
Parseval’s theorem: Assume, from the outset, that the mean has been subtracted from y(t) so
ȳ = 0. [This is not really a restriction on the proof, since Cy and Sy are insensitive to the mean of
y.] Denote by yT (t) the truncated y of Eq. (6.24a) and by ỹT (f) its Fourier transform. Then the
generalization of Parseval’s theorem7

∫ +∞

−∞

(gh∗ + hg∗)dt =

∫ +∞

−∞

(g̃h̃∗ + h̃g̃∗)df (6.30a)

[with g = yT (t) and h = yT (t+ τ) both real and with g̃ = ỹT (f), h̃ = ỹT (f)e
−i2πfτ ] says

∫ +∞

−∞

yT (t)yT (t+ τ)dt =

∫ +∞

−∞

ỹ∗T (f)ỹT (f)e
−i2πfτdf . (6.30b)

7This follows by subtracting Parseval’s theorem for g and for h from Parseval’s theorem for g + h.
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Fig. 6.8: (a) The correlation function (6.20), and (b) the spectral density (6.32) for a Gaussian,
Markov process. The conditional probability P2(y2, τ |y1) for this process is shown in Fig. 6.4 above.

By dividing by T , taking the limit as T → ∞, and using Eqs. (6.19) and (6.25), we obtain the first

equality of Eqs. (6.29). The second follows from the first by Fourier inversion. QED

The Wiener-Khintchine theorem implies (Ex. 6.6) the following formula for the ensemble
averaged self-product of the Fourier transform of the random process y(t):

2〈ỹ(f)ỹ∗(f ′)〉 = Sy(f)δ(f − f ′) . (6.31)

This equation quantifies the strength of the infinite value of |ỹ(f)|2, which motivated our
definition (6.25) of the spectral density.

As an application of the Wiener-Khintchine theorem, we can deduce the spectral density
Sy(f) for any Gaussian Markov process by performing the cosine transform of its correlation
function Cy(τ) = σy

2e−τ/τr [Eq. (6.20)]. The result is

Sy(f) =
(4/τr)σy

2

(2πf)2 + (1/τr)2
; (6.32)

see Fig. 6.8.
As a second example, in Ex. 6.7 we explore fluctuations in the density of galaxies in the

universe, caused by gravity pulling them into clusters.

****************************

EXERCISES

Exercise 6.6 Derivation: Spectral Density as Expectation Value of Fourier Transforms

Derive Eq. (6.31).

[Hint: Write 〈x̃∗(f)ỹ(f ′)〉 =
∫ +∞

−∞

∫ +∞

−∞
〈x(t)y(t′)〉 e−2πifte+2πif ′t′dtdt′. Then set t′ = t+ τ and

express the expectation value as Cy(τ), and use an expression for the Dirac delta function
in terms of Fourier transforms.]

Exercise 6.7 **Example: Cosmological Density Fluctuations
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Random processes can be stochastic functions of some other variable or variables rather than
time. For example, it is conventional to describe fractional fluctuations in the large scale
distribution of mass in the universe, or the distribution of galaxies, using the quantity

δ(x) ≡ ρ(x)− 〈ρ〉
〈ρ〉 or δ(x) ≡ n(x)− 〈n〉

〈n〉 (6.33)

(not to be confused with the Dirac delta function). Here ρ(x) is mass density and n(x) is
the number density of galaxies. This δ(x) is a function of 3-dimensional position rather than
one-dimensional time, and 〈. . .〉 is to be interpreted conceptually as an ensemble average and
practically as a volume average (ergodic hypothesis!).

(a) Define the Fourier transform of δ over some large averaging volume V by

δ̃V (k) =

∫

V

eik·xδ(x)d3x , (6.34a)

and define its spectral density by

Pδ(k) ≡ lim
V→∞

1

V
|δ̃V (k)|2 . (6.34b)

(Note that we here use cosmologists’ “double-sided” normalization for Pδ, which is
different from our normalization for a random process in time; we do not fold negative
values of the Cartesian components kj of k onto positive values.) Show that the two-
point correlation function for cosmological density fluctuations, defined by

ξδ(r) ≡ 〈δ(x)δ(x+ r)〉 , (6.34c)

is related to Pδ(k) by the following version of the Wiener-Khintchine theorem:

ξδ(r) =

∫

Pδ(k)e
−ik·r d3k

(2π)3
=

∫

∞

0

Pδ(k) sinc(kr)
k2dk

2π2
, (6.35a)

Pδ(k) =

∫

ξδ(r)e
ik·rd3x =

∫

∞

0

ξδ(r)sinc(kr)4πr
2dr , (6.35b)

where sinc x ≡ sin x/x. In deriving these expressions, use the fact that the universe is
isotropic to infer that ξδ can depend only on the distance r between points and not on
direction, and Pδ can depend only on the magnitude k of the wave number and not on
its direction.

(b) Figure 6.9 shows observational data for the galaxy correlation function ξδ(r). These
data are rather well approximated by

ξδ(r) = (ro/r)
γ , ro ≃ 7Mpc , γ ≃ 1.8 . (6.36)

(Here 1 Mpc means one million parsecs or about 3 million light years.) Explain why
this implies that galaxies are strongly correlated (they cluster together strongly) on
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ξ δ(r
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Fig. 6.9: The galaxy correlation function ξδ(r) [defined from Eq. (6.33)], as measured in the Sloan
Digital Sky Survey. Notice that the vertical scale is linear for ξδ . 0.04 and logarthmic for larger
ξδ. Adapted from Eisenstein et. al. (2005).

lengthscales r . ro ≃ 7 Mpc. (Recall that the distance between our Milky Way galaxy
and the nearest other large galaxy, Andromeda, is about 0.8 Mpc.) Use the Weiner-
Khintchine theorem to compute the spectral density Pδ(k) and then the rms fractional
density fluctuations, at wavenumber k in bandwidth ∆k = k. From your answer, infer
that the density fluctuations are very large on lengthscales λ̄ = 1/k < ro.

(c) As a more precise measure of these density fluctutions, show that the variance of the
total number N(R) of galaxies inside a sphere of radius R is

σ2
N = 〈n〉2

∫

dk

2π2
k2Pδ(k)W (kR) , (6.37a)

where

W (x) =
3(sinc x− cosx)

x2
. (6.37b)

Evaluate this for the spectral density Pδ(r) that you computed in part (b).

****************************

6.5 T2 Two-Dimensional Random Processes

One sometimes encounters two (or more) random processes that are closely related, and
whose connections one wants to study. An example is the position x(t) and momentum p(t)
of a harmonic oscillator (Ex. 6.23 below). Such pairs can be regarded as a two-dimensional
random process. In this Track-Two section, we shall generalize the concepts of correlation
function and spectral density to such processes.
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6.5.1 T2 Cross Correlation and Correlation Matrix

If x(t) and y(t) are two random processes, then by analogy with the correlation function
Cy(τ) we define their cross correlation as

Cxy(τ) ≡ x(t)y(t+ τ) . (6.38a)

When x = y, the cross correlation function becomes the autocorrelation function, Cyy(τ) =
Cy(τ). The matrix

[

Cxx(τ) Cxy(τ)
Cyx(τ) Cyy(τ)

]

≡
[

Cx(τ) Cxy(τ)
Cyx(τ) Cy(τ)

]

(6.38b)

can be regarded as a correlation matrix for the 2-dimensional random process {x(t), y(t)}.
Notice that the elements of this matrix satisy

Cab(−τ) = Cba(τ) , (6.39)

6.5.2 T2 Spectral Densities and Wiener-Khintchine Theorem

If x(t) and y(t) are two random processes, then by analogy with the spectral density Sy(f)
we define their cross spectral density as

Sxy(f) = lim
T→∞

2

T

∫ +T/2

−T/2

[x(t)− x̄]e−2πiftdt

∫ +T/2

−T/2

[y(t′)− ȳ]e+2πift′dt′ . (6.40a)

Notice that the cross spectral density of a random process with itself is equal to its spectral
density Syy(f) = Sy(f) and is real, but if x(t) and y(t) are different random processes then
Sxy(f) is generally complex, with

S∗

xy(f) = Sxy(−f) = Syx(f) . (6.40b)

This relation allows us to confine attention to positive f without any loss of information.
The matrix

[

Sxx(f) Sxy(f)
Syx(f) Syy(f)

]

=

[

Sx(f) Sxy(f)
Sxy(f) Sy(f)

]

(6.40c)

can be regarded as a spectral density matrix that describes how the power in the 2-
dimensional random process {x(t), y(t)} is distributed over frequency.

A generalization of the one-dimensional Wiener-Khintchine Theorem (6.29) says that,
for any two random processes x(t) and y(t), the cross correlation function Cxy(τ) and the
cross spectral density Sxy(f) are Fourier transforms of each other and thus contain precisely
the same information:

Cxy(τ) =
1

2

∫ +∞

−∞

Sxy(f)e
−i2πfτdf =

1

2

∫

∞

0

[

Sxy(f)e
−i2πfτ + Syx(f)e

+i2πfτ
]

df ,

Sxy(f) = 2

∫

∞

−∞

Cxy(τ)e
i2πfτdτ = 2

∫

∞

0

[

Cxy(f)e
+i2πfτ + Cyx(f)e

−i2πfτ
]

df . (6.41)
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The factors 1/2, and 2 in these formulas result from our folding negative frequencies into
positive in our definitions of the spectral density. Equations (6.41) can be proved by the same
Parseval-theorem-based argument as we used for the one-dimensional Wiener-Khintchine
theorem (Sec. 6.4.4 above).

The Wiener-Khintchine theorem implies the following formula for the ensemble averaged
product of the Fourier transform of the random processes x(t) and y(t):

2〈x̃(f)ỹ∗(f ′)〉 = Sxy(f)δ(f − f ′) . (6.42)

This can be proved by the same argument as we used in Ex. 6.6 to prove its single-process
analog, 2〈ỹ(f)ỹ∗(f ′)〉 = Syy(f)δ(f − f ′) [Eq. (6.31)].

****************************

EXERCISES

Exercise 6.8 Practice: Spectral density of the sum of two random processes
Let u and v be two random processes. Show that

Su+v(f) = Su(f) + Sv(f) + Suv(f) + Svu(f) = Su(f) + Sv(f) + 2ℜSuv(f) . (6.43)

****************************

6.6 Noise and its Types of Spectra

Experimental physicists and engineers encounter random processes in the form of noise that
is superposed on signals they are trying to measure. Examples: (i) In radio communication,
static on the radio is noise. (ii) When modulated laser light is used for optical communi-
cation, random fluctuations in the arrival times of photons always contaminate the signal;
the effects of such fluctuations are called “shot noise” and will be studied below. (iii) Even
the best of atomic clocks fail to tick with absolutely constant angular frequencies ω; their
frequencies fluctuate ever so slightly relative to an ideal clock, and those fluctuations can be
regarded as noise.

Sometimes the signal that one studies amidst noise is actually itself some very special
noise (one person’s noise is another person’s signal). An example is the light passing through
an optical telescope and diffraction grating, discussed above. There the electric field E(t) of
the light from a star is a random process whose spectral density the astronomer measures
as a function of frequency, studying with great interest features in the spectral lines and
continuum. When the source is dim, the astronomer must try to separate its spectral density
from those of noise in the photodetector and noise of other sources in the sky.
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6.6.1 Shot Noise, Flicker Noise and Random-Walk Noise; Cesium

Atomic Clock

Special noise spectra. Physicists, astronomers and engineers give names to certain shapes of
noise spectra:

Sy(f) independent of f — white noise spectrum, (6.44a)

Sy(f) ∝ 1/f — flicker noise spectrum, (6.44b)

Sy(f) ∝ 1/f 2 — random-walk spectrum. (6.44c)

White noise, Sy independent of f , is called “white” because it has equal amounts of power
per unit frequency Sy at all frequencies, just as white light has roughly equal powers at all
light frequencies. Put differently, if y(t) has a white-noise spectrum, then its rms fluctuations
in fixed bandwidth ∆f are independent of frequency f ; i.e.,

√

Sy(f)∆f is independent of f .
Flicker noise, Sy ∝ 1/f , gets its name from the fact that, when one looks at the time

evolution y(t) of a random process with a flicker-noise spectrum, one sees fluctuations (“flick-
ering”) on all timescales, and the rms amplitude of flickering is independent of the timescale
one chooses. Stated more precisely, choose any timescale ∆t and then choose a frequency
f ∼ 3/∆t so one can fit roughly three periods of oscillation into the chosen timescale. Then
the rms amplitude of the fluctuations one observes will be

√

Sy(f)f/3, which is a constant
independent of f when the spectrum is that of flicker noise, Sy ∝ 1/f . Stated differently,
flicker noise has the same amount of power in each octave of frequency. Figure 6.10 is an
illustration: Both graphs shown there depict random processes with flicker-noise spectra.
(The differences between the two graphs will be explained in Sec. 6.6.2 below.) No matter
what time interval one chooses, these processes look roughly periodic with one or two or three
oscillations in that time interval; and the amplitudes of those oscillations are independent
of the chosen time interval. Flicker noise occurs widely in the real world, at low frequencies,
e.g., in many electronic devices, in some atomic clocks, in geophysics (the flow rates of rivers,
ocean currents, ...) in astrophysics (the light curves of quasars, sunspot numbers, ...); even
in classical music. For an interesting discussion, see Press (1978).

t t

(b)(a)

Fig. 6.10: Examples of two random processes that have flicker noise spectra, Sy(f) ∝ 1/f . [From
Press (1978).]

