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Chapter 10

Nonlinear Optics

Version 1210.1.K, 10 January 2013 Please send comments, suggestions, and errata via email
to kip@caltech.edu or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 10.1

Reader’s Guide

• This chapter depends substantially on Secs. 7.2, 7.3 and 7.7.1 of Chap. 7, Geometric
Optics.

• Sec. 10.6, on wave-wave mixing, is an important foundation for Chap. 23 on the
nonlinear dynamics of plasmas, and (to a lesser extent) for the discussions of solitary
waves (solitons) in Secs. 16.3 and 23.6. Nothing else in this book relies substantially
on this chapter.

10.1 Overview

Communication technology is undergoing a revolution, and computer technology may do
so soon — a revolution in which the key devices used (e.g., switches and communica-
tion lines) are changing from radio and microwave frequencies to optical frequencies. This
revolution has been made possible by the invention and development of lasers (most es-
pecially semiconductor diode lasers) and other technology developments such as nonlin-
ear media whose polarization Pi is a nonlinear function of the applied electric field, Pi =
ǫ0(χijE

j + dijkE
jEk + χijklE

jEkEl + · · · ). In this chapter we shall study lasers, nonlinear
media, and various nonlinear optics applications that are based on them.

Most courses in elementary physics idealize the world as linear. From the simple har-
monic oscillator to Maxwell’s equations to the Schrödinger equation, most all the elementary
physical laws one studies are linear, and most all the applications one studies make use of
this linearity. In the real world, however, nonlinearities abound, creating such phenomena
as avalanches, breaking ocean waves, holograms, optical switches, and neural networks; and
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in the past three decades nonlinearities and their applications have become major themes
in physics research, both basic and applied. This chapter, with its exploration of nonlinear
effects in optics, serves as a first introduction to some fundamental nonlinear phenomena
and their present and future applications. In later chapters, we shall revisit some of these
phenomena, and shall meet others, in the context of fluids (Chaps. 16 and 17), plasmas
(Chap. 23), and spacetime curvature (Chaps. 25–28).

Since highly coherent and monochromatic laser light is one of the key foundations on
which modern nonlinear optics has been built, we shall begin in Sec. 10.2 with a review of
the basic physics principles that underlie the laser: the pumping of an active medium to
produce a molecular population inversion, and the stimulated emission of radiation from the
inverted population. Then we shall briefly describe the wide variety of lasers now available,
how a few of them are pumped, and the characteristics of their light. As an important
example (crucial for the optical frequency combs of Sec. 9.4.3 above), we shall give details
about mode-locked lasers.

In Sec. 10.3, we shall meet our first example of an application of nonlinear optics: holog-
raphy. In the simplest variant of holography, a three-dimensional, monochromatic image
of an object is produced by a two step process: recording a hologram of the image, and
then passing coherent light through the hologram to reconstruct the image. We shall ana-
lyze this recording and reconstruction and then shall describe a few of the many variants of
holography now available and some of their practical applications.

Holography differs from more modern nonlinear optics applications in not being a real-
time process. Real-time processes have been made possible by nonlinear media and other
new technologies. In Sec. 10.4, we shall study an example of a real-time, nonlinear-optics
process: phase conjugation of light by a phase-conjugating mirror (though we will delay a
detailed discussion of how such mirrors work until Sec. 10.8.2). In Sec. 10.4, we shall also
see how phase conjugation can be used to counteract the distortion of images and signals by
media though which they travel.

In Sec. 10.5, we shall introduce nonlinear media and formulate Maxwell’s equations for
waves propagating through such media. As an example, we shall very briefly discuss electro-
optic effects, where a slowly changing electric field modulates the optical properties of a
nonlinear crystal, thereby modulating light waves that propagate through it. Then in Sec.
10.6, we shall develop a detailed description of how such a nonlinear crystal couples two
optical waves to produce a new, third wave — so-called three-wave mixing. Three-wave
mixing has many important applications in modern technology. In Sec. 10.7, we describe
and analyze several: frequency doubling (e.g., in a green laser pointer), optical parametric
amplification of signals, and driving light into a squeezed state—e.g., the squeezed vacuum
of quantum electrodynamics.

In an isotropic medium, three-wave mixing is suppressed, but a new, fourth wave can
be produced by three incoming waves. In Sec. 10.8, we describe and analyze this four-wave
mixing, and how it is used in phase conjugate mirrors and produces unwanted problems in
the optical fibers widely used to transmit internet, television and telephone signals.

These topics just scratch the surface of the exciting field of nonlinear optics, but they
will give the reader an overview and some major insights into this field, and into nonlinear
phenomena in the physical world.
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10.2 Lasers

10.2.1 Basic Principles of the Laser

In quantum mechanics one identifies three different types of interaction of light with material
systems (atoms, molecules, atomic nuclei, electrons, . . .): (i) Spontaneous emission, in which
a material system in an excited state spontaneously drops into a state of lesser excitation and
emits a photon in the process. (ii) Absorption, in which an incoming photon is absorbed
by a material system, exciting it. (iii) Stimulated emission, in which a material system,
initially in some excited state, is “tickled” by passing photons and this tickling stimulates it
to emit a photon of the same sort (in the same state) as the photons that tickled it.

As peculiar as stimulated emission may seem at first sight, it in fact is easily understood
and analyzed classically. It is nothing but “negative absorption”: In classical physics, when
a light beam with electric field E = ℜ[Aei(kz−ωt+ϕ)] travels through an absorbing medium,
its real amplitude A decays exponentially with the distance propagated, A ∝ e−µz/2 (corre-
sponding to an energy-flux decay F ∝ e−µz), while its frequency ω, wave number k, and phase
ϕ remain very nearly constant. For normal materials, the absorption rate µ = F−1dF/dz is
positive and the energy lost goes ultimately into heat. However, one can imagine a material
with an internally stored energy that amplifies a passing light beam. Such a material would
have a negative absorption rate, µ < 0, and correspondingly the amplitude of the passing
light would grow with the distance traveled, A ∝ e+|µ|z/2, while its frequency, wave number,
and phase would remain very nearly constant. Such materials do exist; they are called “active
media” and their amplification of passing waves is called “stimulated emission.”

