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Chapter 9

Interference and Coherence

Version 1209.1.K.pdf, 12 December 2012
Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 9.1

Reader’s Guide

• This chapter depends substantially on

– Secs. 8.2, 8.3 and 8.5.5 of Chap. 8

– Correlation functions, spectral densities and the Wiener-Khintchine theorem
for random processes, Sec. 6.4 of Chap. 6.

• The concept of coherence length or coherence time, as developed in this chapter,
will be used in Chaps. 10, 15, 16 and 23 of this book.

• Interferometry as developed in this chapter, especially in Sec. 9.5, is a foundation
for the discussion of gravitational-wave detection in Sec. 27.6.

• Nothing else in this book relies substantially on this chapter.

9.1 Overview

In the last chapter, we considered superpositions of waves that pass through a (typically
large) aperture. The foundation for our analysis was the Helmholtz-Kirchoff expression (8.4)
for the field at a chosen point P as a sum of contributions from all points on a closed surface
surrounding P. The spatially varying field pattern resulting from this superposition of many
different contributions was called diffraction.
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In this chapter, we continue our study of superposition, but for the more special case
where only two or at most several discrete beams are being superposed. For this special
case one uses the term interference rather than diffraction. Interference is important in a
wide variety of practical instruments designed to measure or utilize the spatial and temporal
structures of electromagnetic radiation. However interference is not just of practical impor-
tance. Attempting to understand it forces us to devise ways of describing the radiation field
that are independent of the field’s origin and independent of the means by which it is probed.
Such descriptions lead us naturally to the fundamental concept of coherence (Sec. 9.2).

The light from a distant, monochromatic point source is effectively a plane wave; we call
it “perfectly coherent” radiation. In fact, there are two different types of coherence present:
lateral or spatial coherence (coherence in the angular structure of the radiation field), and
temporal or longitudinal coherence (coherence in the field’s temporal structure, which clearly
must imply something also about its frequency structure). We shall see in Sec. 9.2 that for
both types of coherence there is a measurable quantity, called the degree of coherence, that
is the Fourier transform of either the radiation’s angular intensity distribution I(α) (energy
flux per unit angle or solid angle, as a function of direction α) or its spectral energy flux
Fω(ω) (energy flux per unit angular frequency ω, as a function of angular frequency).

Interspersed with our development of the theory of coherence are two applications: (i) the
stellar interferometer (Sec. 9.2.5), by which Michelson measured the diameters of Jupiter’s
moons and several bright stars using spatial coherence; and (ii) the Michelson interferometer
and its practical implementation in a Fourier-transform spectrometer (Sec. 9.2.7), which use
temporal coherence to measure electromagnetic spectra, e.g. the spectral energy flux of the
cosmic microwave background radiation. After developing our full formalism for coherence,
we shall go on in Sec. 9.3 to apply it to the operation of radio telescopes, which function by
measuring the spatial coherence of the radiation field.

In Sec. 9.4 we shall turn to multiple beam interferometry, in which incident radiation is
split many times into several different paths and then recombined. A simple example is an
etalon, made from two parallel, reflecting surfaces. A Fabry-Perot cavity interferometer, in
which light is trapped between two highly reflecting mirrors (e.g. in a laser), is essentially a
large scale etalon. In Secs. 9.4.3 and 9.5 we discuss a number of applications of Fabry Perot
interferometers, including lasers, their stabilization, manipulations of laser light, the optical
frequency comb, and laser interferometer gravitational wave detectors.

Finally, in Sec. 9.6, we shall turn to the intensity interferometer, which although it has not
proved especially powerful in application, does illustrate some quite subtle issues of physics
and, in particular, highlights the relationship between the classical and quantum theories of
light.

9.2 Coherence

9.2.1 Young’s Slits

The most elementary example of interference is provided by Young’s slits. Suppose two
long, narrow, parallel slits are illuminated coherently by monochromatic light from a distant
source that lies on the perpendicular bisector of the line joining the slits (the optic axis),
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Fig. 9.1: (a) Young’s Slits. (b) Interference fringes observed in a transverse plane [Eq. (9.1b)]. (c)
The propagation direction of the incoming waves is rotated to make an angle α to the optic axis;
as a result, the angular positions of the interference fringes in drawing (b) are shifted by ∆θ = α
[Eq. (9.3); not shown]. (d) Interference fringes observed from an extended source [Eq. (9.8)].

so an incident wavefront reaches the slits simultaneously (Fig. 9.1a). This situation can be
regarded as having only one lateral dimension because of translation invariance in the other.
The waves from the slits (effectively, two one-dimensional beams) fall onto a screen in the
distant, Fraunhofer region, and there they interfere. The Fraunhofer interference pattern
observed at a point P, whose position is specified using the polar coordinates (r, θ) shown
in Fig. 9.1, is proportional to the spatial Fourier transform of the transmission function
[Eq. (8.11a)]. If the slits are very narrow, we can regard the transmission function as two
δ-functions, separated by the slit spacing a, and its Fourier transform will be

ψ(θ) ∝ e−ikaθ/2 + eikaθ/2 ∝ cos

(

kaθ

2

)

, (9.1a)

where k = 2π/λ is the light’s wave number and a is the slit’s separation. (That we can sum
the wave fields from the two slits in this manner is a direct consequence of the linearity of
the underlying wave equation.) The energy flux (energy per unit time crossing a unit area)
at P (at angle θ to the optic axis) will be

F (θ) ∝ |ψ|2 ∝ cos2(kaθ/2) ; (9.1b)

cf. Fig. 9.1b. The alternating regions of dark and bright illumination in this flux distribution
are known as interference fringes. Notice that the flux falls to zero between the bright fringes.
This will be very nearly so even if (as is always the case in practice) the field is very slightly
non-monochromatic, i.e. even if the field hitting the slits has the form ei[ωot+δϕ(t)], where
ωo = c/k is the light’s average angular frequency and δϕ(t) is a phase [not to be confused
with the light’s full phase ϕ = ωt+ δϕ(t)], which varies randomly on a timescale extremely
long compared to 1/ωo.1 Notice also that there are many fringes, symmetrically disposed
with respect to the optic axis. [If we were to take account of the finite width w ≪ a of

1More precisely, if δϕ(t) wanders by ∼ π on a timescale τc ≫ 2π/ωo (the waves’ coherence time), then
the waves are contained in a bandwidth ∆ωo ∼ 2π/τc ≪ ωo centered on ωo, k is in a band ∆k ∼ k∆ω/ωo,
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the two slits, then we would find, by contrast with Eq. (9.1b) that the actual number of
fringes is finite, in fact of order a/w; cf. Fig. 8.6 and associated discussion.] This type of
interferometry is sometimes known as interference by division of the wave front.

This Young’s slits experiment is, of course, familiar from quantum mechanics, where it is
often used as a striking example of the non-particulate behavior of electrons.2 Just as for elec-
trons, so also for photons, it is possible to produce interference fringes even if only one photon
is in the apparatus at any time, as was demonstrated in a famous experiment performed by
G. I. Taylor in 1909. However, our concerns in this chapter are with the classical limit, where
many photons are present simultaneously and their fields can be described by Maxwell’s equa-
tions. In the next subsection we shall depart from the usual quantum mechanical treatment
by asking what happens to the fringes when the source of radiation is spatially extended.

****************************

EXERCISES

Exercise 9.1 Problem: Single Mirror Interference

X-rays with wavelength 8.33Å (0.833 nm) coming from a point source can be reflected at
shallow angles of incidence from a plane mirror. The direct ray from a point source to a
detector 3m away interferes with the reflected ray to produce fringes with spacing 25µm.
Calculate the distance of the X-ray source from the mirror plane.

****************************

9.2.2 Interference with an Extended Source: van Cittert-Zernike

Theorem

We shall approach the topic of extended sources in steps. Our first step was taken in the last
subsection, where we dealt with an idealized, single, incident plane wave, such as might be
produced by an ideal, distant laser. We have called this type of radiation perfectly coherent,
which we have implicitly taken to mean that the field oscillates with a fixed angular frequency
ωo and a randomly but very slowly varying phase δϕ(t) (see footnote 1), and thus, for all
practical purposes, there is a time-independent phase difference between any two points
within the region under consideration.

As our second step, we keep the incoming waves perfectly coherent and perfectly planar,
but change their incoming direction in Fig. 9.1 so it makes a small angle α to the optic axis
(and correspondingly its wave fronts make an angle α to the plane of the slits) as shown in

and the resulting superposition of precisely monochromatic waves has fringe minima with fluxes Fmin that
are smaller than the maxima by Fmin/Fmax ∼ (π∆ω/ωo)

2 ≪ 1. (One can see this in order of magnitude by
superposing the flux (9.1b) with wave number k and the same flux with wave number k+∆k.) Throughout
this section, until Eq. (9.15) we presume that the waves have such a small bandwidth (such a long coherence
time) that this Fmin/Fmax is completely negligible; for example, 1 − Fmin/Fmax is far closer to unity than
any fringe visibility V [Eq. (9.8) below] that is of interest to us. This can be achieved in practice by either
controlling the waves’ source, or by band-pass filtering the measured signals just before detecting them.

2See, e.g., Chapter 1 of Volume III of Feynman, Leighton, and Sands (1965).
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Fig. 9.1c. Then the distribution of energy flux in the Fraunhofer diffraction pattern on the
screen will be modified to

F (θ) ∝ |e−ika(θ−α)/2 + e+ika(θ−α)/2|2 ∝ cos2
(

ka(θ − α)

2

)

∝ {1 + cos[ka(θ − α)]} . (9.2)

Notice that, as the direction α of the incoming waves is varied, the locations of the bright
and dark fringes change by ∆θ = α, but the fringes remain fully sharp (their minima remain
essentially zero; cf. footnote 1). Thus, the positions of the fringes carry information about
the direction to the source.

Now, in our third and final step, we will deal with an extended source, i.e. one whose
radiation comes from a finite range of angles α, with (for simplicity) |α| ≪ 1. We shall assume
that the source is monochromatic (and in practice we can make it very nearly monochromatic
by band-pass filtering the waves just before detection). However, in keeping with how all
realistic monochromatic sources (including band-pass filtered sources) behave, we shall give it
a randomly fluctuating phase δϕ(t) [and amplitude A(t)], and shall require that the timescale
on which the phase and amplitude wander (the waves’ coherence time) be very long compared
to the waves’ period 2π/ωo; cf. footnote 1.

We shall also assume that, as for almost all realistic sources, the fluctuating phases in the
waves from different directions are completely uncorrelated. To make this precise, we write
the field in the form3

Ψ(x, z, t) = ei(kz−ωot)

∫

ψ(α, t)eikαxdα , (9.3)

where ψ(α, t) = Ae−iδϕ is the slowly wandering complex amplitude of the waves from direc-
tion α. When we consider the total flux arriving at a given point (x, z) from two different
directions α1 and α2 and average it over times long compared to the waves’ coherence time,
then we lose all interference between the two contributions:

|ψ(α1, t) + ψ(α2, t)|2 = |ψ(α1, t)|2 + |ψ(α2, t)|2 . (9.4)

Such radiation is said to be incoherent in the incoming angle α, and we say that the contri-
butions from different directions superpose incoherently. This is just a fancy way of saying
that their intensities (averaged over time) add linearly.

The angularly incoherent light from our extended source is sent through two Young’s
slits and produces fringes on a screen in the distant Fraunhofer region. We assume that the
coherence time for the light from each source point is very long compared to the difference
in light travel time to the screen via the two different slits. Then the light from each source
point in the extended source forms the sharp interference fringes described by Eq. (9.2).
However, because contributions from different source directions add incoherently, the flux
distribution on the screen is a linear sum of the fluxes from all the source points:

F (θ) ∝
∫

dαI(α){1 + cos[ka(θ − α)]} (9.5)

3As in Chap. 8, we denote the full field by Ψ and reserve ψ to denote the portion of the field from which
a monochromatic part e−iωot or ei(kz−ωot) has been factored out.
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Here I(α)dα ∝ |ψ(α, t)|2dα is the flux incident on the plane of the slits from the infinitesimal
range dα of directions, i.e. I(α) is the radiation’s intensity (its energy per unit time falling
onto a unit area and coming from a unit angle). The remainder of the integrand, 1+cos[ka(θ−
α)], is the Fraunhofer diffraction pattern (9.2) for coherent radiation from direction α.

We presume that the range of angles present in the waves, ∆α, is large compared to their
fractional bandwidth ∆α ≫ ∆ω/ωo; so, whereas the finite but tiny bandwidth produced
negligible smearing out of the interference fringes (footnote 1), the finite but small range of
directions may produce significant smearing, i.e. the minima of F (θ) might not be very sharp.
We quantify the fringes’ non-sharpness and their locations by writing the slit-produced flux
distribution (9.5) in the form

F (θ) = FS[1 + ℜ{γ⊥(ka)e−ikaθ}] , (9.6a)

where

FS ≡
∫

dαI(α) (9.6b)

(subscript S for “source”) is the total flux arriving at the slits from the source, and

γ⊥(ka) ≡
∫

dαI(α)eikaα

FS

(9.7a)

is known as the radiation’s degree of spatial (or lateral) coherence. The phase of γ⊥ deter-
mines the angular locations of the fringes; its modulus determines their depth (the amount
of their smearing due to the source’s finite angular size).

The nonzero value of γ⊥(ka) reflects the fact that there is some amount of relative coher-
ence between the waves arriving at the two slits, whose separation is a. The radiation can
have this finite spatial coherence, despite its complete lack of angular coherence, because
each angle contributes coherently to the field at the two slits. The lack of coherence for
different angles reduces the net spatial coherence (smears the fringes), but does not drive
the coherence all the way to zero (does not completely destroy the fringes).

Eq. (9.7a) says that the degree of spatial coherence of the radiation from an extended, an-
gularly incoherent source is the Fourier transform of the source’s angular intensity pattern.
Correspondingly, if one knows the degree of spatial coherence as a function of the (dimen-
sionless) distance ka, from it one can reconstruct the source’s angular intensity pattern by
Fourier inversion:

I(α) = FS

∫

d(ka)

2π
γ⊥(ka)e

−ikaα . (9.7b)

The two Fourier relations (9.7a), (9.7b) are called the van Cittert-Zernike Theorem. In
Ex. 9.8, we shall see that this theorem is a complex-variable version of Chap. 6’s Wiener-
Khintchine Theorem for random processes.

Because of its Fourier-transform relationship to the source’s angular intensity pattern
I(α), the degree of spatial coherence γ⊥(ka) is of great practical importance. For a given
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choice of ka (a given distance between the slits), γ⊥ is a complex number that one can read
off the interference fringes of Eq. (9.6a) and Fig. 9.1d as follows: Its modulus is

|γ⊥| ≡ V =
Fmax − Fmin

Fmax + Fmin
(9.8)

where Fmax and Fmin are the maximum and minimum values of the flux F on the screen; and
its phase arg(γ⊥) is ka times the displacement ∆θ of the centers of the bright fringes from
the optic axis. The modulus is called the fringe visibility, or simply the visibility, because of
its measuring the fractional contrast in the fringes [Eq. (9.8)], and this name is the reason
for the symbol V . Analogously, the complex quantity γ⊥ (or a close relative) is sometimes
known as the complex fringe visibility. Notice that V can lie anywhere in the range from
zero (no contrast; fringes completely undetectable) to unity (monochromatic plane wave;
contrast as large as possible). When the phase arg(γ⊥) of the complex visibility (degree of
coherence) is zero, there is a bright fringe precisely on the optic axis. This will be the case,
e.g., for a source that is symmetric about the optic axis. If the symmetry point of such
a source is gradually moved off the optic axis by an angle δα, the fringe pattern will shift
correspondingly by δθ = δα, and this will show up as a corresponding shift in the argument
of the fringe visibility, arg(γ⊥) = kaδα.

The above analysis shows that Young’s slits are nicely suited to measuring both the
modulus and the phase of the complex fringe visibility (the degree of spatial coherence) of
the radiation from an extended source.