Random-walk noise, Sy ∝ 1/f 2, arises when a random process y(t) undergoes a random
walk. In Sec. 6.7.2, we shall explore an example: the time evolving position x(t) of a dust
particle buffeted by air molecules — a phenomenon called Brownian motion (Sec. 6.7.2).
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Fig. 6.11: (a) Spectral density of the fluctuations in angular frequency ω of a typical cesium atomic
clock. (b) Square root of the Allan variance for the same clock; see Ex. 6.13. Adapted from Galleani
(2012). The very best cesium clocks in 2012, e.g. the US primary time and frequency standard,8

have amplitude noise,
√
Sω and στ , 100 times lower than this.

Notice that for a Gaussian Markov process, the spectrum [Eq. (6.32) and Fig. 6.8b] is
white at frequencies f ≪ 1/(2πτr) where τr is the relaxation time, and it is random-walk at
frequencies f ≫ 1/(2πτr). This is typical: random processes encountered in the real world
tend to have one type of spectrum over one large interval of frequency, then switch to another
type over another large interval. The angular frequency ω of ticking of a cesium atomic clock
is another example.8 It fluctuates slightly with time, ω = ω(t), with the fluctuation spectral
density shown in Fig. 6.11. At low frequencies, f . 10−6 Hz (over long timescales ∆t & 2
weeks), ω exhibits random-walk noise; and at higher frequencies, f & 10−6 Hz (timescales
∆t . 2 weeks), it exhibits white noise — which is just the opposite of a gaussian, Markov
process. See, e.g., Galleani (2011).

6.6.2 Information Missing from Spectral Density

In experimental studies of noise, attention focuses heavily on the spectral density Sy(f) and
on quantities that one can compute from it. In the special case of a Gaussian-Markov process,
the spectrum Sy(f) and the mean ȳ together contain full information about all statistical
properties of the random process. However, most random processes that one encounters are
not Markov (though most are Gaussian). (Whenever the spectrum deviates from the special
form in Fig. 6.8, one can be sure the process is not Gaussian-Markov.) Correspondingly, for
most processes the spectrum contains only a tiny part of the statistical information required
to characterize the process. The two random processes shown in Fig. 6.10 above are a good
example. They were constructed on a computer as superpositions of pulses F (t − to) with
random arrival times to and with identical forms

F (t) = 0 for t < 0 , F (t) = K/
√
t for t > 0 ; (6.45)

8The U.S. national primary time and frequency standard is currently (2013) a cesium atomic clock; but
it is likely to be replaced, in a few years, by an Al+ atomic clock that oscillates at optical frequencies rather
than the cesium clock’s microwave frequencies, and that, in its current experimental form, is 20 times more
stable than the US standard [Chou et. al. (2010)]. The 2012 Nobel Prize for Physics was awarded to David
Wineland for the new technology that underlies this new clock.
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cf. Sec. 6.7.4. The two y(t)’s look very different because the first (Fig. 6.10a) involves
frequent small pulses, while the second (Fig. 6.10b) involves less frequent, larger pulses.
These differences are obvious to the eye in the time evolutions y(t). However, they do not
show up at all in the spectra Sy(f): the spectra are identical; both are of flicker type (Ex.
6.15). Moreover, the differences do not show up in p1(y1) or in p2(y2, t2; y1, t1) because the
two processes are both superpositions of many independent pulses and thus are Gaussian,
and for Gaussian processes p1 and p2 are determined fully by the mean and the correlation
function, or equivalently by the mean and spectral density, which are the same for the two
processes. Thus, the differences between the two processes show up only in the probabilities
pn of third order and higher, n ≥ 3.

6.7 Filtering Random Processes

6.7.1 Filters, their Kernels, and the Filtered Spectral Density

Filters . In experimental physics and engineering, one often takes a signal y(t) or a random
process y(t) and filters it to produce a new function w(t) that is a linear functional of y(t):

w(t) =

∫ +∞

−∞

K(t− t′)y(t′)dt′ . (6.46)

The quantity y(t) is called the filter’s input ; K(t − t′) is the filter’s kernel, and w(t) is
its output. We presume throughout this chapter that the kernel depends only on the time
difference t− t′ and not on absolute time. When this is so, the filter is said to be stationary ;
and when it is violated so K = K(t, t′) depends on absolute time, the filter is said to be
nonstationary. Our restriction to stationary filters goes hand-in-hand with our restriction
to stationary random processes, since if y(t) is stationary as we require, and if the filter is
stationary as we require, then the filtered process w(t) =

∫ +∞

−∞
K(t− t′)y(t′)dt′ is stationary.

Some examples of kernels and their filtered outputs are these:

K(τ) = δ(τ) : w(t) = y(t) ,
K(τ) = δ′(τ) : w(t) = dy/dt ,

K(τ) = 0 for τ < 0 and 1 for τ > 0 : w(t) =
∫ t

−∞
y(t′)dt′ .

(6.47)

As with any function, a knowledge of the kernel K(τ) is equivalent to a knowledge of its
Fourier transform

K̃(f) ≡
∫ +∞

−∞

K(τ)ei2πfτdτ . (6.48)

This Fourier transform plays a central role in the theory of filtering (also called the theory of
linear signal processing): The convolution theorem of Fourier transform theory says that, if
y(t) is a function whose Fourier transform ỹ(f) exists (converges), then the Fourier transform
of the filter’s output w(t) [Eq. (6.46)] is given by

w̃(f) = K̃(f)ỹ(f) . (6.49)
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K( )τ

τ

Fig. 6.12: The kernel (6.52a) whose filter multiplies the spectral density by a factor 1/f , thereby
converting white noise into flicker noise, and flicker noise into random-walk noise.

Similarly, by virtue of the definition (6.25) of spectral density in terms of Fourier transforms,
if y(t) is a random process with spectral density Sy(f), then the filter’s output w(t) will be
a random process with spectral density

Sw(f) = |K̃(f)|2Sy(f) . (6.50)

[Note that, although K̃(f), like all Fourier transforms, is defined for both positive and
negative frequencies, when its modulus is used in (6.50) to compute the effect of the filter
on a spectral density, only positive frequencies are relevant; spectral densities are strictly
positive-frequency quantitities.]

The quantity |K̃(f)|2 that appears in the very important relation (6.50) is most easily
computed not by evaluating directly the Fourier transform (6.48) and then squaring, but
rather by sending the function ei2πft through the filter [i.e. by computing the output w that
results from the special input y = ei2πft], and then squaring the output: |K̃(f)|2 = |w|2. To
see that this works, notice that the result of sending y = ei2πft through the filter is

w =

∫ +∞

−∞

K(t− t′)ei2πft
′

dt′ = K̃∗(f)ei2πft , (6.51)

which differs from K̃(f) by complex conjugation and a change of phase, and which thus has
absolute value squared |w|2 = |K̃(f)|2.

For example, if w(t) = dny/dtn, then when we set y = ei2πft, we get w = dn(ei2πft)/dtn =
(i2πf)nei2πft; and, accordingly, |K̃(f)|2 = |w|2 = (2πf)2n; whence, for any random process
y(t), the quantity w(t) = dny/dtn will have Sw(f) = (2πf)2nSy(f).

This example also shows that by differentiating a random process once, one changes
its spectral density by a multiplicative factor (2πf)2; for example, one can thereby convert
random-walk noise into white noise. Similarly, by integrating a random process once in time
(the inverse of differentiating), one multiplies its spectral density by (2πf)−2. If one wants,
instead, to multiply by f−1, one can achieve that using the filter

K(τ) = 0 for τ < 0 , K(τ) =

√

2

τ
for τ > 0 ; (6.52a)

see Fig. 6.12. Specifically, it is easy to show, by sending a sinusoid through this filter, that

w(t) ≡
∫ t

−∞

√

2

t− t′
y(t′)dt′ (6.52b)
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has

Sw(f) =
1

f
Sy(f) . (6.52c)

Thus, by filtering in this way one can convert white noise into flicker noise, and flicker noise
into random-walk noise.

****************************

EXERCISES

Exercise 6.9 Derivations and Practice: Examples of Filters

(a) Show that the filters K(τ) in Eq. (6.47) produce the indicated outputs w(t). Deduce
the ratio Sw(f)/Sy(f) = |K̃(f)|2 in two ways: (i) by Fourier transforming each K(τ);
(ii) by setting y = eitπft, deducing the corresponding filtered output w directly from
the expression for w in terms of y, and then squaring to get |K̃(f)|2.

(b) Derive Eqs. (6.52b) and (6.52c) for the filter (6.52a).

****************************

6.7.2 Brownian Motion and Random Walks

As an example of the uses of filtering, consider the motion of a dust particle being buffeted
by thermalized air molecules — a phenomenon named Brownian motion, after Robert Brown
(1828), one of the first to observe it in careful experiments. As we discussed in Sec. 6.3.1
and in greater detail at the end of Sec. 6.3.3, any Cartesian component v(t) of the particle’s
velocity is a Gaussian, Markov process, whose statistical properties are all determined by its
equilibrium mean v̄ = 0 and standard deviation σv =

√

kBT/m, and its relaxation time τr
(which we will compute in Sec. 6.8.1). Here m is the particle’s mass and T is the temperature
of the air molecules that buffet it. The conditional probability distribution P2 for v is given
by Doob’s theorem

P2(v2, τ |v1) =
e−(v2−v̄τ )2/2σvτ

2

[2πσvτ
2]

1

2

, v̄τ = v1e
−τ/τr , σvτ

2 = (1− e−2τ/τr)σ2
v , σv =

√

kBT

m
(6.53a)

[Eqs. (6.18)], and its corresponding correlation function and spectral density have the stan-
dard forms (6.20) and (6.32) for a Gaussian, Markov process:

Cv(τ) = σ2
ve

−τ/tr , Sv(f) =
4σ2

v/τr
(2πf)2 + (1/τr)2

. (6.53b)
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The Cartesian coordinate (position) of the dust particle, x(t) =
∫

vdt, is of special

interest. Its spectral density can be deduced by applying the time-integral filter |K̃(f)|2 =
1/(2πf)2 to Sv(f). The result, using Eq. (6.53b), is

Sx(f) =
4τrσ

2
v

(2πf)2[1 + (2πfτr)2]
. (6.53c)

Notice that, at frequencies f ≪ 1/τr (corresponding to time long compared to the relaxation
time), our result [Eq. (6.53c)] reduces to the random-walk spectrum Sx = 4σ2

vτr/(2πf)
2.

From this spectrum, we can compute the root-mean-square (rms) distance σ∆x in the x-
direction that the dust particle travels in a time interval ∆τ ≫ τr. That σ∆x is the standard
deviation of the random process ∆x(t) ≡ x(t + ∆τ) − x(t). The filter that takes x(t) into
∆x(t) has

|K̃(f)|2 = |ei2πf(t+∆τ) − ei2πft|2 = 4 sin2(πf∆τ) . (6.54a)

Correspondingly, ∆x(t) has spectral density

S∆x(f) = |K̃(f)|2Sx(f) = 4σ2
vτr(∆τ)2sinc2(πf∆t) (6.54b)

(where sincu ≡ sin u/u); so the variance of ∆x (i.e., the square of the rms distance traveled)
is

(σ∆x)
2 =

∫

∞

0

S∆x(f)df = 2(σvτr)
2∆τ

τr
. (6.54c)

This equation has a simple physical interpretation: The damping time τr is the time
required for collisions to change substantially the dust particle’s momentum, so we can
think of it as the duration of a single step in the particle’s random walk. The particle’s mean
speed is roughly

√
2σv, so the distance traveled during each step (the particle’s mean free

path) is roughly
√
2σvτr. (The

√
2 comes from our analysis; this physical argument could

not have predicted it.) Therefore, during a time interval ∆τ long compared to a single step
τr, the rms distance traveled in the x-direction by the random-walking dust particle is about
one mean-free path

√
2σvτr, multiplied by the square root of the mean number of steps taken,

√

∆τ/τr:

σ∆x =
√
2σvτr

√

∆τ/τr . (6.55)

This “square root of the number of steps taken” behavior is a universal rule of thumb for
random walks; one meets it time and again in science, engineering, and mathematics. We
have met it previously in our studies of diffusion (Exs. 3.16 and 6.3) and of the elementary
“unit step” random walk problem that we studied using the central limit theorem in Ex. 6.4.
We could have guessed Eq. (6.55) from this rule of thumb, up to an unknown multiplicative
factor of order unity. Our analysis has told us that factor:

√
2.

