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Chapter 8

Diffraction

Version 1208.1.K, 19 November 2012
Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 8.1

Reader’s Guide

• This chapter depends substantially on Secs. 7.1–7.4 of Chap. 7 (Geometric Optics)

• In addition, Sec. 8.6 of this chapter (diffraction at a caustic) depends on Sec. 7.5
of Chap. 7.

• Chapters 9 and 10 depend substantially on Secs. 8.1–8.5 of this chapter

• Nothing else in this book relies on this chapter.

8.1 Overview

The previous chapter was devoted to the classical mechanics of wave propagation. We showed
how a classical wave equation can be solved in the short-wavelength (eikonal) approximation
to yield Hamilton’s dynamical equations for its rays. When the medium is time-independent
(as we shall require in this chapter), we showed that the frequency of a wave packet is
constant, and we imported a result from classical mechanics, the principle of stationary
action, to show that the true geometric-optics rays coincide with paths along which the
action (the phase) is stationary [Eqs. (7.43), (7.44a) and associated discussion]. Our physical
interpretation of this result was that the waves do indeed travel along every path, from
some source to a point of observation, where they are added together, but they only give
a significant net contribution when they can add coherently in phase, i.e. along the true
rays [Eq. (7.44b)]. This is, essentially, Huygens’ model of wave propagation, or, in modern
language, a path integral.
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Huygens’ principle asserts that every point on a wave front acts as a source of secondary
waves that combine so their envelope constitutes the advancing wave front. This principle
must be supplemented by two ancillary conditions, that the secondary waves are only formed
in the forward direction, not backward, and that a π/2 phase shift be introduced into the
secondary wave. The reason for the former condition is obvious, that for the latter, less so.
We shall discuss both together with the formal justification of Huygens’ construction in Sec.
8.2.

We begin our exploration of the “wave mechanics” of optics in this chapter, and we shall
continue it in Chaps. 9 and 10. Wave mechanics differs increasingly from geometric optics
as the reduced wavelength λ̄ increases relative to the length scales R of the phase fronts and
L of the medium’s inhomogeneities. The number of paths that can combine constructively
increases and the rays that connect two points become blurred. In quantum mechanics,
we recognize this phenomenon as the uncertainty principle, and it is just as applicable to
photons as to electrons.

Solving the wave equation exactly is very hard, except in very simple circumstances.
Geometric optics is one approximate method of solving it — a method that works well in
the short-wavelength limit. In this chapter and the next two, we shall develop approximate
techniques that work when the wavelength becomes longer and geometric optics fails.

In this book, we shall make a somewhat artificial distinction between phenomena that
arise when an effectively infinite number of propagation paths are involved, which we call
diffraction and which we describe in this chapter, and those when a few paths, or, more
correctly, a few tight bundles of rays are combined, which we term interference, and whose
discussion we defer to the next chapter.

In Sec. 8.2, we shall present the Fresnel-Helmholtz-Kirchhoff theory that underlies most
elementary discussions of diffraction, and we shall then distinguish between Fraunhofer
diffraction (the limiting case when spreading of the wavefront mandated by the uncertainty
principle is very important), and Fresnel diffraction (where wavefront spreading is a modest
effect and geometric optics is beginning to work, at least roughly). In Sec. 8.3, we shall
illustrate Fraunhofer diffraction by computing the angular resolution of the Hubble Space
Telescope, and in Sec. 8.4, we shall analyze Fresnel diffraction and illustrate it using zone
plates and lunar occultation of radio waves.

Many contemporary optical devices can be regarded as linear systems that take an input
wave signal and transform it into a linearly related output. Their operation, particularly
as image processing devices, can be considerably enhanced by processing the signal in the
spatial Fourier domain, a procedure known as spatial filtering. In Sec. 8.5 we shall introduce
a tool for analyzing such devices: paraxial Fourier optics — a close analog of the paraxial
geometric optics of Sec. 7.4. Using paraxial Fourier optics, we shall develop the theory of
image processing by spatial filters and shall use it to discuss various types of filters and
the phase contrast microscope. We shall also use Fourier optics to develop the theory of
Gaussian beams — the kind of light beam produced by lasers when (as is usual) their
optically resonating cavities have spherical mirrors. Finally, in Sec. 8.6 we shall analyze
diffraction near a caustic of a wave’s phase field, a location where geometric optics predicts
a divergent magnification of the wave (Sec. 7.5 of the preceeding chapter). As we shall
see, diffraction keeps the magnification finite and produces an oscillating energy-flux pattern
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(interference fringes).

8.2 Helmholtz-Kirchhoff Integral

In this section, we shall derive a formalism for describing diffraction. We shall restrict
attention to the simplest (and, fortunately, the most widely useful) case: a monochromatic
scalar wave

Ψ = ψ(x)e−iωt (8.1a)

with field variable ψ that satisfies the Helmholtz equation

∇2ψ + k2ψ = 0 , with k = ω/c , (8.1b)

except at boundaries. Generally Ψ will represent a real valued physical quantity, but for
mathematical convenience we give it a complex representation and take the real part of
Ψ when making contact with physical measurements. This is in contrast to a quantum
mechanical wave function satisfying the Schrödinger equation, which is an intrinsically com-
plex function. We shall assume that the wave (8.1) is monochromatic (constant ω) and
non-dispersive, and the medium is isotropic and homogeneous (phase speed equal to group
speed, and both with a constant value C, so k is also constant). Each of these assumptions
can be relaxed, but with some technical penalty.

The scalar formalism that we shall develop based on Eq. (8.1b) is fully valid for weak
sound waves in a homogeneous fluid or solid, e.g. air (Secs. 16.5 and 12.2). It is also quite
accurate, but not precisely so, for the most widely used application of diffraction theory:
electromagnetic waves in vacuo or in a medium with homogeneous dielectric constant. In
this case ψ can be regarded as one of the Cartesian components of the electric field vector,
e.g. Ex (or equally well a Cartesian component of the vector potential or the magnetic field
vector). In vacuo or in a homogeneous dielectric medium, Maxwell’s equations imply that
this ψ = Ex satisfies the scalar wave equation exactly and thence, for fixed frequency, the
Helmholtz equation (8.1b). However, when the wave hits a boundary of the medium (e.g.
the edge of an aperture, or the surface of a mirror or lens), its interaction with the boundary
can couple the various components of E, thereby invalidating the simple scalar theory we
shall develop. Fortunately, this polarizational coupling is usually very weak in the paraxial
(small angle) limit, and also under a variety of other circumstances, thereby making our
simple scalar formalism quite accurate.1

The Helmholtz equation (8.1b) is an elliptic, linear, partial differential equation, and we
can thus express the value ψP of ψ at any point P inside some closed surface S as an integral
over S of some linear combination of ψ and its normal derivative; see Fig. 8.1. To derive
such an expression, we proceed as follows. First, we introduce, in the interior of S, a second
solution of the Helmholtz equation, namely

ψ0 =
eikr

r
. (8.2)

1 For a formulation of diffraction that takes account of these polarization effects, see, e.g., Chap. 11 of
Born and Wolf (1999).
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Fig. 8.1: Geometry for the Helmholtz-Kirchhoff Integral (8.4), which expresses the field ψP at the
point P in terms of an integral of the field and its normal derivative over the surrounding surface
S. The small sphere So is centered on the observation point P, and V is the volume bounded by S
and So. The aperture Q, the vectors n and n

′ at the aperture, the incoming wave ψ′, and the point
P ′ are irrelevant to the formulation of the Helmholtz-Kirchoff integral, but appear in applications
later in this chapter—initially in Sec. 8.2.1.

This is a spherical wave originating from the point P, and r is the distance from P to the
point where ψ0 is evaluated. Next we apply Gauss’s theorem, Eq. (1.28a), to the vector field
ψ∇ψ0 − ψ0∇ψ and invoke Eq. (8.1b), thereby obtaining

∫

S∪So

(ψ∇ψ0 − ψ0∇ψ) · dΣ = −
∫

V

(ψ∇2ψ0 − ψ0∇2ψ)dV

= 0 . (8.3)

Here we have introduced a small sphere So of radius ro surrounding P (Fig. 8.1); V is the
volume between the two surfaces So and S (so S ∪ So is the boundary ∂V of V); and for
future convenience we have made an unconventional choice of direction for the integration
element dΣ: it points into V instead of outward, thereby producing the minus sign in the
second expression in Eq. (8.3). As we let the radius ro decrease to zero, we find that,
ψ∇ψ0 − ψ0∇ψ → −ψP/r

2
o +O(1/ro) and so the integral over So becomes 4πψP (where ψP

is the value of ψ at P). Rearranging, we obtain

ψP =
1

4π

∫

S

(

ψ∇
eikr

r
− eikr

r
∇ψ

)

· dΣ . (8.4)

Equation (8.4), known as the Helmholtz-Kirchhoff integral, is the promised expression
for the field ψ at some point P in terms of a linear combination of its value and normal
derivative on a surrounding surface. The specific combination of ψ and dΣ·∇ψ that appears
in this formula is perfectly immune to contributions from any wave that might originate at P
and pass outward through S (any “outgoing wave”). The integral thus is influenced only by
waves that enter V through S, propagate through V, and then leave through S. [There cannot
be sources inside S, except conceivably at P, because we assumed ψ satisfies the source-free
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Helmholtz equation throughout V.] If P is many wavelengths away from the boundary S,
then, to high accuracy, the integral is influenced by the waves ψ only when they are entering
through S (when they are incoming), and not when they are leaving (outgoing). This fact
is important for applications, as we shall see.

8.2.1 Diffraction by an Aperture

Next, let us suppose that some aperture Q, with size much larger than a wavelength but much
smaller than the distance to P, is illuminated by a distant wave source (left side of Fig. 8.1).
(If the aperture were comparable to a wavelength in size, or if part of it were only a few
wavelengths from P, then polarizational coupling effects at the aperture would be large;1 our
assumption avoids this complication.) Let the surface S pass through the aperture Q, and
denote by ψ′ the wave incident on Q . We assume that the diffracting aperture has a local
and linear effect on ψ′. More specifically, we suppose that the wave transmitted through the
aperture is given by

ψQ = t ψ′ , (8.5)

where t is a complex transmission function that varies over the aperture. In practice, t is
usually zero (completely opaque region) or unity (completely transparent region). However
t can also represent a variable phase factor when, for example, the aperture comprises a
medium (lens) of variable thickness and of different refractive index from that of the homo-
geneous medium outside the aperture — as is the case in microscopes, telescopes, eyes, and
other optical devices.

What this formalism does not allow, though, is that ψQ at any point on the aperture be
influenced by the wave’s interaction with other parts of the aperture. For this reason, not
only the aperture, but any structure that it contains must be many wavelengths across. To
give a specific example of what might go wrong, suppose that electromagnetic radiation is
normally incident upon a wire grid. A surface current will be induced in each wire by the
wave’s electric field, and that current will produce a secondary wave that cancels the primary
wave immediately behind the wire, thereby “eclipsing” the wave. If the wire separation is
not large compared to a wavelength, then the secondary wave from the current flowing in
one wire will drive currents in adjacent wires, thereby modifying their secondary waves and
disturbing the “eclipse” in a complex, polarization-dependent manner. Such modifications
are negligible if the wires are many wavelengths apart.

Let us now use the Helmholtz-Kirchoff formula (8.4) to compute the field at P due to
the wave ψQ = tψ′ transmitted through the aperture. Let the (imaginary) surface S of
Fig. 8.1 comprise the aperture Q, plus a sphere of radius R ≫ r centered on P, and plus an
extension of the aperture to meet the sphere as sketched in Fig. 8.2; and assume that the only
incoming waves are those which pass through the aperture. Then, for the reason discussed in
the paragraph following Eq. (8.4), when the incoming waves subsequently pass on outward
through the spherical part of S, they contribute negligibly to the integral (8.4). Also, with
the extension from aperture to sphere swinging backward as drawn, the contribution from
the extension will also be negligible. Therefore, the only contribution is from the aperture
itself.2

2Actually, the incoming waves will diffract around the edge of the aperture onto the back side of the screen
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Fig. 8.2: Geometry for deriving Eq. (8.6) for diffraction by an aperture.