9.2.3 More General Formulation of Spatial Coherence; Lateral Co-

herence Length

It is not necessary to project the light onto a screen to determine the contrast and angular
positions of the fringes. For example, if we had measured the field at the locations of the two
slits, we could have combined the signals electronically and cross correlated them numerically
to determine what the fringe pattern would be with slits. All we are doing with the Young’s
slits is sampling the wave field at two different points, which we now shall label 1 and 2.
Observing the fringes corresponds to adding a phase ϕ (= kaθ) to the field at one of the
points and then adding the fields and measuring the flux ∝ |ψ1+ψ2e

iϕ|2 averaged over many
periods. Now, since the source is far away, the rms value of the wave field will be the same
at the two slits, |ψ1|2 = |ψ2|2 ≡ |ψ|2. We can therefore express this time averaged flux in the
symmetric-looking form

F (ϕ) ∝ (ψ1 + ψ2eiϕ)(ψ
∗
1 + ψ∗

2e
−iϕ)

∝ 1 + ℜ
(

ψ1ψ∗
2

|ψ|2
e−iϕ

)

. (9.9)

Here a bar denotes an average over times long compared to the coherence times for ψ1 and
ψ2. Comparing with Eq. (9.6a) and using ϕ = kaθ, we identify

γ⊥12 =
ψ1ψ∗

2

|ψ|2
(9.10)
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as the degree of spatial coherence in the radiation field between the two points 1 and 2.
Equation (9.10) is the general definition of degree of spatial coherence. Equation (9.6a) is
the special case for points separated by a lateral distance a.

If the radiation field is strongly correlated between the two points, we describe it as
having strong spatial or lateral coherence. Correspondingly, we shall define a field’s lateral
coherence length l⊥ as the linear size of a region over which the field is strongly correlated
(has V = |γ⊥| ∼ 1). If the angle subtended by the source is ∼ δα, then by virtue of the van
Cittert-Zernike theorem (9.7) and the usual reciprocal relation for Fourier transforms, the
radiation field’s lateral coherence length will be

l⊥ ∼ 2π

k δα
=

λ

δα
. (9.11)

This relation has a simple physical interpretation. Consider two beams of radiation coming
from opposite sides of the brightest portion of the source. These beams will be separated
by the incoming angle δα. As one moves laterally in the plane of the Young’s slits, one will
see a varying relative phase delay between these two beams. The coherence length l⊥ is the
distance over which the variations in that relative phase delay are of order 2π, k δα l⊥ ∼ 2π.

9.2.4 Generalization to Two Dimensions

We have so far just considered a one-dimensional intensity distribution I(α) observed through
the familiar Young’s slits. However, most sources will be two dimensional, so in order to
investigate the full radiation pattern, we should allow the waves to come from 2-dimensional
angular directions α, whence

Ψ = ei(kz−ωot)

∫

ψ(α, t)eikα·xd2α ≡ ei(kz−ωot)ψ(x, t) (9.12a)

[where ψ(α, t) is slowly varying]; and we should use several pairs of slits aligned along differ-
ent directions. Stated more generally, we should sample the wave field (9.12a) at a variety
of points separated by a variety of two-dimensional vectors a transverse to the direction of
wave propagation. The complex visibility (degree of spatial coherence) will then be a function
of ka,

γ⊥(ka) =
ψ(x, t)ψ∗(x+ a, t)

|ψ|2
, (9.12b)

and the van Cittert-Zernike Theorem (9.7) (actually the Wiener-Khintchine theorem in
disguise; see Ex. 9.8) will take the two-dimensional form

γ⊥(ka) =

∫

dΩαI(α)eika·α

FS

, (9.13a)

I(α) = FS

∫

d2(ka)

(2π)2
γ⊥(ka)e

−ika·α . (9.13b)
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Here I(α) ∝ |ψ(α, t)|2 is the source’s intensity (energy per unit time crossing a unit
area from a unit solid angle dΩα; FS =

∫

dΩαI(α) is the source’s total energy flux; and
d2(ka) = k2dΣa is a (dimensionless) surface area element in the lateral plane.

****************************

EXERCISES

Exercise 9.2 Problem: Lateral Coherence of solar radiation

How closely separated must a pair of Young’s slits be to see strong fringes from the sun
(angular diameter ∼ 0.5◦) at visual wavelengths? Suppose that this condition is just satisfied
and the slits are 10µm in width. Roughly how many fringes would you expect to see?

Exercise 9.3 Problem: Degree of Coherence for a Source with Gaussian Intensity Distribu-
tion

A circularly symmetric light source has an intensity distribution I(α) = I0 exp(−α2/2α2
0),

where α is the angular radius measured from the optic axis. Compute the degree of spatial
coherence. What is the lateral coherence length? What happens to the degree of spatial
coherence and the interference fringe pattern if the source is displaced from the optic axis?

****************************

9.2.5 Michelson Stellar Interferometer, and T2 Box on Atmospheric

Seeing

The classic implementation of Young’s slits for measuring spatial coherence is Michelson’s
stellar interferometer, which Albert A. Michelson and Francis Pease used for measuring
the angular diameters Betelgeuse and several other bright stars in 1920. The star light was
sampled at two small mirrors separated by a variable distance a ≤ 6m and was then reflected

a

F
ri

n
g

e
s

Fig. 9.2: Schematic Illustration of a Michelson Stellar Interferometer.
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into the 100 inch (2.5 meter) telescope on Mount Wilson, California, to form interference
fringes; cf. Fig. 9.2. (As we have emphasized, the way in which the fringes are formed is
unimportant; all that matters is the two locations where the light is sampled, i.e. the first
two mirrors in Fig. 9.2.) As Michelson and Pease increased the separation a between the
mirrors, the fringe visibility V decreased. Michelson and Pease modeled Betelgeuse (rather
badly in fact) as a circular disk of uniform brightness, I(α) = 1 for |α| < αr and 0 for
|α| > αr, so its visibility was given, according to Eq. (9.13a), as

V = γ⊥ = 2jinc(kaαr) (9.14)

where αr is the star’s true angular radius and jinc(ξ) = J1(ξ)/ξ. They identified the separa-
tion a ≃ 3 m, where the fringes disappeared, with the first zero of the function jinc(ka), and
they thereby inferred that the angular radius of Betelgeuse is αr ∼ 0.02arc seconds, which
at Betelgeuse’s (parallax-measured) distance of 200pc (600 lyr) corresponds to a physical
radius ∼ 300 times larger than that of the Sun, a reasonable value in light of the modern
theory of stellar structure.

This technique only works for big, bright stars and is very difficult to use because tur-
bulence in the atmosphere causes the fringes to keep moving about; see Box 9.2 and Ex. 9.4
for details.

****************************

EXERCISES

Exercise 9.4 T2 Example and Derivation: Time-Averaged Visibility and Image for a
Distant Star Seen Through Earth’s Turbulent Atmosphere

Fill in the details of the analysis of time-averaged seeing in Box 9.2. More specfically:

(a) Give an order-of-magnitude derivation of Eq. (4a) for the mean-square phase fluctu-
ation of light induced by propagation through a thin, turbulent layer of atmosphere.
[Hint: consider turbulent cells of size a, each of which produces some δϕ, and argue
that the contributions add up as a random walk.]

(b) Deduce the factor 2.91 in Eq. (4a) by evaluating Dδϕ = k2
〈{

∫ z+δh

z
[δn(x + a, z, t) −

δn(x, z, t)]dz}2
〉

.

(c) Derive Eq. (4b) for the time-averaged complex visibility after propagating through
the thin layer. [Hint: argue that, because ζ ≡ δϕ(x, t) − δϕ(x + a, t) is the result
of contributions from a huge number of independent turbulent cells, the central limit
theorem (Sec. 6.3.2) gaurantees it is a Gaussian random variable. Then evaluate γ⊥ =
〈eiζ〉 =

∫∞
−∞ p(ζ)eiζ〉 with p(ζ) the Gaussian distribution.]

(d) Use the point-spread function (8.28) for free propagation of the light field ψ to show
that, under free propagation, the complex visibility γ⊥(ka, z, t) = 〈ψ(x+z, z, t)ψ∗(x, z, t)〉
(with averaging over x and t) is constant, i.e. independent of height z.
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Box 9.2

T2 Astronomical Seeing, Speckel Image Processing, and Adaptive Optics

When light from a star passes through turbulent layers of the earth’s atmosphere, the
turbulently varying index of refraction n(x, t) diffracts the light in a random, time varying
way. One result is “twinkling” (fluctuations in the flux observed by eye on the ground,
with fluctuational frequencies ∼ 100 Hz). Another is astronomical seeing: the production
of many images of the star, i.e. speckles, as seen through a large optical telescope [Fig.
(a) below], with the image pattern fluctuating at ∼ 100 Hz.

In this box and Ex. 9.4, we shall quantify astronomical seeing using the theory of two-
dimensional lateral coherence. We do this not because seeing is important (though it is),
but rather because our analysis provides an excellent illustration of three fundamental
concepts working together: (i) turbulence in fluids, and its Kolmogorov spectrum (Chap.
15); (ii) random processes (Chap. 6), and (iii) coherence of light (this chapter).

We shall begin by deriving, for a star with arbitrarily small angular diameter, the
time-averaged complex visibility γ⊥ observed on the ground, and the visibility’s Fourier
transform, the observed intensity distribution averaged over the speckels, Ī(α). Then
we shall briefly discuss the temporally fluctuating speckel pattern and techniques for
extracting information from it.

(a) (b)
(a)

Figures: (a) Picture of a bright star with a dimmer companion star, as seen through the
Russian 6 meter telescope in an exposure shorter than 10 ms. Atmospheric turbulence
creates a large number of images of each star (speckels) spread over a region with angular
diameter of order 2 arc seconds. (b)The theory discussed in the text and in Ex. 9.4
predicts the solid curve for the time averaged intensity distribution, in the case of a
single bright star. Notice the logarithmic axes. The dotted curve is an estimate of the
influence of the small-scale cutoff of the turbulence, and the dashed curve is a Gaussian.
The circles are observational data. [(a) is from the infrared astronomy group of the Max
Planck Institut for Radioastronomy; (b) is from Roddier (1981).]
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Box 9.2 (Continued)
Time-Averaged Visibility and Angular Distribution of Intensity

When analyzing light propagation through the turbulent atmosphere, it is convenient
to describe the turbulent fluctuations of the index of refraction by their spatial correlation
function Cn(ξ) ≡ 〈δn(X, t)δn(X + ξ, t)〉 (discussed in Sec. 6.4.1); or, better yet, by n’s
mean-square fluctuation on the lengthscale ξ,

Dn(ξ) ≡ 〈[δn(X+ ξ, t)− δn(X, t)]2〉 = 2[σ2
n
− Cn(ξ)] , (1)

which is called n’s structure function. Here δn is the perturbation of the index of refrac-
tion, X is location in three dimensional space, t is time, 〈. . .〉 is a spacetime average, and
σ2
n
≡ 〈δn2〉 = Cn(0) is the variance of the fluctuations.
In Sec. 15.4.4 of Chap. 15, we shall show that, for strong and istropic turbulence, Dn

has the functional form Dn ∝ ξ2/3 (where ξ ≡ |ξ|), with a multiplicative coefficient that
we shall denote C2

n
and that characterizes the strength of the perturbations:

Dn(ξ) = C2
n
ξ2/3 . (2)

The 2/3 power is called the Kolmogorov spectrum for the turbulence.
When light from a very distant star (a point source), directly overhead for simplicity,

hits the earth’s atmosphere, its phase fronts lie in horizonal planes, so the frequency-ω
component of the electric field is ψ = eikz, where z increases downward. (Here we have
factored out the field’s overall amplitude.) When propagating through a thin layer of
turbulent atmosphere, with thickness δh, the light acquires the phase fluctuation

δϕ(x, t) = k

∫ z+δh

z

δn(x, z, t)dz , (3)

Here x is the transverse, i.e. horizontal, location, and Eq. (3) follows from dϕ = kdz with
k = (n/c)ω and n ≃ 1.

In Ex. 9.4 below, we derive some spacetime-averaged consequences of the phase fluc-
tuations (3): (i) When the light emerges from the thin, turbulent layer, it has acquired
a mean-square phase fluctuation on transverse lengthscale a given by

Dδϕ(a) ≡ 〈[δϕ(x+ a, t)− δϕ(x, t)]2〉 = 2.91 C2
n
δh k2a5/3 (4a)

[Eq. (2)], and a spacetime averaged complex visibility given by

¯̄γ⊥(ka) = 〈ψ(x, t)ψ∗(x+ a, t)〉 = 〈exp {i [δϕ(x, t)− δϕ(x+ a, t)]}〉

= exp

[

−1

2
Dδϕ(a)

]

= exp
[

−1.455 C2
n δh k

2 a5/3
]

. (4b)

(ii) Free propagation, including free-propagator diffraction effects which are important for
long-distance propagation, preserves the spacetime-averaged complex visibility : dγ̄⊥/dz =
0. (iii) Therefore, not surprisingly, when the turbulence is spread out vertically in some ar-
bitrary manner, the net mean-square phase shift and time-averaged complex visibility ob-
served on the ground areDϕ(a) = 2.91

(∫

C2
n
(z)dz

)

k2a5/3, and γ̄⊥(ka) = exp
[

−1
2
Dϕ(a)

]

.
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Box 9.2 (Continued)
It is conventional to introduce a transverse lengthscale ro ≡

[

0.423k2
∫

C2
n
(z)dz

]−2/5

called the Fried parameter, in terms of which these Dϕ and γ̄⊥ are
Dϕ(a) = 6.88(a/ro)

5/3 , (5a)

γ̄⊥(ka) = exp

[

−1

2
Dϕ(a)

]

= exp
[

−3.44(a/ro)
5/3
]

. (5b)

This remarkably simple result provides opportunities to test the Kolmogorov power
law: For light from a distant star, one can use a large telescope to measure γ̄⊥(ka), and
one can then plot log log γ̄⊥ as a function of a. Equation (5b) predicts a slope 5/3 for
this plot, and observations confirm that prediction.

Notice that the Fried parameter ro is the lengthscale on which the rms phase fluctuation
ϕrms =

√

Dϕ(a = ro) is
√
6.88 = 2.62 radians; i.e., ro is the transverse length scale be-

yond which the turbulence-induced phase fluctuations are large compared to unity. These
large random phase fluctuations drive γ̄⊥ rapidly toward zero with increasing distance a
[Eq. (5b)], i.e., they cause the light field to become spatially decorrelated with itself for
distances a & ro. Therefore, ro is (approximately) the time-averaged light field’s spatial
correlation length, on the ground. Moreover, since γ̄⊥ is preserved under free propagation
from the turbulent region to the ground, ro must be the transverse correlation length of
the light as it exits the turbulent region that produces the seeing. A correlated region at
with transverse size ro, is called an isoplanatic patch.

The observed time-averaged intensity Ī(α) from the point-source star is the Fourier
transform of the complex visibility (5b); see Eq. (9.13b). This transform cannot be per-
formed analytically, but a numerical computation gives the solid curve in Fig. (b) above,
which agrees remarkably well with observations out to ∼ 10−4 of the central intensity,
where the Kolmogorov power law is expected to break down. Notice that the intensity
distribution has a large-radius tail with far larger intensity than a Gaussian distribution
(the dashed curve). This large-radius light is produced by large-angle diffraction, which
is caused by very small-spatial-scale fluctuations (eddies) in the index of refraction.

Astronomers attribute to this time-averaged I(α) an angular diameter ωo = 1.27λ/ro
(Ex. 9.4). For very good seeing conditions, ro is about 20 cm and ωo is about 0.5 arcsec.
Much more common is ro ∼ 10 cm and ωo ∼ 1 arcsec.