****************************

EXERCISES

Exercise 6.10 Position, viewed on timescales ∆t ≫ τr, as a Markov Process
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(a) Explain why, physically, when the Brownian motion of a particle (which starts at x = 0
at time t = 0) is observed only on timescales ∆t ≫ τr corresponding to frequencies
f ≪ 1/τr, its position x(t) must be a Gaussian, Markov process with x̄ = 0. What are
the spectral density of x(t) in this case, and its relaxation time?

(b) Use Doob’s theorem to compute the conditional probability P2(x2, τ |x1). Your answer
should agree with the result we deduced in Ex. 6.3 from the diffusion equation, and in
Ex. 6.4 from the central limit theorem for a random walk.

****************************

6.7.3 Extracting a Weak Signal from Noise: Band-Pass Filter, Wiener’s

Optimal Filter, Signal to Noise Ratio, and Allan Variance of

Clock Noise

In experimental physics and engineering, one often meets a random process Y (t) that consists
of a sinusoidal signal on which is superposed noise y(t)

Y (t) =
√
2Ys cos(2πfot+ δo) + y(t) . (6.56a)

(The factor
√
2 is included in (6.56a) because the time average of the square of the cosine is

1/2; and, correspondingly, with the factor
√
2 present, Ys is the rms signal amplitude.) We

shall assume that the frequency fo and phase δo of the signal are known, and we want to
determine the signal’s root-mean-square amplitude Ys. The noise y(t) is an impediment to
the determination of Ys. To reduce that impediment, we can send Y (t) through a band-pass
filter , i.e., a filter with a shape like that of Fig. 6.13.

For such a filter, with central frequency fo and with bandwidth ∆f ≪ fo, the bandwidth
is defined by

∆f ≡
∫

∞

0
|K̃(f)|2df

|K̃(fo)|2
. (6.56b)

The output, W (t), of such a filter, when Y (t) is sent in, will have the form

W (t) = |K̃(fo)|
√
2Ys cos(2πfot+ δ1) + w(t) , (6.56c)
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o
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Fig. 6.13: A band-pass filter centered on frequency fo with bandwidth ∆f .
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where the first term is the filtered signal and the second is the filtered noise. The output
signal’s phase δ1 may be different from the input signal’s phase δo, but that difference can
be evaluated in advance for one’s filter and can be taken into account in the measurement
of Ys, and thus it is of no interest to us. Assuming, as we shall, that the input noise y(t) has
spectral density Sy which varies negligibly over the small bandwidth of the filter, the filtered
noise w(t) will have spectral density

Sw(f) = |K̃(f)|2Sy(fo) . (6.56d)

This means that w(t) consists of a random superposition of sinusoids all with nearly but not
quite the same frequency fo; their frequency spread is ∆f . Now, whenever one superposes
two sinusoids with frequencies that differ by ∆f ≪ fo, the two beat against each other,
producing a modulation with period 1/∆f . Correspondingly, with its random superposition
of many such sinusoids, the noise w(t) will have the form

w(t) = wo(t) cos[2πfot+ φ(t)] , (6.56e)

with amplitude wo(t) and phase φ(t) that fluctuate randomly on timescales

∆t ∼ 1/∆f , (6.56f)

but that are nearly constant on timescales ∆t ≪ 1/∆f .
The filter’s net output, W (t), thus consists of a precisely sinusoidal signal at frequency

fo, with known phase δ1, and with an amplitude that we wish to determine, plus a noise
w(t) that is also sinusoidal at frequency fo but that has amplitude and phase which wander
randomly on timescales ∆t ∼ 1/∆f . The rms output signal is

S ≡ |K̃(fo)|Ys (6.56g)

[Eq. (6.56c)], while the rms output noise is

N ≡ σw =

[
∫

∞

0

Sw(f)df

]
1

2

=
√

Sy(fo)

[
∫

∞

0

|K̃(f)|2df
]

1

2

= |K̃(fo)|
√

Sy(fo)∆f , (6.56h)

where the first integral follows from Eq. (6.26), the second from Eq. (6.56d), and the third
from the definition (6.56b) of the bandwidth ∆f . The ratio of the rms signal (6.56g) to the
rms noise (6.56h) after filtering is

S

N
=

Ys
√

Sy(fo)∆f
. (6.57)

Thus, the rms output S +N of the filter is the signal amplitude to within an rms fractional
error N/S given by the reciprocal of (6.57). Notice that the narrower the filter’s bandwidth,
the more accurate will be the measurement of the signal. In practice, of course, one does
not know the signal frequency with complete precision in advance, and correspondingly one
does not want to make one’s filter so narrow that the signal might be lost from it.
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A simple example of a band-pass filter is the following finite-Fourier-transform filter :

w(t) =

∫ t

t−∆t

cos[2πfo(t− t′)]y(t′)dt′ where ∆t ≫ 1/fo . (6.58a)

In Ex. 6.11 it is shown that this is indeed a band-pass filter, and that the integration time
∆t used in the Fourier transform is related to the filter’s bandwidth by

∆f = 1/∆t . (6.58b)

Often the signal one seeks amidst noise is not sinuosidal but has some other, known form
s(t). In this case, the optimal way to search for it is with a so-called Wiener Filter (an
alternative to the band-pass filter); see the very important Ex. 6.12.

****************************

EXERCISES

Exercise 6.11 Derivation and Example: Bandwidths of a finite-Fourier-transform filter and
an averaging filter

(a) If y is a random process with spectral density Sy(f), and w(t) is the output of the
finite-Fourier-transform filter (6.58a), what is Sw(f)?

(b) Draw a sketch of the filter function |K̃(f)|2 for this finite-Fourier-transform filter, and
show that its bandwidth is given by (6.58b).

(c) An “averaging filter” is one which averages its input over some fixed time interval ∆t:

w(t) ≡ 1

∆t

∫ t

t−∆t

y(t′)dt′ . (6.59a)

What is |K̃(f)|2 for this filter? Draw a sketch of this |K̃(f)|2.

(d) Suppose that y(t) has a spectral density that is very nearly constant at all frequencies
f . 1/∆t, and that this y is put through the averaging filter (6.59a). Show that the
rms fluctuations in the averaged output w(t) are

σw =
√

Sy(0)∆f , (6.59b)

where ∆f , interpretable as the bandwidth of the averaging filter, is

∆f =
1

2∆t
. (6.59c)

(Recall that in our formalism we insist that f be nonnegative.) Why the factor 1/2
here and no 1/2 for an averaging filter, Eq. (6.58b)? Because here, with f restricted
to positive frequencies and the filter centered on zero frequency, we see only the right
half of the filter: f ≥ fo = 0 in Fig. 6.13.
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Exercise 6.12 **Example: Wiener’s Optimal Filter
Suppose that you have a noisy receiver of weak signals (a radio telescope, or a gravitational-
wave detector, or . . .). You are expecting a signal s(t) with finite duration and known form
to come in, beginning at a predetermined time t = 0, but you are not sure whether it is
present or not. If it is present, then your receiver’s output will be

Y (t) = s(t) + y(t) , (6.60a)

where y(t) is the receiver’s noise, a random process with spectral density Sy(f) and with
zero mean, ȳ = 0. If it is absent, then Y (t) = y(t). A powerful way to find out whether
the signal is present or not is by passing Y (t) through a filter with a carefully chosen kernel
K(t). More specifically, compute the number

W ≡
∫ +∞

−∞

K(t)Y (t)dt . (6.60b)

If K(t) is chosen optimally, then W will be maximally sensitive to the signal s(t) in the
presence of the noise y(t); and correspondingly, if W is large you will infer that the signal
was present, and if it is small you will infer that the signal was either absent or so weak
as not to be detectable. This exercise derives the form of the optimal filter , K(t), i.e., the
filter that will most effectively discern whether the signal is present or not. As tools in the
derivation, we use the quantities S and N defined by

S ≡
∫ +∞

−∞

K(t)s(t)dt , N ≡
∫ +∞

−∞

K(t)y(t)dt . (6.60c)

Note that S is the filtered signal, N is the filtered noise, and W = S +N . Since K(t) and
s(t) are precisely defined functions, S is a number; but since y(t) is a random process, the
value of N is not predictable, and instead is given by some probability distribution p1(N).
We shall also need the Fourier transform K̃(f) of the kernel K(t).

(a) In the measurement being done one is not filtering a function of time to get a new
function of time; rather, one is just computing a number, W = S +N . Nevertheless,
as an aid in deriving the optimal filter it is helpful to consider the time-dependent
output of the filter which results when noise y(t) is fed continuously into it:

N(t) ≡
∫ +∞

−∞

K(t− t′)y(t′)dt′ . (6.61a)

Show that this random process has a mean squared value

N2 =

∫

∞

0

|K̃(f)|2Sy(f)df . (6.61b)

Explain why this quantity is equal to the average of the number N2 computed via (6.60c)
in an ensemble of many experiments:

N2 = 〈N2〉 ≡
∫

p1(N)N2dN =

∫

∞

0

|K̃(f)|2Sy(f)df . (6.61c)
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(b) Show that of all choices of K(t), the one that will give the largest value of

S

〈N2〉 1

2

(6.61d)

is Norbert Wiener’s (1949) optimal filter: the K(t) whose Fourier transform K̃(f) is
given by

K̃(f) = const× s̃(f)

Sy(f)
, (6.62a)

where s̃(f) is the Fourier transform of the signal s(t) and Sy(f) is the spectral density
of the noise. Note that when the noise is white, so Sy(f) is independent of f , this
optimal filter function is just K(t) = const × s(t); i.e., one should simply multiply
the known signal form into the receiver’s output and integrate. On the other hand,
when the noise is not white, the optimal filter (6.62a) is a distortion of const× s(t) in
which frequency components at which the noise is large are suppressed, while frequency
components at which the noise is small are enhanced.

(c) Show that when the optimal filter (6.62a) is used, the square of the signal-to-noise
ratio is

S2

〈N2〉 = 4

∫

∞

0

|s̃(f)|2
Sy(f)

df . (6.62b)

(d) As an example: suppose the signal consists of n cycles of some complicated waveform
with frequencies spread out over the range fo/2 to 2fo and with amplitude ∼ A for its
entire duration, and suppose that Sy is approximately constant (near white noise) over
this frequency band. Show that S/〈N2〉1/2 ∼ 2nA/

√

foSy(fo), so the amplitude signal
to noise increases linearly with the number of cycles in the signal.

(e) Suppose that (i) we do not know the signal s(t) in advance, but we do know that it
is from a set of N distinct signals all of which have frequency content concentrated
around some fo; (ii) we do not know when the signal will arrive, but we search for it for
a long time τs (say, a year); and (iii) the noise superposed on the signal is Gaussian.
Show that, in order to have 99 per cent confidence that any signal found is real, it
must have amplitude signal to noise ratio S/〈N2〉1/2 & [2 ln(H/

√
2 lnH)]1/2, where

H = 100Nfoτs. For N ∼ 104, fo ∼ 100Hz, τs ∼ 1yr, this says S/〈N2〉1/2 & 8.2. This
is so small because the Gaussian probability distribution falls off so rapidly.

Exercise 6.13 **Example: Allan Variance of Clocks
Highly stable clocks (e.g., cesium clocks or hydrogen maser clocks or quartz crystal oscil-
lators) have angular frequencies ω of ticking which tend to wander so much over very long
time scales that their variances diverge. For example, a cesium clock has random-walk noise
on very long time scales (low frequencies)

Sω(f) ∝ 1/f 2 at low f ; (6.63a)
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and correspondingly,

σω
2 =

∫

∞

0

Sω(f)df = ∞ ; (6.63b)

cf. Fig. 6.11 and associated discussion. For this reason, clock makers have introduced a
special technique for quantifying the frequency fluctuations of their clocks: They define

φ(t) =

∫ t

0

ω(t′)dt′ = (phase) , (6.64a)

Φτ (t) =
[φ(t+ 2τ)− φ(t+ τ)]− [φ(t+ τ)− φ(t)]√

2ω̄τ
, (6.64b)

where ω̄ is the mean frequency. Aside from the
√
2, this is the fractional difference of clock

readings for two successive intervals of duration τ . [In practice the measurement of t is made
by a clock more accurate than the one being studied; or, if a more accurate clock is not
available, by a clock or ensemble of clocks of the same type as is being studied.]