On the aperture, because kr ≫ 1, we can write ∇(eikr/r) ≃ −ikneikr/r where n is a unit
vector pointing towards P (Fig. 8.1). Similarly, we write ∇ψ ≃ iktn′ψ′, where n

′ is a unit
vector along the direction of propagation of the incident wave (and where our assumption
that anything in the aperture varies on scales long compared to λ̄ = 1/k permits us to ignore
the gradient of t). Inserting these gradients into the Helmholtz-Kirchoff formula, we obtain

ψP = − ik

2π

∫

Q

dΣ ·
(

n+ n
′

2

)

eikr

r
tψ′ . (8.6)

Equation (8.6) can be used to compute the wave from a small aperture at any point P in
the far field. It has the form of an integral transform of the incident field variable, ψ′, where
the integral is over the area of the aperture. The kernel of the transform is the product of
several factors. There is a factor 1/r. This guarantees that the wave’s energy flux falls off as
the inverse square of the distance to the aperture, as we might have expected. There is also
a phase factor −ieikr that advances the phase of the wave by an amount equal to the optical
path length between the element dΣ of the aperture and P, minus π/2 (the phase of −i).
The amplitude and phase of the wave ψ′ can also be changed by the transmission function
t. Finally there is the geometric factor dΣ̂ · (n + n

′)/2 (with dΣ̂ the unit vector normal to
the aperture). This is known as the obliquity factor, and it ensures that the waves from the
aperture propagate only forward with respect to the original wave and not backward (not
in the direction n = −n

′). More specifically, this factor prevents the backward propagating
secondary wavelets in Huygens construction from reinforcing each other to produce a back-
scattered wave. When dealing with paraxial Fourier optics (Sec. 8.5), we can usually set the
obliquity factor to unity.

It is instructive to specialize to a point source seen through a small diffracting aperture.
If we suppose that the source has unit strength and is located at P ′, a distance r′ before Q
(Fig. 8.1), then ψ′ = −eikr′/4πr′ (our definition of unit strength), and ψP can be written in

that bounds the aperture, i.e. the side facing P , and this diffracted wave will contribute to the Helmholtz-
Kirchhoff integral in a polarization-dependent way; see Chap. 11 of Born and Wolf (1999). However, because
the diffracted wave decays along the screen with an e-folding length of order a wavelength, its contribution
will be negligible if the aperture is many wavelengths across and P is many wavelengths away from the edge
of the aperture, as we have assumed.
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the symmetric form

ψP =

∫
(

eikr

4πr

)

it (k′ + k) · dΣ
(

eikr
′

4πr′

)

. (8.7)

We can think of this expression as the Greens function response at P to a δ-function source
at P ′. Alternatively, we can regard it as a propagator from P ′ to P by way of the aperture.

8.2.2 Spreading of the Wavefront: Fresnel and Fraunhofer Regions

Equation (8.6) [or (8.7)] gives a general prescription for computing the diffraction pattern
from an illuminated aperture. It is commonly used in two complementary limits, called
“Frauhnhofer” and “Fresnel”.

Suppose that the aperture has linear size a (as in Fig. 8.3) and is roughly centered on
the geometric ray from the source point P ′ to the field point P, so n · dΣ̂ = n

′ · dΣ̂ ≃ 1.
Consider the variations of the phase ϕ of the contributions to ψP that come from various
places in the aperture. Using elementary trigonometry, we can estimate that locations on
the aperture’s opposite edges produce phases at P that differ by ∆ϕ = k(ρ2− ρ1) ∼ ka2/2ρ,
where ρ1 and ρ2 are the distances of P from the two edges of the aperture and ρ is the
distance from the center of the aperture. There are two limiting regions for ρ depending on
whether P’s so-called Fresnel length

rF ≡
(

2πρ

k

)1/2

= (λρ)1/2 . (8.8)

(a surrogate for the distance ρ) is large or small compared to the aperture. Notice that
(a/rF )

2 = ka2/2πρ ∼ ∆ϕ/π, Therefore, when rF ≫ a (field point far from the aperture) the

a

Sc
re

en

rF = aρ<<
Fresnel Region Fraunhofer Region

>>
r
F  =

a
ρ

x

λ

~λ/a

ρ
ρ

Fig. 8.3: Fraunhofer and Fresnel Diffraction. The dashed line is an approximation to the edge of
the aperture’s shadow.
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phase variation ∆ϕ across the aperture is ≪ π and can be ignored, so the contributions at
P from different parts of the aperture are essentially in phase with each other. This is the
Fraunhofer region. When rF ≪ a (near the aperture), the phase variation is ∆ϕ ≫ π and
therefore is of upmost importance in determining the observed energy-flux pattern F ∝ |ψP |2.
This is the Fresnel region; see Fig. 8.3.

We can use an argument familiar, perhaps, from quantum mechanics to deduce the quali-
tative form of the flux patterns in these two regions. For simplicity, let the incoming wave be
planar [r′ huge in Eq. (8.7)], let it propagate perpendicular to the aperture as shown in Fig.
8.3, and let the aperture be empty so t = 1 inside the aperture. Then geometric optics (pho-
tons treated like classical particles) would predict that the aperture’s edge will cast a sharp
shadow; the wave leaves the plane of the aperture as a beam with a sharp edge. However,
wave optics insists that the transverse localization of the wave into a region of size ∆x ∼ a
must produce a spread in its transverse wave vector, ∆kx ∼ 1/a (a momentum uncertainty
∆px = ~∆kx ∼ ~/a in the language of the Heisenberg uncertainty principle). This uncertain
transverse wave vector produces, after propagating a distance ρ, a corresponding uncertainty
(∆kx/k)ρ ∼ r2F/a in the beam’s transverse size. This uncertainty superposes incoherently
on the aperture-induced size a of the beam to produce a net transverse beam size

∆x ∼
√

a2 + (r2F/a)
2

∼ a if rF ≪ a , i.e., ρ≪ a2/λ (Fresnel region) , (8.9)

∼
(

λ

a

)

ρ if rF ≫ a , i.e., ρ≫ a2/λ (Fraunhofer region) .

Therefore, in the nearby, Fresnel region, the aperture creates a beam whose edges have
the same shape and size as the aperture itself, and are reasonably sharp (but with some
oscillatory blurring, associated with wave-packet spreading, that we shall analyze below);
see Fig. 8.4. Thus, in the Fresnel region the field behaves approximately as one would
predict using geometric optics. By contrast, in the more distant, Fraunhofer region, wave-
front spreading causes the transverse size of the entire beam to grow linearly with distance;
and, as illustrated in Fig. 8.4, the flux pattern differs markedly from the aperture’s shape.
We shall analyze the distant, Fraunhofer region in Sec. 8.3, and the near, Fresnel region in
Sec. 8.4.

8.3 Fraunhofer Diffraction

Consider the Fraunhofer region of strong wavefront spreading, rF ≫ a, and for simplicity
specialize to the case of an incident plane wave with wave vector k orthogonal to the aperture
plane; see Fig. 8.5. Regard the line along k through the center of the aperture Q as the optic
axis; identify points in the aperture by their transverse two-dimensional vectorial separation
x from that axis; identify P by its distance ρ from the aperture center and its 2-dimensional
transverse separation ρθ from the optic axis; and restrict attention to small-angle diffraction
|θ| ≪ 1. Then the geometric path length between P and a point x on Q [the length denoted
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rF 
/a = 0.05

x

0 a/2-a/2
x

0 a/2-a/2

x

0 a/2-a/2

x

0 a/2-a/2

Fresnel Region

Fraunhofer Region

rF 
/a = 0.5 rF 

/a = 1

rF 
/a = 2

Fig. 8.4: The one-dimensional energy-flux diffraction pattern |ψ|2 produced by a slit, t(x) = 1
for |x| < a/2 and t(x) = 0 for |x| > a/2. Four patterns are shown, each for a different value of
rF /a =

√
λz/a. For rF /a = 0.05 (very near the slit; extreme Fresnel region), the flux distribution

resembles the slit itself: sharp edges at x = ±a/2, but with damped oscillations (interference fringes)
near the edges. For rF/a = 2 (beginning of Fraunhofer region) there is a bright central peak and
low-brightess, oscillatory side bands. As rF /a increases from 0.05 to 2, the pattern transitions
(quite rapidly between 0.5 and 2) from the Fresnel pattern to the Fraunhofer pattern. These flux
distributions are derived in Ex. 8.8.

r in Eq. (8.6)] can be expanded as

Path length = r = (ρ2 − 2ρx · θ + x2)1/2 ≃ ρ− x · θ +
x2

2ρ
+ . . . ; (8.10)

cf. Fig. 8.5. The first term in this expression, ρ, just contributes an x-independent phase
eikρ to the ψP of Eq. (8.6). The third term, x2/2ρ, contributes a phase variation that is
≪ 1 here in the Fraunhofer region (but that will be important in the Fresnel region, Sec. 8.4
below). Therefore, in the Fraunhofer region we can retain just the second term, −x · θ and
write Eq. (8.6) in the form

ψP(θ) ∝
∫

e−ikx·θ
t (x) dΣ ≡ t̃(θ) , (8.11a)

where dΣ is the surface area element in the aperture plane and we have dropped a constant
phase factor and constant multiplicative factors. Thus, ψP(θ) in the Fraunhofer region is
given by the two-dimensional Fourier transform, denoted t̃(θ), of the transmission function
t(x), with x made dimensionless in the transform by multiplying by k = 2π/λ. [Note that
with this optics convention for the Fourier transform, the inverse transform is

t(x) =

(

k

2π

)2 ∫

eikx·θdΩ , (8.11b)
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k

Path length

Optic Axis

ρ

z

ρ
x'

r

Fig. 8.5: Geometry for computing the path length between a point Q in the aperture and the
point of observation P. The transverse vector x is used to identify Q in our Fraunhofer analysis
(Sec. 8.3), and x

′ is used in our Fresnel analysis (Sec. 8.4).

where dΩ = dθxdθy is the integral over solid angle.]
The flux distribution of the diffracted wave (8.11a) is

F (θ) = (ℜ[ψP(θ)e−iωt])2 = 1
2
|ψP(θ)|2 ∝ |̃t(θ)|2 , (8.12)

where ℜ means take the real part, and the bar means average over time.
As an example, the bottom curve in Fig. 8.4 above (the curve rF = a/2) shows the flux

distribution F (θ) from a slit

t(x) = H1(x) ≡
{

1 |x| < a/2

0 |x| > a/2 ,
(8.13a)

for which

ψP(θ) ∝ H̃1 ∝
∫ a/2

−a/2

eikxθdx ∝ sinc
(

1
2
kaθ
)

, (8.13b)

F (θ) ∝ sinc2
(

1
2
kaθ
)

. (8.13c)

Here sinc(ξ) ≡ sin(ξ)/ξ. The bottom flux curve is almost but not quite described by Eq.
(8.13c); the differences (e.g., the not-quite-zero value of the minimum between the central
peak and the first side lobe) are due to the field point not being fully in the Fraunhofer
region, rF/a = 2 rather than rF/a≫ 1.

It is usually uninteresting to normalise a Fraunhofer diffraction pattern. On those rare oc-
casions when the absolute value of the observed flux is needed, rather than just the pattern’s
angular shape, it typically can be derived most easily from conservation of the total wave
energy. This is why we ignore the proportionality factors in the above diffraction patterns.

All of the techniques for handling Fourier transforms (which should be familiar from
quantum mechanics and elsewhere) can be applied to derive Fraunhofer diffraction patterns.
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In particular, the convolution theorem turns out to be very useful. It says that the Fourier
transform of the convolution

f2 ⊗ f1 ≡
∫ +∞

−∞

f2(x− x
′)f1(x

′)dΣ′ (8.14)

of two functions f1 and f2 is equal to the product f̃2(θ)f̃1(θ) of their Fourier transforms,
and conversely the Fourier transform of a product is equal to the convolution. [Here and
throughout this chapter, we use the optics version of a Fourier transform, in which two-
dimensional transverse position x is made dimensionless via the wave number k; Eq. (8.11a)
above.]

As an example of the convolution theorem’s power, we shall compute the diffraction
pattern produced by a diffraction grating:

8.3.1 Diffraction Grating

A diffraction grating can be modeled as a finite series of alternating transparent and opaque,
long, parallel stripes. Let there be N transparent and opaque stripes each of width a ≫ λ
(Fig. 8.6 a), and idealize them as infinitely long so their diffraction pattern is one-dimensional.
We shall outline how to use the convolution theorem to derive their Fraunhofer diffraction
pattern. The details are left as an exercise for the reader (Ex. 8.2).