Speckel Pattern and Its Information

The speckel pattern seen on short timescales, . 1/fo ∼ 0.01 s, can be understood in
terms of the turbulence’s isoplanatic patches; see Fig. (c):

θ

h

(c)

wavefront

ground

patch patchpatchpatch

ro
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Box 9.2 (Continued)
When the light field exits the turbulent region, at a height h . 1km, the isoplanatic
patches on its wavefronts, with transverse size ro, are planar to within roughly a reduced
wavelength λ̄ = 1/k = λ/2π (since the rms phase variation across a patch is just 2.62
radians). Each patch carries an image of the star, or whatever other object the astronomer
is observing. The patch’s light rays make an angle θ . ωo = 1.27λ/ro to the vertical.
The patch’s Fresnel length from the ground is rF =

√
λh . 2 cm (since λ ∼ 0.5µm and

h . 1km). This is significantly smaller than the patch size ro ∼ 10 to 20 cm; so there is
little diffraction in the trip to ground. When these patches reach a large telescope (one
with diameter D ≫ ro), each is focused to produce an image of the object centered on
the angular position θ of its rays [dashed lines in Fig. (c)]. These images are the speckels
of Fig. (a).

The speckel pattern [Fig. (a) above] varies rapidly because winds at high altitude sweep
the isoplanatic patches through the star’s light rays. For a wind speed u ∼ 20ms−1,
the frequency of the pattern’s fluctuations is f ∼ u/ro ∼ 100 Hz, in agreement with
observations.

To study the speckels and extract their information about the object’s above-
atmosphere intensity distribution Io(α), one must observe them on timescales . 1/f ∼ 10
ms. The first observations of this sort were the measurements of a few stellar diameters
by Michelson and Pease, using the Michelson stellar interferometer (Sec. 9.2.7). The
fringes that they saw were produced by the speckels, and because the phase of each
speckel’s fringes was random, the many speckels contributed incoherently to to produce
a far smaller net fringe visibility V than in the absence of atmospheric turbulence. More-
over, because the speckel pattern varied at f ∼ 100 Hz, the net visibility and its phase
also varied at f ∼ 100 Hz. Fortunately, the human eye can discern things that vary this
fast, so Michelson and Pease were able to see the fringes.

In the modern era of CCDs, fast electronics and powerful computers, a variety of more
sophisticated techniques have been devised and implemented, for observing the speckels
and extracting their information. These techniques fall into two classes: speckel image
processing, and adaptive optics. Both are now (2013) in wide use by astronomers.

In speckel image processing, one makes optical measurements of the speckel pattern
(sometimes with multi-pinhole masks), on timescales . 0.01 s for which the speckels
are unchanging. One then uses optical or computational techniques to construct fourth-
order or sixth-order correlations of the light field, e.g.

∫

γ⊥[k(a− a
′)]γ∗⊥(ka

′)d2a′ (which
is fourth-order in the field), from which a good approximation to the source’s above-
atmosphere intensity distribution Io(α) can be computed. A precursor to this was the
Hanbury Brown & Twiss intensity interferometer, discussed in Sec. 9.6 below.

In adaptive optics, one focuses not on the speckels themselves, but on the turbulence-
induced distortions of the wavefronts arriving the large telescope’s mirror. One monitors
those wavefront distortions with the aid of light from an artificial star (effectively a point
source) that consists of fluorescing sodium atoms ∼ 90 km above ground, which one
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Box 9.2 (Continued)
excites with a laser beam. This artificial star must be within an angular distance .

h/ro ∼ 3 arcsec of the astronomical object one is observing (where h ∼ 10km is the
height of the highest turbulent layers that contribute significantly to the seeing). This
. 3 arcsec separation guarantees that light rays arriving at the same spot on the telescope
mirror from the object and the artificial star will have traversed the same isoplanatic
patches of turbulent atmosphere and thus have experienced the same phase delay and
acquired the same wavefront distortions. One measures the wavefront distortions of the
artificial star’s light, and dynamically reshapes the telescope mirror so as to compensate
for them, thereby removing the distortions not only from the artificial star’s wavefronts,
but also from the astronomical object’s wavefronts. Thereby one converts the speckel
pattern into the object’s true intensity distribution Io(α).

(e) By combining (c) and (d), deduce Eqs. (5) for the mean-square phase fluctuations and
spacetime-averaged visibility on the ground.

(f) Perform a numerical Fourier transform of γ⊥(ka) [Eq. (5b)] to get the time-averaged
intensity distribution I(α). Construct a log-log plot of it, and compare with Fig. (b)
of Box 9.2. What is ro for the observational data shown in that figure?

(g) Reexpress the turbulence-broadened image’s spread angle ωo ≡ {[4/πI(0)])
∫

I(α)dΩα}1/2
as an integral over γ⊥ and thence deduce that ωo = 1.27λ/ro. Show that the Airy inten-
sity distribution (8.18), for light that goes through a circular aperture with diameter
D, also has ωo = 1.27D/λ.

(g) It is conventional to define the angular diameter of the time-averaged image to be the
diameter ωo of a constant-intensity disk, with the same central brightness I(0) as the
image and the same total flux

∫

I(α)dΩα; i.e., π(ωo/2)
2I(0) =

∫

I(α)dΩα. This ωo

is called the image’s spread angle. Reexpress ωo as an integral over γ⊥. and thence
deduce that ωo = 1.27λ/ro. Show that the Airy intensity distribution (8.18), for
light that goes through a circular aperture with diameter D, also has ωo = 1.27D/λ.
(This same factor 1.27 is what motivated Fried’s definition of ro.) This implies that,
for a telescope with aperture D = ro, turbulence-induced seeing produces the same
degradation of the image as diffraction through the aperture. For smaller apertures,
D < ro, the aperture dominates the broadening of the time-averaged stellar image; for
larger apertures, D > ro, seeing is the dominant source of image broadening.

****************************

9.2.6 Temporal Coherence

In addition to the degree of spatial (or lateral) coherence, which measures the correlation
of the field transverse to the direction of wave propagation, we can also measure the degree
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of temporal coherence, also called the degree of longitudinal coherence. This describes the
correlation at a given time at two points separated by a distance s along the direction of
propagation. Equivalently, it measures the field sampled at a fixed position at two times
differing by τ = s/c. When (as in our discussion of spatial coherence) the waves are nearly
monochromatic so the field arriving at the fixed position has the form Ψ = ψ(t)e−iωot, then
the degree of longitudinal coherence is complex and has a form completely analogous to the
transverse case:

γ‖(τ) =
ψ(t)ψ∗(t+ τ)

|ψ|2
for nearly monochromatic radiation . (9.15)

Here the average is over sufficiently long times t for the averaged value to settle down to an
unchanging value.

When studying temporal coherence, one often wishes to deal with waves that contain
a wide range of frequencies — e.g., the nearly Planckian (black-body) cosmic microwave
radiation emerging from the very early universe (Ex. 9.6). In this case, one should not factor
any e−iωot out of the field Ψ, and one gains nothing by regarding Ψ(t) as complex, so the
longitudinal coherence

γ‖(τ) =
Ψ(t)Ψ(t+ τ)

Ψ2
for real Ψ and broad-band radiation (9.16)

is also real. We shall use this real γ‖ throughout this subsection and the next. It obviously
is the correlation function of Ψ [Eq. (6.19)] renormalized so γ‖(0) = 1.

As τ is increased, γ‖ typically remains near unity until some critical value τc is reached,
and then begins to fall off toward zero. The critical value τc, the longest time over which
the field is strongly coherent, is the coherence time, of which we have already spoken: If the
wave is roughly monochromatic so Ψ(t) ∝ cos[ωot + δϕ(t)], with ωo fixed and the phase δϕ
randomly varying in time, then it should be clear that the mean time for δϕ to change by
an amount of order unity is the coherence time τc at which γ‖ begins to fall significantly.

The uncertainty principle dictates that a field with coherence time τc, when Fourier
analyzed in time, must contain significant power over a bandwidth ∆f = ∆ω/2π ∼ 1/τc.
Correspondingly, if we define the field’s longitudinal coherence length by

l‖ ≡ cτc , (9.17)

then l‖ for broad-band radiation will be only a few times the peak wavelength, but for a narrow
spectral line of width ∆λ, it will be λ2/∆λ.

These relations between the coherence time or longitudinal coherence length and the
field’s spectral energy flux are order-of-magnitude consequences not only of the uncertainty
relation, but also of the temporal analog of the van Cittert-Zernike Theorem. That analog is
just the Wiener-Khintchine Theorem in disguise, and it can be derived by the same methods
as we used in the transverse spatial domain. It says that the degree of lateral coherence γ⊥
is replaced by the degree of temporal coherence γ‖, and the angular intensity distribution
I(α) (distribution of energy over angle) is replaced by the field’s spectral energy flux Fω(ω)
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(the energy crossing a unit area per unit time and per unit angular frequency ω)—which is
also called its spectrum.4 The theorem takes the explicit form

γ‖(τ) =

∫∞
−∞ dωFω(ω)e

iωτ

FS
=

2
∫∞
0
dωFω(ω) cosωτ

Fs
for real Ψ(t), valid for broad-band radiation

(9.18a)
and

Fω(ω) = FS

∫ ∞

−∞

dτ

2π
γ‖(τ)e

−iωτ = 2Fs

∫ ∞

0

dτ

2π
γ‖(τ) cosωτ . (9.18b)

[Here the normalization of our Fourier transform and the sign of its exponential are those
conventionally used in optics, and differ from those used in the theory of random pro-
cesses (Chap. 6). Also, because we have chosen Ψ to be real, Fω(−ω) = Fω(+ω) and
γ‖(−τ) = γ‖(+τ).] One can measure γ‖ by combining the radiation from two points dis-
placed longitudinally to produce interference fringes just as we did in measuring spatial
coherence. This type of interference is sometimes called interference by division of the am-
plitude, in contrast with “interference by division of the wave front” for a Young’s-slit-type
measurement of lateral spatial coherence (next to the last paragraph of Sec. 9.2.1).

****************************

EXERCISES

Exercise 9.5 Problem: Longitudinal coherence of radio waves

An FM radio station has a carrier frequency of 91.3 MHz and transmits heavy metal rock
music in frequency modulated side bands of the carrier. Estimate the coherence length of
the radiation.

****************************

9.2.7 Michelson Interferometer and Fourier-Transform Spectroscopy

The classic instrument for measuring the degree of longitudinal coherence is the Michelson
interferometer of Fig. 9.3 (not to be confused with the Michelson stellar interferometer).
In the simplest version, incident light (e.g. in the form of a Gaussian beam; Sec. 8.5.5) is
split by a beam splitter into two beams, which are reflected off different plane mirrors and
then recombined. The relative positions of the mirrors are adjustable so that the two light
paths can have slightly different lengths. (An early version of this instrument was used in
the famous Michelson-Morley experiment.) There are two ways to view the fringes. One
way is to tilt one of the reflecting mirrors slightly so there is a range of path lengths in one

4Note that the spectral energy flux (spectrum) is simply related to the spectral density of the field: If
the field Ψ is so normalized that the energy density is U = β Ψ,tΨ,t with β some constant, then Fω(ω) =
βc/(2π)SΨ(f), with f = ω/2π.
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Fig. 9.3: Michelson Interferometer.

of the arms. Light and dark interference bands (fringes) can then be seen across the circular
cross section of the recombined beam. The second method is conceptually more direct but
requires aligning the mirrors sufficiently accurately so the phase fronts of the two beams are
parallel after recombination and the recombined beam has no banded structure. The end
mirror in one arm of the interferometer is then slowly moved backward or forward, and as
it moves, the recombined light slowly changes from dark to light to dark and so on.

It is interesting to interpret this second method in terms of the Doppler shift. One beam
of light undergoes a Doppler shift on reflection off the moving mirror. There is then a beat
wave produced when it is recombined with the unshifted radiation of the other beam.

Whichever method is used (tilted mirror or longitudinal motion of mirror), the visibility
γ|| of the interference fringes measures the beam’s degree of longitudinal coherence, which is
related to the spectral energy flux (spectrum) Fω by Eqs. (9.18).

Let us give an example. Suppose we observe a spectral line with rest angular frequency
ω0 that is broadened by random thermal motions of the emitting atoms so the line profile is

Fω ∝ exp

(

−(ω0 − ω)2

2(∆ω)2

)

. (9.19a)

The width of the line is given by the formula for the Doppler shift, ∆ω ∼ ω0(kBT/mc
2)1/2,

where T is the temperature of the emitting atoms and m is their mass. (We ignore other
sources of line broadening, e.g. natural broadening and pressure broadening, which actually
dominate under normal conditions.) For example, for hydrogen at T = 103K, the Doppler-
broadened line width is ∆ω ∼ 10−5ω0.

By Fourier transforming this line profile, using the well known result that the Fourier
transform of a Gaussian is another Gaussian, and invoking the fundamental relations (9.18)
between the spectrum and temporal coherence, we obtain

γ‖(τ) = exp

(

−τ
2(∆ω)2

2

)

cosω0τ . (9.19b)

If we had used the nearly monochromatic formalism with the field written as Ψ = ψ(t)e−iω0t,
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then we would have obtained

γ‖(τ) = exp

(

−τ
2(∆ω)2

2

)

eiω0τ , (9.19c)

the real part of which is our broad-band formalism’s γ‖. In either case, γ‖ oscillates with
angular frequency ω0, and the amplitude of this oscillation is the fringe visibility V :

V = exp

(

−τ
2(∆ω)2

2

)

. (9.19d)

The variation V (τ) of this visibility with lag time τ is sometimes called an interferogram.
For time lags τ ≪ (∆ω)−1, the line appears to be monochromatic and fringes with unit
visibility should be seen. However, for lags τ & (∆ω)−1, the fringe visibility will decrease
exponentially with τ 2. In our Doppler-broadened hydrogen-line example with ∆ω ∼ 10−5ω0,
the rest angular frequency is ω0 ∼ 3 × 1015 rad s−1, so the longitudinal coherence length
is l‖ = cτc ∼ 10mm. No fringes will be seen when the radiation is combined from points
separated by much more than this distance.

This procedure is an example of Fourier transform spectroscopy, in which, by measuring
the degree of temporal coherence γ‖(τ) and then Fourier tranforming it [Eq. (9.18)], one
infers the shape of the radiation’s spectrum, or in this case, the width of a specific spectral
line.

When (as in Ex. 9.6 below) the waves are very broad band, the degree of longitudinal
coherence γ‖(τ) will not have the form of a sinusoidal oscillation (regular fringes) with slowly
varying amplitude (visibility). Nevertheless, the broad-band van Cittert-Zernike theorem
(9.18) still guarantees that the spectrum (spectral energy flux) will be the Fourier transform
of the coherence γ‖(τ), which can be measured by a Michelson interferometer.

****************************

EXERCISES

Exercise 9.6 Problem: COBE Measurement of the Cosmic Microwave Background Radia-
tion

An example of a Michelson interferometer is the Far Infrared Absolute Spectrophotome-
ter (FIRAS) carried by the Cosmic Background Explorer Satellite (COBE). COBE studied
the spectrum and anisotropies of the cosmic microwave background radiation (CMB) that
emerged form the very early, hot phase of our universe’s expansion (Chap. 28). One of the
goals of the COBE mission was to see if the CMB spectrum really had the shape of 2.7K
black body (Planckian) radiation, or if it was highly distorted as some measurements made
on rocket flights had suggested. COBE’s spectrophotometer used Fourier transform spec-
troscopy to meet this goal: it compared accurately the degree of longitudinal coherence γ‖
of the CMB radiation with that of a calibrated source on board the spacecraft, which was
known to be a black body at about 2.7K. The comparison was made by alternately feeding
radiation from the microwave background and radiation from the calibrated source into the
same Michelson interferometer and comparing their fringe spacings. The result (Mather et.
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al. 1994) was that the background radiation has a spectrum that is Planckian with tem-
perature 2.726 ± 0.010K over the wavelength range 0.5–5 mm, in agreement with simple
cosmological theory that we shall explore in the last chapter of this book.

(a) Suppose that the CMB had had a Wien spectrum Fω ∝ |ω|3 exp(−~|ω|/kT ) where
T = 2.74K. Show that the visibility of the fringes would have been

V = |γ‖| ∝
|s4 − 6s20s

2 + s40|
(s2 + s20)

4
(9.20)

where s = cτ is longitudinal distance, and calculate a numerical value for s0.