(a) Show that the spectral density of Φτ (t) is related to that of ω(t) by

SΦτ
(f) =

2

ω̄2

[

cos 2πfτ − 1

2πfτ

]2

Sω(f)

∝ f 2Sω(f) at f ≪ 1/2πτ (6.65)

∝ f−2Sω(f) at f ≫ 1/2πτ .

Note that SΦτ
(f) is much better behaved (more strongly convergent when integrated)

than Sω(f), both at low frequencies and at high.

(b) The Allan variance of the clock is defined as

στ
2 ≡ [ variance of Φτ (t)] =

∫

∞

0

SΦτ
(f)df . (6.66)

Show that

στ =

[

α
Sω(1/2τ)

ω̄2

1

2τ

]
1

2

, (6.67)

where α is a constant of order unity which depends on the spectral shape of Sω(f) near
f = 1/2τ . Explain why, aside from the factor α, the right-hand side of Eq. (6.67) is
the rms fractional fluctuation of ω at frequency 1/2τ in bandwidth 1/2τ .

(c) Show that, if ω has a white-noise spectrum, then the clock stability is better for long
averaging times than for short; if ω has a flicker-noise spectrum, then the clock stability
is independent of averaging time; and if ω has a random-walk spectrum, then the clock
stability is better for short averaging times than for long. See Fig. 6.11 above.

****************************
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(b)(a)
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Fig. 6.14: (a) A broad-band pulse that produces shot noise by arriving at random times. (b) The
spectral density of the shot noise produced by that pulse.

6.7.4 Shot Noise

A specific kind of noise that one frequently meets and frequently wants to filter is shot noise.
A random process y(t) is said to consist of shot noise if it is a random superposition of a
large number of pulses. In this chapter, we shall restrict attention to a simple variant of
shot noise in which the pulses all have identically the same shape, F (τ) (e.g., Fig. 6.14a), but
their arrival times ti are random:

y(t) =
∑

i

F (t− ti) . (6.68a)

We denote by R the mean rate of pulse arrivals (the mean number per second). It is
straightforward, from the definition (6.25) of spectral density, to see that the spectral density
of y is

Sy(f) = 2R|F̃ (f)|2 , (6.68b)

where F̃ (f) is the Fourier transform of F (τ) (Fig. 6.14). See Ex. 6.14 for proof. If the
pulses are broad-band bursts without much substructure in them (as in Fig. 6.14a), then the
duration τp of the pulse is related to the frequency fmax at which the spectral density starts
to cut off by fmax ∼ 1/τp; and since the correlation function is the cosine transform of the
spectral density, the correlation’s relaxation time is τr ∼ 1/fmax ∼ τp (Ex. 6.14).

In the common (but not universal) case that many pulses are on at once on average,
Rτp ≫ 1, y(t) at any moment of time is the sum of many random processes; and, corre-
spondingly, the central limit theorem guarantees that y is a Gaussian random process. Over
time intervals smaller than τp ∼ τr the process will not generally be Markov, because a
knowledge of both y(t1) and y(t2) gives some rough indication of how many pulses happen
to be on and how many new ones turned on during the time interval between t1 and t2 and
thus are still in their early stages at time t3; and this knowledge helps one predict y(t3) with
greater confidence than if one knew only y(t2). In other words, P3(y3, t3|y2, t2; y1, t1) is not
equal to P2(y3, t3|y2, t2); this implies non-Markovian behavior.

On the other hand, if many pulses are on at once, and if one takes a coarse-grained
view of time, never examining time intervals as short as τp or shorter, then a knowledge
of y(t1) is of no help in predicting y(t2). All correlations between different times are lost,
so the process is Markov, and (because it is a random superposition of many independent
influences) it is also Gaussian — an example of the central limit theorem at work. It thus
must have the standard Gaussian-Markov spectral density (6.32) with vanishing correlation
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time τr—i.e., it must be white. Indeed, it is: For f ≪ 1/τp, the limit of Eq. (6.68b) for Sy

and the corresponding correlation function are

Sy(f) = 2R|F̃ (0)|2 , Cy(τ) = R|F̃ (0)|2δ(τ) . (6.68c)

This formula remains true if the pulses have different shapes, so long as their Fourier
transforms at zero frequency, F̃j(0) =

∫

∞

−∞
Fjdt are all the same; see Ex. 6.14b.

As an important example, consider a (nearly) monochromatic beam of light with angular
frequency ωo ∼ 1015 s−1 and with power (energy per unit time) W (t) that is being measured
by a photodetector. The arriving light consists of discrete photons, each with its own pulse
shape Wj(t− tj),

9 which lasts for a time τp long compared to the light’s period (∼ 3× 10−15

s) but short compared to the inverse frequency f−1 at which we measure the photon shot
noise. The Fourier transform of Wj at zero frequency is just W̃j(0) =

∫

∞

0
Wjdt = ~ω (the

total energy carried by the photon), which is the same for all pulses; the rate of arrival of
photons is R = W̄/~ωo; and therefore the spectral density of the intensity measured by the
photodetector is

SW (f) = 2W̄ ~ω . (6.69)

In the LIGO instrument, whose noise power spectrum is shown in Fig. 6.7, this photon shot
noise dominates in the frequency band f & 150Hz. (Though SW for the laser light has white
noise, when passed through the interferometer as a filter, it produces Sx ∝ f 2.)

****************************

EXERCISES

Exercise 6.14 Derivation: Shot Noise

(a) Show that for shot noise, y(t) =
∑

i F (t − ti), the spectral density Sy(f) is given by
Eq. (6.68b). Show that the relaxation time that appears in the correlation function is
approximately the duration τp of F (t).

(b) Suppose the shapes of Fj(t− tj) are all different instead of being identical but all last
for times . τp, and all have the same Fourier transform at zero frequency, F̃j(0) =
∫

∞

−∞
Fjdt = F̃ (0). Show that the shot noise at frequencies f ≪ 1/τp is still given by

Eq. (6.68c).

Exercise 6.15 Shot Noise with Flicker Spectrum

(a) Show that for shot noise with identical pulses that have the infinitely sharply peaked
shape (6.45), the power spectrum has the flicker form Sy ∝ 1/f for all f .

(b) Construct realizations of shot noise with flicker spectrum [Eq. (6.68a) with pulse shape
(6.52a)] that range from few large pulses in the time interval observed to many small
pulses, and describe the visual differences; cf. Fig. 6.10 and discussion in Sec. 6.6.2.

9For a single photon, Wj(t) is the probability per unit time for the photon’s arrival, times the photon’s
energy ~ωo .
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****************************

6.8 Fluctuation-Dissipation Theorem

6.8.1 Elementary Version of FD Theorem; Langevin Equation, John-

son Noise in a Resistor, and Relaxation Time for Brownian

Motion

Friction is generally caused by interaction with the huge number of degrees of freedom of
some sort of bath, e.g., the molecules of air against which a moving ball or dust particle
pushes. Those degrees of freedom also produce fluctuating forces. In this section we shall
study the relationship between the friction and the fluctuating forces, when the bath is
thermalized at some temperature T (so it is a heat bath).

For simplicity, we shall restrict ourselves to a specific generalized coordinate q of the
system being studied (e.g. the x component of the ball or dust particle). We shall require
just one special property for q: its time derivative q̇ = dq/dt must appear in the system’s
Lagrangian as a kinetic energy

Ekinetic =
1

2
mq̇2 , (6.70)

and in no other way. Here m is a (generalized) mass associated with q. Then the equation
of motion for q will have the simple form of Newton’s first law mq̈ = F , where F includes
contributions F from the system itself (e.g., a restoring force in the case of a normal mode),
plus a force Fbath due to the heat bath (i.e., due to all the degrees of freedom in the bath).
This Fbath is a random process whose mean is a frictional (damping) force proportional to q̇:

F̄bath = −Rq̇ , Fbath ≡ F̄bath + F ′ . (6.71)

Here R is the coefficient of friction. The fluctuating part F ′ of Fbath is responsible for driving
q toward statistical equilibrium.

Three specific examples, to which we shall return below, are these: (i) Our system might
be a dust particle with q its x-coordinate and m its mass; and the heat bath might be air
molecules at temperature T , which buffet the dust particle, producing Brownian motion.
(ii) Our system might be an L-C-R circuit (i.e., an electric circuit containing an inductance
L, a capacitance C, and a resistance R) with q the total electric charge on the top plate of
the capacitor; and the bath in this case would be the many mechanical degrees of freedom
in the resistor. For such a circuit, the equation of motion is

Lq̈ + C−1q = Fbath(t) = −Rq̇ + F ′ , (6.72)

so the effective mass is the inductance L, the coefficient of friction is the resistance R,
−Rq̇ + F ′ is the total voltage across the resistor, and F ′ is the fluctuating voltage produced
by the resistor’s internal degrees of freedom (the bath) and so might better be denoted V ′.
(iii) The system might be the fundamental mode of a 10 kg sapphire crystal with q its
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generalized coordinate; and the heat bath might be all the other normal modes of vibration
of the crystal, with which the fundamental mode interacts weakly.

In general, the equation of motion for the generalized coordinate q(t) under the joint
action of (i) the bath’s damping force −Rq̇, (ii) the bath’s fluctuating forces F ′, and (iii) the
system’s internal force F will be

mq̈ +Rq̇ = F + F ′(t) . (6.73)

The internal force F is that which one derives from the system’s Hamiltonian or Lagrangian
in the absence of the heat bath. For the L-C-R circuit of Eq. (6.72) that force is F = −C−1q;
for the dust particle, if the particle were endowed with a charge e and were in an external
electric field with potential Φ(t, x, y, z), it would be F = −e∂Φ/∂x ; for the normal mode of
a crystal, it is F = −mω2q, where ω is the mode’s eigenfrequency.

Because the equation of motion (6.73) involves a driving force F ′(t) that is a random
process, one cannot solve it to obtain q(t). Instead, one must solve it in a statistical way
to obtain the evolution of q’s probability distributions pn(q1, t1 ; . . . ; qn, tn). This and other
evolution equations which involve random-process driving terms are called, by modern math-
ematicians, stochastic differential equations; and there is an extensive body of mathematical
formalism for solving them. In statistical physics the specific stochastic differential equa-
tion (6.73) is known as the Langevin equation .

Because the damping force −Rq̇ and the fluctuating force F ′ both arise from interaction
with the same heat bath, there is an intimate connection between them. For example, the
stronger the coupling to the bath, the stronger will be the coefficient of friction R and the
stronger will be F ′. The precise relationship between the dissipation embodied in R and the
fluctuations embodied in F ′ is given by the following fluctuation-dissipation theorem :
At frequencies10

f ≪ 1/τr , (6.74a)

where τr is the (very short) relaxation time for the bath’s fluctuating forces F ′, the bath’s
fluctuating force has the spectral density

SF ′(f) = 4R

(

1

2
hf +

hf

ehf/kBT − 1

)

in general , (6.74b)

SF ′(f) = 4RkBT in the classical domain, kBT ≫ hf , (6.74c)

Here T is the temperature of the bath and h is Planck’s constant .
Notice that in the classical domain, kBT ≫ hf , the spectral density has a white-noise

spectrum; and, in fact, since we are restricting attention to frequencies at which F ′ has no
self correlations (f−1 ≫ τr), F

′ is Markov; and since it is produced by interaction with the
huge number of degrees of freedom of the bath, F ′ is also Gaussian. Thus, in the classical
domain F ′ is a Gaussian, Markov, white-noise process.

10If one looks carefully at the proof which follows, one sees that it also requires f ≫ 1/τ∗, where τ∗ = 2m/R.
However, the proof of the more general form of the fluctuation-dissipation theorem in Sec. 6.8.2 and Ex. 6.18
has no such restriction.
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At frequencies f ≫ kBT/h (quantum domain), in Eq. (6.74b) the term SF ′ = 4R 1
2
hf is

associated with vacuum fluctuations of the degrees of freedom that make up the heat bath
(one half quantum of fluctuations per mode), and the second term SF ′(f) = 4Rhfe−hf/kBT ,
associated with thermal excitations of the bath’s degrees of freedom, is exponentially sup-
pressed because at these high frequencies, the bath’s modes have exponentially small prob-
abilities of containing any quanta at all. Since this quantum-domain SF ′(f) does not have
the standard Gaussian-Markov frequency dependence (6.32), in the quantum domain F ′ is
not a Gaussian-Markov process.