This elementary, classical description of stimulated emission is equivalent to the quantum
mechanical description in the domain where the stimulated emission is strong: the domain
of large photon occupation numbers η ≫ 1 (which, as we learned in Sec. 3.2.5, is the domain
of classical waves).

The classical description of stimulated emission takes for granted the existence of an
active medium. To understand the nature of such a medium, we must turn to quantum
mechanics:

As a first step toward such understanding, consider a beam of monochromatic light with
frequency ω that impinges on a collection of molecules (or atoms or charged particles) that
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Fig. 10.1: (a) Photon Absorption: A photon with energy ~ω = E2 − E1 excites a molecule from
its ground state, with energy E1 to an excited state with energy E2 (as depicted by an energy-level
diagram). (b) Stimulated Emission: The molecule is initially in its excited state, and the incoming
photon stimulates it to deexcite into its ground state, emitting a photon identical to the incoming
one.
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are all in the same quantum mechanical state |1〉. Suppose the molecules have a second
state |2〉 with energy E2 = E1+~ω. Then the light will resonantly excite the molecules from
their initial state |1〉 to the higher state |2〉, and in the process photons will be absorbed
(Fig. 10.1a). The strength of the interaction is proportional to the beam’s energy flux F .
Stated more precisely, the rate of absorption of photons is proportional to the number flux
of photons in the beam dn/dAdt = F/~ω and thence proportional to F , in accord with the
classical description of absorption.

Suppose, next, that when the light beam first arrives, the atoms are all in the higher
state |2〉 rather than the lower state |1〉. There will still be a resonant interaction, but this
time the interaction will deexcite the atoms, with an accompanying emission of photons
(Fig. 10.1b). As in the absorption case, the strength of the interaction is proportional to
the flux of the incoming beam, i.e., the rate of emission of new photons is proportional
to the number flux of photons that the beam already has, and thence also proportional
to its energy flux F . A quantum mechanical analysis shows that the photons from this
stimulated emission come out in the same quantum state as is occupied by the photons of
the incoming beam (Bose-Einstein statistics: photons, being bosons, like to congregate in
the same state). Correspondingly, when viewed classically, the beam’s flux will be amplified
at a rate proportional to its initial flux, with no change of its frequency, wave number, or
phase.

In nature molecules usually have their energy levels populated in accord with the laws
of statistical (thermodynamic) equilibrium. Such thermalized populations, as we saw at the
end of Sec. 4.4.1, entail a ratio N2/N1 = exp[−(E2 − E1)/kBT ] < 1 for the number N2 of
molecules in state |2〉 to the number N1 in state |1〉. Here T is the molecular temperature, and
for simplicity it is assumed that the states are nondegenerate. Since there are more molecules
in the lower state |1〉 than the higher one |2〉, an incoming light beam will experience more
absorption than stimulated emission.

On the other hand, occasionally in nature and often in the laboratory a collection of
molecules develops a “population inversion” in which N2 > N1. The two states can then be
thought of as having a negative temperature with respect to each other. Light propagating
through population-inverted molecules will experience more stimulated emission than ab-
sorption; i.e., it will be amplified. The result is “light amplification by stimulated emission,”
or “laser” action.

This basic principle underlying the laser has been known since the early years of quantum
mechanics, but only in the 1950s did physicists succeed in designing, constructing, and
operating real lasers. The first proposals for practical devices were made, independently, in
the U.S. by Weber (1953) and Gordon, Zeiger, and Townes (1954), and in Russia by Basov
and Prokhorov (1954, 1955). The first successful construction and operation of a laser was
by Gordon, Zeiger, and Townes (1954, 1955), and soon thereafter by Basov and Prokhorov
—though these first lasers actually used radiation not at optical frequencies but rather at
microwave frequencies (based on a population inversion of ammonia molecules1) and thus
was called a maser . The first optical frequency laser, one based on a population inversion
of chromium ions in a ruby crystal, was constructed and operated by Maiman (1960).

1For the basic principles of the ammonia maser, see, e.g., Chap. 9 of The Feynman Lectures on Physics

(Feynman, Leighton, and Sands 1965).
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The key to laser action is the population inversion. Population inversions are incompatible
with thermodynamic equilibrium; thus, to achieve them, one must manipulate the molecules
in a nonequilibrium way. This is usually done by some concrete variant of the process shown
in the energy level diagram of Fig. 10.2. Some sort of pump mechanism (to be discussed
in the next section) rapidly excites molecules from the ground state into some group of
“absorption" states. The molecules then decay rapidly from the absorption states into the
state |2〉, which is metastable (i.e., has a long lifetime against spontaneous decay), so the
molecules linger there. The laser transition is from state |2〉 into state |1〉. Once a molecule
has decayed into state |1〉, it quickly decays on down to the ground state and then may be
quickly pumped back up into the absorption states. This is called “four-level pumping”. It
is called, instead, “three-level pumping” if state |1〉 is the ground state.

If the pump acts suddenly and briefly, this process will produce a temporary population
inversion of states |2〉 and |1〉, with which an incoming, weak burst of “seed” light can interact
to produce a burst of amplification. The result is a pulsed laser. If the pump acts continually,
the result may be a permanently maintained population inversion with which continuous seed
light can interact to produce continuous-wave laser light.

As the laser beam travels through the active medium (the population-inverted molecules),
its flux F builds up with distance z as dF/dz = F/ℓo, so F (z) = Foe

z/ℓo. Here Fo is the
initial flux, and ℓo ≡ 1/|µ|, the e-folding length, depends on the strength of the population
inversion and the strength of the coupling between the light and the active medium. Typically
ℓo is so long that strong lasing action cannot be achieved by a single pass through the active
medium. In this case, the lasing action is enhanced by placing the active medium inside
a Fabry-Perot cavity (Fig. 10.3 and Sec. 9.4.3). The length L of the cavity is adjusted so
the lasing transition frequency ω = (E2 − E1)/~ is an eigenfrequency of the cavity. The
lasing action then excites a standing wave mode of the cavity, from which the light leaks out
through one or both cavity mirrors. If F is the cavity’s finesse [approximately the average
number of times a photon bounces back and forth inside the cavity before escaping through
a mirror; cf. Eq. (9.39)], then the cavity increases the distance that typical photons travel
through the active medium by a factor ∼ F , thereby increasing the energy flux of the light
output by a factor ∼ eFL/ℓo .