(b) Compute the interferogram V (τ) for a Planck function either analytically (perhaps
with the help of a computer) or numerically using a Fast Fourier Transform. Compare
graphically the interferogram for the Wien and Planck spectra.

****************************

9.2.8 Degree of Coherence; Relation to Theory of Random Pro-

cesses

Having separately discussed spatial and temporal coherence, we now can easily perform a
final generalization and define the full degree of coherence of the radiation field between
two points separated both laterally by a vector a and longitudinally by a distance s, or
equivalently by a time τ = s/c. If we restrict ourselves to nearly monochromatic waves and
use the complex formalism so the waves are written as Ψ = ei(kz−ωot)ψ(x, t) [Eq. (9.12a)],
then

γ12(ka, τ) ≡
ψ(x1, t)ψ∗(x1 + a, t + τ)

[|ψ(x1, t)|2 |ψ(x1 + a, t)|2]1/2
=
ψ(x1, t)ψ∗(x1 + a, t + τ)

|ψ|2
. (9.21)

In the denominator of the second expression we have used the fact that, because the source
is far away, |ψ|2 is independent of the spatial location at which it is evaluated, in the region
of interest. Consistent with the definition (9.21), we can define a volume of coherence Vc as
the product of the longitudinal coherence length l‖ = cτc and the square of the transverse
coherence length l2⊥: Vc = l2⊥cτc.

The three-dimensional version of the van Cittert-Zernike theorem relates the complex
degree of coherence (9.21) to the radiation’s spectral intensity, Iω(α, ω), i.e. to the energy
crossing a unit area per unit time per unit solid angle and per unit angular frequency (energy
“per unit everything”). (Since the frequency ν = f and the angular frequency ω are related
by ω = 2πν, the spectral intensity Iω of this chapter and that Iν of Chap. 3 are related by
Iν = 2πIω.) The three-dimensional van Cittert-Zernike theorem states that

γ12(ka, τ) =

∫

dΩαdωIω(α, ω)e
i(ka·α+ωτ)

FS
, (9.22a)
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and

Iω(α, ω) = FS

∫

dτd2ka

(2π)3
γ12(ka, τ)e

−i(ka·α+ωτ) . (9.22b)

There obviously must be an intimate relationship between the theory of random processes,
as developed in Chap. 6, and the theory of a wave’s coherence, as we have developed it in
this section, Sec. 9.2. That relationship is explained in Ex. 9.8. Most especially, it is shown
that the van Cittert-Zernike theorem is nothing but the wave’s Wiener-Khintchine theorem
in disguise.

****************************

EXERCISES

Exercise 9.7 Problem: Decomposition of Degree of Coherence

We have defined the degree of coherence γ12(a, τ) for two points in the radiation field sepa-
rated laterally by a distance a and longitudinally by a time τ . Under what conditions will
this be given by the product of the spatial and temporal degrees of coherence?

γ12(a, τ) = γ⊥(a)γ‖(τ) (9.23)

Exercise 9.8 *** Example: Complex Random Processes and the van Cittert-Zernike The-
orem

In Chap. 6 we developed the theory of real-valued random processes that vary randomly
with time t, i.e. that are defined on a one-dimensional space in which t is a coordinate. Here
we shall generalize a few elements of that theory to a complex-valued random process Φ(x)
defined on a (Euclidean) space with n dimensions. We assume the process to be stationary
and to have vanishing mean (cf. Chap. 6 for definitions). For Φ(x) we define a complex-valued
correlation function by

CΦ(ξ) ≡ Φ(x)Φ∗(x+ ξ) (9.24a)

(where the ∗ denotes complex conjugation) and a real-valued spectral density by

SΦ(k) = lim
L→∞

1

Ln
|Φ̃L(k)|2 . (9.24b)

Here ΦL is Φ confined to a box of side L (i.e. set to zero outside that box), and the tilde
denotes a Fourier transform defined using the conventions of Chap. 6:

Φ̃L(k) =

∫

ΦL(x)e
−ik·xdnx , ΦL(x) =

∫

Φ̃L(k)e
+ik·x dnk

(2π)n
. (9.25)

Because Φ is complex rather than real, CΦ(ξ) is complex; and as we shall see below, its
complexity implies that [although SΦ(k) is real], SΦ(−k) 6= SΦ(k). This fact prevents
us from folding negative k into positive k and thereby making SΦ(k) into a “single-sided”
spectral density as we did for real random processes in Chap. 6. In this complex case we
must distinguish −k from +k and similarly −ξ from +ξ.



22

(a) The complex Wiener-Khintchine theorem [analog of Eq.(6.29)] says that

SΦ(k) =

∫

CΦ(ξ)e
+ik·ξdnξ , (9.26a)

CΦ(ξ) =

∫

SΦ(k)e
−ik·ξ dnk

(2π)n
. (9.26b)

Derive these relations. [Hint: use Parseval’s theorem in the form
∫

A(x)B∗(x)dnx =
∫

Ã(k)B̃∗(k)dnk/(2π)n with A(x) = ΦL(x) and B(x) = ΦL(x + ξ), and then take
the limit as L → ∞.] Because SΦ(k) is real, this Wiener-Khintchine theorem im-
plies that CΦ(−ξ) = C∗

Φ(ξ). Show that this is so directly from the definition (9.24a)
of CΦ(ξ). Because CΦ(ξ) is complex, the Wiener-Khintchine theorem implies that
SΦ(k) 6= SΦ(−k).

(b) Let ψ(x, t) be the complex-valued wave field defined in Eq. (9.12a), and restrict x to
range only over the two transverse dimensions so ψ is defined on a 3-dimensional space.
Define Φ(x, t) ≡ ψ(x, t)/[|ψ(x, t)|2]1/2. Show that

CΦ(a, τ) = γ12(ka, τ) , SΦ(−αk,−ω) = const× Iω(α, ω)

FS

, (9.27)

and that the complex Wiener-Khintchine theorem (9.26) is the van Cittert-Zernike
theorem (9.22). (Note: the minus signs in SΦ result from the difference in Fourier
transform conventions between the theory of random processes [Eq. (9.25) above and
Chap. 6] and the theory of optical coherence [this chapter]. Evaluate the constant in
Eq. (9.27).

****************************

9.3 Radio Telescopes

The technique pioneered by Michelson for measuring the angular sizes of stars at visual
wavelengths has been applied with great effect in radio astronomy. A modern radio telescope
is a large, steerable surface that reflects radio waves onto a “feed”, where the fluctuating
electric field in the radio wave creates a very small electric voltage that can subsequently
be amplified and measured electronically. A large telescope has a diameter D ∼ 100m
and a typical observing wavelength might be λ ∼ 6cm. This implies an angular resolution
θA ∼ λ/D ∼ 2 arc minutes [Eq. (8.18) and subsequent discussion]. However, many of the
most interesting cosmic sources are much smaller than this. In order to achieve much better
angular resolution, the technique of radio interferometry was developed in the 1960s and 70s;
and the analogous optical interferometry is currently (2010s) under rapid development.5

5Optical interferometry was not possible until optical technology became good enough to monitor the
phase of light, as well as its amplitude, at separate locations and then produce interference.
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9.3.1 Two-Element Radio Interferometer

If we have two radio telescopes, then we can think of them as two Young’s slits, and we can
link them using a combination of waveguides and electric cables as shown in Fig. 9.4. When
they are both pointed at a source, they both measure the electric field in radio waves from
that source. We combine their signals by narrow-band filtering their voltages to make them
nearly monochromatic and then either add the filtered voltages and measure the power, or
multiply the two voltages directly. In either case a measurement of the degree of coherence,
Eq. (9.10) can be achieved. (If the source is not vertically above the two telescopes, one
obtains some non-lateral component of the full degree of coherence γ12(a, τ). However, by
introducing a time delay into one of the signals, as in Fig. 9.4, one can measure the degree
of lateral coherence γ⊥(a), which is what the astronomer usually needs.)

The objective is usually to produce an image of the radio waves’ source. This is achieved
by Fourier inverting the lateral degree of coherence γ⊥(a) [Eq. (9.13b)], which must therefore
be measured for a variety of values of the relative separation vector a of the telescopes
perpendicular to the direction of the source. As the earth rotates, the separation vector will
trace out half an ellipse in the two-dimensional a plane every twelve hours. [The source
intensity is a real quantity and so we can use Eq. (9.13b) to deduce that γ⊥(−a) = γ∗⊥(a),
which gives the other half of the ellipse.] By changing the spacing between the two telescopes
daily and collecting data for a number of days, the degree of coherence can be well sampled.
This technique is known as Earth-Rotation Aperture Synthesis because the telescopes are
being made to behave like a giant telescope, as big as their maximum separation, with the
aid of the earth’s rotation.

9.3.2 Multiple Element Radio Interferometer

In practice, a modern radio interferometer has many more than two telescopes. The Very
Large Array (VLA) in New Mexico (USA) has 27 individual telescopes arranged in a Y pat-
tern and operating simultaneosly. The degree of coherence can thus be measured simultane-

Telescope
& Amplifier

Delay Correlator

v
γ (a)

v

a

Fig. 9.4: Two element radio interferometer.
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ously over 27× 26/2 = 351 different relative separations. The results of these measurements
can then be interpolated to give values of γ⊥(a) on a regular grid of points (usually 2N × 2N

for some integer N). This is then suitable for applying the Fast Fourier Transform algorithm
to infer the source structure I(α).

9.3.3 Closure Phase

Among the many technical complications of interferometry is one which brings out an inter-
esting point about Fourier methods. It is usually much easier to measure the modulus than
the phase of the complex degree of coherence. This is partly because it is hard to introduce
the necessary delays in the electronics accurately enough to know where the zero of the
fringe pattern should be located and partly because unknown, fluctuating phase delays are
introduced into the phase of the field as the wave propagates through the upper atmosphere
and ionosphere. (This is a radio variant of the problem of “seeing” for optical telescopes,
cf. Ex. 8.10, and it also plagues the Michelson stellar interferometer.) It might therefore be
thought that we would have to make do with just the modulus of the degree of coherence,
i.e. the fringe visibility, to perform the Fourier inversion for the source structure. This is
not so.

Consider a three element interferometer measuring fields ψ1, ψ2, ψ3 and suppose that at
each telescope there are unknown phase errors, δϕ1, δϕ2, δϕ3; cf. Fig. 9.5. For baseline a12,
we measure the degree of coherence γ⊥12 ∝ ψ1ψ∗

2 , a complex number with phase Φ12 =
ϕ12 + δϕ1 − δϕ2, where ϕ12 is the phase of γ⊥12 in the absence of phase errors. If we also
measure the degrees of coherence for the other two pairs of telescopes in the triangle and
derive their phases Φ23,Φ31, we can then calculate the quantity

C123 = Φ12 + Φ23 + Φ31

= ϕ12 + ϕ23 + ϕ31 , (9.28)

from which the phase errors cancel out.
The quantity C123, known as the closure phase, can be measured with high accuracy. In

the VLA, there are 27×26×25/6 = 2925 such closure phases, and they can all be measured

2

31

2

31

a12

a31

a23

Fig. 9.5: Closure phase measurement using a triangle of telescopes.
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with considerable redundancy. Although absolute phase information cannot be recovered,
93 per cent of the telescopes’ relative phases can be inferred in this manner and used to
construct an image far superior to what one would get without any phase information.

9.3.4 Angular Resolution

When the telescope spacings are well sampled and the source is bright enough to carry out
these image processing techniques, an interferometer can have an angular resolving power
approaching that of an equivalent filled aperture as large as the maximum telescope spacing.
For the VLA this is 35km, giving an angular resolution of a fraction of a second of arc at
6cm wavelength, which is 350 times better than the resolution of a single 100m telescope.

Even greater angular resolution is achieved in a technique known as Very Long Baseline
Interferometry (VLBI). Here the telescopes can be located on different continents and in-
stead of linking them directly, the oscillating field amplitudes ψ(t) are stored electronically
and then combined digitally long after the observation, to compute the complex degree of
coherence and thence the source structure I(α). In this way angular resolutions over 300
times better than those achievable by the VLA have been obtained. Structure smaller than a
milliarcsecond corresponding to a few light years at cosmological distances can be measured
in this manner.

This technique will be used in the international Square Kilometer Array (SKA), consisting
of thousands of telescopes spread over linear distances of several thousand kilometers, with
high-telescope-density central cores in South Africa and Australia. The total area of the
telescope dishes (total “collecting area”) will be about one square kilometer; hence the name
SKA.

****************************

EXERCISES

Exercise 9.9 Example: Radio Interferometry from Space

The longest radio-telescope separation available in 2012 is that between telescopes on the
earth’s surface and a 10-m diameter radio telescope in the Russian RadioAstron satellite,
which was launched into a highly elliptical orbit around Earth in summer 2011, with perigee
∼ 10, 000 km (1.6 Earth radii) and apogee ∼ 350, 000 km (55 Earth radii).

(a) Radio astronomers conventionally describe the spectral intensity Iω(α, ω) of a source in
terms of its brightness temperature. This is the temperature Tb(ω) that a black body
would have to have in order to emit, in the Rayleigh-Jeans (low-frequency) end of its
spectrum, the same spectral intensity as the source. Show that for a single (linear or
circular) polarization, if the solid angle subtended by a source is ∆Ω and the spectral
energy flux measured from the source is Fω ≡

∫

IωdΩ = Iω∆Ω, then the brightness
temperature is

Tb =
(2π)3c2Iω
kBω2

=
(2π)3c2Fω

kBω2∆Ω
, (9.29)

where kB is Boltzmann’s constant.
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(b) The brightest quasars emit radio spectral fluxes of about Fω = 10−25W m−2Hz−1,
independent of frequency. The smaller is such a quasar, the larger will be its brightness
temperature. Thus, one can characterize the smallest sources that a radio telescope
system can resolve by the highest brightness temperatures it can measure. Show that
the maximum brightness temperature measurable by the earth-to-orbit RadioAstron
interferometer is independent of the frequency at which the observation is made, and
estimate its numerical value.

****************************

9.4 Etalons and Fabry-Perot Interferometers

We have shown how a Michelson interferometer (Fig. 9.3) can be used as a Fourier-transform
spectrometer: one measures the complex fringe visibility as a function of the two arms’ optical
path difference and then takes the visibility’s Fourier transform to obtain the spectrum of
the radiation. The inverse process is also powerful: One can drive a Michelson interferometer
with radiation with a known, steady spectrum (usually close to monochromatic), and look
for time variations of the positions of its fringes caused by changes in the relative optical path
lengths of the interferometer’s two arms. This was the philosophy of the famous Michelson-
Morley experiment to search for ether drift, and it is also the underlying principle of a laser
interferometer (“interferometric”) gravitational-wave detector.

To reach the sensitivity required for gravitational-wave detection, one must modify the
Michelson interferometer by making the light travel back and forth in each arm many times,
thereby amplifying the phase shift caused by changes in the arm lengths. This is achieved
by converting each arm into a Fabry-Perot interferometer. In this section we shall study
Fabry-Perot interferometers and some of their other applications, and in the next section we
shall explore their use in gravitational-wave detection.

9.4.1 Multiple Beam Interferometry; Etalons

Fabry-Perot interferometry is based on trapping monochromatic light between two highly
reflecting surfaces. To understand such trapping, let us consider the concrete situation
where the reflecting surfaces are flat and parallel to each other, and the transparent medium
between the surfaces has one index of refraction n, while the medium outside the surfaces
has another index n

′ (Fig. 9.6). Such a device is sometimes called an etalon. One example
is a glass slab in air (n ≃ 1.5, n′ ≃ 1); another is a vacuum maintained between two glass
mirrors (n = 1, n′ ≃ 1.5). For concreteness, we shall discuss the slab case, though all our
formulas are valid equally well for vacuum between mirrors or for any other etalon.