Proof of the fluctuation-dissipation theorem : In principle, we can alter the system’s
internal restoring force F without altering its interactions with the heat bath, i.e., without altering
R or SF ′(f). As an aid in our proof, we shall choose F to be the restoring force of a harmonic
oscillator with eigenfrequency ω/2π that we set equal to a frequency f at which we wish to prove the
fluctuation-dissipation theorem, i.e. derive Eq. (6.74b). Then the Langevin equation (6.73) takes
the form

mq̈ +Rq̇ +mω2q = F ′(t) . (6.75a)

This equation can be regarded as a filter which produces, from an input F ′(t), an output q(t) =
∫ +∞

−∞
K(t− t′)F ′(t′). The squared Fourier transform |K̃(f)|2 of this filter’s kernel K(t− t′) is readily

computed by the standard method [Eq. (6.51) and associated discussion] of inserting a sinusoid into
the filter, i.e. into the differential equation, in place of F ′, then solving for the sinusoidal output q,
and then setting |K̃|2 = |q|2. The resulting |K̃|2 is the ratio of the spectral densities of input and
output:

Sq(f) = |K̃(f)|2SF ′(f) =
SF ′(f)

|m[ω2 − (2πf)2] + 2πifR|2 . (6.75b)

The mean energy of the oscillator, averaged over an arbitrarily long timescale, can be computed
in either of two ways: (i) Because the oscillator is a mode of some boson field and is in statistical
equilibrium with a heat bath, its mean occupation number must have the standard Bose-Einstein
value η = 1/(e~ω/kBT − 1), and since each quantum carries an energy ~ω, the mean energy is

Ē =
~ω

e~ω/kBT − 1
+

1

2
~ω . (6.75c)

Here we have included the half-quantum of energy associated with the mode’s vacuum fluctuations.
(ii) Because on average half the energy is potential and half kinetic, and the mean potential energy
is 1

2mω2q2, and because the ergodic hypothesis tells us that time averages are the same as ensemble
averages, it must be that

Ē = 2
1

2
mω2〈q2〉 = mω2

∫

∞

0
Sq(f)df . (6.75d)

By inserting the spectral density (6.75b) and by noting that our restriction of ω/2π to the range (6.74a)
implies a very sharp resonance in the denominator of the spectral density (6.75b), and by performing
the frequency integral with the help of the narrowness of the resonance, we obtain

Ē = mω2SF ′(f = ω/2π)× 1

4mω2R
. (6.75e)

Equating this to our statistical-equilibrium expression (6.75c) for the mean energy, we see that at

the frequency f = ω/2π the spectral density SF ′(f) has the form (6.74b) claimed in the fluctuation-

dissipation theorem. Moreover, since ω/2π can be chosen to be any frequency in the range (6.74a),

the spectral density SF ′(f) has the claimed form anywhere in this range. QED
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Let us discuss two examples of the elementary fluctuation-dissipation theorem (6.74):
Example: Johnson noise in a resistor. For the L-C-R circuit of Eq. (6.72), Rq̇ is the

dissipative voltage across the resistor, and F ′(t) is the fluctuating voltage [more normally
denoted V ′(t)] across the resistor. The fluctuating voltage is called “Johnson noise” and
the fluctuation-dissipation relationship SV (f) = 4RkBT (classical regime) is called Nyquist’s
theorem because J. B. Johnson (1928) discovered the voltage fluctuations V ′(t) experimen-
tally and H. Nyquist (1928) derived the fluctuation-dissipation relationship for a resistor in
order to explain them. The fluctuation-dissipation theorem as formulated above is a gener-
alization of Nyquist’s original theorem to any system with kinetic energy 1

2
mq̇2 associated

with a generalized coordinate q and with frictional dissipation produced by a heat bath.
Brownian Motion. In Secs. 6.3.3 and 6.7.2 we have studied the Brownian motion of

a dust particle being buffeted by air molecules, but we omitted until now any attempt to
deduce the motion’s relaxation time τr. We shall now use the fluctuation-dissipation theorem
to deduce τr, using a model in which the particle is idealized as a sphere with mass m and
radius a that, of course, is far larger than the air molecules.

The equation of motion for the dust particle, when we ignore the molecules’ fluctuating
forces, is mdv/dt = −Rv. Here the resistance (friction) R due to interaction with the
molecules has a form that depends on whether the molecules’ mean free path λ is small or
large compared to the particle. From the kinetic-theory formula λ = 1/(nσmol), where n
is the number density of molecules and σmol is their cross section to scatter off each other
(roughly their cross sectional area), we can deduce that for air λ ∼ 0.1µm. This is tiny
compared to a dust particle’s radius a ∼ 10 to 1000µm. This means that, when interacting
with the dust particle, the air molecules will behave like a fluid. As we shall learn in Sec.
13.7.5, the friction for a fluid depends on whether a quantity called the Reynolds number,
Re= va/ν, is small or large compared to unity; here ν ∼ 10−5m2 s−1 is the kinematic viscosity
of air. Inserting numbers, we see that Re∼ (v/0.1m s−1)(a/100µm). The speeds v of dust
particles being buffeted by air are far smaller than 0.1m s−1 as anyone who has watched
them in a sunbeam knows, or as you can estimate from Eq. (6.53a). Therefore, the Reynolds
number is small. From an analysis that we shall carry out in Sec. 14.3.2, we learn that in
this low-Re, fluid regime, the resistance (friction) on our spherical particle with radius a is

R = 6πρνa , (6.76)

where ρ ∼ 1kgm−3 is the density of air. (Notice that this resistance is proportional to the
sphere’s radius a or circumference; if λ were ≫ a, then R would be proportional to the
sphere’s cross sectional area, i.e. to a2.)

When we turn on the molecules’ fluctuating force F ′, the particle’s equation of motion
becomes mdv/dt + Rv = F ′. Feeding ei2πft through this equation in place of F ′ we get the
output v = 1/(R + i2πfm), whose modulus squared then is the ratio of Sv to SF ′. The
fluctuation-dissipation theorem says, in this obviously classical regime, that SF ′ = 4RkBT .
Therefore,

Sv =
SF ′

R2 + (2πfm)2
=

4RkBT

R2 + (2πfm)2
=

4RkBT/m
2

(2πf)2 + (R/m)2
. (6.77)

By comparing with the Sv that we have derived from Doob’s theorem, Eq. (6.53b), we can
read off the particle’s rms velocity (in one dimension, x or y or z), σv =

√

kBT/m—which
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Fig. 6.15: The circuit appearing in Ex. 6.16

agrees with Eq. (6.53a) as it must—, and we can also read off the particle’s relaxation time,

τr = m/R = m/(6πρνa) . (6.78)

If we had tried to derive this relaxation time by analyzing the buffeting of the particle directly,
we would have had great difficulty. The fluctuation-dissipation theorem, Doobs theorem, and
the fluid-mechanics analysis of friction on a sphere have made the task straightforward.

****************************

EXERCISES

Exercise 6.16 Practice: Noise in an L-C-R Circuit
Consider an L-C-R circuit as shown in Fig. 6.15. This circuit is governed by the differential
equation (6.72), where F ′ is the fluctuating voltage produced by the resistor’s microscopic
degrees of freedom (so we shall rename it V ′), and F ≡ V vanishes since there is no driving
voltage in the circuit. Assume that the resistor has temperature T ≫ ~ωo/k where ωo is
the circuit’s resonant angular frequency, ωo = fo/2π, and that the circuit has a large quality
factor (weak damping) so R ≪ 1/(ωoC) ≃ ωoL.

(a) Initially consider the resistor R decoupled from the rest of the circuit, so current cannot
flow across it. What is the spectral density Vαβ of the voltage across this resistor?

(b) Now place the resistor into the circuit as shown in Fig. 6.15. The fluctuating voltage
V ′ will produce a fluctuating current I = q̇ in the circuit (where q is the charge on the
capacitor). What is the spectral density of I? And what, now, is the spectral density
Vαβ across the resistor?

(c) What is the spectral density of the voltage Vαγ between points α and γ? and of Vβγ?

(d) The voltage Vαβ is averaged from time t = t0 to t = t0 + τ (with τ ≫ 1/fo), giving
some average value U0. The average is measured once again from t1 to t1 + τ giving
U1. A long sequence of such measurements gives an ensemble of numbers {U0, U1, . . .,

Un}. What are the mean Ū and root mean square deviation ∆U ≡ 〈(U − Ū )2〉 1

2 of this
ensemble?
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Exercise 6.17 **Example: Detectability of a Sinusoidal Force that Acts on an Oscillator
with Thermal Noise

When one wants to measure a very weak sinusoidal force, an excellent way is to let the force
act on a simple harmonic oscillator with eigenfrequency at or near the force’s frequency, and
measure the oscillator’s response. Examples range in physical scale from nanomechanical
oscillators (∼ 1µm in size) with eigenfrequency ∼ 1 GHz that might play a role in future
quantum information technology, e.g. Chan (2011), to the fundamental mode of a ∼ 10kg
sapphire crystal, to a ∼ 10 kg LIGO mirror on which light pressure produces a restoring
force so its center of mass oscillates mechanically at frequency ∼ 100 Hz, e.g. Abbott et. al.
(2009). The oscillator need not be mechanical; for example, it could be an L-C-R circuit, or
a mode of an optical (Fabry-Perot) cavity.

The displacement x(t) of any such oscillator is governed by the driven-harmonic-oscillator
equation

m(ẍ+
2

τ∗
ẋ+ ω2x) = F (t) + F ′(t) . (6.79)

Here m, ω, τ∗ are the effective mass, angular frequency, and amplitude damping time asso-
ciated with the oscillator, F (t) is an external driving force, and F ′(t) is the fluctuating force
associated with the dissipation that gives rise to τ∗. Assume that ωτ∗ ≫ 1 (weak damping).

(a) Weak coupling to other modes is responsible for the damping. If the other modes are
thermalized at temperature T , what is the spectral density SF ′(f) of the fluctuating
force F ′? What is the spectral density Sx(f) of x?

(b) A very weak sinusoidal force drives the fundamental mode precisely on resonance:

F =
√
2Fs cosωt . (6.80)

Here Fs is the rms signal. What is the x(t) produced by this signal force?

(c) A sensor with negligible noise monitors this x(t) and feeds it through a narrow-band
filter with central frequency f = ω/2π and bandwidth ∆f = 1/τ̂ (where τ̂ is the
averaging time used by the filter). Assume that τ̂ ≫ τ∗. What is the rms thermal
noise σx after filtering? Show that the strength Fs of the signal force that produces a
signal x(t) =

√
2xs cos(ωt+ δ) with rms amplitude xs equal to σx is

Fs =

√

8mkBT

τ̂τ∗
. (6.81)

This is the minimum detectable force at the “one-σ level”.

(d) Suppose that the force acts at a frequency ωo that differs from the oscillator’s eigen-
frequency ω by an amount |ω − ωo| . 1/τ∗. What, then, is the minimum detectable
force strength Fs? What might be the advantages and disadvantages of operating off
resonance in this way, versus on resonance?

****************************
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6.8.2 T2 Generalized Fluctuation-Dissipation Theorem; Thermal

Noise in a Laser Beam’s Measurement of Mirror Motions;

Standard Quantum Limit for Measurement Accuracy and How

to Evade it

Not all generalized coordinates q have kinetic energy 1
2
mq̇2. An important example (due to

Levin 1998) arises when one measures the location of the front of a mirror by bouncing a
laser beam perpendicularly off of it—a common and powerful tool in modern technology. If
the mirror moves along the beam’s optic axis by ∆z, the distance of the bouncing light’s
travel changes by 2∆z, and the light acquires a phase shift (2π/λ)2∆z (with λ the light’s
wavelength) that can be read out via interferometry (Chap. 9). Because the front of the
mirror can deform, ∆z is actually the change in a spatial average of the mirror front’s
location z(r, φ; t), an average weighted by the number of photons that hit a given region. In
other words, the (time varying) mirror position monitored by the light is

q(t) =

∫

z(r, φ; t)
e−(r/ro)2

πr2o
rdφdr . (6.82)

Here (r, φ) are cylindrical coordinates centered on the laser beam’s optic axis, and e−(r/ro)2 is
the Gaussian distribution of the beam’s energy flux, so (e−(r/ro)2/πr2o)rdφdr is the probability
that a photon of laser light will hit the mirror at (r, φ) in the range (dr, dφ).

Because the mirror front’s deformations z(r, φ; t) can be expanded in normal modes, this
q is a linear superposition of the generalized coordinates qj(t) of the mirror’s normal modes of
oscillation, and its center-of-mass displacement q0(t): q(t) = q0(t) +

∑

j Qj(r, φ)qj(t), where
Qj(r, φ) is mode j’s displacement eigenfunction evaluated at the mirror’s face. Each of the
generalized coordinates q0 and qj has a kinetic energy proportional to q̇2j ; but this q does
not. Therefore, the elementary version of the fluctuation-dissipation theorem, treated in the
last section, is not valid for this q.