Our idealized N -slit grating can be regarded as an infinite series of δ-functions with
separation 2a, convolved with the transmission function H1 [Eq. (8.13a)] for a single slit of
width a,

∫ ∞

−∞

[

+∞
∑

n=−∞

δ(ξ − 2an)

]

H1(x− ξ)dξ , (8.15a)

and then multiplied by an aperture function with width 2Na

H2N(x) ≡
{

1 |x| < Na

0 |x| > Na .
(8.15b)

More explicitly,

t(x) =

(

∫ ∞

−∞

[

+∞
∑

n=−∞

δ(ξ − 2an)

]

H1(x− ξ)dξ

)

H2N(x) , (8.16)

which is shown graphically in Fig. 8.6b.
Let us use the convolution theorem to evaluate the Fourier transform t̃(θ) of expression

(8.16), thereby obtaining the diffraction pattern ψP(θ) ∝ t̃(θ) for our transmission grating.
The Fourier transform of the infinite series of δ-functions with spacing 2a is itself an infinite
series of δ-functions with reciprocal spacing 2π/(2ka) = λ/2a (see the hint in Ex. 8.2). This
must be multiplied by the Fourier transform H̃1(θ) ∝ sinc(1

2
kaθ) of the single narrow slit,

and then convolved with the Fourier transform H̃2N (θ) ∝ sinc(Nkaθ) of the aperture (wide
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Fig. 8.6: (a) Diffraction grating t(x) formed by N alternating transparent and opaque stripes
each of width a. (b) Decomposition of this finite grating into an infinite series of equally spaced
δ-functions that are convolved (the symbol ⊗) with the shape of an individual transparent stripe
(i.e. a slit) and then multiplied (the symbol ×) by a large aperture function covering N such slits;
Eq. (8.16) (c) The resulting Fraunhofer diffraction pattern t̃(θ) shown schematically as the Fourier
transform of a series of delta functions multiplied by the Fourier transform of a single slit, and
then convolved with the Fourier transform of the aperture. (d) The energy flux F ∝ |̃t(θ)|2 of this
diffraction pattern.

slit). The result is shown schematically in Fig. 8.6c. (Each of the transforms is real, so the
one-dimensional functions shown in the figure fully embody them.)

The resulting diffracted energy flux, F ∝ |t(θ)|2 (as computed in Ex. 8.2) is shown in
Fig. 8.6d. The grating has channeled the incident radiation into a few equally spaced beams
with directions θ = πp/ka = pλ/2a, where p is an integer known as the order of the beam.
Each of these beams has a shape given by |H̃2N(θ)|2: a sharp central peak with half width
(distance from center of peak to first null of the flux) λ/2Na, followed by a set of side lobes
whose intensities are ∝ N−1.

The fact that the deflection angles θ = pλ/2a of these beams are proportional to λ
underlies the use of diffraction gratings for spectroscopy (different wavelengths deflected
into beams at different angles). It is of interest to ask what the wavelength resolution of
such an idealized grating might be. If one focuses attention on the p’th order beams at two
wavelengths λ and λ+ δλ (which are located at θ = pλ/2a and p(λ + δλ)/2a, then one can
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distinguish the beams from each other when their separation δθ = pδλ/2a is at least as large
as the angular distance λ/2Na between the maximum of each beam’s diffraction pattern and
its first minimum, i.e., when

λ

δλ
. R ≡ Np . (8.17)

(Recall that N is the total number of slits in the grating, and p is the order of the diffracted
beam.) This R is called the grating’s chromatic resolving power.

Real gratings are not this simple. First, they usually work not by modulating the ampli-
tude of the incident radiation in this simple manner, but instead by modulating the phase.
Second, the manner in which the phase is modulated is such as to channel most of the inci-
dent power into a particular order, a technique known as blazing. Third, gratings are often
used in reflection rather than transmission. Despite these complications, the principles of
a real grating’s operation are essentially the same as our idealized grating. Manufactured
gratings typically have N & 10, 000, giving a wavelength resolution for visual light that can
be as small as λ/105 ∼ 10 pm, i.e. 10−11m.

****************************

EXERCISES

Exercise 8.1 Practice: Convolutions and Fourier Transforms

(a) Calculate the one-dimensional Fourier transforms [Eq. (8.11a) reduced to one dimen-
sion] of the functions f1(x) ≡ e−x2/2σ2

, and f2 ≡ 0 for x < 0, f2 ≡ e−x/h for x ≥ 0.

(b) Take the inverse transforms of your answers to part (a) and recover the original func-
tions.

(c) Convolve the exponential function f2 with the Gaussian function f1 and then compute
the Fourier transform of their convolution. Verify that the result is the same as the
product of the Fourier transforms of f1 and f2.

Exercise 8.2 Derivation: Diffraction Grating

Use the convolution theorem to carry out the calculation of the Fraunhofer diffraction pattern
from the grating shown in Fig. 8.6. [Hint: To show that the Fourier transform of the infinite
sequence of equally spaced delta functions is a similar sequence of delta functions, perform
the Fourier transform to get

∑+∞

n=∞
ei2kanθ (aside from a multiplicative factor); then use the

formulas for a Fourier series expansion, and its inverse, for any function that is periodic with
period π/ka to show that

∑+∞

n=−∞
ei2kanθ is a sequence of delta functions.]

Exercise 8.3 Problem: Triangular Diffraction Grating

Sketch the Fraunhofer diffraction pattern you would expect to see from a diffraction grating
made from three groups of parallel lines aligned at angles of 120◦ to each other (Fig. 8.7).

****************************
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Fig. 8.7: Diffraction grating formed from three groups of parallel lines.

8.3.2 Airy Pattern of a Circular Aperture: Hubble Space Telescope

The Hubble Space Telescope was launched in April 1990 to observe planets, stars and galaxies
above the earth’s atmosphere. One reason for going into space is to avoid the irregular
refractive index variations in the earth’s atmosphere, known, generically, as seeing, which
degrade the quality of the images. (Another reason is to observe the ultraviolet part of
the spectrum, which is absorbed in the earth’s atmosphere.) Seeing typically limits the
angular resolution of Earth-bound telescopes at visual wavelengths to ∼ 0.5′′. We wish to
compute how much the angular resolution improves by going into space. As we shall see,
the computation is essentially an exercise in Fraunhofer diffraction theory.

The essence of the computation is to idealise the telescope as a circular aperture with
diameter equal to the diameter of the primary mirror. Light from this mirror is actually
reflected onto a secondary mirror and then follows a complex optical path before being
focused onto a variety of detectors. However, this path is irrelevant to the angular resolution.
The purposes of the optics are merely (i) to bring the Fraunhofer-region light to a focus close
to the mirror [Eq. (8.31) and subsequent discussion], in order to produce an instrument that
is compact enough to be launched, and (ii) to match the sizes of stars’ images to the pixel size
on the detector. In doing so, however, the optics leaves the angular resolution unchanged;
the resolution is the same as if we were to observe the light, which passes through the primary
mirror’s circular aperture, far beyond the mirror, in the Fraunhofer region.

If the telescope aperture were very small, for example a pin hole, then the light from
a point source (a very distant star) would create a broad diffraction pattern, and the tele-
scope’s angular resolution would be correspondingly poor. As we increase the diameter of
the aperture, we still see a diffraction pattern, but its angular width diminishes.

Using these considerations, we can compute how well the telescope can distinguish neigh-
boring stars. We do not expect it to resolve them fully if they are closer together on the
sky than the angular width of the diffraction patttern. Of course, optical imperfections and
pointing errors in a real telescope may degrade the image quality even further, but this is
the best that can be done, limited only by the uncertainty principle.

The calculation of the Fraunhofer amplitude far from the aperture is straightforward [Eq.
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Fig. 8.8: Airy diffraction pattern produced by a circular aperture.

(8.11a)]:

ψ(θ) ∝
∫

Disk with diameter D

e−ikx·θdΣ

∝ jinc

(

kDθ

2

)

, (8.18)

where D is the diameter of the aperture (i.e., of the telescope’s primary mirror), θ ≡ |θ| is
angle from the optic axis, and jinc(x) ≡ J1(x)/x, with J1 the Bessel function of the first kind
and of order one. The flux from the star observed at angle θ is therefore ∝ jinc2(kDθ/2).
This energy-flux pattern, known as the Airy pattern, is shown in Fig. 8.8. There is a central
“Airy disk” surrounded by a circle where the flux vanishes, and then further surrounded by
a series of concentric rings whose flux diminishes with radius. Only 16 percent of the total
light falls outside the central Airy disk. The angular radius θA of the Airy disk, i.e. the radius
of the dark circle surrounding it, is determined by the first zero of J1(kDθ/2) = J1(θ πD/λ):

θA = 1.22λ/D . (8.19)

A conventional, though essentially arbitrary, criterion for angular resolution is to say that
two point sources can be distinguished if they are separated in angle by more than θA. For
the Hubble Space Telescope, D = 2.4m and θA ∼ 0.05′′ at visual wavelengths, which is over
ten times better than is achievable on the ground with conventional (non-adaptive) optics.

Initially, there was a serious problem with Hubble’s telescope optics. The hyperboloidal
primary mirror was ground to the wrong shape, so rays parallel to the optic axis did not
pass through a common focus after reflection off a convex hyperboloidal secondary mirror.
This defect, known as spherical aberration, created blurred images. However, it was possible
to correct this error in subsequent instruments in the optical train, and the Hubble Space
Telescope became the most successful telescope of all time, transforming our view of the
Universe.

In 2018 or soon thereafter, the Hubble space telescope will be succeeded by the James
Webb space telescope. Webb will have diameter D ≃ 6.5m (2.7 times larger than Hubble)
but wavelengths of observation somewhat longer (0.6µm to 28.5µm), so its angular resolution
will be roughly the same as Hubble’s.
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Fig. 8.9: Left: George Seurat’s painting A Sunday afternoon on the Island of La Grande Jatte.
When viewed from sufficient distance, adjacent dots of paint with different colors blend together in
the eye to form another color. Right: Enlargement of the woman at the center of the painting. In
this enlargement one sees clearly the individual dots of paint.

****************************

EXERCISES

Exercise 8.4 Derivation: Airy Pattern

Derive and plot the Airy diffraction pattern (8.18) and show that 84 percent of the light is
contained within the Airy disk.

Exercise 8.5 Problem: Pointilist Painting

The neo-impressionist painter George Seurat was a member of the pointillist school. His
paintings consisted of an enormous number of closely spaced dots of pure pigment (of size
ranging from ∼ 0.4mm in his smaller paintings to ∼ 4mm in his largest paintings such as A
Sunday afternoon on the island of La Grande Jatte, Fig. 8.9). The illusion of color mixing
was produced only in the eye of the observer. How far from the painting should one stand
in order to obtain the desired blending of color?

****************************

8.3.3 Babinet’s Principle

Suppose that monochromatic light falls normally onto a large circular aperture with diameter
D. At distances z . D2/λ (i.e., rF . D), the transmitted light will be collimated into a
beam with diameter D, and at larger distances, the beam will become conical with opening
angle λ/D (Fig. 8.3) and flux distribution given by the Airy diffraction pattern of Fig. 8.8.

Now, place into this aperture a significantly smaller object (size a ≪ D; Fig. 8.10) with
transmissivity t1(x) — for example an opaque star-shaped object. This object will produce
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Fig. 8.10: Geometry for Babinet’s Principle. The beam produced by the large aperture D is
confined between the long-dashed lines. Outside this beam, the energy-flux pattern F (θ) ∝ |t(θ)|2
produced by a small object (size a) and its complement are the same, Eqs. (8.20). This diffracted
flux pattern is confined between the dotted lines.

a Fraunhofer diffraction pattern with opening angle λ/a ≫ λ/D that extends well beyond
the large aperture’s beam. Outside that beam, the diffraction pattern will be insensitive to
the shape and size of the large aperture because only the small object can diffract light to
these large angles; so the diffracted flux will be F1(θ) ∝ |̃t1(θ)|2.

Suppose, next, that we replace the small object by one with a complentary transmissivity
t2, complementary in the sense that

t1(x) + t2(x) = 1 . (8.20a)

For example, we replace a small, opaque star-shaped object by an opaque screen that fills
the original, large aperture except for a star-shaped hole. This new, complementary object
will produce a diffraction pattern F2(θ) ∝ |̃t2(θ)|2. Outside the large aperture’s beam, this
pattern again is insensitive to the size and shape of the large aperture, i.e., insensitive to the
1 in t2 = 1− t1 (which sends light solely inside the large aperture’s beam); so at these large
angles, t̃2(θ) = −t̃1(θ), which implies that the energy-flux diffraction pattern of the original
object and the new, complementary object will be the same, outside the large aperture’s beam:

F2(θ) ∝ |̃t2(θ)|2 = |̃t1(θ)|2 ∝ F1(θ) . (8.20b)

This is called Babinet’s Principle.