Suppose that a monochromatic plane wave (i.e. parallel rays) with angular frequency ω
is incident on one of the slab’s reflecting surfaces, where it is partially reflected and partially
transmitted with refraction. The transmitted wave will propagate through to the second
surface, where it will be partially reflected and partially transmitted. The reflected portion
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Fig. 9.6: Multiple beam interferometry using a type of Fabry-Perot etalon.

will return to the first surface, where it too will be split, and so on (Fig. 9.6a). The resulting
total fields in and outside the slab can be computed by summing the series of sequential
reflections and transmissions (Ex. 9.12). Alternatively, they can be computed as follows:

We shall assume, for pedagogical simplicity, that there is translational invariance along
the slab (i.e. the slab and incoming wave are perflectly planar). Then the series, if summed,
would lead to the five waves shown in Fig. 9.6b: an incident wave (ψi), a reflected wave (ψr),
a transmitted wave (ψt), and two internal waves (ψa and ψb).

We introduce amplitude reflection and transmission coefficients, denoted r and t, for
waves incident upon the slab surface from outside. Likewise, we introduce coefficients r

′, t′

for waves incident upon the slab from inside. These coefficients are functions of the angles of
incidence and the light’s polarization. They can be computed using electromagnetic theory
(e.g. Sec. 4.6.2 of Hecht 2002), but this will not concern us here.

Armed with these definitions, we can express the reflected and transmitted waves at the
first surface (location A in Fig. 9.7) in the form

ψr = rψi + t
′ψb,

ψa = tψi + r
′ψb, (9.30a)

where ψi, ψa, ψb, and ψr are the values of ψ at A for waves impinging on or leaving the
surface along the paths i, a, b, and r depicted in Fig. 9.7. Simple geometry shows that the
waves at the second surface are as depicted in Fig. 9.7; and correspondingly, the relationships
between the ingoing and outgoing waves there are

ψbe
−iks1 = r

′ψae
ik(s1−s2) ,

ψt = t
′ψae

iks1, (9.30b)

where k = nω/c is the wave number in the slab and (as is shown in the figure)

s1 = d sec θ , s2 = 2d tan θ sin θ , (9.30c)

with d the thickness of the slab and θ the angle that the wave fronts inside the slab make
to the slab’s faces.
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Fig. 9.7: Construction for calculating the phase differences across the slab for the two internal
waves in an etalon.

In solving Eqs. (9.30) for the net transmitted and reflected waves ψt and ψr in terms of the
incident wave ψi, we shall need reciprocity relations between the reflection and transmission
coefficients r, t for waves that hit the reflecting surfaces from one side, and those r

′, t′ for
waves from the other side. These reciprocity relations are analyzed quite generally in Ex.
9.10. To derive the reciprocity relations in our case of sharp boundaries between homogeneous
media, consider the limit in which the slab thickness d → 0. This is allowed because the
wave equation is linear and the solution for one surface can be superposed on that for the
other surface. In this limit s1 = s2 = 0 and the slab must become transparent so

ψr = 0, ψt = ψi . (9.31)

Eq. (9.30a), (9.30b), and (9.31) are then six homogeneous equations in the five wave ampli-
tudes ψi, ψr, ψt, ψa, ψb, from which we can extract the two desired reciprocity relations:

r
′ = −r , tt

′ − rr
′ = 1 . (9.32)

Since there is no mechanism to produce a phase shift as the waves propagate across a perfectly
sharp boundary, it is reasonable to expect r, r′, t and t

′ all to be real, as indeed they are (Ex.
9.10). (If the interface has a finite thickness, it is possible to adjust the spatial origins on the
two sides of the interface so as to make r, r′, t and t

′ all be real, leading to the reciprocity
relations (9.32), but a price will be paid; see Ex. 9.10.)

Return, now, to the case of finite slab thickness. By solving Eqs. (9.30) for the reflected
and transmitted fields and invoking the reciprocity relations (9.32), we obtain

ψr

ψi
≡ re =

r(1− eiϕ)

1− r2eiϕ
,

ψt

ψi
≡ te =

(1− r
2)eiϕ/(2 cos

2 θ)

1− r2eiϕ
. (9.33a)

Here re and te are the etalon’s reflection and transmission coefficients; and ϕ = k(2s1 − s2),
which reduces to

ϕ = 2nωd cos θ/c , (9.33b)
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is the light’s round-trip phase shift (along path a then b) inside the etalon, relative to the
phase of the incoming light that it meets at location A. If ϕ is a multiple of 2π, the round-trip
light will superpose coherently on the new, incoming light.

We are particularly interested in the reflectivity and transmissivity for the energy flux,
i.e. the coefficients that tell us what fraction of the total flux (and therefore also the total
power) incident on the etalon is reflected by it, and what fraction emerges from its other
side:

R = |re|2 =
|ψr|2
|ψi|2

=
2r2(1− cosϕ)

1− 2r2 cosϕ+ r4
, T = |te|2 =

|ψt|2
|ψi|2

=
(1− r

2)2

1− 2r2 cosϕ+ r4
. (9.33c)

From these expressions, we see that

R + T = 1 , (9.33d)

which says that the energy flux reflected from the slab plus that transmitted is equal to that
impinging on the slab (energy conservation). It is actually the reciprocity relations (9.32)
for the amplitude reflection and transmission coefficients that have enforced this energy
conservation. If they had contained a provision for absorption or scattering of light in the
interfaces, R + T would have been less than one.

We shall discuss these reflection and transmission coefficients at length in the next sub-
section; but first, in a set of example exercises, we shall clarify some important issues related
to the above analysis.

****************************

EXERCISES

Exercise 9.10 Example: Reciprocity Relations for a Locally Planar Optical Device

Modern mirrors, etalons, beam splitters, and other optical devices are generally made of
glass or fused silica (quartz), with dielectric coatings on their surfaces. The coatings consist
of alternating layers of materials with different dielectric constants, so the index of refraction
n varies periodically. If, for example, the period of n’s variations is half a wavelength of the
radiation, then waves reflected from successive dielectric layers build up coherently, producing
a large net reflection coefficient; the result is a highly reflecting mirror.

In this exercise, we shall use a method due to Stokes to derive the reciprocity relations for
devices with dielectric coatings, and in fact for much more general devices. Specifically,
our derivation will be valid for locally plane-fronted, monochromatic waves impinging on an
arbitrary, locally planar, lossless optical device. [By “locally” plane-fronted and planar, we
mean that transverse variations are on scales sufficiently long compared to the wavelength
of light that we can use the plane-wave analysis sketched below; for example, the spherical
mirrors and Gaussian beams of an interferometric gravitational-wave detector (Fig. 9.13)
easily satisfy this requirement. By lossless we mean that there is no absorption or scattering
of the light.] The device could be a mirror, a surface with an antireflection coating (Ex. 9.13
below), an etalon, or any sequence of such objects with locally parallel surfaces.
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Let a plane, monochromatic wave ψie
iki·xe−iωt impinge on the optical device from above,

and orient the device so its normal is in the z direction and it is translation invariant in the
x and y directions; see Fig. 9.8a. Then the reflected and transmitted waves are as shown
in the figure. Because the medium below the device can have a different index of refraction
from that above, the waves’ propagation direction below may be different from that above,
as shown. For reasons explained in part (e) below, we denote position below the device by x

′

and position above the device by x. Some arbitrary choice has been made for the locations
of the vertical origins z = 0 and z′ = 0 on the two sides of the device.

(a) Consider a thought experiment in which the waves of Fig. 9.8a are time-reversed, so
they impinge on the device from the original reflection and transmission directions and
emerge toward the original input direction, as shown in Fig. 9.8b. If the device had
been lossy, the time-reversed waves would not satisfy the field’s wave equation; the
absence of losses guarantees they do. Show that, mathematically, the time reversal can
be achieved by complex conjugating the spatial part of the waves, while leaving the
temporal part e−iωt unchanged. (Such phase conjugation can be achieved in practice
using techniques of nonlinear optics, as we shall see in the next chapter.) Show,
correspondingly, that the spatial part of the time-reversed waves is described by the
formulas shown in Fig. 9.8b.

(b) Use the reflection and transmission coefficients to compute the waves produced by the
inputs of Fig. 9.8b. From the requirement that the wave emerging from the device’s
upward side have the form shown in the figure, conclude that

1 = rr
∗ + t

′
t
∗ . (9.34a)

Similarly, from the requirement that no wave emerge from the device’s downward side,
conclude that

0 = tr
∗ + t

∗
r
′ . (9.34b)

ψi e
iki.x r ψi e

ikr .x

t ψi e
ikt .x'

ψi* e
-iki.x r* ψi* e

-ikr .x

t* ψi* e
-ikt .x'

(a) (b)

z

Fig. 9.8: Construction for deriving reciprocity relations for amplitude transmission and reflection
coefficients.
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Eqs. (9.34) are the most general form of the reciprocity relations for lossless, planar
devices.

(c) For a sharp interface between two homogeneous media, combine these general reci-
procity relations with the ones derived in the text, Eq. (9.32), to show that t, t′, r and
r
′ are all real (as was asserted in the text).

(d) For the etalon of Figs. 9.6 and 9.7, re and te are given by Eqs. (9.33a). What, do the
reciprocity relations tell us about the coefficients for light propagating in the opposite
direction, r′e and t

′
e?

(e) Show that for a general optical device, the reflection and transmission coefficients can
all be made real by appropriate, independent adjustments of the origins of the vertical
coordinates z (for points above the device) and z′ (for points below the device). More
specifically, show that by setting znew = zold + δz and z′new = z′old + δz′ and choosing
δz and δz′ appropriately, one can make t and r real. Show further that the reciprocity
relations (9.34a), (9.34b) then imply that t′ and r

′ are also real. Finally, show that this
adjustment of origins brings the real reciprocity relations into the same form (9.32) as
for a sharp interface between two homogeneous media.

As attractive as it may be to have these coefficients real, one must keep in mind some
disadvantages: (i) the displaced origins for z and z′ in general will depend on fre-
quency, and correspondingly (ii) frequency-dependent information (most importantly,
frequency-dependent phase shifts of the light) are lost by making the coefficients real.
If the phase shifts depend only weakly on frequency over the band of interest (as is
typically the case for the dielectric coating of a mirror face), then these disadvantages
are unimportant and it is conventional to choose the coefficients real. If the phase
shifts depend strongly on frequency over the band of interest [e.g., for the etalon of Eqs.
(9.33a), when its two faces are highly reflecting and its round-trip phase ϕ is near a
multiple of 2π], the disadvantages are severe. One then should leave the origins fre-
quency independent, and correspondingly leave the device’s r, r′, t and t

′ complex [as
we have for the etalon, in Eqs. (9.33a)].

Exercise 9.11 **Example: Transmission and Reflection Coefficients for an Interface Be-
tween Dielectric Media

Consider monochromatic electromagnetic waves that propagate from a medium with index
of refraction n1 into a medium with index of refraction n2. Let z be a cartesian coordinate
perpendicular to the planar interface between the medium.

(a) From the Helmholtz equation [−ω2+(c2/n2)∇2]ψ = 0, show that both ψ and ψ,z must
be continuous across the interface.

(b) Using these continuity requirements, show that for light that propagates orthogonal to
the interface (z direction), the reflection and transmission coefficients, in going from
medium 1 to medium 2, are

r =
n1 − n2

n1 + n2
, t =

2n1
n1 + n2

. (9.35)
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Notice that these r and t are both real.

(c) Use the reciprocity relations (9.34) to deduce the reflection and transmission coefficients
r
′ and t

′ for a wave propagating in the opposite direction, from medium 2 to medium
1.

Exercise 9.12 *** Example: Etalon’s Light Fields Computed by Summing the Contributions
from a Sequence of Round Trips

Study the step-by-step build up of the field inside an etalon and the etalon’s transmitted
field, when the input field is suddenly turned on. More specifically:

(a) When the wave first turns on, the transmitted field inside the etalon, at point A of Fig.
9.7, is ψa = tψi, which is very small if the reflectivity is high so |t| ≪ 1. Show (with
the aid of Fig. 9.7) that, after one round-trip-travel time in the etalon, the transmitted
field at A is ψa = tψi + (r′)2eiϕtψi. Show that for high reflectivity and on resonance,
the tiny transmitted field has doubled in amplitude and its energy flux has quadrupled.

(b) Compute the transmitted field ψa at A after more and more round trips, and watch it
build up. Sum the series to obtain the stead-state field ψa. Explain the final, steady
state amplitude: why is it not infinite, and why, physically, does it have the value you
have derived.

(c) Show that, at any time during this buildup, the field transmitted out the far side of
the etalon is ψt = t

′ψae
iks1 [Eq. (9.30b)]. What is the final, steady-state transmitted

field? Your answer should be Eq. (9.33a).

Exercise 9.13 *** Example: Anti-reflection Coating

A common technique used to reduce the reflection at the surface of a lens is to coat it with
a quarter wavelength of material with refactive index equal to the geometric mean of the
refractive indices of air and glass.

(a) Show that this does indeed lead to perfect transmission of normally incident light.

(b) Roughly how thick must the layer be to avoid reflection of blue light? Estimate the
energy-flux reflection coefficient for red light in this case.

Note: The amplitude reflection coefficient at an interface is given by Eq. (9.35).

Exercise 9.14 Problem: Oil Slick

When a thin layer of oil lies on top of water, one sometimes sees beautiful, multicolored,
irregular bands of light reflecting off the oil layer. Explain what causes this.

****************************
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9.4.2 Fabry-Perot Interferometer, and Box on Modes of a Fabry-

Perot Cavity with Spherical Mirrors

When an etalon’s two faces are highly reflecting (reflection coefficient r near unity), we can
think of them as mirrors, between which the light resonates. The etalon is then a special
case of a Fabry-Perot interferometer. The general case is any device in which light resonates
between two high-reflectivity mirrors. The mirrors need not be planar and need not have
the same reflectivities, and the resonating light need not be plane fronted.

A common example is the optical cavity of Fig. 7.9, formed by two mirrors that are
segments of spheres, which we studied using geometric optics in Ex. 7.12. Because the phase
fronts of a Gaussian beam (Sec. 8.5.5) are also spherical, such a beam can resonate in the
optical cavity, if (i) the beam’s waist location and waist radius are adjusted so its phase-
front radii of curvature, at the mirrors, are the same as the mirrors’ radii of curvature, and
(ii) the light’s frequency is adjusted so a half integral number of wavelengths fit perfectly
inside the cavity. Box 9.3 gives details for the case where the two mirrors have identical
radii of curvature. In that box we also learn that the Gaussian beams are not the only
eigenmodes that can resonate inside such a cavity. Other, “higher-order” modes can also
resonate. They have more complex transverse distributions of the light. There are two
families, of such modes: one with rectangular transverse light distributions, and the other
with wedge-shaped, spoke-like light distributions.