Fortunately, there is a remarkably powerful generalized fluctuation-dissipation theorem
due to Callen and Welton (1951) that works for this q and all other generalized coordinates
that are coupled to a heat bath. To formulate this theorem, we must first introduce the
complex impedance Z(ω) for a generalized coordinate:

Let a sinusoidal external force F = Foe
−iωt act on the generalized coordinate q [so q’s

canonically conjugate momentum p is being driven as (dp/dt)drive = Foe
−iωt]. Then the

velocity of the resulting sinuosoidal motion will be

q̇ ≡ dq

dt
= −iωq =

1

Z(ω)
Foe

−iωt , (6.83a)

where the real part of each expression is to be taken. This equation can be regarded as the
definition of q’s complex impedance Z(ω) (ratio of force to velocity); it is determined by
the system’s details. If the system were completely conservative, then the impedance would
be perfectly imaginary, Z = iI. For example, for a freely moving dust particle in vacuum,
driven by a sinusoidal force, the momentum is p = mq̇ (where m is the particle’s mass), the
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equation of motion is Foe
−iωt = dp/dt = m(d/dt)q̇ = m(−iω)q̇, and so the impedance is

Z = −imω, which is pure imaginary.
The bath prevents the system from being conservative: Energy can be fed back and forth

between the generalized coordinate q and the bath’s many degrees of freedom. This energy
coupling influences the generalized coordinate q in two important ways: First, it changes the
impedance Z(ω) from pure imaginary to complex,

Z(ω) = iI(ω) +R(ω) , (6.83b)

where R is the resistance experienced by q; and correspondingly, when the sinusoidal force
F = Foe

−iωt is applied, the resulting motions of q feed energy into the bath, dissipating power
at a rate Wdiss = 〈ℜ(F )ℜ(q̇)〉 = 〈ℜ(Foe

−iωt)ℜ(Foe
−iωt/Z)〉 = 〈Fo cosωt ℜ(1/Z) Fo cosωt)〉;

i.e.,

Wdiss =
1

2

R

|Z|2F
2
o . (6.84)

Second, the thermal motions of the bath exert a randomly fluctuating force F ′(t) on q, driving
its generalized momentum as (dp/dt)drive = F ′.

As an example, consider the L-C-R circuit of Eq. (6.72) above. We can identify the
generalized momentum by shutting off the bath (the resistor and its fluctuating voltage),
writing down the Lagrangian for the resulting L-C circuit L = 1

2
Lq̇2− 1

2
q2/C, and computing

p = ∂L/∂q̇ = Lq̇. (Equally well, we can identify p from one of Hamilton’s equations for the
Hamiltonian H = p2/2L + q2/2C.) We evaluate the impedance Z(ω) from the equation
of motion for this Lagrangian with the bath’s resistance restored (but not its fluctuating
voltage), and with a sinusoidal voltage V = Voe

−iωt imposed:

dp

dt
= L

dq̇

dt
− q

C
+Rq̇ =

(

−iωL+
1

−iωC
+R

)

q̇ = Voe
−iωt . (6.85a)

Evidently, V = Voe
−iωt is the generalized force F that drives the generalized momentum,

and the complex impedance (ratio of force to velocity) is

Z(ω) =
V

q̇
= −iωL+

1

−iωC
+R . (6.85b)

This is identical to the impedance as defined in the standard theory of electrical circuits
(which is what motivates our Z = F/q̇ definition of impedance), and as expected, the real
part of this impedance is the circuit’s resistance R.

Returning to our general q, the fluctuating force F ′ (equal to fluctuating voltage V ′ in
the case of the circuit) and the resistance R to an external force both arise from interaction
with the same heat bath. Therefore, it should not be surprising that they are connected by
the generalized fluctuation-dissipation theorem:

SF ′(f) = 4R(f)

(

1

2
hf +

hf

ehf/kBT − 1

)

in general , (6.86a)
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SF ′(f) = 4R(f)kBT in the classical domain, kBT ≫ hf , (6.86b)

which is valid at all frequencies

f ≪ 1/τr , (6.87)

where τr is the (very short) relaxation time for the bath’s fluctuating forces F ′. Here T is the
temperature of the bath, h is Planck’s constant, and we have written the resistance as R(f)
to emphasize that it can depend on frequency f = ω/2π. A derivation of this generalized
fluctuation-dissipation theorem is sketched in Ex. 6.18.

One is usually less interested in the spectral density of the bath’s force F ′ than that of
the generalized coordinate q. The definition (6.83a) of impedance implies −iωq̃ = F̃ ′/Z(ω)
for Fourier transforms, whence Sq = SF/[(2πf)

2|Z|2]. When combined with Eqs. (6.86) and
(6.84), this implies

Sq(f) =
8Wdiss

F 2
o

(

1

2
hf +

hf

ehf/kBT − 1

)

in general , (6.88a)

Sq(f) =
8WdisskBT

F 2
o

in the classical domain, kBT ≫ hf . (6.88b)

Therefore, to evaluate Sq(f), one does not need to know the complex impedance Z(ω).
Rather, one only needs the power dissipation Wdiss that results when a sinusoidal force Fo is
applied to the generalized momentum p that is conjugate to the coordinate q of interest.

The light beam bouncing off a mirror (beginning of this section) is a good example. To
couple the sinusoidal force F (t) = Foe

−iωt to the mirror’s generalized coordinate q, we add
an interaction term HI = −F (t)q to the mirror’s Hamiltonian Hmirror. Hamilton’s equation
for the evolution of the momentum conjugate to q then becomes dp/dt = −∂/∂q(Hmirror −
F (t)q) = ∂Hmirror/∂t + F (t). Thus, F (t) drives p as desired. The form of the interaction
term is, by Eq. (6.82) for q,

HI = −F (t)q = −
∫

z(r, φ)
F (t)e−(r/ro)2

πr2o
rdφdr . (6.89)

This is the mathematical description of a time varying pressure P = Foe
−iωte−(r/ro)2/πr2o

applied to the mirror face, which has coordinate location z(r, φ). Therefore, to compute the
spectral density of the mirror’s light-beam-averaged displacement q, at frequency f = ω/2π,
we can (i) apply to the mirror’s front face a pressure with spatial shape the same as that of
the light beam’s energy flux (a Gaussian in our example), and with total force Foe

−iωt; then
(ii) evaluate the power dissipation Wdiss produced by this sinusoidally oscillating pressure;
then (iii) insert the ratio Wdiss/F

2
o into Eq. (6.88). This is called Levin’s (1998) method.

In practice, in this thought experiment the power can be dissipated at many locations: in
the mirror coating (that makes the mirror reflective), in the substrate on which the coating is
placed (usually glass, i.e. fused silica), in the attachment of the mirror to whatever supports
it (usually a wire or glass fiber), and in the supporting structure (the wire or fiber and the
solid object to which it is attached). The dissipations Wdiss at each of these locations add
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together, and therefore the fluctuating noises from the various dissipation locations add.
Correspondingly, one speaks of “coating thermal noise”, “substrate thermal noise”, etc.; and
physicists making delicate optical measurements deduce each through a careful computation
of its corresponding dissipation Wdiss.

In the LIGO instrument, whose noise power spectrum is shown in Fig. 6.7, these thermal
noises dominate in the intermediate frequency band 40Hz . f . 150Hz.

****************************

EXERCISES

Exercise 6.18 T2 Derivation: Generalized fluctuation-dissipation theorem.

By a method analogous to that used for the elementary fluctuation-dissipation theorem (Sec.
6.8.1), derive the generalized fluctuation-dissipation theorem (6.86).

Hints: Consider a thought experiment in which the system’s generalized coordinate q is
weakly coupled to an external oscillator that has a very large mass M , and has an angular
eigenfrequency ωo near which we wish to derive the fluctuation-dissipation formulas (6.86).
Denote by Q and P the external oscillator’s generalized coordinate and momentum and by
K the weak coupling constant between the oscillator and q, so the Hamiltonian of system
plus oscillator plus fluctuating force F ′ acting on q is

H = Hsystem(q, p, ...) +
P 2

2M
+

1

2
Mω2

oQ
2 +KQq − F ′(t)q . (6.90)

Here the “ ...” refers to the other degrees of freedom of the system, some of which might be
strongly coupled to q and p (as is the case, e.g., for the laser-measured mirror discussed in
the text).

(a) By combining Hamilton’s equations for q and its conjugate momentum p [which give
Eq. (6.83a) with the appropriate driving force] with those for the external oscillator
(Q,P ), derive an equation that shows quantitatively how the force F ′, acting through
q, influences the oscillator’s coordinate Q:

[

M(−ω2 + ω′

o
2
)− iK2R

ω|Z|2
]

Q̃ =
K

iωZ
F̃ ′ . (6.91a)

Here the tildes denote fourier transforms, ω = 2πf is the angular frequency at which
the fourier transforms are evaluated, and ω′

o
2 = ω2

o −K2I/(ω|Z|2), with Z = R + iI
the impedance of q at angular frequency ω.

(b) Show that

SQ =
(K/ω|Z|)2SF ′

M2(−ω2 + ω′

o
2)2 +K4R2/(ω|Z|2)2 . (6.91b)

(c) Make the resonance in this equation arbitrarily sharp by choosing the coupling constant
K arbitrarily small. Show, then, that the mean energy in the oscillator is

Ē = Mω′

o
2

∫

∞

0

SQ(f)df =
SF ′(f = ω′

o/2π)

4R
. (6.91c)
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(d) By equating this to expression (6.75c) for the mean energy of any oscillator coupled to
a heat bath, deduce the desired generalized fluctuation-dissipation equations (6.86)

Exercise 6.19 ** T2 Challenge: Standard Quantum Limit for Minimum Noise in a Linear
Measuring Device, and How to Evade It

Consider any device that measures a generalized coordinate q of any system, and whose out-
put is a linear functional of q. The device inevitably will superpose fluctuating measurement
noise q′(t) on its output, so that the measured coordinate is q(t) + q′(t). The device also
inevitably will produce a fluctuating back-action noise force F ′(t) on the measured system,
so the generalized momentum p conjugate to q gets driven as (dp/dt)drive = F ′(t) and thereby
acquires a fluctuating back-action piece p′ that is a linear functional of F ′. [As an example,
q might be the position of a charged particle, and the measuring device might be the light
of a Heisenberg microscope (as described in standard quantum mechanics textbooks when
introducing the uncertainty principle). In this case, q′ will arise from the light’s photon shot
noise, F ′ will be the fluctuating radiation-pressure force that the light exerts on the particle,
and p′ will be the particle’s momentum change produced by those pressure fluctuations.]
Because the measurement noise q′ and back-action momentum change p′ are produced by
fluctuations in the same measuring device, they are connected. In fact, when one examines
any linear measuring device quantum mechanically, one discovers that q′ and p′, viewed as
quantum mechanical operators, have the commutator [q′, p′] = −i~ with the opposite sign to
that for the measured body’s actual position and momentum: [q, p] = +i~; see, e.g., Bragin-
sky et. al. (2003) for a pedagogical discussion. This has a variety of important consequences,
of which we shall explore just one:

The commutator [q′, p′] = −i~ implies that, in any measurement of q, the rms measurement
error ∆q′ and the rms back action ∆p′ produced by F ′ satisfy the uncertainty principle
∆q′∆p′ ≥ ~/2.

(a) Suppose that q′(t) and F ′(t) are uncorrelated. Show, by a thought experiment for a
measurement that lasts for a time τ̂ ∼ 1/f for any chosen frequency f , that

Sq′(f)SF ′(f) & ~
2 . (6.92)

(b) Continuing to assume that q′(t) and F ′(t) are uncorrelated, invent a thought experi-
ment by which to prove the precise uncertainty relation

Sq′(f)SF ′(f) ≥ ~
2 . (6.93a)

[Hint: Adjust the system so that q and p are the generalized coordinate and momentum
of a harmonic oscillator with eigenfrequency 2πf , and use a thought experiment with
a modulated coupling designed to measure the complex amplitude of excitation of the
oscillator by averaging over a very long time.]