Typically many modes of the Fabry Perot cavity are excited, so the laser’s output is

absorption
states

fast decay

laser
transition

fast pump
transition

ground state

|2>, metastable

|1>

fast decay

Fig. 10.2: The mechanism for creating the population inversion that underlies laser action. The
horizontal lines and band represent energy levels of a molecule, and the arrows represent transitions
in which the molecules are excited by pumping or decay by emission of photons.
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Fig. 10.3: The use of a Fabry-Perot cavity to enhance the interaction of the light in a laser with
its active medium.

multimode and contains a mixture of polarizations. When a single mode and polarization
are desired, the polarization is made pure by oblique optical elements at the ends of the laser
that transmit only one, and all the modes except one are removed from the output light by
a variety of techniques, for example filtering with a second Fabry Perot cavity (Sec. 9.4.3).

For an ideal laser (one, e.g., with a perfectly steady pump maintaining a perfectly steady
population inversion that in turn maintains perfectly steady lasing), the light comes out
in the most perfectly classical state that quantum mechanics allows. This state, called a
quantum mechanical coherent state, has a perfectly sinusoidally oscillating electric field on
which is superimposed the smallest amount of noise (the smallest wandering of phase and
amplitude) allowed by quantum mechanics: the noise of quantum electrodynamical vacuum
fluctuations. The value of the oscillations’ well defined phase is determined by the phase
of the seed field from which the coherent state was built up by lasing. Real lasers have
additional noise due to a variety of practical factors, but nevertheless, their outputs are
usually highly coherent, with long coherence times.

10.2.2 Types of Lasers, Their Performances and Applications

Lasers can have continuous, near monochromatic output, or can be pulsed. Their active
media can be liquids, gases (ionized or neutral), or solids (semiconductors, glasses, or crystals;
usually carefully doped with impurities). Lasers can be pumped by radiation (e.g. from a
flash tube), by atomic collisions that drive the lasing atoms into their excited states, by
nonequilibrium chemical reactions , or by electric fields associated with electric currents
(e.g. in semiconductor diode lasers that can be powered by ordinary batteries and are easily
modulated for optical communication).

Lasers can be made to pulse by turning the pump on and off, by mode-locked operation
(next subsection), or by Q-switching (turn off the lasing, e.g. by inserting into the Fabry
Perot cavity an electro-optic material that absorbs light until the pump has produced a huge
population inversion, and then suddenly applying an electric field to the absorber, which
makes it transparent and restores the lasing).

Laser pulses can be as short as a few fs (thus enabling experimental investigations of fast
chemical reactions) and they can carry as much as 20,000 J with duration a few ps and pulse
power ∼ 1016 W (at the U.S. National Ignition Facility for controlled fusion).

The most powerful continuous laser in the U.S. was the Mid-Infrared Advanced Chemical
Laser (MIRACL), developed by the Navy to shoot down missiles and satellites, with ∼ 1
MW power in a 14×14 cm beam lasting ∼ 70 s. Continuous CO2 lasers with powers ∼ 3 kW
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are used industrially for cutting and welding metal.
The beam from a Q-switched CO2 laser with ∼ 1 GW power can be concentrated into

a region with transverse dimensions as small as one wavelength (∼ 1µm) yielding a local
energy flux of 1021 W m−2, an rms magnetic field strength of ∼ 3 kT, an electric field ∼ 1 TV
m−1, and an electrical potential difference across a wavelength ∼ 1 MeV. It then should not
be surprising that high power lasers can create electron-positron pair plasmas!

For most applications, large power is irrelevant or undesireable, but high frequency sta-
bility (a long coherence time) is often crucial. By locking the laser frequency to an optical-
frequency atomic transition (e.g. in the Al+ atomic clock; footnote 8 in Fig. 6.11), one can
achieve a frequency stability ∆f/f ∼ 10−17, i.e. ∆f ∼ 3 mHz, for hours or longer, corre-
sponding to coherence times of ∼ 100 sec and coherence lengths of ∼ 3×108 km. By locking
the frequency to a mode of a physically highly stable Fabry Perot cavity (e.g. PDH locking,
Sec. 9.4.3), stabilities have been achieved as high as ∆f/f ∼ 10−16 for times ∼ 1 hr in a
physically solid cavity (the superconducting cavity stabilized oscillator), and ∆f/f ∼ 10−21

for a few ms in LIGO’s 4km long cavity with freely hanging mirrors and sophisticated seismic
isolation (Sec. 9.5).

When first invented, lasers were called “a solution looking for a problem.” Now they
permeate everyday life and high technology. Examples are supermarket bar-code readers,
laser pointers, DVD players, eye surgery, laser printers, laser cutting and welding, laser
gyroscopes (which are standard on commercial aircraft), laser-based surveying, Raman spec-
troscopy, laser fusion, optical communication, optically based computers, holography, maser
amplifiers, and atomic clocks.

10.2.3 Ti:Sapp Mode-Locked Laser

As a concrete example of a modern, specialized laser, we shall discuss the Titanium Sapphire
(Ti:Sapp) mode-locked laser that is used to generate the optical frequency comb that we
described in Sec. 9.4.3. Recall that this laser’s light must be concentrated in a very short
pulse that travels back and forth between its Fabry Perot mirrors, unchanged. The pulse
is made from phase-locked (Gaussian) modes of the optical cavity that extend over a huge
frequency band, ∆ω ∼ ω. Among other things, this mode-locked laser will illustrate the use
of an optical nonlinearity called the Kerr effect, whose underlying physics we shall describe
later in this chapter (Sec. 10.8.3.

As we discussed in Sec. 9.4.3, this mode-locked laser must (i) more strongly amplify
modes with high energy flux than with low (this pushes the light into the short, high-flux
pulse), and (ii) its (Gaussian) modes must have a group velocity Vg that is independent of
frequency over the frequency band ∆ω ∼ ω (this enables the pulse to stay short rather than
disperse).