****************************

EXERCISES

Exercise 8.6 Problem: Light Scattering by a Large, Opaque Particle
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Consider the scattering of light by an opaque particle with size a ≫ 1/k. Neglect any
scattering via excitation of electrons in the particle. Then the scattering is solely due to
diffraction of light around the particle. With the aid of Babinet’s Principle:

(a) Explain why the scattered light is confined to a cone with opening angle ∆θ ∼ π/ka≪
1.

(b) Show that the total power in the scattered light, at very large distances from the
particle, is PS = FA, where F is the incident energy flux and A is the cross sectional
area of the particle perpendicular to the incident wave.

(c) Explain why the total “extinction” (absorption plus scattering) cross section is equal
to 2A independent of the shape of the opaque particle.

Exercise 8.7 Problem: Thickness of a Human Hair

Conceive and carry out an experiment using light diffraction to measure the thickness of
a hair from your head, accurate to within a factor ∼ 2. [Hint: make sure the source of
light that you use is small enough—e.g., a very narrow laser beam—that its finite size has
negligible influence on your result.]

****************************

8.4 Fresnel Diffraction

We next turn to the Fresnel region of observation points P with rF =
√
λρ much smaller

than the aperture. In this region, the field at P arriving from different parts of the aperture
has significantly different phase ∆ϕ≫ 1. We again specialize to incoming wave vectors that
are approximately orthogonal to the aperture plane and to small diffraction angles so we
can ignore the obliquity factor dΣ̂ · (n + n

′) in Eq. (8.6). By contrast with the Fraunhofer
case, however, we now identify P by its distance z from the aperture plane instead of its
distance ρ from the aperture center, and we use as our integration variable in the aperture
x
′ ≡ x− ρθ (Fig. 8.5), thereby writing the dependence of the phase at P on x in the form

∆ϕ ≡ k × [(path length from x to P) − z] =
kx′2

2z
+O

(

kx′4

z3

)

. (8.21)

In the Fraunhofer region (Sec. 8.3 above), only the linear term −kx · θ in kx′2/2z ≃ k(x −
rθ)2/r was significant. In the Fresnel region the term quadratic in x is also significant (and
we have changed variables to x

′ so as to simplify it), but the O(x′4) term is negligible.
Therefore, in the Fresnel region the diffraction pattern (8.6) is

ψP =
−ikeikz
2πz

∫

ei∆ϕ
tψ′dΣ′ =

−ikeikz
2πz

∫

eikx
′2/2z

t(x′)ψ′(x′)dΣ′ , (8.22)
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where, in the denominator, we have replaced r by z to excellent approximation.
Let us consider the Fresnel diffraction pattern formed by a simple aperture of arbitrary

shape, illuminated by a normally incident plane wave. It is convenient to introduce transverse
Cartesian coordinates x

′ = (x′, y′) and define

σ =

(

k

πz

)1/2

x′ , τ =

(

k

πz

)1/2

y′ . (8.23a)

[Notice that (k/πz)1/2 is
√
2/rF ; cf. Eq. (8.8).] We can thereby rewrite Eq. (8.22) in the

form

ψP = − i

2

∫ ∫

Q

eiπσ
2/2eiπτ

2/2ψQe
ikzdσdτ . (8.23b)

Here we have changed notation for the field ψ′ impinging on the aperture Q to ψQ.
Equations (8.23) depend on the transverse location of the observation point P through

the origin used to define x′ = (x′, y′); see Fig. 8.5. We shall use this rather general expression
in Sec. 8.5, when discussing Paraxial Fourier optics, as well as in subsections 8.4.1–8.4.4 on
Fresnel diffraction.

8.4.1 Rectangular Aperture, Fresnel Integrals and Cornu Spiral

In this and the following two subsections, we shall explore the details of the Fresnel diffraction
pattern for an incoming plane wave that falls perpendicularly on the aperture, so ψQ is
constant over the aperture.

For simplicity, we initially confine attention to a rectangular aperture with edges along
the x′ and y′ directions. Then the two integrals have limits that are independent of each
other and the integrals can be expressed in the form E(σmax)−E(σmin) and E(τmax)−E(τmin),
so

ψP =
−i
2
[E(σmax)− E(σmin)][E(τmax)− E(τmin)]ψQe

ikz ≡ −i
2
∆Eσ∆EτψQe

ikz , (8.24a)

where the arguments are the limits of integration (the two edges of the aperture) and where

E(ξ) ≡
∫ ξ

0

eiπσ
2/2dσ ≡ C(ξ) + iS(ξ) . (8.24b)

Here

C(ξ) ≡
∫ ξ

0

dσ cos(πσ2/2) , S(ξ) ≡
∫ ξ

0

dσ sin(πσ2/2) . (8.24c)

are known as Fresnel Integrals, and are standard functions tabulated in many books and
known, e.g. to Mathematica, Matlab and Maple. Notice that the energy-flux distribution is

F ∝ |ψP |2 ∝ |∆Eσ|2|∆Eτ |2 . (8.24d)
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Fig. 8.11: Cornu Spiral in the complex plane; the real part of E(ξ) = C(ξ) + iS(ξ) is plotted
horizontally and the imaginary part vertically; the point ξ = 0 is at the origin, positive ξ in the
upper right quadrant, and negative ξ in the lower left quadrant. The diffracted energy flux is
proportional to the squared length of the arrow reaching from ξ = σmin to ξ = σmax.

It is convenient to exhibit the Fresnel integrals graphically using a Cornu spiral, Fig. 8.11.
This is a graph of the parametric equation [C(ξ), S(ξ)], or equivalently a graph of E(ξ) =
C(ξ) + iS(ξ) in the complex plane. The two terms ∆Eσ and ∆Eτ in Eq. (8.24b) can be
represented in amplitude and phase by arrows in the (C, S) plane reaching from ξ = σmin on
the Cornu spiral to ξ = σmax (Fig. 8.11), and from ξ = τmin to ξ = τmax. Correspondingly,
the flux, F [Eq. (8.24d)], is proportional to the product of the squared lengths of these two
vectors.

As one moves the observation point P around in the observation plane (Fig. 8.5), x′min

and x′max change and thence σmin = (k/πz)1/2x′min and σmax = (k/πz)1/2x′max change; i.e.
the tail and tip of the arrow in Fig. 8.11 move along the Cornu spiral, thereby changing the
diffracted flux, which is ∝ (length of arrow)2.

8.4.2 Unobscured Plane Wave

The simplest illustration is the totally unobscured plane wave. In this case, the limits of
both integrations extend from −∞ to +∞, which as we see in Fig. 8.11 is an arrow of length
21/2 and phase π/4. Therefore, ψP is equal to (21/2eiπ/4)2(−i/2)ψQe

ikz = ψQe
ikz, as we could

have deduced simply by solving the Helmholtz equation (8.1b) for a plane wave.
This unobscured-wavefront calculation elucidates three issues that we have already met.

First, it illustrates our interpretation of Fermat’s principle in geometric optics. In the limit of
short wavelength, the paths that contribute to the wave field are just those along which the
phase is stationary to small variations in path. Our present calculation shows that, because
of the tightening of the Cornu spiral as one moves toward a large argument, the paths that
contribute significantly to ψP are those that are separated from the geometric-optics path by
less than a few Fresnel lengths at Q. (For a laboratory experiment with light and z ∼ 2m,
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the Fresnel length is
√
λz ∼ 1mm.)

A second, and related, point is that, in computing the Fresnel diffraction pattern from a
more complicated aperture, we need only perform the integral (8.6) in the immediate vicinity
of the geometric-optics ray. We can ignore the contribution from the extension of the aper-
ture Q to meet the “sphere at infinity” (the surface S in Fig. 8.2) even when the wave is
unobstructed there. The rapid phase variation makes the contribution from S sum to zero.

Third, in integrating over the whole area of the wave front at Q, we have summed
contributions with increasingly large phase differences that add in such a way that the total
has a net extra phase of π/2, relative to the geometric-optics ray. This phase factor cancels
exactly the prefactor −i in the Fresnel-Kirchhoff integral, Eq. (8.6). (This phase factor is
unimportant in the limit of geometric optics.)

8.4.3 Fresnel Diffraction by a Straight Edge: Lunar Occultation of

a Radio Source

The next simplest case of Fresnel diffraction is the pattern formed by a straight edge. As a
specific example, consider a cosmologically distant source of radio waves that is occulted by
the moon. If we treat the lunar limb as a straight edge, then the radio source will create a
changing diffraction pattern as it passes behind the moon, and the diffraction pattern can
be measured by a radio telescope on earth. We orient our coordinates so the moon’s edge is
along the y′ direction (τ direction). Then in Eq. (8.24a) ∆Eτ ≡ E(τmax)− E(τmin) =

√
2i is

constant, and ∆Eσ ≡ E(σmax)− E(σmin) is described by the Cornu spiral of Fig. 8.12b
Long before the occultation, we can approximate σmin = −∞ and σmax = +∞ (Fig.

8.12a), so ∆Eσ is given by the arrow from (−1/2,−1/2) to (1/2, 1/2) in Fig. 8.12b, i.e.
∆Eσ =

√
2i. The observed wave amplitude, Eq. (8.24a), is therefore ψQe

ikz. When the moon
approaches occultation of the radio source, the upper bound on the Fresnel integral begins

1

1/4

A

B

C

|ψ|2

xmax0

A

B

C

σmax=1.27

σmax= 0

σmax=1.83

σmin= − ∞

σmaxxmax = (rF /√2) 

xmin = σmin = − ∞
(a) (b) (c)

Fig. 8.12: Diffraction from a straight edge. (a) The straight edge, onto which a plane wave impinges
orthogonally, the observation point P, and the vectors that reach to the lower and upper limits of
integration xmin = −∞ and xmax for computation of the diffraction integral (8.23). (b) The Cornu
spiral showing the arrows that represent the contribution ∆Eσ to the diffracted field ψP . (c) The
energy-flux diffraction pattern formed by the straight edge. The flux |ψ|2 ∝ |∆Eσ|2 is proportional
to the squared length of the arrow on the Cornu spiral (b).
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Fig. 8.13: Fresnel diffraction pattern in the shadow of Mary’s hand holding a dime — a photograph
by Eugene Hecht, from the first figure in Chap. 10 of Hecht (1998).

to diminish from σmax = +∞, and the complex vector on the Cornu spiral begins to oscillate
in length (e.g., from A to B in Fig. 8.12) and in phase. The observed flux also oscillates,
more and more strongly as geometric occultation is approached. At the point of geometric
occultation (point C in Fig. 8.12b,c), the complex vector extends from (−1/2,−1/2) to (0, 0)
and so the observed wave amplitude is one half the unocculted value, and the flux is reduced
to one fourth. As the occultation proceeds, the length of the complex vector and the observed
flux will decrease monotonically to zero, while the phase continues to oscillate.

Historically, diffraction of a radio source’s waves by the moon led to the discovery of
quasars—the hyperactive nuclei of distant galaxies. In the early 1960s, a team of British
radio observers led by Cyril Hazard knew that the moon would occult a powerful radio source
named 3C273, so they set up their telescope to observe the development of the diffraction
pattern as the occultation proceeded. From the pattern’s observed times of ingress (passage
into the moon’s shadow) and egress (emergence from the moon’s shadow), Hazard determined
the coordinates of 3C273 on the sky, and did so with remarkable accuracy thanks to the
oscillatory features in the diffraction pattern. These coordinates enabled Maarten Schmidt
at the 200-inch telescope on Palomar Mountain to identify 3C273 optically and discover (from
its optical redshift) that it was surprisingly distant and consequently had an unprecedented
luminosity. It was the first example of a quasar — a previously unknown astrophysical
object.

In Hazard’s occultation measurements, the observing wavelength was λ ∼ 0.2 m. Since
the moon is roughly z ∼ 400, 000 km distant, the Fresnel length was about rF =

√
λz ∼ 10

km. The moon’s orbital speed is v ∼ 200 m s−1, so the diffraction pattern took a time
∼ 5rF/v ∼ 4 min to pass through the telescope.