(c) Now assume that q′(t) and F ′(t) are correlated. Show by a thought experiment like that
in part (b) that the determinant of their correlation matrix satisfies the uncertainty
relation

Sq′SF ′ − Sq′F ′SF ′q′ = Sq′SF ′ − |Sq′F ′|2 ≥ ~
2 . (6.93b)
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The uncertainty relation (6.93a) without correlations is called the “standard quantum
limit” on measurement accuracies and it holds for any linear measuring device with uncorre-
lated measurement and back-action noises. By clever experimental designs, one can use the
correlations embodied in the modified uncertainty relation (6.93b) to make one’s experimen-
tal output insensitive to the back-action noise. Such back-action evading schemes (variants
of quantum nondemolition schemes) will play important roles in twenty-first-century quan-
tum information technology (e.g. future applications of the nanomechanical oscillator and the
LIGO instrument discussed in Ex. 6.17). For some details and discussion, see, e.g., Braginksy
and Khalili (1992), Clerk et. al. (2010), Chen (2013), Danilishin and Khalili (2012).

****************************

6.9 Fokker-Planck Equation

In statistical physics, one often wants to know the collective influence of many degrees of
freedom (a bath) on a single (possibly vectorial) degree of freedom q. The bath might or
might not be thermalized. The forces it exerts on q might have short range (as in molecular
collisions buffeting an air molecule or dust particle) or long range (as in coulomb forces from
many charged particles in a plasma pushing stochastically on an electron that interests us, or
gravitational forces from many stars pulling on a single star that interests us). There might
also be long-range, macroscopic forces that produce anisotropies and/or inhomogeneities
(e.g., applied electric or magnetic fields, or the gravitational field of a large, nearby black
hole). We might want to compute how the bath’s many degrees of freedom influence, e.g., the
diffusion of a particle as embodied in its degree of freedom q. Or we might want to compute
the statistical properties of q for a representative electron in a plasma, and from them deduce
the plasma’s transport coefficients (diffusivity, heat conductivity, thermal conductivity). Or
we might want to know how the gravitational pulls of many stars in the vicinity of a black
hole drive the collective evolution of the stars’ distribution function.

The Fokker-Planck equation is a powerful tool in such situations. To apply it, we must
identify a (possibly vectorial) degree of freedom q to analyze that is Markov. For the types
of problems described above, this is typically the velocity (or a component of velocity) of a
representative particle or star. The Fokker-Planck equation is then a differential equation for
the evolution of the conditional probability distribution P2 (or other distribution function)
for that degree of freedom. In Sec. 6.9.1, we shall present the simplest, one-dimensional
example. Then in Sec. 6.9.3 we shall generalize to several dimensions.

6.9.1 Fokker-Planck for a One-Dimensional Markov Process

For a one-dimensional Markov process y(t) (e.g., the x component of velocity of a particle)
being driven by a bath (not necessarily thermalized!) with many degrees of freedom, the
Fokker-Planck equation says:

∂

∂t
P2 = − ∂

∂y
[A(y)P2] +

1

2

∂2

∂y2
[B(y)P2] . (6.94)
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Here P2 = P2(y, t|yo) is to be regarded as a function of the variables y and t with yo fixed;
i.e., Eq. (6.94) is to be solved subject to the initial condition

P2(y, 0|yo) = δ(y − yo) . (6.95)

As we shall see later, this Fokker-Planck equation is a diffusion equation for the probability
P2: as time passes, the probability diffuses away from its initial location, y = yo, spreading
gradually out over a wide range of values of y.

In the Fokker-Planck equation (6.94) the function A(y) produces a motion of the mean
away from its initial location, while the function B(y) produces a diffusion of the probability.
If one can deduce the evolution of P2 for very short times by some other method (e.g., in
the case of a dust particle being buffeted by air molecules, by solving the Langevin equation
dv/dt + Rv = F ′(t)/m statistically), then from that short-time evolution one can compute
the functions A(y) and B(y):

A(y) = lim
∆t→0

1

∆t

∫

(y′ − y)P2(y
′,∆t|y)dy′ , (6.96a)

B(y) = lim
∆t→0

1

∆t

∫

(y′ − y)2P2(y
′,∆t|y)dy′ . (6.96b)

[These equations can be deduced by reexpressing the limit as an integral of the time deriva-
tive ∂P2/∂t then inserting the Fokker-Planck equation and integrating by parts; Ex. 6.20.]
Note that the integral (6.96a) for A(y) is the mean change ∆y in the value of y that occurs in
time ∆t, if at the beginning of ∆t (at t = 0) the value of the process is precisely y; moreover
(since the integral of yP2 is just equal to y which is a constant), A(y) is also the rate of
change of the mean dȳ/dt. Correspondingly we can write (6.96a) in the more suggestive
form

A(y) = lim
∆t→0

(

∆y

∆t

)

=

(

dȳ

dt

)

t=0

. (6.97a)

Similarly the integral (6.96b) for B(y) is the mean-square change in y, (∆y)2, if at the begin-
ning of ∆t the value of the process is precisely y; and (one can fairly easily show; Ex. 6.20)
it is also the rate of change of the variance σ2

y =
∫

(y′ − ȳ)2P2dy
′. Correspondingly, (6.96b)

can be written

B(y) = lim
∆t→0

(

(∆y)2

∆t

)

=

(

dσ2
y

dt

)

t=0

. (6.97b)

It may seem surprising that ∆y and (∆y)2 can both increase linearly in time for small
times [cf. the ∆t in the denominators of both (6.97a) and (6.97b)], thereby both giving rise
to finite functions A(y) and B(y). In fact, this is so: The linear evolution of ∆y at small
t corresponds to the motion of the mean, i.e., of the peak of the probability distribution;
while the linear evolution of (∆y)2 corresponds to the diffusive broadening of the probability
distribution.
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Derivation of the Fokker-Planck equation (6.94): Because y is Markov, it satisfies the Smolu-
chowski equation (6.11), which we rewrite here with a slight change of notation:

P2(y, t+ τ |yo) =
∫ +∞

−∞

P2(y − ξ, t|yo)P2(y − ξ + ξ, τ |y − ξ)dξ . (6.98a)

Take τ and ξ to be small, and expand in a Taylor series in τ on the left side of (6.98a) and in the ξ
of y − ξ on the right side:

P2(y, t|yo) +

∞
∑

n=1

1

n!

[

∂n

∂tn
P2(y, t|yo)

]

τn =

∫ +∞

−∞

P2(y, t|yo)P2(y + ξ, τ |y)dξ

+
∞
∑

n=1

1

n!

∫ +∞

−∞

(−ξ)n
∂n

∂yn
[P2(y, t|yo)P2(y + ξ, τ |y)]dξ . (6.98b)

In the first integral on the right side the first term is independent of ξ and can be pulled out from
under the integral, and the second term then integrates to one; thereby the first integral on the
right reduces to P2(y, t|yo), which cancels the first term on the left. The result then is

∞
∑

n=1

1

n!

[

∂n

∂tn
P2(y, t|yo)

]

τn =

∞
∑

n=1

(−1)n

n!

∂n

∂yn
[P2(y, t|yo)

∫ +∞

−∞

ξnP2(y + ξ, τ |y)dξ] . (6.98c)

Divide by τ , take the limit τ → 0, and set ξ ≡ y′ − y to obtain

∂

∂t
P2(y, t|yo) =

∞
∑

n=1

(−1)n

n!

∂n

∂yn
[Mn(y)P2(y, t|yo)] , (6.99a)

where

Mn(y) ≡ lim
∆t→0

1

∆t

∫

(y′ − y)nP2(y
′,∆t|y)dy′ (6.99b)

is the “n’th moment” of the probability distribution P2 after time ∆t. This is a form of the Fokker-

Planck equation that has slightly wider validity than (6.94). Almost always, however, the only

nonvanishing functions Mn(y) are M1 ≡ A, which describes the linear motion of the mean, and

M2 ≡ B, which describes the linear growth of the variance. Other moments of P2 grow as higher

powers of ∆t than the first power, and correspondingly their Mn’s vanish. Thus, almost always

(and always, so far as we shall be concerned), Eq. (6.99a) reduces to the simpler version (6.94) of

the Fokker-Planck equation. QED

Time-Independent Fokker-Planck Equation. If, as we assume in this chapter, y is
ergodic, then p1(y) can be deduced as the limit of P2(y, t|yo) for arbitrarily large times t.
Then, and in general, p1 can be deduced from the time-independent Fokker-Planck equation:

− ∂

∂y
[A(y)p1(y)] +

1

2

∂2

∂y2
[B(y)p1(y)] = 0 . (6.100)

Gaussian, Markov Process. For a Gaussian, Markov process, the mathematical form
of P2(y2, τ |y1) is known from Doob’s theorem: Eqs. (6.18). In the notation of those equations,
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the Fokker-Planck functions A and B are A(y1) = (dȳτ/dτ)τ=0 = −(y1 − ȳ)/τr, and B =
(dσ2

yτ/dτ)τ=0 = 2σ2
y/τr. Translating back to the notation of this section, we have

A(y) = −(y − ȳ)/τr , B(y) = 2σ2
y/τr . (6.101)

Thus, if we can compute A(y) and B(y) explicitly for a Gaussian Markov process, then
from them we can read off the process’s relaxation time τr, long-time mean ȳ, and long-time
variance σ2

y . As examples, in Ex. 6.22 we shall revist Brownian motion of a dust particle in
air and in the next section, we shall analyze laser cooling of atoms.

****************************

EXERCISES

Exercise 6.20 Derivation: Equations for A and B

Derive Eqs. (6.96) for A and B from the Fokker-Planck equation (6.94), and then from Eqs.
(6.96) derive Eqs. (6.97).

Exercise 6.21 Problem: Fokker-Planck Equation as Conservation Law for Probability

Show that the Fokker-Planck equation can be interpreted as a conservation law for proba-
bility. What is the probability flux in this conservation law? What is the interpretation of
each it its two terms?

Exercise 6.22 Example: Solution of Fokker-Planck Equation for Brownian motion of a dust
particle

(a) Write down the explicit form of the Langevin equation for the x-component of velocity
v(t) of a dust particle interacting with thermalized air molecules.

(b) Suppose that the dust particle has velocity v at time t. By integrating the Langevin
equation show that its velocity at time t+∆t is v +∆v where

m∆v +Rv∆t +O[(∆t)2] =

∫ t+∆t

t

F ′(t′)dt′ , (6.102a)

with R the frictional resistance and m the particle’s mass. Take an ensemble average of
this and use F ′ = 0 to conclude that the function A(v) appearing in the Fokker-Planck
equation (6.94) has the form

A(v) ≡ lim
∆t→0

∆v

∆t
= −Rv

m
. (6.102b)

Compare with the first of Eqs. (6.101) to conclude that the mean and relaxation time
are v̄ = 0 and τr = m/R, in agreement with the second of Eqs. (6.53a) in the limit
τ → ∞, and with Eq. (6.78).
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(c) From (6.102a) show that

(∆v)2 =

[

− v

τr
∆t +O[(∆t)2] +

1

m

∫ t+∆t

t

F ′(t′)dt′
]2

. (6.102c)

Take an ensemble average of this and use F ′(t1)F ′(t2) = CF ′(t2− t1), together with the
Wiener-Khintchine theorem, to evaluate the terms involving F ′ in terms of SF ′, which
in turn is known from the Fluctuation-dissipation theorem. Thereby obtain

B(v) = lim
∆t→0

(∆v)2

∆t
=

2RkBT

m2
. (6.102d)

Combine with Eq. (6.101) and τr = m/R [from (b)], to conclude that σ2
v = kBT/m, in

accord with the last of Eqs. (6.53a).

****************************

6.9.2 Optical Molasses: Doppler Cooling of Atoms

The 1997 Nobel Prize was awarded to Steven Chu, Claude Cohen-Tannoudji, and William
D. Phillips (1997) for “development of methods to cool and trap atoms with laser light”. In
this section, we shall use the Fokker-Planck equation to analyze one of the most important
methods they developed: Doppler cooling, also called laser cooling and optical molasses.

A neutral sodium atom is placed near the center (waist) of a Fabry Perot optical cavity
(Sec. 9.4.2), so it is bathed by laser light traveling in both the +z and −z directions; Fig.
6.16a. The atom absorbs and reemits photons and their momenta, resulting in a stochastic
evolution of its z component of velocity, v. Using the Fokker-Planck equation to analyze this
evolution, we shall discover that, if the light frequency and power are tuned appropriately,
there is a strong slowing-down force (“optical molasses”) on the photon as well as a random-
izing force; and the net effect, after the atom relaxes into equilibrium with the photon field,
is a very low effective temperature (∼ 100µK) for the atom’s motion in the z direction.