Figure 10.4 illustrates the Ti:sapph laser that achieves this. The active medium is a
sapphire crystal doped with titanium ions. This medium exhibits the optical Kerr effect,
which means that its index of refraction n is a sum of two terms, one independent of the
light’s energy flux; the other proportional to the flux [Eq. (??. The flux-dependent term
slows the light’s speed near the beam’s center and thereby focuses the beam, making its
cross section smaller. A circular aperture attenuates large light beams but not small. As a
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Output Mirror

Tiltable Mirror

Fig. 10.4: The Ti:Sapph mode locked laser. From Cundiff (2002).

result, the lasing is stronger the smaller the beam, which means the higher its flux. This
drives the lasing light into the desired short, high-flux pulse.

The Ti:sapph crystal has a group velocity that increases with frequency. The two prisms
and tiltable mirror compensate this. The first prism bends low-frequency light more strongly
than high, assuring that the high-frequency light traverses more glass in the second prism
and is thereby slowed. By adjusting the mirror tilt, one adjusts the amount of slowing so as
to keep the round-trip-averaged phase velocity the same at high frequencies as at low. The
laser then happily generates the multimode, high-intensity, short-pulsed light whose output
is the optical frequency comb of Sec. 9.4.3. For additional detail see, e.g., Cundiff (2002).

****************************

EXERCISES

Exercise 10.1 Challenge: Nuclear Powered X-Ray Laser

A device much ballyhooed in America during the reign of Ronald Reagan, but never built,
was a futuristic, super-powerful X-ray laser pumped by a nuclear explosion. As part of
Reagan’s Strategic Defense Initiative (“Star Wars”), this laser was supposed to shoot down
Soviet missiles.

How would you design a nuclear powered X-ray laser? The energy for the pump comes from
a nuclear explosion that you set off in space above the earth. You want to use that energy to
create a population inversion in an active medium that will lase at X-ray wavelengths; and
you want to focus the resulting X-ray beam onto an intercontinental ballistic missile that is
rising out of the earth’s atmosphere. What would you use for the active medium? How would
you guarantee that a population inversion is created in the active medium? How would you
focus the resulting X-ray beam? (Note: This is a highly nontrivial exercise, intended more
as a stimulus for thought than as a test of one’s understanding of things taught in this book.)

****************************
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10.3 Holography

Holography is an old and well-explored example of nonlinear optics—an example in which
the nonlinear interaction of light with itself is produced not in real time, but rather by means
of a recording followed by a later readout.

By contrast with ordinary photography (Fig. 10.5), which produces a colored, 2-dimensional
image of 3-dimensional objects, holography (Figs. 10.6 and 10.8 below) normally produces
a monochromatic 3-dimensional image of 3-dimensional objects. Roughly speaking, the two
processes contain the same amount of information, two items at each location in the image.
For ordinary photography, they are the energy flux and color; for holography, the energy
flux and phase of monochromatic light.

It is the phase, lost from an ordinary photograph but preserved in holography, that carries
the information about the third dimension. Our brain deduces the distance to a point on an
object from the difference in the directions of propagation of the point’s light as it arrives
at our two eyes. Those propagation directions are encoded in the light as variations of the
phase with transverse location [see, e.g., the point-spread function for a thin lens, Eq. (8.29)].

In an ordinary photograph (Fig. 10.5), white light scatters off an object, with different
colors scattering at different strengths. The resulting colored light is focused through a lens
to form a colored image on a photographic plate or a CCD. The plate or CCD records the
color and energy flux at each point or pixel in the focal plane, thereby producing the ordinary
photograph.

In holography, one records a hologram with flux and phase information (Fig. 10.6 be-
low), and one then uses the hologram to reconstruct the 3-dimensional, monochromatic,
holographic image (Fig. 10.8 below).

10.3.1 Recording a Hologram

Consider, first, the recording of the hologram. Monochromatic, linearly polarized plane-wave
light with electric field

E = ℜ[ψ(x, y, z)e−iωt] , (10.1)aaaaaaaaaaaaaaaaIlluminati
ng

Light

Object

Lens Photographic
Plate

Fig. 10.5: Ordinary photography.
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Fig. 10.6: Recording a hologram.

angular frequency ω and wave number k = ω/c, illuminates the object and also a mirror
as shown in Fig. 10.6. The light must be spatially coherent over the entire region of mirror
plus object. The propagation vector k of the illuminating light lies in the y–z plane, at
some angle θo to the z axis, and the mirror lies in the x–y plane. The mirror reflects the
illuminating light, producing a so-called reference beam, which we shall call the mirror wave:

ψmirror =Meik(z cos θo−y sin θo) , (10.2)

where M is a real constant. The object (shown red) scatters the illuminating light, producing
a wave that propagates in the z direction toward the recording medium (a photographic plate
for concreteness). We shall call this the object wave and shall denote it

ψobject = O(x, y, z)eikz . (10.3)

It is the slowly varying complex amplitude O(x, y, z) of this object wave that carries the
three-dimensional, but monochromatic, information about the object’s appearance, and it
thus is this O(x, y, z) that will be reconstructed in the second step of holography.

In the first step (Fig. 10.6), the object wave propagates along the z-direction to the pho-
tographic plate at z = 0, where it interferes with the mirror wave to produce the transverse
pattern of energy flux

F (x, y) ∝ |O +Me−iky sin θo |2
= M2 + |O(x, y, z = 0)|2 +O(x, y, z = 0)Meiky sin θo +O∗(x, y, z = 0)Me−iky sin θo .

(10.4)

(Here and throughout this chapter a ∗ denotes complex conjugation.) The plate is blackened
at each point in proportion to this flux. The plate is then developed and a positive or negative
print (it doesn’t matter which because of Babinet’s principle) is made on a transparent sheet
of plastic or glass. This print, the hologram, has a transmissivity as a function of x and y
that is proportional to the flux distribution (10.4):

t(x, y) ∝ M2 + |O(x, y, z = 0)|2 +O(x, y, z = 0)Meiky sin θo +O∗(x, y, z = 0)Me−iky sin θo .
(10.5)
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In this transmissivity we meet our first example of nonlinearity: t(x, y) is a nonlinear super-
position of the mirror wave and the object wave. Stated more precisely, the superposition is
not a linear sum of wave fields, but instead is a sum of products of one wave field with the
complex conjugate of another wave field. A further nonlinearity will arise in the reconstruc-
tion of the holographic image, Eq. (10.7) below.