The straight-edge diffraction pattern of Fig. 8.12 occurs universally along the edge of the
shadow of any object, so long as the source of light is sufficiently small and the shadow’s
edge bends on lengthscales long compared to the Fresnel length rF =

√
λz. Examples are

the diffraction patterns on the two edges of a slit’s shadow in the upper left curve in Fig. 8.4
(cf. Ex. 8.8), and the diffraction pattern along the edge of a shadow cast by a person’s hand
in Fig. 8.13.
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****************************

EXERCISES

Exercise 8.8 Exercise: Diffraction Pattern from a Slit

Derive a formula for the energy-flux diffraction pattern F (x) of a slit with width a, as a
function of distance x from the center of the slit, in terms of Fresnel integrals. Plot your
formula for various distances z from the slit’s plane, i.e. for various values of rF/a =

√

λz/a2,
and compare with Fig. 8.4.

****************************

8.4.4 Circular Apertures: Fresnel Zones and Zone Plates

We have seen how the Fresnel diffraction pattern for a plane wave can be thought of as formed
by waves that derive from a patch in the diffracting object’s plane a few Fresnel lengths in
size. This notion can be made quantitatively useful by reanalyzing an unobstructed wave
front in circular polar coordinates. More specifically: consider, a plane wave incident on an

aperture Q that is infinitely large (no obstruction), and define ̟ ≡ |x′|/rF =
√

1
2
(σ2 + τ 2).

Then the phase factor in Eq. (8.23b) is ∆ϕ = π̟2, so the observed wave coming from the
region inside a circle of radius |x′| = rF̟ will be given by

ψP = −i
∫ ̟

0

π̟′d̟′eiπ̟
′2

ψQe
ikz

= (1− eiπ̟
2

)ψQe
ikz . (8.25)

Now, this integral does not appear to converge as ̟ → ∞. We can see what is happening
if we sketch an amplitude-and-phase diagram (Fig. 8.14). As we integrate outward from
̟ = 0, the complex vector has the initial phase retardation of π/2 but then moves on a

Fresnel
Zones

2= 0, 2, 4, . . .

= 1, 3, 5, . . .

Re

Im ψ

ψ

2

ω~

ω~ω~

Fig. 8.14: Amplitude-and-phase diagram for an unobstructed plane wave front, decomposed into
Fresnel zones; Eq. (8.25).
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semi-circle so that by the time we have integrated out to a radius of |x′| = rF (̟ = 1), the
contribution to the observed wave is ψP = 2ψQ in phase with the incident wave. When the
integration has been extended onward to

√
2 rF , (̟ =

√
2), the circle has been completed

and ψP = 0! The integral continues on around the same circle over and over again, as the
upper-bound radius is further increased; see Fig. 8.14.

Of course, the field must actually have a well-defined value as ̟ → ∞, despite this
apparent failure of the integral to converge. To understand how the field becomes well-
defined, imagine splitting the aperture Q up into concentric annular rings, known as Fresnel
half-period zones, with outer radii

√
n rF , where n = 1, 2, 3 . . . . The integral fails to converge

because the contribution from each odd-numbered ring cancels that from an adjacent even-
numbered ring. However, the thickness of these rings decreases as 1/

√
n, and eventually

we must allow for the fact that the incoming wave is not exactly planar; or, equivalently
and more usefully, we must allow for the fact that the wave’s distant source has some finite
angular size. The finite size causes different pieces of the source to have their Fresnel rings
centered at slightly different points in the aperture plane, and this causes our computation
of ψP to begin averaging over rings. This averaging forces the tip of the complex vector
(ℜψ,ℑψ)to asymptote to the center of the circle in Fig. 8.14. Correspondingly, due to the
averaging, the observed energy flux asymptotes to |ψQ|2 [Eq. (8.25) with the exponential
eiπ̟

2

going to zero].
Although this may not seem to be a particularly wise way to decompose a plane wave

front, it does allow a striking experimental verification of our theory of diffraction. Suppose
that we fabricate an aperture (called a zone plate) in which, for a chosen observation point
P on the optic axis, alternate half-period zones are obscured. Then the wave observed at P
will be the linear sum of several diameters of the circle in Fig. 8.14, and therefore will be far
larger than ψQ. This strong amplification is confined to our chosen spot on the optic axis;
most everywhere else the field’s energy flux is reduced, thereby conserving energy. Thus,
the zone plate behaves like a lens. Because the common area of the half-period zones is
A = nπr2F − (n − 1)πr2F = πr2F = πλz, if we construct a zone plate with fixed area A for
the zones, its focal length will be f = z = A/πλ. For A = (a few square millimeters) — the
typical choice — and λ ∼ 500nm (optical wavelengths), we have f ∼ a few meters.

Zone plates are only good lenses when the radiation is monochromatic, since the focal
length is wavelength-dependent, f ∝ λ−1. They have the further interesting property that
they possess secondary foci, where the fields from 3 contiguous zones, or 5 or 7 or . . . , add
up coherently (Ex. 8.9).

****************************

EXERCISES

Exercise 8.9 Problem: Zone Plate

(a) Use an amplitude-and-phase diagram to explain why a zone plate has secondary foci
at distances of f/3, f/5, f/7 . . . .

(b) An opaque, perfectly circular disk of diameter D is placed perpendicular to an incoming
plane wave. Show that, at distances r such that rF ≪ D, the disk casts a rather sharp
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shadow, but at the precise center of the shadow there should be a bright spot.3 How
bright?

Exercise 8.10 Challenge: Multi-Conjugate Adaptive Optics

The technique of Adaptive Optics can be used to improve the quality of the images
observed by a telescope. Bright artificial “laser stars” are created by shining several
lasers at layers of sodium atoms in the upper atmosphere and observing the scattered
light. The wavefronts from these “stars” will be deformed at the telescope due to
inhomogeneities in the lower atmosphere, and the deformed wavefront shapes can be
measured across the image plane. The light from a much dimmer adjacent astronomical
source can then be processed, e.g. using a deformable reflecting surface, so as to remove
its wavefront distortions. Discuss some of the features that an effective adaptive optics
system needs. Assume the atmospheric model discussed in Ex. ??.

Exercise 8.11 Problem: Spy Satellites

Telescopes can also look down through the same atmospheric irregularities as those
discussed in the previous example. In what important respects will the optics differ
from that for telescopes looking upward?

****************************

8.5 Paraxial Fourier Optics

We have developed a linear theory of wave optics which has allowed us to calculate diffrac-
tion patterns in the Fraunhofer and Fresnel limiting regions. That these calculations agree
with laboratory measurements provides some vindication of the theory and the assumptions
implicit in it. We now turn to practical applications of these ideas, specifically to the ac-
quisition and processing of images by instruments operating throughout the electromagnetic
spectrum. As we shall see, these instruments rely on an extension of paraxial geometric
optics (Sec. 7.4) to situations where diffraction effects are important. Because of the central
role played by Fourier transforms in diffraction [e.g. Eq. (8.11a)], the theory underlying these
instruments is called paraxial Fourier optics, or just Fourier optics.

Although the conceptual framework and mathematical machinery for image processing
by Fourier optics were developed in the nineteenth century, Fourier optics was not widely
exploited until the second half of the twentieth century. Its maturation was driven in part

3Siméon Poisson predicted the existence of this spot as a consequence of Fresnel’s wave theory of light,
in order to demonstrate that Fresnel’s theory was wrong. However, Dominique Arago quickly demonstrated
experimentally that the bright spot existed. It is now called the Poisson spot (despite Poisson’s skepticism),
and the Arago spot.
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by a growing recognition of similarities between optics and communication theory — for
example, the realization that a microscope is simply an image processing system. The
development of electronic computation has also triggered enormous strides; computers are
now seen as extensions of optical devices, and vice versa. It is a matter of convenience,
economics and practicality to decide which parts of the image processing are carried out
with mirrors, lenses, etc., and which parts are performed numerically.

One conceptually simple example of optical image processing would be an improvement
in one’s ability to identify a faint star in the Fraunhofer diffraction rings (“fringes”) of a
much brighter star. As we shall see below [Eq. (8.31) and subsequent discussion], the bright
image of a source in a telescope’s or microscope’s focal plane has the same Airy diffraction
pattern as we met in Eq. (8.18) and Fig. 8.8. If the shape of that image could be changed
from the ring-endowed Airy pattern to a Gaussian, then it would be far easier to identify
a nearby feature or faint star. One way to achieve this would be to attenuate the incident
radiation at the telescope aperture in such a way that, immediately after passing through
the aperture, it has a Gaussian profile instead of a sharp-edged profile. Its Fourier transform
(the diffraction pattern in the focal plane) would then also be a Gaussian. Such a Gaussian-
shaped attenuation is difficult to achieve in practice, but it turns out—as we shall see–that
there are easier options.

Before exploring these options, we must lay some foundations, beginning with the concept
of coherent illumination in Sec. 8.5.1, and then point spread functions in Sec. 8.5.2.

8.5.1 Coherent Illumination

If the radiation arriving at the input of an optical system derives from a single source,
e.g. a point source that has been collimated into a parallel beam by a converging lens,
then the radiation is best described by its complex amplitude ψ (as we are doing in this
chapter). An example might be a biological specimen on a microscope slide, illuminated by
an external point source, for which the phases of the waves leaving different parts of the slide
are strongly correlated with each other. This is called coherent illumination. If, by contrast,
the source is self luminous and of non-negligible size, with the atoms or molecules in its
different parts radiating independently—for example a cluster of stars—then the phases of
the radiation from different parts are uncorrelated, and it may be the radiation’s energy
flux, not its complex amplitude, that obeys well-defined (non-probabilistic) evolution laws.
This is called incoherent illumination. In this chapter we shall develop Fourier optics for a
coherently illuminating source (the kind of illumination tacitly assumed in previous sections
of the chapter). A parallel theory with a similar vocabulary can be developed for incoherent
illumination, and some of the foundations for it will be laid in Chap. 9. In Chap. 9 we shall
also develop a more precise formulation of the concept of coherence.

8.5.2 Point Spread Functions

In our treatment of paraxial geometric optics (Sec. 7.4), we showed how it is possible to
regard a group of optical elements as a sequence of linear devices and relate the output rays
to the input by linear operators, i.e. matrices. This chapter’s theory of diffraction is also
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linear and so a similar approach can be followed. As in Sec. 7.4, we will restrict attention
to small angles relative to some optic axis (“paraxial Fourier optics”). We shall describe the
wave field at some distance zj along the optic axis by the function ψj(x), where x is a two
dimensional vector perpendicular to the optic axis as in Fig. 8.5. If we consider a single
linear optical device, then we can relate the output field ψ2 at z2 to the input ψ1 at z1 using
a Green’s function denoted P21(x2,x1):

ψ2(x2) =

∫

P21(x2,x1)dΣ1ψ1 . (8.26)

If ψ1 were a δ-function, then the output would be simply given by the function P21, up to
normalization. For this reason, P21 is usually known as the Point Spread Function. Alterna-
tively, we can think of it as a propagator. If we now combine two optical devices sequentially,
so the output ψ2 of the first device is the input of the second, then the point spread functions
combine in the natural manner of any linear propagator to give a total point spread function

P31(x3,x1) =

∫

P32(x3,x2)dΣ2P21(x2,x1) . (8.27)

Just as the simplest matrix for paraxial, geometric-optics propagation is that for free
propagation through some distance d, so also the simplest point spread function is that for
free propagation. From Eq. (8.22) we see that it is given by

P21 =
−ik
2πd

eikd exp

(

ik(x2 − x1)
2

2d

)

for free propagation through a distance d = z2 − z1 .

(8.28)
Note that this P21 depends upon only on x2 − x1 and not on x2 or x1 individually, as it
should because there is joint translational invariance in the transverse x1,x2 planes.

A thin lens adds or subtracts an extra phase ∆ϕ to the wave, and ∆ϕ depends quadrat-
ically on distance |x| from the optic axis, so the angle of deflection, which is proportional to
the gradient of the extra phase, will depend linearly on x. Correspondingly, the point-spread
function for a thin lens is

P21 = exp

(−ik|x1|2
2f

)

δ(x2 − x1) for a thin lens with focal length f . (8.29)

For a converging lens, f is positive; for a diverging lens, it is negative.