For any Fabry-Perot interferometer with identical mirrors, driven by light with a trans-
verse cross section that matches one of the interferometer’s modes, one can study the in-
terferometer’s response to the driving light by the same kind of analysis as we used for an
etalon in the previous section; and the result will be the same: The interferometer’s reflected
and transmitted light, at a given transverse location, {x, y}, will be given by

ψr

ψi

≡ rFP =
r(1− eiϕ)

1− r2eiϕ
,

ψt

ψi

≡ tFP =
(1− r

2)eiϕ/(2

1− r2eiϕ
. (9.36)

[Eqs. (9.33a) with θ = 0 so the light rays are orthogonal to the mirrors]. Here r is the mirrors’
reflection coefficient, and the round-trip phase is now

ϕ = 2πω/ωf + ϕG , where ωf = 2π/τrt . (9.37)

Here τrt is the time required for a high-frequency photon to travel round-tip in the interfer-
ometer, along the optic axis, from one mirror to the other; ωf (called the free spectral range)
is, as we shall see, the angular-frequency separation between the interferometer’s resonances;
and ϕG is an additive contribution (called the Gouy phase), caused by the curvature of the
phase fronts [e.g. the tan−1(z/zo) term in Eq. (8.40a) for a Gaussian beam and in Eqs. (2)
and (1) of Box 9.3 for higher-order modes]. Because ϕG is of order one while 2πω/ωfsr is
huge compared to one, and because ϕG changes very slowly with changing light frequency, it
is unimportant in principle (and we henceforth shall ignore it). However, it is important in
practice: it causes modes with different transverse light distributions (e.g. the Gaussian and
higher order modes in Box 9.3), which have different Gouy phases, to resonate at different
frequencies.
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Box 9.3

Modes of a Fabry-Perot Cavity with Spherical Mirrors
Consider a Fabry-Perot cavity whose spherical mirrors have the same radius of cur-

vature R and are separated by a distance L. Introduce (i) Cartesian coordinates with
z = 0 at the cavity’s center, and (ii) the same functions as we used for Gaussian beams
[Eqs. (8.40b)]:

z0 =
kσ2

0

2
=
πσ2

0

λ
, σz = σ0(1 + z2/z20)

1/2 , Rz = z(1 + z20/z
2) , (1)

with k the wave number and σ0 a measure of the transverse size of the beam at the cavity’s
center. Then it is straightforward to verify that the following functions (i) satisfy the
Helmholtz equation, (ii) are orthonormal when integrated over their transverse Cartesian
coordinates x and y, and (iii) have phase fronts (surfaces of constant phase) that are
spheres with radius of curvature Rz:

unm(x, y, z) =
e−(x2+y2)/σ2

z

√
2m+n−1πm!n! σz

Hm

(√
2x

σz

)

Hn

(√
2 y

σz

)

× exp

{

i

[

k(x2 + y2)

2Rz
+ kz − (n+m+ 1) tan−1 z

z0

]}

. (2)

Here Hn(ξ) = eξ
2

dne−ξ2/dξn is the Hermite polynomial and m and n range over non-
negative integers. By adjusting σ0, we can make the phase-front radius of curvature
Rz match that, R, of the mirrors at the mirror locations, z = ±L/2. Then umn are a
transversely orthonormal set of modes for the light field inside the cavity. Their flux
distribution |umn|2 on each mirror consists of an m+1 by n+1 matrix of discrete spots;
see drawing (b) below. The mode with m = n = 0 [drawing (a)] is the Gaussian beam
explored in the previous chapter: Eqs. (8.40). A given mode, specified by {m,n, k} cannot
resonate inside the cavity unless its wave number matches the cavity length, in the sense
that the the total phase shift in traveling from the cavity center z = 0 to the cavity end, at
z = ±L/2, is an integral multiple of π/2; i.e., kL/2− (n+m+1) tan−1(L/2z0) = Nπ/2 .
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Energy flux distributions for (a) the Gaussian mode, (b) the Hermite mode of order 3,2,
(c) the Laguerre mode of order 2,3. The contours are at 90%, 80%, ..., 10% of maximum.
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Box 9.3 (Continued)
There is a second family of modes that can resonate in the cavity, one whose eigen-

functions separate in circular polar coordinates:

upm(̟, φ, z) =
2p!e−̟2/σ2

z

√
1 + δm0 π(p+m)! σz

(√
2̟

σz

)m

Lm
p

(

2̟2

σ2
z

)(

cosmφ or
sinmφ

)

× exp

{

i

[

k̟2

2Rz

+ kz − (2p+m+ 1) tan−1 z

z0

]}

, (1)

where Lm
p (ξ) is the associated Laguerre polynomial and p and m range over non-negative

integers. These modes make spots on the mirrors shaped like azimuthal wedges, cut
radially by circles; see drawing (c) above. Again, they can resonate only if the phase
change from the center of the cavity to an end mirror at z = ±L/2 is an integral multiple
of π/2; i.e., kL/2− (2p+m+ 1) tan−1(L/2z0) = Nπ/2 .

As one goes to larger mode numbers m,n (Hermite modes) or p,m (Laguerre modes),
the region with substantial light power gets larger; see drawings above — and, as a result,
more light gets lost off the edges of the cavity’s mirrors. As a result, unless the mirrors
are made very large, high-order modes have large losses and do not resonate well.

For further detail on these modes, see, e.g., Secs. 2.5–2.8 and 4.3 of Yariv and Yeh
(2007).

The Fabry-Perot interferometer’s power transmissivity T and reflectivity R are given by
Eq. (9.33c), which we can rewrite in the following, simpler form:

T = 1− R =
1

1 + (2F/π)2 sin2 1
2
ϕ

. (9.38)

Here F , called the interferometer’s finesse, is defined by

F ≡ πr/(1− r
2) , (9.39)

[This finesse should not be confused with the coefficient of finesse F = (2F/π)2, which is
sometimes used in optics but which we shall eschew so as to avoid confusion.]

In Fig. 9.9 we plot, as functions of the round-trip phase ϕ = 2πω/ωf (ignoring ϕG),
the interferometer’s power reflectivity and transmissivity T and R, and the phase changes
arg(tFP ) and arg(rFP ) of the light that is transmitted and reflected by the interferometer.

Notice in Fig. 9.9a that, when the finesse F is large compared to unity, the interferom-
eter exhibits sharp resonances at frequencies separated by the free spectral range ωfsr. On
resonance, the interferometer is perfectly transmitting, T = 1; away from resonance, it is
nearly perfectly reflecting, R ≃ 1. The full width at half maximum (“half width”) of each
sharp transmission resonance is given by

δϕ1/2 =
2π

F , δω1/2 =
ωf

F . (9.40a)
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Fig. 9.9: (a) Power transmissivity and reflectivity [Eq. (9.38)] for a Fabry-Perot interferometer
with identical mirrors that have reflection coefficients r, as a function of the round-trip phase shift
ϕ inside the interferometer. (b) The phase of the light transmitted (red) or reflected (blue) from the
interferometer, relative to the input phase [Eqs. (9.36)]. The interferometer’s finesse F is related to
the mirrors’ reflectivity by Eq. (9.39).

In other words, if the frequency ω of the light is swept slowly through resonance, the trans-
mission will be within 50% of its peak value (unity) over a bandwidth δω1/2 = ωf/F . Notice
also, in Fig. 9.9b, that for large finesse, near resonance the phase of the reflected and trans-
mitted light changes very rapidly with a change in frequency of the driving light. Precisely
on resonance, that rate of change is

(

d arg(tFP)

dω

)

on resonance

=

(

d arg(rFP)

dω

)

on resonance

=
2F
ωf

=
2

δω1/2

. (9.40b)

The large transmissivity at resonance, for large finesse, can be understood by considering
what happens when one first turns on the incident wave. Since the reflectivity of the first
(input) mirror is near unity, the incoming wave has a large amplitude for reflection, and
correspondingly only a tiny amplitude for transmission into the optical cavity. The tiny
bit that gets transmitted travels through the first mirror, gets strongly reflected from the
second second mirror, and returns to the first precisely in phase with the incoming wave
(because ϕ is an integer multiple of 2π). Correspondingly, it superposes coherently on the
tiny field being transmitted by the incoming wave, and so the net wave inside the cavity is
doubled. After one more round trip inside the slab, this wave returns to the first face again
in phase with the tiny field being transmitted by the incoming wave; again they superpose
coherently; and the internal wave now has a three times larger amplitude than it began with.
This process continues until a very strong field has built up inside the cavity (Ex. 9.12). As
it builds up, that field begins to leak out of the cavity’s first mirror with just such a phase
as to destructively interfere with the wave being reflected there. The net reflected wave is
thereby driven close to zero. The field leaking out of the second mirror has no other wave to
interfere with. It remains strong, so the interferometer settles down into a steady state with
strong net transmission. Heuristically, one can say that, because the wave inside the cavity
is continually constructively superposing on itself, the cavity “sucks” almost all the incoming
wave into itself, and then ejects it out the other side. (Quantum mechanically, this sucking is
due to the photons’ Bose-Einstein statistics: the photons “want” to be in the same quantum
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state. We shall study this phenomenon in the context of plasmons that obey Bose-Einstein
statistics, in Chap. 23 [paragraph containing Eq. (23.46)].

This discussion makes clear that, when the properties of the input light are changed,
a high-finesse Fabry-Perot interferometer will change its response rather slowly — on a
timescale approximately equal to the inverse of the resonance half width, i.e. the finesse
times the round-trip travel time:

τresponse ∼
1

δω1/2

= F τrt . (9.40c)

These properties of a high-finesse Fabry-Perot interferometer are very similar to those
of a high-Q mechanical or electrical oscillator. The similarity arises because, in both cases,
energy is being stored in a resonant, sinusoidal manner inside the device (the oscillator or the
interferometer). For the interferometer, the light’s round-trip travel time, τrt, is analogous
to the oscillator’s period, the interferometer’s free spectral range, ωf , is analogous to the os-
cillator’s resonant angular frequency, and the inteferometer’s finesse, F , is analogous to the
oscillator’s quality factor, Q. However, there are some major differences between an ordinary
oscillator and a Fabry-Perot interferometer. Perhaps the most important is that the interfer-
ometer has several large families of resonant modes (families characterized by the number of
longitudinal nodes between the mirrors, and by the two-dimensional transverse distributions
of the light), whereas an oscillator has just one mode. This gives an interferometer much
greater versatility than a simple oscillator.

9.4.3 Fabry-Perot Applications: spectrometer, laser, mode-cleaning

cavity, beam-shaping cavity, PDH laser stabilization, optical

frequency comb

Just as mechanical and electrical oscillators have a wide variety of important applications in
science and technology, so also do Fabry-Perot interferometers, but more so. In this section,
we shall sketch a few of them.
Spectrometer

In the case of a Fabry-Perot etalon (highly reflecting parallel mirrors; plane-parallel light
beam), the resonant transmission enables the etalon to be used as a spectrometer. The
round-trip phase change ϕ = 2nωd cos θ/c inside the etalon varies linearly with the wave’s
angular frequency ω, but only waves with round-trip phase ϕ near an integer multiple of 2π
will be transmitted efficiently. The etalon can be tuned to a particular frequency by varying
either the slab width d or the angle of incidence of the radiation (and thence the angle θ
inside the etalon). Either way, impressively good chromatic resolving power can be achieved.
We say that waves with two nearby frequencies can just be resolved by an etalon when the
half power point of the transmission coefficient of one wave coincides with the half power
point of the transmission coefficient of the other. Using Eq. (9.38) we find that the phases for
the two frequencies must differ by δϕ ≃ 2π/F ; and correspondingly, since ϕ = 2nωd cos θ/c,
the chromatic resolving power is

R =
ω

δω
=

4πnd cos θ

λvacδϕ
=

2nd cos θF
λvac

. (9.41)
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Here λvac = 2πc/ω is the wavelength in vacuum — i.e. outside the etalon.

Laser

Fabry-Perot interferometers are exploited in the construction of many types of lasers. For
example, in a gas phase laser, the atoms are excited to emit a spectral line. This radiation
is spontaneously emitted isotropically over a wide range of frequencies. Placing the gas
between the mirrors of a Fabry-Perot interferometer allows one or more highly collimated
and narrow-band modes to be trapped and, while trapped, to be amplified by stimulated
emission, i.e. to lase. See Sec. 10.2.1 of the next chapter.

Mode Cleaner for a Messy Laser Beam

The output beam from a laser often has a rather messy cross-sectional profile, e.g. due
to containing a number of modes of excitation of the Fabry-Perot interferometer in which
the lasing material is contained (cf. the discussion of possible modes in Box 9.3). For many
applications, one needs a much cleaner laser beam, e.g., one with a Gaussian profile. To
clean the beam, one can send it into a high-finesse Fabry-Perot cavity with identical spherical
mirrors, whose mirror curvatures and cavity length are adjusted so that, among the modes
present in the beam, only the desired Gaussian mode will resonate and thereby be transmitted
(see the sharp transmission peaks in Fig. 9.9a above). The beam’s unwanted other modes
will not resonate in the cavity, and therefore will be reflected backward off its input mirror,
leaving the transmitted beam clean.

Beam Shaping Cavity

In some applications one wants a light beam whose cross sectional distribution of flux
F (x, y) is different from any of the modes that resonate in a spherical-mirror cavity — for
example, one might want a circular, flat-topped flux distribution F (̟) with steeply dropping
edges, like the shape of a circular mesa in a North American desert. One can achieve the
desired light distribution, or something approximating it, as follows: Build a Fabry-Perot
cavity with identical mirrors that are shaped in such a way that there is a cavity mode with
the desired distribution. Then drive the cavity with a Gaussian beam. That portion of the
beam which has the desired flux distribution will resonate in the interferometer and leak out
of the other mirror as the desired beam; the rest of the input beam will be rejected by the
cavity.

Laser Stabilization

There are two main ways to stabilize the frequency of a laser. One is to lock it onto
the frequency of some fundamental atomic or molecular transition. The other is to lock it
onto a resonant frequency of a mechanically stable Fabry-Perot cavity—a technique called
Pound-Drever-Hall (PDH) locking.

In PDH locking to a cavity with identical mirrors, one passes the laser’s output light
(with frequency ω) through a device that modulates its frequency,6 so ω becomes ω + δω
with δω = σ cos(Ωt) and σ ≪ δω1/2, the cavity resonance’s half width. One then sends
the modulated light into the cavity and monitors the reflected light power. Assume, for
simplicity, that the modulation is slow compared to the cavity response time, Ω ≪ 1/τresponse.

6Actually, one sends it through a phase modulater called a Pockels cell, consisting of a crystal whose
index of refraction is modulated by applying an oscillating voltage to it. The resulting phase modulation
δφ ∝ sinωt is equivalent to a frequency modulation δω = dδφ/dt ∝ cosΩt.
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Then the cavity’s response at any moment will be that for steady light, i.e. the reflected
power will be PiR(ω+ δω), where R is the reflectivity at frequency ω+ δω. Using Eq. (9.38)
for the reflectivity, specialized to frequencies very near resonance so the denominator is close
to one, and using Eqs. (9.37) and (9.40a), we bring this into the form

Pr = PiR(ω + δω) = Pi ×
[

R(ω) +
dR

dω
δω(t)

]

= Pi

[

R(ω) +
8σ(ω − ωo)

(δω1/2)2
cosΩt

]

, (9.42)

where ωo is the cavity’s resonant frequency (at which ϕ is an integral multiple of 2π).
The modulated part of the reflected power has an amplitude directly proportional to

the laser’s frequency error, ω − ωo. In the PDH technique, one monitors this modulated
power with a photodetector, followed by a band-pass filter on the photodetector’s output
electric current to get rid of the unmodulated part of the signal [arising from PiR(ω)]. The
amplitude of the resulting, modulated output current is proportional to ω − ωo and is used
to control a feedback circuit that drives the laser back toward the desired, cavity-resonant
frequency ωo. See, e.g., Black (2001) for details.

In Ex. 9.15 it is shown that, if one needs a faster feedback and therefore requires a
modulation frequency Ω & 1/τresponse, this PDH locking technique still works.

This technique was invented by Ronald Drever for use in interferometric gravitational-
wave detectors, relying on earlier ideas of Robert Pound, and it was first demonstrated
experimentally by Drever and John Hall. It is now used widely in many areas of science and
technology.
Optical Frequency Comb

John Hall and Theodor Hänsch were awarded the 2005 Nobel Prize for development of
the optical frequency comb. This powerful tool is based on an optical cavity of length L,
filled with a lasing medium that creates and maintains a sharply pulsed internal light field
with the following form (Fig. 9.10):

ψ = ψo(z − Vgt) exp[ikp(z − Vpt)] . (9.43)

Here (i) we use a z coordinate that increases monotonically along the optic axis as one moves
rightward from mirror 1 to mirror 2, then leftward from 2 to 1, then rightward from 1 to 2,
etc.; (ii) exp[ikp(z − Vpt)] is the p’th longitudinal monochromatic mode of the cavity, with

z

Vp

Vg

Fig. 9.10: The sharply pulsed electric field (9.43) inside a Fabry Perot cavity. The envelope is
shown dotted; the red curve is the full field ψ.
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wave number kp ≡ pπ/L, phase velocity Vp, and angular frequency kpVp lying in the optical
range ∼ 1015 Hz; (iii) ψo(z− Vgt) is the envelope of a wave packet so narrow that only ∼one
wavelength of the mode p can fit inside it; (iv) the envelope travels with group velocity Vg
and does not spread.