The atom has a large cross section σ′ ≡ dσ/dω to absorb a photon with angular frequency
ω ≃ 3.20 × 1015s−1 (yellow light), thereby getting excited into a state with energy ~ω ≃
2.11eV. The absorption cross section σ′(ω) has a narrow resonance (Lorentzian line shape;
Fig. 6.16b) with half width Γ ≃ 10MHz; and, correspondingly, the excited atom has a half
life 1/Γ to re-emit a photon and return to its ground state. The laser power is adjusted to
make the excitation rate R equal to 1/Γ

R = 1/Γ ≃ 107s−1 , (6.103a)

thereby maximizing the rate of excitations. (At a higher power, the excitation rate will
saturate at 1/Γ because the atom spends most of its time excited and waiting to re-emit.)

The laser frequency is tuned to the resonance’s inflection point (point of greatest slope
dσ′/dω), so that, when an atom is moving rightward with velocity v, the Doppler shift
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δω/ω = v/c produces a maximal fractional increase in the cross section and rate for absorbing
leftward-moving photons and decrease in those for rightward-moving photons:

δR
R =

δσ′

σ′
=

1

σ′

dσ′

dω

(

ω
v

c

)

∼ ω

Γ

v

c
. (6.103b)

(Here and henceforth “∼” means accurate to within a factor of order unity.) This results in
a net slow-down force F ∼ δR ~k on the atom, due to the imbalance in absorption rates for
leftward and rightward photons; here k = ω/c = 1.70/µm is the photons’ wave number and
~k is the momentum absorbed from each photon. This slowdown force (“optical molasses”)
produces a rate of change of the atom’s mean velocity

A =
dv̄

dt
∼ −δR ~k

m
∼ −~k2

m
v . (6.103c)

Here we have used Eqs. (6.103b) and (6.103a), and ω/c = k; and we have set the slow-down
rate equal to the coefficient A in the Fokker-Planck equation for v [Eq. (6.97a)].

There are two sources of randomness in the atom’s velocity, both of the same magnitude:
statistical randomness, “

√
N ”, in the number of photons absorbed from the two directions,

and randomness in the direction of reemission of photons and thence in the recoil direction.
During a short time interval ∆t, the mean number of absorptions and re-emissions is ∼ R∆t,
so the rms fluctuation in the momentum transfer to the atom (along the z direction) is
∼ ~k

√
R∆t, whence the change of the variance of the velocity is (∆v)2 ∼ (~k)2R∆t/m.

(Here m ≃ 3.82 × 10−26kg is the sodium atom’s mass.) Correspondingly, the B coefficient
(6.102d) in the Fokker-Planck equation for v is

B =
(∆v)2

∆t
∼ (~k)2R = (~k)2Γ . (6.103d)

From the A and B coefficients (6.103c) and (6.103d) we infer, with the aid of Eqs. (6.101),
the relaxation time, long-term mean and long-term variance of the atom’s velocity along the

0

' ω

Γatom

mirror mirror(a) (b)

Fig. 6.16: Doppler cooling of an atom in a Fabry Perot cavity. (a) The cavity formed by two
mirrors with laser light bouncing back and forth between them, and the atom at the center. (b)
The cross section σ′ = dσ/dω for the atom in its ground state to absorb a photon of laser light.
The laser angular frequency ω is tuned to the off-resonance inflection point (steepest slope) of σ′,
indicated by the black dot.
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z direction, and also an effective temperature associated with the variance:11

τr ∼
m

(~k2)
= 126µs , v̄ = 0 , σ2

v ∼ ~Γ

m
= (0.17m s−1)2 , Teff =

mσ2
v

kB
∼ ~Γ

kB
∼ 76µK .

(6.104)
It is remarkable how effective this “optical molasses” can be!

If one wants to cool all components of velocity, one can either impose counter-propagating
laser beams along all three Cartesian axes, or put the atom into a potential well (inside the
Fabry Perot cavity) that deflects its direction of motion on a timescale much less than τr.

This optical molasses technique is widely used today in atomic physics, e.g., in cooling
ensembles of atoms to produce Bose condensates (Sec. 4.9), and in cooling atoms to be used
as the ticking mechanisms of atomic clocks (Fig 6.11, Footnote 8, Sec. 6.13, and associated
discussions).

6.9.3 T2 Fokker-Planck for a Multi-Dimensional Markov Process;

Thermal Noise in an Oscillator

Few one-dimensional random processes are Markov, so only a few can be treated using the
one-dimensional Fokker-Planck equation. However, it is frequently the case that, if one
augments additional variables onto the random process, it becomes Markov. An important
example is a harmonic oscillator driven by a Gaussian random force (Ex. 6.23). Neither the
oscillator’s position x(t) nor its velocity v(t) is Markov, but the pair {x, v} is a 2-dimensional,
Markov process.

For such a process, and more generally for any n-dimensional, Gaussian, Markov process
{y1(t), y2(t), . . . , yn(t)} ≡ {y(t)}, the conditional probability distribution P2(y, t|yo) satisfies
the following Fokker-Planck equation [the obvious generalization of Eq. (6.94)]:

∂

∂t
P2 = − ∂

∂yj
[Aj(y)P2] +

1

2

∂2

∂yj∂yk
[Bjk(y)P2] . (6.105a)

Here the functions Aj and Bjk, by analogy with Eqs. (6.96) and (6.97), are

Aj(y) = lim
∆t→0

1

∆t

∫

(y′j − yj)P2(y
′,∆t|y)dny′ = lim

∆t→0

(

∆yj
∆t

)

, (6.105b)

Bjk(y) = lim
∆t→0

1

∆t

∫

(y′j − yj)(y
′

k − yk)P2(y
′,∆t|y)dny′ = lim

∆t→0

(

∆yj∆yk
∆t

)

. (6.105c)

In Ex. 6.23 we shall use this Fokker-Planck equation to explore how a harmonic oscillator
settles into equilibrium with a dissipative heat bath.

The multi-dimensional Fokker-Planck equation can be used to solve the Boltzmann trans-
port equation (13.67) for the kinetic-theory distribution function N (p, t), or, in the conven-
tions of plasma physics, for the velocity distribution f(v, t) (Chap. 20). The reason is that

11The atom’s long-term, ergodically wandering velocity distribution is Gaussian rather than Maxwellian,
so it is not truly thermalized. However, it has the same velocity variance as a thermal distribution with
temperature ∼ ~Γ/kB, so we call this its effective temperature
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(i) N (p, t) and f(v, t) are the same kind of probability distribution as P2 — probabilities for
a Markovian momentum or velocity — with the exception that N (p, t) and f(v, t) usually
have different initial conditions at time t = 0 than P2’s delta function [in fact, P2 can be
regarded as a Green’s function for N (p, t) and f(v, t)]; and (ii) the initial conditions played
no role in our derivation of the Fokker-Planck equation. In Sec. 20.4.3, we shall discuss the
use of the Fokker-Planck equation to deduce how long-range Coulomb interactions drive the
equilibration of the distribution functions f(v, t) for the velocities of electrons and ions in a
plasma. In Sec. 23.3.3, we shall use the Fokker-Planck equation to study the interaction of
electrons and ions with plasma waves (plasmons).

****************************

EXERCISES

Exercise 6.23 T2 **Example: Solution of Fokker-Planck Equation for Thermal Noise in
an Oscillator
Consider a classical simple harmonic oscillator (e.g. the nanmechanical oscillator or LIGO
mass on an optical spring or L-C-R circuit or optical resonator briefly discussed in Ex. 6.17).
Let the oscillator be coupled weakly to a dissipative heat bath with temperature T . The
Langevin equation for the oscillator’s generalized coordinate x is Eq. (6.79). The oscillator’s
coordinate x(t) and momentum p(t) ≡ mẋ together form a 2-dimensional Gaussian, Markov
process and thus obey the 2-dimensional Fokker-Planck equation (6.94). As an aid to solving
this Fokker-Planck equation, change variables from {x, p} to the real and imaginary parts
X1 and X2 of the oscillator’s complex amplitude:

x = ℜ[(X1 + iX2)e
−iωt] = X1(t) cosωt+X2(t) sinωt. (6.106)

Then {X1, X2} is a Gaussian, Markov process that evolves on a timescale ∼ τr.

(a) Show that X1 and X2 obey the Langevin equation

−2ω(Ẋ1 +X1/τr) sinωt+ 2ω(Ẋ2 +X2/τr) cosωt = F ′/m . (6.107a)

(b) To compute the functions Aj(X) and Bjk(X) that appear in the Fokker-Planck equation
(6.105a), choose the timescale ∆t to be short compared to the oscillator’s damping
time τr, but long compared to its period 2π/ω. By multiplying the Langevin equation
successively by sinωt and cosωt and integrating from t = 0 to t = ∆t, derive equations
for the changes ∆X1 and ∆X2 produced during ∆t by the fluctuating force F ′(t) and
its associated dissipation. (Neglect fractional corrections of order 1/ω∆t and of order
∆t/τr). Your equations should be analogous to Eq. (6.102a).

(c) By the same technique as was used in Ex. 6.22, obtain from these equations the fol-
lowing forms of the Fokker-Planck functions:

Aj =
−Xj

τr
, Bjk =

2kBT

mω2τr
δjk . (6.107b)
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(d) Show that the Fokker-Planck equation, obtained by inserting these functions into Eq.
(6.105a), has the following Gaussian solution:

P2(X1, X2, t|X(o)
1 , X

(o)
2 ) =

1

2πσ2
exp

[

−(X1 − X̄1)
2 + (X2 − X̄2)

2

2σ2

]

, (6.108a)

where the means and variance of the distribution are

X̄j = X
(o)
j e−t/τr , σ2 =

kBT

mω2

(

1− e−2t/τr
)

≃
{

kBT
mω2

2t
τr

for t ≪ τr
kBT
mω2 for t ≫ τr

. (6.108b)

(e) Discuss the physical meaning of the conditional probability (6.108a). Discuss its im-
plications for the physics experiment described in Ex. 6.17, when the signal force acts
for a time short compared to τr rather than long.

****************************

Bibliographic Note

Random processes are treated in many standard textbooks on statistical physics, typically
under the rubric of fluctuations or nonequilibrium statistical mechanics (and sometimes not
even using the phrase “random process”). We like Kittel (1958), Reif (1965), Pathria and
Beale (2011) and Sethna (2006). A treatise on signal processing that we particularly like,
despite its age, is Wainstein and Zubakov (1965). There are a number of textbooks on random
processes (also called stochastic processes in book titles), usually aimed at mathematicians
or engineers or finance folks (who use the theory of random processes to try to make lots of
money, and often succeed). But we do not like any of those books as well as the relevant
sections in the above statistical mechanics texts. Nevertheless, you might want to peruse
Lax, Cai and Xu (2006), van Kampen (2007), and Paul and Baschnagel (2010), all of which
include applications to the world of finance.
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Box 6.2

Important Concepts in Chapter 6

• Random process – Eq. (6.5)

– Stationary random process – Eq. (6.5)

– Markov random process – Eq. (6.10)

– Gaussian random process – Eqs. (6.14)

– Central limit theorem – Eqs. (6.15)

• Probability and Conditional probability – Eqs. (6.1) and (6.3)

• Correlation Functions and Spectral Densities

– Correlation Function – Eq. (6.19)

– Relaxation time – Sec. 6.4, Fig. 6.5

– Cross correlation – Eqs. (6.38)

– Spectral density – Eqs. (6.25), (6.31) and Sec. 6.4.3

– Cross spectral density – Eqs. (6.40) and (6.42)

– Wiener-Khintchine Theorem relating spectral density to correlation function – Eqs.
(6.29) and (6.41)

– Doob’s Theorem for all properties of a gaussian, Markov process – Eqs. (6.18)

– Variance as zero-delay correlation and as integral of spectral density – Eq. (6.26)

• Ergodic hypothesis – Sec. 6.2.3

• Noise and Filtering

– White, flicker, and random-walk noise spectra – Eqs. (6.44)

– Shot noise and its spectrum – Sec. 6.7.4

– Filter and its Kernel K – Sec. 6.7.1

– Spectral density of a filtered random process – Eq. (6.50) and next paragraph

– Band-pass filter and signal-to-noise ratio for its output – Sec. 6.7.3

– Bandwidth of a band-pass filter – Eqs. (6.56b) and (6.58b)

– Wiener’s optimal filter for finding known signal in noise – Ex. 6.12

• Fluctuation-dissipation theorem – Sec. 6.8

– Elementary version – Sec. 6.8.1; T2 generalized version – Sec. 6.8.2

– T2 Quantum uncertainty principle for spectral densities – Eq. (6.93b)

– Langevin equation, paragraph following Eq. (6.73)

– Johnson noise in a resistor, paragraph following Eq. (6.75e)

• Fokker-Planck equations – Eqs. (6.94), (6.100) and (6.105)

– Coefficients as time derivatives of mean and variance – Eqs. (6.97), (6.105)

• Brownian motion – Secs. 6.7.2, 6.3.3 and 6.8.1; Ex. 6.22
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