Figure 10.7 shows an example. Figure 10.7a is an ordinary photograph of an object, 10.7b
is a hologram of the same object, and 10.7c is a blow-up of a portion of that hologram. The
object is not at all recognizable in the hologram because the object wave O was not focused
to form an image at the plane of the photographic plate. Rather, light from each region of the
object was scattered to and recorded by all regions of the photographic plate. Nevertheless,
the plate contains the full details of the scattered light O(x, y, z = 0), including its phase.
That information is recorded in the piece M(Oeiky sin θo + O∗e−iky sin θo) = 2M ℜ(Oeiky sin θo)
of the hologram’s transmissivity. This piece oscillates sinusoidally in the y direction with
wavelength 2π/k sin θo; and the amplitude and phase of its oscillations are modulated by the
object wave O(x, y, z = 0). Those modulated oscillations show up clearly when one magnifies
the hologram (Fig. 10.7c); they make the hologram into a sort of diffraction grating, with
the object wave O(x, y, z = 0) encoded as variations of the darkness and spacings of the
grating lines.

What about the other pieces of the transmissivity (10.5), which superpose linearly on the
diffraction grating? One piece, t ∝ M2, is spatially uniform and thus has no effect except
to make the lightest parts of the hologram slightly grey rather than leaving it absolutely
transparent (since this hologram is a negative rather than a positive). The other piece,
t ∝ |O|2, is the flux of the object’s unfocussed, scattered light. It produces a greying and
whitening of the hologram (Fig. 10.7b) that varies on lengthscales long compared to the
grating’s wavelength 2π/k sin θo, and that thus blots out the diffraction grating a bit here
and there, but does not change the amplitude or phase of the grating’s modulation.

(a) (b) (c)
x x

y y

Fig. 10.7: (a) Ordinary photograph of an object. (b) Hologram of the same object. (c) Magnifica-
tion of the hologram. [Photographs courtesy Professor R.S. Sirohi, adapted from Fig. 8.3 of Ghatak
and Thyagarajan (1978), and from Fig. 21.3 of Ghatak (2010)]
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10.3.2 Reconstructing the 3-Dimensional Image from a Hologram

To reconstruct the object’s 3-dimensional wave, O(x, y, z)eikz, one sends through the holo-
gram monochromatic, plane-wave light identical to the mirror light used in making the
hologram; Fig. 10.8. If, for pedagogical simplicity, we place the hologram at the same loca-
tion z = 0 as was previously occupied by the photographic plate, then the incoming light has
the same form (10.2) as the original mirror wave, but with an amplitude that we shall denote
as R corresponding to the phrase reference beam that is used to describe this incoming light:

ψreference = Reik(z cos θo−y sin θo) . (10.6)

In passing through the hologram at z = 0, this reference beam is partially absorbed and
partially transmitted. The result, immediately upon exiting from the hologram, is a “recon-
structed” light-wave field whose value and normal derivative are given by [cf. Eq. (10.5)]

ψreconstructed

∣

∣

∣

z=0
≡ R(x, y, z = 0) = t(x, y)Re−iky sin θo

=
[

M2 + |O(x, y, z = 0)|2
]

Re−iky sin θo

+MRO(x, y, z = 0)

+MRO∗(x, y, z = 0)e−i2ky sin θo ;

ψreconstructed ,z

∣

∣

∣

z=0
≡ Z(x, y, z = 0) = ik cos θoR(x, y, z = 0). (10.7)

This field and normal derivative act as initial data for the subsequent evolution of the
reconstructed wave. Note that the field and derivative, and thus also the reconstructed wave,

Modulated Mirror Wave :

Phase Conjugated Object Wave :

 (x,y,z)

y

z

o

o

s

Reconstructed Object Wave :

| |2 + M2) e-ik sin o y e ik cos o z

e e ik cos s z-ik sin s y

Hologram :  T(x,y) = M2+|    (x,y,z=0)|2 + M    (x,y,z=0)

+ M *(x,y,z=0) e -iky sin o

e+iky sin o

x

*

Reference wave : 

e-ik sin o y e ik cos o zR

R

const MR

 (const x 

MRconst x

e ik z

Virtual Image  

Secondary,

Real Image  

Fig. 10.8: Reconstructing the holographic image from the hologram. Note that sin θs = 2 sin θo.
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are triply nonlinear: each term in Eq. (10.7) is a product of (i) the original mirror wave M
used to construct the hologram or the original object wave O, times (ii) O∗ or M∗ = M ,
times (iii) the reference wave R that is being used in the holographic reconstruction.

The evolution of the reconstructed wave beyond the hologram (at z > 0) can be computed
by combining the initial data (10.7) for ψreconstructed and ψreconstructed ,z at z = 0 with the
Helmholtz-Kirchhoff formula (8.4); see Exs. 10.2 and 10.6. From the four terms in the
initial data, Eq. (10.7) [which arise from the four terms in the hologram’s transmissivity
t(x, y), Eq. (10.5)], the reconstruction produces four wave fields; see Fig. 10.8. The direction
of propagation of each of these waves can easily be inferred from the vertical spacing of
its phase fronts along the outgoing face of the hologram, or equivalently from the relation
∂ψreconstructed/∂y = ikyψreconstructed = −ik sin θψ, where θ is the angle of propagation relative
to the horizontal z direction. Since, immediately in front of the hologram, ψreconstructed = R,
the propagation angle is

sin θ =
∂R/∂y
−ikR . (10.8)

Comparing with Eqs. (10.5) and (10.7), we see that the first two, slowly spatially varying
terms in the transmissivity, t ∝ M2 and T ∝ |O|2, both produce waves that propagate in
the same direction as the reference wave, θ = θo. This combined wave has an uninteresting,
smoothly and slowly varying energy-flux pattern.