In order that the wave packet not spread, Vg must have the same, constant value over
all frequencies contained in the packet, which means that the dispersion relation must have
0 = (∂Vg/∂k) = ∂2ω/∂k2; i.e., ω must be linear in k:

ω = Vg(k + κ) (9.44)

for some constant κ, which is typically considerably smaller than the wave numbers k con-
tained in the packet.

It was a huge technical challenge to build a lasing cavity that creates and sustains a very
narrow wave packet of this sort. Two of the keys to this achievement this were (i) using
a nonlinear lasing medium which amplifies light more strongly at high energy fluxes |ψ|2
than low and thereby tries to produce intense, short pulses rather than long, monochromatic
waves, and (ii) using some trickery to assure that the lasing medium and anything else in
the cavity jointly give rise to the linear dispersion relation (9.44) over a sufficiently wide
frequency band. For some of the details, see Sec. 10.2.3. Because the sharp wavepacket
(9.43) has fixed relationships between the phases of the various monochromatic modes that
make it up, the lasing optical cavity that creates it is called a mode-locked laser.

As the internal field’s pulse hits mirror 2 time and again, it transmits through the mirror
a sequence of outgoing pulses separated by the wave packet’s round-trip travel time in the
cavity, τrt = 2L/Vg. Assuming, for pedagogical clarity, a Gaussian shape for each pulse,
the oscillating internal field (9.43) produces the outgoing field ψ ∝ ∑

n exp[−σ2(t − z/c −
nτrt)

2/2] exp[−ikpVp(t − z/c)]. Here 1/σ is the pulse length in time, and we have assumed
vacuum-light-speed propagation outside the cavity. It is helpful to rewrite the frequency kpVp
of the oscillatory piece of this field as the sum of its nearest multiple of the cavity’s free spec-
tral range, ωf = 2π/τrt, plus a frequency shift ωs: kpVp = qωf + ωs. The integer q =(largest
integer contained in kpVp/ωf) will typically be quite close to p, and ωs is guaranteed to lie
in the interval 0 ≤ ωs < ωf . The emerging electric field is then

ψ ∝
∑

n

exp[−σ2(t− z/c− nτrt)
2/2] exp[−i(qωf + ωs)(t− z/c)] (9.45a)

(Fig. 9.11a).
This entire emerging field is periodic in t − z/c with period τrt = 2π/ωf , except for the

frequency-shift term exp[−iωs(t− z/c)]. The periodic piece can be expanded as a sum over
discrete frequencies that are multiples of ωf = 2π/τrt. Since the Fourier transform of a
Gaussian is a Gaussian, this sum, augmented by the frequency shift term, turns out to be

ψ ∝
+∞
∑

m=−∞
exp

[−(m− q)2ωf
2

2σ2

]

exp[−i(mωf + ωs)(t− z/c)] . (9.45b)

The set of discrete frequencies (spectral lines) appearing in this outgoing field is the frequency
comb displayed in Fig. 9.11b.



41

t-z/c

τrt τrt

τrt/q

2π/σ

(a)

q 1.5q0.5q0

mo 2mo(b)
m

Fig. 9.11: Optical frequency comb: (a) The pulsed electric field (9.45a) emerging from the cavity.
(b) The field’s comb spectrum; each line, labeled by m, has angular frequency mωf , and is shown
with height proportional to its power, ∝ exp

[

−(m− q)2ωf
2/σ2

]

[cf. Eq. (9.45b)].

Some concrete numbers make clear how very remarkable this pulsed electric field (9.45a)
and its frequency comb (9.45b) are: (i) The Fabry-Perot cavity typically has a length L
somewhere between ∼ 3 cm and ∼ 3 m, so (with the group velocity Vg of order the vacuum
light speed) the round-trip travel time and free spectral range are τrt = 2L/Vg ∼ 0.3 to 30
ns; and ωf/2π ∼ 1/τrt ∼ 30 MHz to 3 GHz, which are radio and microwave frequencies.
Since the shift frequency is ωs < ωf , it is also in the radio or microwave band. (ii) The
comb’s central frequency is in the optical, qωf/2π ∼ 3×1014 Hz, so the harmonic number of
the central frequency is q ∼ 105 to 7, roughly a million. (iii) The pulse width ∼ 2/σ contains
roughly one period 2π/qωf of the central frequency, so σ ∼ qωf/3, which means that most
of the comb’s power is contained in the range m ∼ 2q/3 to m ∼ 4q/3; i.e., there are roughly
a million strong teeth in the comb.

It is possible to lock the comb’s free spectral range ωf to a very good Cesium atomic
clock, whose oscillation frequency ∼ 9GHz is stable to δω/ω ∼ 10−12 (Fig. 6.11), so ωf has
that same phenomenal stability. One can then measure the shift frequency ωs and calibrate
the comb (identify the precise mode number m of each frequency in the comb) as follows:
(i) Arbitrarily choose a tooth at the low-frequency end of the comb, mo ≃ 2q/3 (Fig. 9.11b);
it has frequency ωo = moωf +ωs. (ii) Separate the light in that tooth from light in the other
teeth, and send a beam of that tooth’s light through a frequency doubler (to be discussed in
Sec. 10.6.1), thereby getting a beam with frequency 2ωo = 2(moωf+ωs). (iii) By beating this
beam against the light in teeth at m ∼ 4q/3, identify the tooth that most closely matches
this beam’s frequency. It will have frequency 2moωf +ωs, and the frequency difference (beat
frequency) will be ωs. This reveals ωs to very high accuracy; and one can count the number
of teeth (mo − 1) between this tooth 2mo and its undoubled parent mo, thereby learning the
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precise numerical value of mo. From this, by tooth counting, one learns the precise mode
numbers m of all the optical-band teeth in the comb, and also their frequencies mωf + ωs.

With the comb now calibrated, it can be used to measure the frequency of any other
beam of light in the optical band in terms of the ticking frequency of the Cesium clock, to
which the entire comb has been locked. The optical-frequency accuracies thereby achieved
are orders of magnitude better than were possible before this optical frequency comb was
developed. And in the near future, as optical-frequency atomic clocks become much more
accurate and stable than the microwave-frequency Cesium clock (see footnote 8 in Chap. 6),
this comb will be used to calibrate microwave and radio frequencies in term of the ticking
rates of optical-frequency clocks.

For further details about optical frequency combs, see the review articles by Cundiff
(2002) and by Cundiff and Ye (2003).

****************************

EXERCISES

Exercise 9.15 Problem: PDH Laser Stabilization

Show that the PDH method for locking a laser’s frequency to an optical cavity works for
modulations faster than the cavity’s response time, Ω & 1/τresponse, and even works for
Ω ≫ 1/τresponse. More specifically, show that the reflected power still contains the information
needed for feedback to the laser. [For a quite general analysis and some experimental details,
see Black (2001).]

Exercise 9.16 Derivation: Optical Frequency Comb

Fill in the details of the derivation of all the equations in the section describing the optical
frequency comb.

Exercise 9.17 *** Problem: Sagnac Interferometer

A Sagnac interferometer is a rudimentary version of a laser gyroscope for measuring rotation
with respect to an inertial frame. The optical configuration is shown in Fig. 9.12. Light

L
B

T

Fig. 9.12: Sagnac interferometer used as a type of laser gyro.
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from a laser L is split by a beam splitter B and travels both clockwise and counter-clockwise
around the optical circuit, reflecting off three plane mirrors. The light is then recombined at
B and interference fringes are viewed through the telescope T . The whole assembly rotates
with angular velocity Ω.

Calculate the difference in the time it takes light to traverse the circuit in the two directions
and show that the consequent fringe shift (total number of fringes that enter the telescope
during one round trip of the light in the interferometer) can be expressed as ∆N = 4AΩ/cλ,
where λ is the wavelength and A is the area bounded by the beams. Show further that,
for a square Sagnac interferometer with side length L, the rate at which fringes enter the
telescope is ΩL/λ.

****************************

9.5 T2 Laser Interferometer Gravitational Wave Detec-

tors

As we shall discuss in Chap. 27, gravitational waves are predicted to exist by general relativity
theory, and their emission by a binary neutron-star system has already been monitored, via
their back-action on the binary’s orbital motion. As orbital energy is lost to gravitational
waves, the binary gradually spirals inward, so its orbital angular velocity gradually increases.
The measured rate of increase agrees with general relativity’s predictions to within the
experimental accuracy of a fraction of a percent (for which Russel Hulse and Joseph Taylor
received the 1993 Nobel Prize). Unfortunately, the gravitational analog of Hertz’s famous
laboratory emission and detection of electromagnetic waves has not yet been performed, and
cannot be in the authors’ lifetime because of the waves’ extreme weakness. For waves strong
enough to be detectable, one must turn to violent astrophysical events, such as the collision
and coalescence of two neutron stars or black holes.

When the gravitational waves reach earth and pass through a laboratory, general rel-
ativity predicts that they will produce tiny relative accelerations of free test masses. The
resulting oscillatory variation of the distance between two such masses can be measured
optically using a Michelson interferometer, in which (to increase the signal strength) each
of the two arms is operated as a Fabry-Perot cavity. The most sensitive such gravitational
wave detectors that have been operated as of 2012 are the “initial detectors” of the Laser
Interferometer Gravitational Wave Observatory (LIGO); see LSC (2009).

In each of these gravitational-wave detectors, the two cavities are aligned along perpen-
dicular directions as shown in Fig. 9.13. A Gaussian beam of light (Sec. 8.5.5) from a laser
passes through a beam splitter, creating two beams with correlated phases. The beams
excite the two cavities near resonance. Each cavity has an end mirror with extremely high
reflectivity,7 1 − r

2
e < 10−4, and a corner mirror (“input mirror”) with a lower reflectivity,

1−r
2
i ∼ 0.03. Because of this lower reflectivity, by contrast with the etalons discussed above,

7Because LIGO operates with monochromatic light, it is convenient to adjust the phases of the mirrors’
reflection and transmission coefficients so r and t are both real; cf. Ex. 9.11e. We do so.
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Fig. 9.13: Schematic design of an initial gravitational wave interferometer operated in LIGO (at
Livingston Louisiana and Hanford Washington, USA) during 2005–2010.

the resonant light leaks out through the input mirror instead of through the end mirror. The
reflectivity of the input mirror is so adjusted that the typical photon is stored in the cavity
for roughly half the period of the expected gravitational waves (a few milliseconds), which
means that the input mirror’s reflectivity r

2
i , the arm length L, and the gravitational-wave

angular frequency ωgw are related by

L

c(1− r
2
i )

∼ 1

ωgw
. (9.46)

The light emerging from the cavity, like that transmitted by an etalon, has a phase that is
highly sensitive to the separation between the mirrors: a tiny change δL in their separation
produces a change in the outcoming phase

δϕo ≃
8ωδL

c

1

(1− r
2
i )

∼ ω

ωgw

δL

L
(9.47)

in the limit 1 − ri ≪ 1; see Ex. 9.18. The outcoming light beams from the two cavities
return to the beam splitter and there are recombined. The relative distances from the beam
splitter to the cavities are adjusted so that, in the absence of any perturbations of the cavity
lengths, almost all the interfered light goes back toward the laser, and only a tiny (but
nonzero) amount goes toward the photodetector of Fig. 9.13, which monitors the output.
Perturbations δL1 and δL2 in the cavity lengths then produce a change

δϕo1 − δϕo2 ∼
ω

ωgw

(δL1 − δL2)

L
(9.48)

in the relative phases at the beam splitter, and this in turn produces a change of the light
power entering the photodetector. By using two cavities in this way, and keeping their light
storage times (and hence response times) the same, one makes the light power entering the
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photodetector be insensitive to fluctuations in the laser frequency; this is crucial for obtaining
the high sensitivities that gravitational-wave detection requires.

The mirrors at the ends of each cavity are suspended as pendula, and when a gravitational
wave with dimensionless amplitude h (to be discussed in Chap. 27) passes, it moves the
mirrors back and forth, producing changes

δL1 − δL2 = hL (9.49)

in the arm length difference. The resulting change in the relative phases of the two beams
returning to the beam splitter,

δϕo1 − δϕo2 ∼
ω

ωgw

h, (9.50)

is monitored via the changes in poer that it produces for the light going into the photode-
tector. If one builds the entire detector optimally and uses the best possible photodetector,
these phase changes can be measured with a photon shot-noise-limited precision of ∼ 1/

√
N .

Here N ∼ (Wℓ/~ω)(1/ωgw) is the number of photons put into the detector by the laser (with
power Wℓ) during half a gravitational-wave period.8 By combining this with Eq. (9.50) we
see that the weakest wave that can be detected (at signal to noise ratio 1) is

h ∼
(

~ω3
gw

ωWℓ

)1/2

. (9.51)

For a laser power Wℓ ∼ 5 Watts, and ωgw ∼ 103s−1, ω ∼ 3× 1015s−1, this gravitational-wave
sensitivity (noise level) is h ∼ 3× 10−21.

When operated in this manner, about 97 per cent of the light returns toward the laser from
the beam splitter and the other 1 per cent goes out the end mirror or into the photodetector
or gets absorbed or scattered due to imperfections in the optics. In LIGO’s initial detectors,
the 97 per cent returning toward the laser was recycled back into the interferometer, in
phase with new laser light, by placing a mirror between the laser and the beam splitter.
This “recycling mirror” (shown dashed in Fig. 9.13) made the entire optical system into
a big optical resonator with two sub-resonators (the arms’ Fabry-Perot cavities), and the
practical result was a 50-fold increase in the input light power, from 5 Watts to 250 W—
and an optical power in each arm of about 1

2
× 250W × 4/(1 − r

2
i ) ∼ 15 kW; see Fig. 3

of LSC (2009). When operated in this manner, the interferometer achieved a sensitivity
h ∼ 3× 10−21/

√
50 ∼ 4× 10−22, which is close to the range expected for the strongest waves

from colliding neutron stars, black holes, and other astrophysical sources; see Chap. 27. For
a more accurate analysis of the sensitivity, see Exs. 9.18 and 9.19.

This estimate of sensitivity is actually the rms noise in a bandwidth equal to frequency at
the minimum of LIGO’s noise curve. Figure 6.7 in Chap. 6 shows the noise curve as the square
root of the spectral density of the measured arm-length difference ξ ≡ L1 − L2,

√

Sξ(f).

8This measurement accuracy is related to the Poisson distribution of the photons entering the interfer-
ometer’s two arms: if N is the mean number of photons during a half gravitational-wave period, then the
variance is

√
N , and the fractional fluctuation is 1/

√
N . The interferometer’s shot noise is actually caused

by a beating of quantum electrodynamical vacuum fluctuations against the laser’s light; for details see Caves
(1980).
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Since the waves produce a change of ξ given by δξ = hL [Eq. (9.50)], the corresponding noise-
induced fluctuations in the measured h have Sh = Sξ/L

2, and the rms noise fluctuations in
a bandwidth equal to frequency f are hrms =

√
Shf = (1/L)

√
Sℓf . Inserting

√

Sξ ≃ 10−19

m Hz−1/2 and f ≃ 100 Hz from Fig. 6.7, and L = 4 km for the LIGO arm length, we obtain
hrms ≃ 3× 10−22, in good agreement with our estimate above of 4× 10−22.

There are enormous obstacles to achieving such high sensitivity. To name just a few:
Imperfections in the optics will absorb some of the high light power, heating the mirrors
and beam splitter and causing them to deform. Even without such heating, the mirrors
and beam splitter must be exceedingly smooth and near perfectly shaped to minimize the
scattering of light from them (which causes noise; Ex. 8.17). Thermal noise in the mirrors and
their suspensions (described by the fluctuation dissipation theorem) will cause the mirrors to
move in manners that simulate the effects of a gravitational wave (Secs. 6.8.2 and 11.6.2), as
will seismic- and acoustic-induced vibrations of the mirror suspensions. LIGO’s arms must
be long (4 km) in order to minimize the effects of these noises. While photon shot noise
dominates near and above the noise curve’s minimum, f & 100 Hz, these and other noises
dominate at lower frequencies.