8.5.3 Abbé’s Description of Image Formation by a Thin Lens

We can use the two point spread functions (8.28) and (8.29) to give a wave description
of the production of images by a single converging lens, in parallel to the geometric-optics
description of Figs. 7.6 and 7.7. This description was formulated by Ernst Abbé in 1873.
We shall develop Abbé’s description in two stages. First, we shall propagate the wave from
the source plane S a distance u in front of the lens, through the lens L, to its focal plane
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F a distance f behind the lens (Fig. 8.15). Then we shall propagate the wave a further
distance v− f from the focal plane to the image plane. We know from geometric optics that
v = fu/(u− f) [Eq. (7.57)]. We shall restrict ourselves to u > f so v is positive and the lens
forms a real, inverted image.

Using Eqs. (8.27), (8.28), (8.29), we obtain for the propagator from the source plane to
the focal plane

PFS =

∫

PFL′dΣL′PL′LdΣLPLS

=

∫ −ik
2πf

eikf exp

(

ik(xF − x
′
L)

2

2f

)

dΣL′δ(xL′ − xL) exp

(−ik|xL|2
2f

)

×dΣL
−ik
2πu

eiku exp

(

ik(xL − xS)
2

2u

)

=
−ik
2πf

eik(f+u) exp

(

− ikx2F
2(v − f)

)

exp

(

−ikxF · xS

f

)

. (8.30)

Here we have extended all integrations to ±∞ and have used the values of the Fresnel
integrals at infinity, E(±∞) = ±(1 + i)/2 to get the expression on the last line. The wave
in the focal plane is given by ψF (xF ) =

∫

PFSdΣSψS(xS), which integrates to

ψF (xF ) = − ik

2πf
eik(f+u) exp

(

− ikx2F
2(v − f)

)

ψ̃S(xF/f) . (8.31)

Here

ψ̃S(θ) =

∫

dΣSψS(xS)e
−ikθ·xS (8.32)
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Fig. 8.15: Wave theory of a single converging lens. The focal plane is a distance f =(lens focal
length) from the lens plane; and the image plane is a distance v = fu/(u− f) from the lens plane.
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Equation (8.31) says that the field in the focal plane is, apart from an unimportant phase
factor, proportional to the Fourier transform of the field in the source plane [recall our
optics convention (8.11)) for the Fourier transform]. In other words, the focal-plane field is
the Fraunhofer diffraction pattern of the input wave. That this has to be the case can be
understood from Fig. 8.15. The focal plane F is where the converging lens brings parallel
rays from the source plane to a focus. By doing so, the lens in effect brings in from “infinity”
the Fraunhofer diffraction pattern of the source [Eq. (8.11a)4], and places it into the focal
plane.

It now remains to propagate the final distance from the focal plane to the image plane.
We do so with the free-propagation point-spread function (8.28): ψI =

∫

PIFdΣFψF , which
integrates to

ψI(xI) = −
(u

v

)

eik(u+v) exp

(

ikx2I
2(v − f)

)

ψS

(

xS = −xIu/v
)

. (8.33)

This says that (again ignoring a phase factor) the wave in the image plane is just a magni-
fied and inverted version of the wave in the source plane, as we might have expected from
geometric optics. In words, the lens acts by taking the Fourier transform of the source and
then takes the Fourier transform again to recover the source structure.

8.5.4 Image Processing by a Spatial Filter in the Focal Plane of a

Lens: High-pass, low-pass, and notch filters; phase contrast

microscopy

The focal plane of a lens is a convenient place to process an image by altering its Fourier
transform. This process, known as spatial filtering, is a very powerful technique. We shall
gain insight into its power via several examples.

In each of these examples, we shall assume for simplicity the one-lens system of Fig.
8.15, for which we worked out Abbé’s description in the last section. If the source wave has
planar phase fronts parallel to the source plane so ψS is real, then the output wave in the
image plane has spherical phase fronts, embodied in the phase factor exp[ikx2I/2(v− f)]. If,
instead, one wants the output wave to have the same planar phase fronts as the input wave,
one can achieve that by a two-lens system with the lenses separated by the sum of the lenses’
focal lengths, and with the alteration of the Fourier transform occuring in the common focal
plane between them (Ex. 8.12).

Low-pass filter; cleaning a laser beam

In low-pass filtering, a small circular aperture or “stop” is introduced into the focal plane,
thereby allowing only the low-order spatial Fourier components (long-wavelength compo-
nents) to be transmitted to the image plane. This produces a considerable smoothing of the
wave. An application is to the output beam from a laser (Chap. 10), which ought to be

4In Eq. (8.11a), the input wave at the system’s entrance aperture is ψS = ψ′
t(x) ∝ t(x) [Eq. (8.6)

and Fig. 8.2], the Fraunhofer diffraction pattern is ψP ∝ t̃(θ), and the lens produces the focal-plane field
ψ̃F ∝ t̃(xF /f).
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smooth but in practice has high spatial frequency structure (high transverse wave numbers,
short wavelengths) on account of noise and imperfections in the optics. A low-pass filter
can be used to clean the beam. In the language of Fourier transforms, if we multiply the
transform of the source, in the focal plane, by a small-diameter circular aperture function,
we will thereby convolve the image with a broad Airy-disk smoothing function.

High-pass filter; accentuating an image’s features

Conversely, we can exclude the low spatial frequencies with a high-pass filter, e.g. by
placing an opaque circular disk in the focal plane, centered on the optic axis. This accentuates
boundaries and discontinuities in the source’so,age and can be used to highlight features
where the gradient of the brightness is large.

Notch filter: removing pixellation from an image

Another type of filter is used when the image is pixellated and thus has unwanted struc-
ture with wavelength equal to pixel size: a narrow range of frequencies centered around
this spatial frequency is removed by putting an appropriate filter in the focal plane; this is
sometimes called a notch filter.

Phase-contrast microscopy

Phase-contrast microscopy (Fig. 8.16) is a useful technique for studying small objects,
such as transparent biological specimens, that modify the phase of coherent illuminating
light but not its amplitude. Suppose that the phase change in the specimen, ϕ(x), is small,
|ϕ| ≪ 1, as often is the case for biological specimens. We can then write the field just after
it passes through the specimen as

ψS(x) = H(x)eiϕ(x) ≃ H(x) + iϕ(x)H(x) ; (8.34)

Here H is the microscope’s aperture function, unity for |x| < D/2 and zero for |x| > D/2,
with D the aperture diameter. The energy flux is not modulated, and therefore the effect of
the specimen on the wave is very hard to observe unless one is clever.

Equation (8.34) and the linearity of the Fourier transform imply that the wave in the
focal plane is the sum of (i) the Fourier transform of the aperture function, i.e. an Airy

Airy
Disk
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Plane

Image
Plane

Aperture
Edge

Specimen

1/4-wave phase plate
and attenuatorAperture

Edge

Fig. 8.16: Schematic Phase Contrast Microscope.
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function [bright spot with very small diameter, Eq. (8.18)], and (ii) the transform of the
phase function convolved with that of the aperture [in which the fine-scale variations of the
phase function dominate and push ϕ̃ to large radii in the focal plane (Fig. 8.16), where the
aperture has little influence]:

ψF ∼ jinc

(

kD|xF |
2f

)

+ iϕ̃

(

xF

f

)

. (8.35)

If a high pass filter is used to remove the Airy disk completely, then the remaining wave
field in the image plane will be essentially ϕ magnified by v/u. However, the energy flux
F ∝ (ϕv/u)2 will be quadratic in the phase and so the contrast in the image will still be
small. A better technique is to phase shift the Airy disk in the focal plane by π/2 so that
the two terms in Eq. (8.35) are in phase. The flux variations, F ∼ (1 ± ϕ)2 ≃ 1 ± 2ϕ,
will now be linear in the phase ϕ. An even better procedure is to attenuate the Airy disk
until its amplitude is comparable with the rms value of ϕ and also phase shift it by π/2 (as
indicated by the “1/4 wave phase plate and attenuation” in Fig. 8.16). This will maximise
the contrast in the final image. Analogous techniques are used in communications to inter-
convert amplitude-modulated and phase-modulated signals.

****************************

EXERCISES

Exercise 8.12 **Example: Two-Lens Spatial Filter

Figure 8.17 depicts a two-lens system for spatial filtering (also sometimes called a 4f system,
since it involves five special planes separated by four intervals with lengths equal to the
common focal length f of the two lenses. Develop a description, patterned after Abbé’s, of
image formation with this system. Most importantly:

x
F

x
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f f
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plane

Filter
plane

Image
plane

f f

Fig. 8.17: Two-lens system for spatial filtering.
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(a) Show that the field at the filter plane is

ψF (xF ) = − ik

2π
e2ikf ψ̃S(xF/f) . (8.36a)

This is like Eq. (8.31) for the one-lens system but with the spatially dependent phase
factor exp[−ikx2F /2(v−f)] gone, so aside from a multiplicative constant, the filter-plane
field is precisely the Fourier transform of the source-plane field.

(b) In the filter plane we place a filter whose transmissivity we denote K̃(−xF /f), so it is
(proportional to) the filter-plane field that would be obtained from some source-plane
field K(−xS). Using the optics conventions (8.11) for the Fourier transform and its
inverse, show that the image-plane field, with the filter present, is

ψI(xI) = −e4ikfΨS(xS = −xI) . (8.36b)

Here ΨS is the convolution of the source field and the filter function

ΨS(xS) =

∫

K(xS − x
′)ψS(x

′)dΣ′ . (8.36c)

In the absence of the filter, ΨS is equal to ψS, so Eq. (8.36b) is like the image-plane
field (8.33) for the single lense system, but with the spatially dependent phase factor
exp[−ikx2F /2(v − f)] gone, i.e. ψI is precisely the same as the inverted ψS, aside from
an overall phase.

Exercise 8.13 Problem: Convolution via Fourier Optics

(a) Suppose that you have two thin sheets with transmission functions t = g(x, y) and
t = h(x, y), and you wish to compute via Fourier optics the convolution

g ⊗ h(xo, yo) ≡
∫ ∫

g(x, y)h(x+ xo, y + yo)dxdy . (8.37)

Devise a method for doing so using Fourier optics. [Hint: use several lenses and
a projection screen with a pinhole through which passes light whose energy flux is
proportional to the convolution; place the two sheets at strategically chosen locations
along the optic axis, and displace one of the two sheets transversely with respect to
the other.]

(b) Suppose you wish to convolve a large number of different one-dimensional functions
simultaneously, i.e. you want to compute

gj ⊗ hj(xo) ≡
∫

gj(x)hj(x+ xo)dx (8.38)

for j = 1, 2, . . .. Devise a way to do this via Fourier optics using appropriately con-
structed transmissive sheets and cylindrical lenses.



33

Exercise 8.14 **Example: Transmission Electron Microscope

In a transmission electron microscope, electrons, behaving as waves, are prepared in near-
plane-wave quantum wavepacket states with transverse sizes large compared to the object
(sample) being imaged. The sample, placed in the source plane of Fig. 8.15, is sufficiently
thin, with a transmission function t(x), that the electron waves can pass through it, being
diffracted in the process. The diffracted waves travel through the lens shown in Fig. 8.15
(the objective lens), then onward to and through a second lens, called the projector lens,
which focuses them onto a fluourescent screen that shines with an energy flux proportional
to the arriving photon flux. At least two lenses are needed, as in the simplest of optical
microscopes and telescopes (Figs. 7.7 and 7.8), and for the same reason: to make images far
larger than could be achieved with a single lens.

(a) The electrons all have the same kinetic energy E ∼ 200keV, to within an energy
spread ∆E ∼ 1eV. What is the wavelength λ of their nearly plane-wave quantum wave
functions, and what is their fractional wavelength spread ∆λ/λ? Your answer for λ
(∼ a few picometers) is so small that electron microscopy can be used to study atoms
and molecules. Contrast this with light’s million-fold longer wavelength ∼ 1µm, which
constrains it to imaging objects a million times larger than atoms.

(b) Explain why the paraxial Fourier optics formalism, that we developed in Sec. 8.5,
can be used without change to analyze this electron microscope — even though the
photons of an ordinary microscope are in states with mean occupation numbers η huge
compared to unity while the electrons have η ≪ 1, and the photons have zero rest
mass while the electrons have finite rest mass m with roughly the same magnitude as
their kinetic energies, E ∼ mc2.

(c) Suppose that each magnetic lens, in the electron microscope, is made of two trans-
verse magnetic quadrupoles, as described in Sec. 7.4.2. Show that, although these
quadrupoles are far from axisymmetric, their combined influence on each electron’s
wave function is given by the axisymmetric thin-lens point-spread function (8.29) with
focal length (7.65), to within the accuracy of the analysis of Sec. 7.4.2. [In practice,
higher order corrections make the combined lens sufficiently nonaxisymmetric, that
electron microscopes do not use this type of magnetic lens; instead they use a truly
axisymmetric lens in which the magnetic field lines lie in planes of constant azimuthal
angle φ; and the field lines first bend the electron trajectories into helices (give them
motion in the φ direction), then bend them radially, and then undo the helical motion.]