The two diffraction-grating terms in the hologram’s transmissivity produce two interesting
waves. One, arising from t ∝ O(x, y, z = 0)Meiky sin θo [and produced by the MRO term
of the initial conditions (10.7)], is precisely the same object wave ψobject = O(x, y, z)eikz

(aside from overall amplitude) as one would have seen while making the hologram if one had
replaced the photographic plate by a window and looked through it. This object wave, carrying
[encoded in O(x, y, z)] the famous holographic image with full 3-dimensionality, propagates
in the z-direction, θ = 0.

The transmissivity’s second diffraction-grating term, t ∝ O∗(x, y, z = 0)Me−iky sin θo ,
acting via the MRO∗ term of the initial conditions (10.7), gives rise to a secondary wave
which [according to Eq. (10.8)] propagates at an angle θs to the z-axis, where

sin θs = 2 sin θo . (10.9)

(If θo > 30o, then 2 sin θo > 1 which means θs cannot be a real angle, and there will be no
secondary wave.) This secondary wave, if it exists, carries an image that is encoded in the
complex conjugate O∗(x, y, z = 0) of the transverse (i.e., x, y) part of the original object
wave. Since complex conjugation of an oscillatory wave just reverses the sign of the wave’s
phase, this wave in some sense is a “phase conjugate” of the original object wave.

When one recalls that the electric and magnetic fields that make up an electromagnetic
wave are actually real rather than complex, and that we are using complex wave fields to
describe electromagnetic waves only for mathematical convenience, one then realizes that
this phase conjugation of the object wave is actually a highly nonlinear process. There
is no way, by linear manipulations of the real electric and magnetic fields, to produce the
phase-conjugated wave from the original object wave.

In Sec. 10.4 we shall develop in detail the theory of phase-conjugated waves, and in
Ex. 10.6, we shall relate our holographically constructed secondary wave to that theory.
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As we shall see, our secondary wave is not quite the same as the “phase-conjugated object
wave,” but it is the same aside from some distortion along the y direction and a change
in propagation direction. More specifically: If one looks into the object wave with one’s
eyes (i.e. if one focuses it onto one’s retinas), one sees the original object in all its three-
dimensional glory, though single colored, sitting behind the hologram at the object’s original
position (shown red in Fig. 10.8). Because the image one sees is behind the hologram, it is
called a virtual image. If, instead, one looks into the secondary wave with one’s eyes (i.e. if
one focuses it onto one’s retinas), one sees the original three-dimensional object, sitting in
front of the hologram but turned inside out and distorted (also shown red in the figure). For
example, if the object is a human face, the secondary image looks like the interior of a mask
made from that human face, with distortion along the y direction. Because this secondary
image appears to be in front of the hologram, it is called a real image—even though one can
pass one’s hands through it and feel nothing but thin air.

Other Types of Holography, and Applications

There are many variants on the basic holographic technique that we have described in
Figs. 10.6–10.8. These include, among others:

Phase holography. Here, instead of darkening the high-flux regions of the hologram as
in photography, one produces a phase-shifting screen, whose phase shift (due to thickening
of the hologram’s material) is proportional to the incoming flux. Such a phase hologram
transmits more of the reference-wave light than a standard, darkened hologram, thus making
a brighter reconstructed image.

Volume holography. Here the hologram is a number of wavelengths deep rather than being
just two-dimensional. For example, it could be made from a thick photographic emulsion,
in which the absorption length for light is longer than the thickness. Such a hologram has
a three-dimensional grating structure (grating “surfaces” rather than grating “lines”), with
two consequences: When one reconstructs the holographic image from it in the manner of
Fig. 10.8, (i) the third dimension of the grating suppresses the secondary wave while enhancing
the (desired) object wave so more power goes into it; and (ii) the reference wave’s incoming
angle θo must be controlled much more precisely, as modest errors suppress the reconstructed
object wave. This second consequence enables one to record multiple images in a volume
hologram, each using its own angle θo for the illuminating light and reference wave.

Reflection holography. Here one reads out the hologram by reflecting light off of it rather
than transmitting light through it, and the hologram’s diffraction grating produces a three-
dimensional holographic image by the same process as in transmission; see Ex. 10.3

White-light holography. Here the hologram is recorded with monochromatic light as usual,
but it is optimized for reading out with white light. Even for the simple two-dimensional
hologram of Fig. 10.8, if one sends in white light at the angle θo, one will get a three-
dimensional object wave: The hologram’s grating will diffract various wavelengths in various
directions. In the direction of the original object wave (the horizontal direction in Fig. 10.8),
one gets a 3-dimensional reconstructed image of the same color as was used when constructing
the hologram. When one moves away from that direction (vertically in Fig. 10.8), one sees
the color of the 3-dimensional image continuously change; Ex. 10.2c. White-light reflection
holograms are used on credit cards, and money as impediments to counterfeiting, and have
even been used on postage stamps.
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Computational holograms. Just as one can draw two-dimensional pictures numerically,
pixel-by-pixel, so one can also create and modify holograms numerically, then read them out
optically.

Full-color holography. A full-color holographic image of an object can be constructed
by superposing three monochromatic holographic images with the three primary colors, red,
green and blue. One way to achieve this is to construct a single volume hologram using
illuminating light from red, green, and blue laser beams, each arriving from a different 2-
dimensional direction θo. Each beam produces a diffraction grating in the hologram with a
different orientation and with spatial wave number corresponding to the beam’s color. The
thee-dimensional image can then be reconstructed using three white-light reference waves,
one from each of the original three directions θo. The hologram will pick out of each beam
the appropriate primary color, and produce the desired three overlapping images, which the
eye will interpret as having approximately the true color of the original object.

Holographic interferometry. One can observe changes in the shape of a surface at the
∼ µm level by constructing two holograms, one of the original surface and the other of the
changed surface, and then interfering the reconstructed light from the two holograms. This is
called holographic interferometry, and it is used, e.g., to observe small strains and vibrations
of solid bodies — for example, sonic vibrations of a guitar in Fig. 10.9.

Holographic lenses. Instead of designing a hologram to reconstruct a 3-dimensional image,
one can design it to manipulate light beams in most any way one wishes. Such a hologram is
called a holographic lense. As a simple example (Ex. 10.4c), one can construct a holographic
lens that splits one beam into two and focuses each of the two beams onto a different
spot. Holographic lenses are widely used in everyday technology, e.g., to read bar codes in
supermarket checkouts, and to read the information off CDs, DVDs, and BDs (Ex. 10.5).