The initial LIGO detectors operated at their design sensitivity from autumn 2005 to
autumn 2007, and then, after modest improvements, they operated again from spring 2009
to autumn 2010, carrying out gravitational-wave searches, much of the time in collaboration
with international partners (the French-Italian VIRGO and British/German GEO600 inter-
ferometers). In autumn 2010, LIGO’s detectors began a major, long-planned upgrade (to
“advanced LIGO”) that will increase their sensitivity ten-fold, bringing them into a range
where they are likely to see a large number of gravitational wave sources, and carry out a
rich program of observations. The result may be a revolution in our understanding of the
universe.

****************************

EXERCISES

Exercise 9.18 T2 Derivation and Problem: Phase Shift in LIGO Arm Cavity

In this exercise and the next, simplify the analysis by treating each Gaussian light beam
as though it were a plane wave. The answers for the phase shifts will be the same as for a
true Gaussian beam because, on the optic axis, the Gaussian beam’s phase [Eq. (8.40a) with
̟ = 0] is the same as that of a plane wave, except for the Gouy phase tan−1(z/z0) which is
very slowly changing and thus irrelevant.

(a) For the inteferometric gravitational wave detector depicted in Fig. 9.13 (with the arms’
input mirrors having amplitude reflectivities ri close to unity and the end mirrors
idealized as perfectly reflecting), analyze the light propagation in cavity 1 by the same
techniques as were used for an etalon in Sec. 9.13. Show that, if ψi1 is the light field
impinging on the input mirror, then the total reflected light field ψr1 is

ψr1 = eiϕ1
1− rie

−iϕ1

1− rieiϕ1
ψi1 , where ϕ1 = 2kL1 . (9.52a)
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(b) From this, infer that the reflected flux |ψr1|2 is identical to the cavity’s input flux |ψi1|2,
as it must be since no light can emerge through the perfectly reflecting end mirror.

(c) The arm cavity is operated on resonance, so ϕ1 is an integer multiple of 2π. From Eq.
(9.52a) infer that (up to fractional errors of order 1− ri) a change δL1 in the length of
cavity 1 produces a change

δϕr1 =
8k δL1

1− r
2
i

. (9.52b)

With slightly different notation, this is Eq. (9.47), which we used in the text’s order of
magnitude analysis of LIGO’s sensitivity. In this exercise and the next, we will carry
out a more precise analysis.

Exercise 9.19 T2 Example: Photon Shot Noise in LIGO

Continuing the preceeding exercise, and continuing to treat the light beams as plane
waves:

(a) Denote by ψℓ the light field from the laser that impinges on the beam splitter and
gets split in two, with half going into each arm. Using the above equations, infer that
the light field returning to the beam splitter from arm 1 is ψs1 =

1√
2
ψℓe

iϕ1(1 + iδϕr1),
where ϕ1 is some net accumulated phase that depends on the separation between the
beam splitter and the input mirror of arm 1.

(b) Using the same formula for the field ψs2 from arm 2, and assuming that the phase
changes between beam splitter and input mirror are almost the same in the two arms,
so ϕo ≡ ϕ1 − ϕ2 is small compared to unity (mod 2π), show that the light field that
emerges from the beam splitter, traveling toward the photodetector, is

ψpd =
1√
2
(ψs1 − ψs2) =

i

2
(ϕo + δϕr1 − δϕr2)ψℓ (9.53a)

to first order in the small phases. Show that the condition |ϕo| ≪ 1 corresponds to the
experimenters’ having adjusted the positions of the input mirrors in such a way that
almost all of the light returns toward the laser and only a small fraction goes toward
the photodetector.

(c) For simplicity, let the gravitational wave travel through the interferometer from directly
overhead and have an optimally oriented polarization. Then, as we shall see in Chap.
27, the dimensionless gravitational-wave field h(t) produces the arm-length changes
δL1 = −δL2 = 1

2
h(t)L, where L is the unperturbed arm length. Show, then, that the

field traveling toward the photodetector is

ψpd =
i

2
(ϕo + δϕgw)ψℓ , where δϕgw =

8kL

1− r
2
i

h(t) =
16πL/λ

1− r
2
i

h(t) . (9.53b)

The experimenter adjusts ϕo so it is large compared to the tiny δϕgw.



48

(d) Actually, this equation has been derived assuming, when analyzing the arm cavities
[Eq. (9.52a)], that the arm lengths are static. Explain why it should still be nearly valid
when the gravitational waves are moving the mirrors, so long as the gravitational-wave
half period 1/2f = π/ωgw is somewhat longer than the mean time that a photon is
stored inside an arm cavity, i.e. so long as f ≫ fo, where

fo ≡
1− r

2
i

4π

c

2L
. (9.54)

Assume that this is so. For the initial LIGO detectors, 1 − r
2
i ∼ 0.03 and L = 4 km,

so fo ∼ 90 Hz.

(e) Show that, if Wℓ is the laser power impinging on the beam splitter (proportional to
|ψℓ|2), then the steady-state light power going toward the photodetector is Wpd =
(ϕo/2)

2Wℓ and the time-variation in that light power due to the gravitational wave
(the gravitational-wave signal) is

Wgw(t) =
√

WℓWpd
16πL/λ

1− r
2
i

h(t) . (9.55a)

The photodetector monitors these changes Wgw(t) in the light power Wpd and from
them infers the gravitational-wave field h(t). This is called a “DC” or “homodyne”
readout system; it works by beating the gravitational-wave signal field (∝ δϕGW)
against the steady light field (“local oscillator”, ∝ ϕo) to produce the signal light power
Wgw(t) ∝ h(t).

(f) Shot noise in the interferometer’s output light power Wpd gives rise to noise in the
measured gravitational-wave field h(t). From Eq. (9.55a) show that the spectral density
of the noise in the measured h(t) is

Sh(f) =

(

(1− r
2
i )λ

16πL

)2 SWpd

WℓWpd

. (9.55b)

In Sec. 6.7.4, we derived the formula SWpd
= 2R(~ω)2 = 2Wpd~ω for the (frequency-

independent) spectral density of a steady, monochromatic light beam’s power fluctu-
ations due to shot noise; here R = Wpd/~ω is the average rate of arrival of photons.
Combining with Eq. (9.55b), deduce your final formula for the spectral density of the
noise in the inferred gravitational-wave signal

Sh(f) =

(

(1− r
2
i )λ

16πL

)2
2

Wℓ/~ω
; (9.56a)

and from this deduce the rms noise in a bandwidth equal to frequency

hrms =
√

fSh =

(

(1− r
2
i )λ

16πL
√
N

)

, where N =
Wℓ

~ω

1

2f
(9.56b)

is the number of photons that impinge on the beam splitter, from the laser, in half a
gravitational-wave period.
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(g) In the next exercise we shall derive (as a challenge) the modification to the spectral
density that arises at frequencies f & fo. The signal strength that gets through the
interferometer is reduced because the arm length is increasing, then decreasing, then
increasing again, ... while the typical photon is in an arm cavity. The result of the
analysis is an increase of Sh(f) by 1 + (f/fo)

2, so

Sh(f) =

(

(1− r
2
i )λ

16πL

)2
2

Wℓ/~ω

(

1 +
f 2

f 2
o

)

. (9.57)

Compare this with the measured noise, at frequencies above fo ∼ 90 Hz in the initial-
LIGO detectors (Fig. 6.7 with ξ = hL), using the initial-LIGO parameters, λ = 1.06µm,
ω = 2πc/λ ≃ 2×1015 s−1, L = 4 km, Wℓ = 150 W, 1−r

2
i = 1/30. It should agree fairly

well with the measured noise at frequencies f & fo where most of the noise is due to
photon shot noise. Also compare the noise (9.57) in a bandwidth equal to frequency,√
fSh, evaluated at frequency f = fo, with the crude estimate (9.51) worked out in

the text. They should agree to within a factor of order unity.

Exercise 9.20 T2 Challenge: LIGO Shot Noise at f & fo

Derive the factor 1 + (f/fo)
2 by which the spectral density of the shot noise is increased at

frequencies f & fo. [Hint: Redo the analysis of the arm cavity fields, part (a) of Ex. 9.19
using an arm length that varies sinusoidally at frequency f due to a sinusoidal gravitational
wave, and then use the techniques of Ex. 9.19 to deduce Sh(f).]

****************************

9.6 Power Correlations and Photon Statistics:

Hanbury Brown & Twiss Intensity Interferometer

A type of interferometer that is rather different from those studied above was proposed and
constructed by Robert Hanbury Brown and Richard Q. Twiss in 1956. In this interferometer,
light powers rather than amplitudes are combined to measure the degree of coherence of the
radiation field. This is often called an intensity interferometer because the optics community
often uses the word “intensity” to mean energy flux (power per unit area).

In their original experiment, Hanbury Brown and Twiss divided light from an incandes-
cent mercury lamp and sent it along two paths of variable length before detecting photons in
each beam separately using a photodetector; see Fig. 9.14. The electrical output from each
photodetector measures the rate of arrival of its beam’s photons, or equivalently its beam’s
power W (t), which we can write as K(ℜΨ)2, where K is a constant. This W exhibits fluctu-
ations δW about its mean value W , and it was found that the fluctuations in the two beams
were correlated. How can this be?

The light that was detected originated from many random and independent emitters and
therefore obeys Gaussian statistics, according to the central limit theorem (Sec. 6.3.2). This
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Fig. 9.14: Hanbury Brown and Twiss intensity interferometer.

turns out to mean that the fourth-order correlations of the wave field Ψ with itself can be
expressed in terms of the second-order correlations—i.e., in terms of the degree of coherence
γ||. More specifically:

Continuing to treat the wave field Ψ as a scalar, (i) we write each beam’s power as the
sum over a set of Fourier components Ψj with precise frequencies ωj and slowly wandering,
complex amplitudes W (t) = (

∑

j ℜΨj)
2, (ii) we form the product W (t)W (t + τ), (iii) we

keep only terms that will have nonzero averages by virtue of containing products of the form
∝ e+iωjte−iωjte+iωkte−iωkt (where j and k are generally not the same), and we average over
time. Thereby we obtain

W (t)W (t+ τ) = K2Ψ(t)Ψ∗(t)×Ψ(t+ τ)Ψ∗(t+ τ) +K2Ψ(t)Ψ∗(t + τ)×Ψ∗(t)Ψ(t + τ)

= W
2
[1 + |γ‖(τ)|2] (9.58)

[cf. Eq. (9.16) with Ψ allowed to be complex]. If we now measure the relative fluctuations,
we find that

δW (t)δW (t+ τ)

W (t)2
=
W (t)W (t+ τ)−W (t)

2

W (t)2
= |γ‖(τ)|2 . (9.59)

[Note: This analysis is only correct if the radiation comes from many uncorrelated sources—
the many independently emitting mercury atoms in Fig. 9.14—and therefore has Gaussian
statistics.]

Equation (9.59) tells us that the power as well as the amplitude of coherent radiation
must exhibit a positive longitudinal correlation; and the degree of coherence for the fluxes is
equal to the squared modulus of the degree of coherence for the amplitudes. Although this
result was rather controversial at the time the experiments were first performed, it is easy to
interpret qualitatively if we think in terms of photons rather than classical waves. Photons
are bosons and are therefore positively correlated even in thermal equilibrium; cf. Chaps. 3
and 4. When they arrive at the beam splitter of Fig. 9.14, they clump more than would be
expected for a random distribution of classical particles. In fact, treating the problem from
the point of view of photon statistics gives an answer equivalent to Eq. (9.59).

Some practical considerations should be mentioned. The first is that our result (9.59),
derived for a scalar wave, is really only valid for electromagnetic waves if they are completely
polarized. If the incident waves are unpolarized, then the intensity fluctuations are reduced
by a factor two. The second point is that, in the Hanbury Brown and Twiss experiments,
the photon counts were actually averaged over longer times than the correlation time of the
incident radiation. This reduced the magnitude of the measured effect further.

Nevertheless, after successfully measuring temporal power correlations, Hanbury Brown
and Twiss constructed a stellar intensity interferometer with which they were able to measure
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the angular diameters of bright stars. This method had the advantage that it did not
depend on the phase of the incident radiation, so the results were insensitive to atmospheric
fluctuations (seeing), one of the drawbacks of the Michelson stellar interferometer (Sec.
9.2.5). Indeed, it is not even necessary to use accurately ground mirrors to measure the
effect. The method has the disadvantage that it can only measure the modulus of the degree
of coherence; the phase is lost. It was the first example of using fourth-order correlations of
the light field to extract image information from light that has passed through the earth’s
turbulent atmosphere (Box 9.2).

****************************

EXERCISES

Exercise 9.21 Derivation: Power Correlations

By expressing the field as either a Fourier sum or a Fourier integral complete the argument
outlined in Eq. (9.58).

Exercise 9.22 Problem: Electron Intensity Interferometry

Is it possible to construct an intensity interferometer (i.e., a number flux interferometer) to
measure the coherence properties of a beam of electrons? What qualitative differences do
you expect there to be from a photon intensity interferometer? What do you expect Eq.
(9.59) to become?

****************************

Bibliographic Note

For pedagogical introductions to interference and coherence at an elementary level, with
greater detail than this chapter, see Hecht (2002) and Klein & Furtak (1986). For more
advanced treatments, we like Ghatak (2010), Saleh and Teich (2007), Pedrotti (2007), and
especially Brooker (2003). For an particularly deep and thorough discussion of coherence, see
Goodman (1985). For modern applications of interferometry (including the optical frequency
comb), see Yariv and Pochi (2007), and at a more elementary level, Hariharan (2007).
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Box 9.4

Important Concepts in Chapter 9

• Interference Fringes – Sec. 9.2.1 and Fig. 9.1

• Incoherent radiation – Eqs. (9.4) and (9.5)

• Degrees of Coherence and Fringe Visibility

– Degree of lateral coherence (complex fringe visibility) for nearly monochromatic
radiation, γ⊥ – Eqs. (9.6a), (9.10) and (9.12); and discussion after Eq. (9.8)

– Visibility for lateral coherence: V = |γ⊥| – Eq. (9.8)

– Degree of temporal (or longitudinal) coherence for nearly monochromatic radiation
– Eq. (9.15)

– Degree of temporal coherence for broad-band radiation – Eq. (9.16)

– Three-dimensional degree of coherence – Sec. 9.2.8

• Coherence lengths and times – Eqs. (9.13), (9.17) and associated discussions, and passage
following Eq. (9.21)

• van Cittert-Zernike Theorem relating degree of coherence to angular distribution and/or
spectrum of the source

– For lateral coherence, Eqs. (9.8) and (9.17)

– For temporal coherence of broad-band radiation – Eqs. (9.18)

– Three dimensional (lateral and longitudinal together) – Eqs. (9.22)

– Relationship to Wiener-Khintchine theorem – Ex. (9.7b)

• Michelson stellar interferometer and T2 astronomical seeing, – Sec. 9.2.5 and Box 9.2

• Michelson interferometer and Fourier-transform spectroscopy — Fig. 9.3, Sec. 9.2.7

• Complex random processes – Ex. 9.8

• Radio Telescope: How one constructs images of the source, and what determines its
angular resolution – Sec. 9.3

• Amplitude reflection and transmission coefficients – Eq. (9.30a)

• Reciprocity relations for reflection and transmission coefficients– Eqs. (9.32), Ex. 9.10

• High reflectivity coatings and anti-reflection coatings constructed from alternating dielec-
tric layers – Exs. 9.10 (first paragraph) and 9.13

• Etalon and Fabry-Perot interferometer – Secs. 9.4

– Finesse and its influence on half-width of resonance, phase shift across resonance,
and response time – Eqs. (9.38)–(9.40) and Fig. 9.9.

– Free spectral range – passage following Eq. (9.38)

– Some applications of Fabry-Perot interferometers, especially PDH laser locking and
the optical frequency comb – Sec. 9.4.2

• Sagnac interferometer – Ex. 9.17

• T2 Laser interferometer gravitational-wave detector, and how it works – Sec. 9.5

• Light-power correlations and intensity interferometry, Sec. 9.6