(d) By appropriate placement of the projector lens, the microscope can produce, in the
flourescing plane, either a vastly enlarged image of the source-plane sample, |t(x)|2, or
a large image of the modulus of that object’s Fourier transform (the object’s diffraction
pattern), |̃t(k)|2. Explain how each of these is achieved.

****************************
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8.5.5 Gaussian Beams: Optical Cavities and

Interferometric Gravitational-Wave Detectors

The mathematical techniques of Fourier optics enable us to analyze the structure and prop-
agation of light beams that have Gaussian profiles. (Such Gaussian beams are the natural
output of ideal lasers, they are the real output of spatially filtered lasers, and they are widely
used for optical communications, interferometry and other practical applications. Moreover,
they are the closest one can come in the real world of wave optics to the idealization of a
geometric-optics pencil beam.)

Consider a beam that is precisely plane-fronted, with a Gaussian profile, at location z = 0
on the optic axis,

ψ0 = exp

(−̟2

σ2
0

)

; (8.39)

here ̟ = |x| is radial distance from the optic axis. The form of this same wave at a distance
z further down the optic axis can be computed by propagating this ψ0 using the point spread
function (8.28) (with the distance d replaced by z). The result is

ψz =
σ0
σz

exp

(−̟2

σ2
z

)

exp

[

i

(

k̟2

2Rz
+ kz − tan−1 z

z0

)]

, (8.40a)

where

z0 =
kσ2

0

2
=
πσ2

0

λ
, σz = σ0(1 + z2/z20)

1/2 , Rz = z(1 + z20/z
2) . (8.40b)

These equations for the freely propagating Gaussian beam are valid for negative z as well
as positive.

From these equations we learn the following properties of the beam:

• The beam’s cross sectional energy-flux distribution F ∝ |ψz|2 ∝ exp(−̟2/σ2
z) remains

a Gaussian as the wave propagates, with a beam radius σz = σ0
√

1 + z2/z20 that is a
minimum at z = 0 (the beam’s waist) and grows away from the waist, both forward
and backward, in just the manner one expects from our uncertainty-principle discussion
of wave-front spreading [Eq. (8.9)]. At distances |z| ≪ z0 from the waist location
(corresponding to a Fresnel length rF =

√

λ|z| ≪ √
πσ0), the beam radius is nearly

constant; this is the Fresnel region. At distances z ≫ z0 (rF ≫ √
πσ0), the beam radius

increases linearly, i.e. the beam spreads with an opening angle θ = σ0/z0 = λ/(πσ0);
this is the Fraunhofer region.

• The beam’s wave fronts (surfaces of constant phase) have phase ϕ = k̟2/2Rz + kz −
tan−1(z/z0) = constant. The tangent term (called the wave’s Guoy phase) varies far
far more slowly with changing z than does the kz term, so the wave fronts are almost
precisely z = −̟2/2Rz+constant, which is a segment of a sphere of radius Rz. Thus,
the wave fronts are spherical, with radii of curvature Rz = z(1 + z20/z

2), which is
infinite (flat phase fronts) at the waist z = 0, decreases to a minimum of 2z0 at z = z0
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(boundary between Fresnel and Fraunhofer regions and beginning of substantial wave
front spreading), and then increases as z (gradually flattening of spreading wave fronts)
when one moves deep into the Fraunhofer region.

• The Gaussian beam’s form (8.40) at some arbitrary location is fully characterized by
three parameters: the wavelength λ = 2π/k, the distance z to the waist, and the beam
radius at the waist σ0 [from which one can compute the local beam radius σz and the
local wave front radius of curvature Rz via Eqs. (8.40b)].

One can easily compute the effects of a thin lens on a Gaussian beam by folding the ψz

at the lens’s location into the lens point spread function (8.29). The result is a phase change
that preserves the general Gaussian form of the wave, but alters the distance z to the waist
and the radius σ0 at the waist. Thus, by judicious placement of lenses (or, equally well
curved mirrors), and with judicious choices of the lenses’ and mirrors’ focal lengths, one can
tailor the parameters of a Gaussian beam to fit whatever optical device one is working with.
For example, if one wants to send a Gaussian beam into a self-focusing optical fiber (Exs.
7.8 and 8.15), one should place its waist at the entrance to the fiber, and adjust its waist size
there to coincide with that of the fiber’s Gaussian mode of propagation (the mode analyzed
in Ex. 8.15). The beam will then enter the fiber smoothly, and will propagate steadily
along the fiber, with the effects of the transversely varying index of refraction continually
compensating for the effects of diffraction so as to keep the phase fronts flat and the waist
size constant.

Gaussian beams are used (among many other places) in interferometric gravitational-
wave detectors, such as LIGO (the Laser Interferometer Gravitational-wave Observatory).
We shall learn how these GW interferometers work in Sec. 9.5. For the present, all we need
to know is that a GW interferometer entails an optical cavity formed by mirrors facing each
other, as in Fig. 7.9 of Chap. 7. A Gaussian beam travels back and forth between the two
mirrors, with its light superposing on itself coherently after each round trip, i.e. the light
resonates in the cavity formed by the two mirrors. Each mirror hangs from an overhead
support, and when a gravitational wave passes, it pushes the hanging mirrors back and forth
with respect to each other, causing the cavity to lengthen and shorten by a very tiny fraction
of a light wavelength. This puts a tiny phase shift on the resonating light, which is measured
by allowing some of the light to leak out of the cavity and interfere with light from another,
similar cavity. See Sec. 9.5.

In order for the light to resonate in the cavity, the mirrors’ surfaces must coincide with the
Gaussian beam’s wave fronts. Suppose that the mirrors are identical, with radii of curvature
R, and are separated by a distance L = 4km, as in LIGO. Then the beam must be symmetric
around the center of the cavity, so its waist must be half-way between the mirrors. What
is the smallest that the beam radius can be, at the mirrors’ locations z = ±L/2 = ±2km?
From σz = σ0(1 + z2/z20)

1/2 together with z0 = πσ2
0/λ, we see that σL/2 is minimized when

z0 = L/2 = 2km. If the wavelength is λ = 1.064µm (Nd:YAG laser light) as in LIGO, then
the beam radii at the waist and at the mirrors are σ0 =

√

λz0/π =
√

λL/2π = 2.6cm, and

σz =
√
2σ0 = 3.7cm, and the mirrors’ radii of curvature are RL/2 = L = 4km. This was

approximately the regime of parameters used for LIGO’s initial GW interferometers, which
carried out a two-year-long search for gravitational waves from autumn 2005 to autumn 2007
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and then, after some sensitivity improvements, a second long search in 2009 and 2010.
A new generation of GW interferometers, called “Advanced LIGO”, is being installed. In

these GW interferometers, the spot sizes on the mirrors will be made much larger, so as to
reduce thermal noise by averaging over a much larger spatial sampling of thermal fluctuations
of the mirror surfaces (cf. Sec. 11.6.2 and Ex. 11.14). How can the spot sizes on the mirrors
be enlarged? From Eqs. (8.40b) we see that, in the limit z0 = πσ2

0/λ→ 0, the mirrors’ radii
of curvature approach the cavity half-length, RL/2 → L/2, and the beam radii on the mirrors
diverge as σL/2 → Lλ/(2πσ0) → ∞. This is the same instability as we discovered, in the
geometric optics limit, in Ex. 6.11. Advanced LIGO takes advantage of this instability by
moving toward the near-unstable regime, causing the beams on the mirrors to enlarge. The
mirrors’ radii of curvature are set at RL/2 = 2.076km, just 4 per cent above the unstable
point R = L/2 = 2km; and Eqs. (8.40b) then tell us that σ0 = 1.15cm, z0 = 0.389km
≪ L/2 = 2km, and σz has been pushed up by nearly a factor two, to σz = 6.01cm. The
mirrors are deep into the Fraunhofer, wave-front-spreading region.

****************************

EXERCISES

Exercise 8.15 Problem: Guided Gaussian Beams

Consider a self-focusing optical fiber discussed in Sec. 7.8, in which the refractive index
is

n(x) = n0(1− α2̟2)1/2 , (8.41)

where ̟ = |x|.

(a) Write down the Helmholtz equation in cylindrical polar coordinates and seek an ax-
isymmetric mode for which ψ = R(̟)Z(z) , where R,Z are functions to be determined
and z measures distance along the fiber. In particular show that there exists a mode
with a Gaussian radial profile that propagates along the fiber without spreading.

(b) Compute the group and phase velocities along the fiber for this mode.

Exercise 8.16 Example: Noise Due to Scattered Light in LIGO

In LIGO and other GW interferometers, one potential source of noise is scattered light:
When the Gaussian beam in one of LIGO’s cavities reflects off a mirror, a small portion of
the light gets scattered toward the walls of the cavity’s vacuum tube. Some of this scattered
light can reflect or scatter off the tube wall and then propagate toward the distant mirror,
where it scatters back into the Gaussian beam; see Fig. 8.18a (without the baffles that
are shown dashed). This is troublesome because the tube wall vibrates due to sound-wave
excitations and seismic excitations, and those vibrations put a phase shift on the scattered
light. Although the fraction of all the light that scatters in this way is tiny, the phase shift
is huge compared to that produced in the Gaussian beam by gravitational waves; and when
the tiny amount of scattered light with its huge oscillating phase shift recombines into the
Gaussian beam, it produces a net Gausian-beam phase shift that can be large enough to
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Fig. 8.18: (a) Scattered light in LIGO’s beam tube. (b) Cross section of a baffle used to reduce
the noise due to scattered light.

mask a gravitational wave. This exercise will explore some aspects of this scattered-light
noise and its control.

(a) The scattering of Gaussian-beam light off the mirror is caused by bumps in the mirror
surface (imperfections). Denote by h(x) the height of the mirror surface, relative to
the desired shape (a segment of a sphere with radius of curvature that matches the
Gaussian beam’s wave fronts). Show that, if the Gaussian-beam field emerging from
a perfect mirror is ψG(x) [Eq. (8.40)] at the mirror plane, then the beam emerging
from the actual mirror is ψ′(x) = ψG(x) exp[−i2kh(x)]. The magnitude of the mirror
irregularities is very small compared to a wavelength, so |2kh| ≪ 1, and the wave field
emerging from the mirror is ψ′(x) = ψG(x)[1−i2kh(x)]. Explain why the factor 1 does
not contribute at all to the scattered light (where does its light go?), so the scattered
light field, emerging from the mirror, is

ψS(x) = −iψG(x)2kh(x) . (8.42)

(b) Assume that, when arriving at the vacuum-tube wall, the scattered light is in the
Fraunhofer region. You will justify this below. Then at the tube wall, the scattered
light field is given by the Fraunhofer formula

ψS(θ) ∝
∫

ψG(x)kh(x)eikx·θdΣ . (8.43)

Show that the light that hits the tube wall at an angle θ = |θ| to the optic axis arises
from irregularities in the mirror that have spatial wavelengths λmirror ∼ λ/θ. The
radius of the beam tube is R = 60cm in LIGO and the length of the tube (distance
between cavity mirrors) is L = 4km. What is the spatial wavelength of the mirror
irregularities which scatter light to the tube wall at distances z ∼ L/2 (which can then
reflect or scatter off the wall toward the distant mirror and there scatter back into
the Gaussian beam)? Show that for these irregularities, the tube wall is, indeed, in
the Fraunhofer region. (Hint: the irregularities have a coherence length of only a few
wavelengths λmirror.)

(c) In the initial LIGO interferometers, the mirrors’ scattered light consisted of two com-
ponents: one peaked strongly toward small angles so it hit the distant tube wall, e.g.
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at z ∼ L/2, and the other roughly isotropically distributed. What was the size of the
irregularities that produced the isotropic component?