Future applications. Major applications of holography that are under development include
(i) dynamically changing volume holograms for three-dimensional movies (which, of course,

Fig. 10.9: In and out vibrations of a guitar body visualized via holographic interferometry with
green light. The dark and bright curves are a contour map, in units of the green light’s wavelength,
of the amplitude of vibration. Courtesy Bernard Richardson, University of Cardiff. [DON’T YET
HAVE PERMISSION]
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will require no eye glasses), and (ii) voume holograms for storage of large amounts of data
— up to terabytes cm−3.

****************************

EXERCISES

Exercise 10.2 Derivation and Problem: The Holographically Reconstructed Wave

(a) Use the Helmholtz-Kirchhoff integral (8.4) or (8.6) to compute all four pieces of the
holographically reconstructed wave field. Show that the piece generated by

t ∝ O(x, y, z = 0)Meiky sin θo

is the same (aside from overall amplitude) as the field ψobject = O(x, y, z)e−iωt that
would have resulted, when making the hologram (Fig. 10.6), had the mirror wave been
absent and the photographic plate been replaced by a window. Show that the other
pieces have the forms and propagation directions indicated heuristically in Fig. 10.8.

(b) We shall examine the secondary wave, generated by t ∝MO∗e−iky sin θo , in Ex. 10.6.

(c) Suppose that plane-parallel white light is used in the holographic reconstruction of
Fig. 10.8. Derive an expression for the direction in which one sees the object’s three-
dimensional image have a given color (or equivalently wave number). Assume that the
original hologram was made with green light and θo = 45 degrees. What are the angles
at which one sees the image as violet, green, yellow and red?

Exercise 10.3 Problem: Recording a Reflection Hologram

How would you record a hologram if you want to read it out via reflection? Draw diagrams
illustrating this, similar to Figs. 10.6 and 10.8. [Hint: The mirror wave and object wave can
impinge on the photographic plate from either side; it’s your choice.]

Exercise 10.4 Example: Holographic Lens to Split and Focus a Light Beam

A holographic lens, like any other hologram, can be described by its transmissivity t(x, y).

(a) What t(x, y) will take a reference wave, impinging from the θo direction (as in Fig.
10.8) and produce from it a primary object wave that converges on the spot (x, y, z) =
(0, 0, d)? [Hint: consider, at the hologram’s plane, a superposition of the incoming
mirror wave and the point spread function (8.28), which represents a beam that diverges
from a point source, and phase conjugate the point spread function so it converges to
a point instead of diverging.]

(b) Draw a contour plot of this lens’s transmissivity t(x, y). Notice the resemblance to the
Fresnel zone plate of Sec. 8.4.4. Explain the connection of the two, paying attention to
how the holographic lens changes when one alters the chosen angle θo of the reference
wave.
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(c) What t(x, y) will take a reference wave, impinging from the θo direction, and produce
from it a primary wave that splits in two, with equal light powers converging onto the
spots (x, y, z) = (−a, 0, d) and (x, y, z) = (+a, 0, d)?

Exercise 10.5 ** Problem: Compact Disks, DVDs and Blue Ray Disks

Information on compact disks (CDs), on DVDs and on Blue Ray disks (BDs) is recorded and
read out using holographic lenses, but it is not stored holographically. Rather, it is stored
in a linear binary code consisting of pits and no-pits (for 0 and 1) along a narrow spiraling
track. In each successive generation, the laser light has been pushed to a shorter wavelength
(λ = 760 nm for CDs, 650 nm for DVDs, 405nm for BDs), and in each generation, the
efficiency of the information storage has been improved. In CDs, the information is stored in
a single holographic layer on the surface of the disk; in DVDs and BDs, it is usually stored
in a single layer, but can also be stored in two layers, one above the other, though with a
modest price in access time and efficiency of storage.

(a) Explain why one can expect to record in a disk’s recording layer, at the very most,
(close to) one bit of information per square wavelength of the recording light.

(b) The actual storage capacities are up to 900 MB for CDs, 4.7GB for DVDs, and 25 GB
for BDs. How efficient are each of these technologies relative to the maximum of part
(a)?

(c) Estimate the number of volumes of the Encyclopedia Britannica that can be recorded
on a CD, on a DVD and on a BD.

****************************

10.4 Phase-Conjugate Optics

Nonlinear optical techniques make it possible to phase conjugate an optical wave in real time,
by contrast with holography where the phase conjugation requires recording a hologram and
then reconstructing the wave later. In this section, we shall explore the properties of phase
conjugated waves of any sort (light, sound, plasma waves, ...), and in the next section we
shall discuss technology by which real-time phase conjugation is achieved for light.

The basic ideas and foundations for phase conjugation of waves were laid in Moscow,
Russia by Boris Yakovovich Zel’dovich2 and his colleagues (1972) and at Caltech by Amnon
Yariv (1977).

Phase conjugation is the process of taking a monchromatic wave

ΨO = ℜ[ψ(x, y, z)e−iωt] =
1

2
(ψe−iωt + ψ∗e+iωt) , (10.10a)

2Zel’dovich is the famous son of a famous Russian/Jewish physicist, Yakov Borisovich Zel’dovich, who with
Andrei Dmitrievich Sakharov fathered the Soviet hydrogen bomb and then went on to become a dominant
figure internationally in astrophysics and cosmology.
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and from it constructing the wave

ΨPC = ℜ[ψ∗(x, y, z)e−iωt] =
1

2
(ψ∗e−iωt + ψe+iωt) . (10.10b)

Notice that the phase conjugated wave ΨPC is obtainable from the original wave ΨO by
time reversal , t → −t. This has a number of important consequences. One is that ΨPC

propagates in the opposite direction to ΨO. Others are explained most clearly with the help
of a phase-conjugating mirror :

Consider a wave ΨO with spatial modulation (i.e., a wave that carries a picture or a
signal of some sort). Let the wave propagate in the z-direction (rightward in Fig. 10.10), so

ψ = A(x, y, z)ei(kz−ωt) , where A = Aeiϕ (10.11)

is a complex amplitude whose modulus A and phase ϕ change slowly in x, y, z (slowly com-
pared to the wave’s wavelength λ = 2π/k). Suppose that this wave propagates through a
time-independent medium with slowly varying physical properties [e.g. a dielectric medium
with slowly varying index of refraction n(x, y, z)]. These slow variations will distort the
wave’s complex amplitude as it propagates. The wave equation for the real, classical field
Ψ = ℜ[ψe−iωt] will have the form LΨ−∂2Ψ/∂t2 = 0, where L is a real spatial differential op-
erator that depends on the medium’s slowly varying physical properties. This wave equation
implies that the complex field ψ satisfies

Lψ + ω2ψ = 0 . (10.12)

This is the evolution equation for the wave’s complex amplitude.
Let the distorted, rightward propagating wave ΨO reflect off a mirror located at z = 0.