(d) To reduce substantially the amount of scattered light reaching the distant mirror via
reflection or scattering from the tube wall, a set of baffles was installed in the tube,
in such a way as to hide the wall from scattered light (dashed lines in Fig. 8.18). The
baffles have an angle of 35o to the tube wall, so when light hits a baffle, it reflects
at a steep angle, ∼ 700 toward the opposite tube wall and after a few bounces gets
absorbed. However, a small portion of the scattered light can now diffract off the
top of each baffle and then propagate to the distant mirror and scatter back into the
main beam. Especially troublesome is the case of a mirror in the center of the beam
tube’s cross section, because light that scatters off such a mirror travels nearly the
same total distance from mirror to the top of some baffle and then to the distant
mirror, independent of the azimuthal angle φ on the baffle at which it diffracts. There
is then a danger of coherent superposition of all the scattered light that diffracts off
all angular locations around any given baffle—and coherent superposition means a
much enlarged net noise (a variant of the Poisson or Arago spot discussed in Ex.
8.9). To protect against any such coherence, the baffles in the LIGO beam tubes
are serrated, i.e. they have saw-tooth edges, and the heights of the teeth are drawn
from a random (Gaussian) probability distribution; Fig. 8.18b. The typical tooth
heights are large enough to extend through about six Fresnel zones. Questions for
which part (e) may be helpful: How wide is each Fresnel zone at the baffle location,
and correspondingly, how high must be the typical baffle tooth? By approximately
how much do the random serrations reduce the light-scattering noise, relative to what
it would be with no serrations and with coherent scattering? [Hint: There are two
ways that the noise is reduced: (i) The breaking of coherence of scattered light by the
randomness of serration teeth heights, which causes the phase of the scattered light
diffracting off different teeth to be randomly different. (ii) The reduction in energy flux
of the scattered light due to the teeth reaching through six Fresnel zones, on average.]

(e) To aid you in answering part (d), show that the propagator (point spread function)
for light that begins at the center of one mirror, travels to the edge of a baffle [at a
radial distance R(φ) from the beam-tube axis, where φ is azimuthal angle around the
beam tube, and at a distance ℓ down the tube from the scattering mirror] and that
then propagates to the center of the distant mirror, is

P =∝ exp

(

ikR2(φ)

2ℓred

)

dφ , where
1

ℓred
=

1

ℓ
+

1

L− ℓ
. (8.44)

Note that ℓred is the “reduced baffle distance” by analogy with the “reduced mass”
in a binary system. One can show that the time-varying part of the scattered-light
amplitude (i.e. the part whose time dependence is produced by baffle vibrations) is
proportional to this propagator. Explain why this is plausible. Then explain how
the baffle serrations, embodied in the φ dependence of R(φ), produce the reduction of
scattered-light amplitude in the manner described in part (c).
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****************************

8.6 Diffraction at a Caustic

In Sec. 7.5, we described how caustics can be formed in general in the geometric-optics limit
— e.g., on the bottom of a swimming pool when the water’s surface is randomly rippled,
or behind a gravitational lens. We chose as an example an imperfect lens illuminated by a
point source (Fig. 7.12), and we showed how a pair of images would merge as the transverse
distance x = ̟ −̟c of the observer from the caustic decreases to zero. That merging was
controlled by maxima and minima of the phase ϕ of the light that originates at transverse
location b just before the lens and arrives at transverse location x in the observation plane.
We showed that this phase, when expressed as a Taylor series in b, has the cubic form
ϕ(b, x) = Ab3/3−Bxb, where the coefficients A,B are constant [Eq. (7.66) with x = ̟−̟c

and with the origin of b moved to bc so as to simplify the equation]. Using this ϕ, we showed
that the magnification M of the images diverged ∝ x−1/2 [Eq. (7.67)] as the caustic was
approached (x → 0), and then M crashed to zero just past the caustic (the two images
disappeared). This singular behavior raised the question of what happens when we take into
account the finite wavelength of the wave.

We are now in a position to answer this question. We simply use the Helmholtz-Kirchhoff
integral (8.6) to write the expression for the amplitude measured at position x in the form
[Ex. 8.18]

ψ(x) ∝
∫

dbeiϕ(b,x) =

∫

db(cosϕ+ i sinϕ) , where ϕ = A
b3

3
−Bxb , (8.45)

ignoring multiplicative constants and constant phase factors. The phase ϕ varies rapidly
with location b in the lens at large |b|, so we can treat the limits of integration as ±∞.
Because ϕ(b, x) is odd in b, the sin term integrates to zero, and the cos integral turns out to
be the Airy function

ψ ∝
∫ ∞

−∞

ds cos(Ab3/3−Bxb) =
2π

A1/3
Ai(−Bx/A1/3) . (8.46)

The Airy function Ai(ξ) is displayed in Fig. 8.19.
The asymptotic behavior of Ai(ξ) is

Ai(ξ) ∼ π−1/2ξ−1/4 sin(2ξ3/2/3 + π/4), for ξ → −∞

∼ e−2ξ3/2/3

2π1/2ξ1/4
, for ξ → ∞ . (8.47)

We see that the amplitude ψ remains finite as the caustic is approached (as x ∼ ξ → 0)
instead of diverging as in the geometric-optics limit, and it decreases smoothly toward zero
when the caustic is passed, instead of crashing instantaneously to zero. For x > 0 (ξ =
−Bx/A1/3 < 0; left part of Fig. 8.19), where an observer sees two geometric-optics images,
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Fig. 8.19: The Airy Function Ai(ξ) describing diffraction at a fold caustic. The argument is
ξ = −Bx/A1/3 where x is distance from the caustic and A,B are constants.

the envelope of ψ diminishes ∝ x−1/4, so the energy flux |ψ|2 decreases ∝ x−1/2 just as in
the geometric-optics limit. The peak magnification is ∝ A−2/3. What is actually seen is
a series of bands alternating dark and light with spacing calculable using ∆(2ξ3/2/3) = π
or ∆x ∝ x−1/2. At sufficient distance from the caustic, it will not be possible to resolve
these bands and a uniform illumination of average flux will be observed, so we recover the
geometric-optics limit.

The near-caustic scalings derived above and others in Ex. 8.17, like the geometric-optics
scalings [text following Eq. (7.67)] are a universal property of this type of caustic (the simplest
caustic of all, the “fold”).

There is a helpful analogy, familiar from quantum mechanics. Consider a particle in
a harmonic potential well in a very excited state. Its wave function is given in the usual
way using Hermite polynomials of large order. Close to the classical turning point, these
functions change from being oscillatory to an exponential decay, just like the Airy function
(and if we were to expand about the turning point, we would recover Airy functions). What
is happening, of course, is that the probability density of finding the particle close to its
turning point diverges classically because it is moving vanishingly slowly at the turning
point; the oscillations are due to interference between waves associated with the particle
moving in opposite directions at the turning point.

For light near a caustic, if we consider the transverse component of the photon motion,
then we have essentially the same problem. The field’s oscillations are due to interference of
the waves associated with the motions of the photons in two geometric-optics beams coming
from slightly different directions and thus having slightly different transverse photon speeds.

This is our first illustration of the formation of large-contrast interference fringes when
only a few beams are combined. We shall meet other examples of such interference in the
next chapter.

****************************

EXERCISES

Exercise 8.17 Problem: Wavelength scaling at a Fold Caustic
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For the fold caustic discussed in the text, assume that the phase change introduced by the
imperfect lens is non-dispersive so that the ϕ(b, x) in Eq. (8.45) is ϕ ∝ λ−1. Show that the
peak magnification of the interference fringes at the caustic scales with wavelength ∝ λ−4/3.
Also show that the spacing ∆x of the fringes near a fixed observing position x is ∝ λ.

Exercise 8.18 Problem: Diffraction at Generic Caustics

In Ex. 7.14 we explored the five elementary (generic) caustics that can occur in geometric
optics. Each is described by its phase ϕ(a, b; x, y, z) for light arriving at an observation point
with Cartesian coordinates (x, y, z) along virtual rays labeled by (a, b).

(a) Suppose the (monochromatic) wave field ψ(x, y, z) that exhibits one of these caustics
is produced by plane-wave light that impinges orthogonally on a phase-shifting surface
on which are laid out Cartesian coordinates (a, b), as described in the next to the last
paragraph of Sec. 7.5. Using the Helmholtz-Kirchoff diffraction integral (8.6), show
that the field near a caustic is given by

ψ(x, y, z) ∝
∫ ∫

da db eiϕ(a,b;x,y,z) . (8.48)

(b) In the text we evaluated this near-caustic diffraction integral for a fold caustic, obtain-
ing the Airy function. For the higher-order elementary caustics, the integral cannot
be evaluated analytically in terms of standard functions. To get insight into the in-
fluence of finite wavelength, evaluate the integral numerically for the case of a cusp
caustic, ϕ = 1

4
b4 − 1

2
xb2 − yb and plot the real and imaginary parts of ψ. Before doing

so, though, guess what the ℜψ and ℑψ will look like. As foundations for this guess,
(i) pay attention to the shape y = ±2(x/3)3/2 of the caustic in the geometric optics
approximation (Ex. 7.14b), (ii) notice that away from the cusp point, each branch of
the caustic is a fold, whose ψ is the Airy function (Fig. 8.19), and (iii) note that the
oscillating ψ associated with each branch will interfere with that associated with the
other branch. The numerical computation may take awhile, so make a wise decision,
from the outset, as to the range of x and y to include in your computations and plots.
If your computer is really slow, you may want to prove that the integral is symmetric
in y and so restrict yourself to positive y, and argue that the qualitative behaviors of
ℜψ and ℑψ must be the same, and so restrict yourelf to ℜψ.

****************************

Bibliographic Note

Hecht (1998) gives a pedagogically excellent treatment of diffraction at roughly the same level
as this chapter, but much more detailed, with many illustrations and intuitive explanations.
Other nice treatments at about our level will be found in standard optics textbooks, including



42

Box 8.2

Important Concepts in Chapter 8

• Helmholtz equation for a propagating, monochromatic wave – Eq. (8.1b)

• Helmholtz-Kirchhoff integral – Eq. (8.4)

• Complex transmission function – Eq. (8.5)

• Helmholtz-Kirchoff for wave propagating through an aperture – Eqs. (8.6), (8.7)

• Fresnel and Fraunhofer Diffraction compared:

– Fresnel length and criteria for Fraunhofer and Fresnel Regions – Sec. 8.2.2

– Qualitative forms of diffraction in Fresnel and Fraunhofer regions – Sec. 8.2.2

– Wavefront spreading, at angle θ ∼ λ/a, in Fresnel regions – Sec. 8.2.2

• Fraunhofer Diffraction – Sec. 8.3

– Diffracted field as Fourier transform of transmission function t(θ) – Eq. (8.11a)

– Diffracted energy flux F ∝ |t(θ)|2 – Eq. (8.12)

– Diffraction patterns for a slit and a circular aperture – bottom curve in Fig. 8.4,
Eqs. (8.13), Sec. 8.3.2

– Use of convolution theorem to analyze diffraction grating – Sec. 8.3.1

– Babinet’s principle – Sec. 8.3.3

• Fresnel Diffraction – Sec. 8.4

– As integral over the aperture with quadratically varying phase – Eqs. 8.23

– For rectangular aperture, slit, and straight edge, in terms of Fresnel integrals and
Cornu spiral – Secs. 8.4.1 and 8.4.3.

• Paraxial Fourier Optics

– Point spread functions, as propagators down the optic axis – Sec. 8.5.2

– Thin lens: field at focal plane as Fourier transform of source field (Fraunhofer region
brought to focus) – Eq. (8.31)

– Thin lens: field at image plane as inverted and magnified source field – Eq. (8.33)

– Electron microscope – Ex. 8.14

– Spatial filtering by optical techniques (e.g., phase contrast microscope, and low-pass,
high-pass and notch filters) – Sec. 8.5.4

• Gaussian Beams – Sec. 8.5.5

– Evolution of beam radius and phase front curvature – Eqs. (8.40b) and subsequent
discussion

– Manipulating Gaussian beams with lenses, mirrors, and optical fibers – Sec. 8.5.5
and Ex. 8.15

• Diffraction at a Caustic; Airy pattern for a fold caustic – Sec. 8.6 and Ex. 8.18
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Bennett (2008), Brooker (2003), Ghatak (2010), Jenkins and White (2001) and Sharma
(2006); and, from an earlier era, Longhurst (1973), and Welford (1988). The definitive
treatment of diffraction at an advanced and very thorough level is that of Born and Wolf
(1999). For an excellent and thorough treatment of paraxial Fourier optics and spatial
filtering, see Goodman (2005). The standard textbooks, except say very little or nothing
about diffraction at caustics, though they should; for this, we recommend the brief treatment
by Berry and Upstill (1980) and the very throrough treatement by Nye (1999).
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