If the mirror is a phase-conjugating one, then very near it (at z near zero) the reflected wave
will have the form

ΨPC = ℜ[A∗(x, y, z = 0)ei(−kz−ωt)] , (10.13)

while if it is an ordinary mirror, then the reflected wave will be

ΨR = ℜ[±A(x, y, z = 0)ei(−kz−ωt)] . (10.14)

(Here the sign, plus or minus, depends on the physics of the wave. For example, if Ψ is the
transverse electric field of an electromagnetic wave and the mirror is a perfect conductor, the
sign will be minus to guarantee that the total electric field, original plus reflected, vanishes
at the mirror’s surface.)

These two waves, the phase-conjugated one ΨPC and the ordinary reflected one ΨR, have
very different surfaces of constant phase (phase fronts): The phase of the incoming wave ΨO

[Eq. (10.11)] as it nears the mirror (z = 0) is ϕ + kz, so (taking account of the fact that
ϕ is slowly varying), the surfaces of constant phase are z = −ϕ(x, y, z = 0)/k. Similarly,
the phase of the wave ΨR [Eq. (10.14)] reflected from the ordinary mirror is ϕ − kz, so its
surfaces of constant phase near the mirror are z = +ϕ(x, y, z = 0)/k, which are reversed
from those of the incoming wave as shown in the upper right of Fig. 10.10. Finally, the phase
of the wave ΨPC [Eq. (10.13)] reflected from the phase-conjugating mirror is −ϕ− kz, so its
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surfaces of constant phase near the mirror are z = −ϕ(x, y, z = 0)/k, which are the same
as those of the incoming wave (lower right of Fig. 10.10), even though the two waves are
propagating in opposite directions.

The phase fronts of the original incoming wave and the phase conjugated wave are the
same not only near the phase conjugating mirror; they are the same everywhere. More
specifically, as the phase-conjugated wave ΨPC propagates away from the mirror [near which
it is described by Eq. (10.13)], the propagation equation (10.12) forces it to evolve in such a
way as to remain always the phase conjugate of the incoming wave:

ΨPC = ℜ[A∗(x, y, z)e−ikze−iωt] . (10.15)

This should be obvious from the fact that, because the differential operator L in the prop-
agation equation (10.12) for ψ(x, y, z) = Aeikz is real, ψ∗(x, y, z) = A∗e−ikz will satisfy this
propagation equation whenever ψ(x, y, z) does.

This fact that the reflected wave ΨPC remains always the phase conjugate of the in-
coming wave ΨO means that the distortions put onto the incoming wave, as it propagates
rightward through the inhomogeneous medium, get removed from the phase conjugated wave
as it propagates back leftward; see Fig. 10.10.

This removal of distortions has a number of important applications. One is for image
transmission in optical fibers. Normally when an optical fiber is used to transmit an optical
image, the transverse spatial variations n(x, y) of the fiber’s index of refraction (which are
required to hold the light in the fiber; Ex. 7.8) distort the image somewhat. The distor-
tions can be eliminated by using a sequence of identical segments of optical fibers separated
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Fig. 10.10: A rightward propagating wave and the reflected wave produced by (a) an ordinary
mirror and (b) a phase-conjugating mirror. In both cases the waves propagate through a medium
with spatially variable properties, which distorts their phase fronts. In case (a) the distortion is
reinforced by the second passage through the variable medium; in case (b) the distortion is removed
by the second passage.
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Fig. 10.11: The use of a phase-conjugating mirror in an optical transmission line to prevent the
fiber from distorting an optical image. The distortions put onto the image as it propagates through
the first segment of fiber are removed during propagation through the second segment.

by phase-conjugating mirrors (Fig. 10.11). A few other applications include (i) real time
holography, (ii) removal of phase distortions in Fabry-Perot cavities by making one of the
mirrors a phase conjugating one, with a resulting improvement in the shape of the beam that
emerges from the cavity, (iii) devices that can memorize an optical image and compare it to
other images, (iv) the production of squeezed light (Ex. 10.16), and (v) improved focusing
of laser light for laser fusion.

As we shall see in the next section, phase conjugating mirrors rely crucially on the sinu-
soidal time evolution of the wave field; they integrate up that sinusoidal evolution coherently
over some timescale τ̂ (typically microseconds to nanoseconds) in order to produce the phase
conjugated wave. Correspondingly, if an incoming wave varies on timescales τ long compared
to this τ̂ (e.g., if it carries a temporal modulation with bandwidth ∆ω ∼ 1/τ small com-
pared to 1/τ̂), then the wave’s temporal modulations will not get time reversed by the phase
conjugating mirror. For example, if the wave impinging on a phase conjugating mirror has a
frequency that is ωa initially, and then gradually, over a time τ , increases to ωb = ωa+2π/τ ,
then the phase conjugated wave will not emerge from the mirror with frequency ωb first and
ωa later. Rather, it will emerge with ωa first and ωb later (same order as for the original
wave). When the incoming wave’s temporal variations are fast compared to the mirror’s
integration time, τ ≪ τ̂ , the mirror encounters a variety of frequencies during its integration
time, and ceases to function properly. Thus, even though phase conjugation is equivalent to
time reversal in a formal sense, a phase conjugating mirror cannot time reverse a temporal
signal. It only time reverses monochromatic waves (which might carry a spatial signal).

****************************

EXERCISES

Exercise 10.6 Derivation and Example: The Secondary Wave in Holography

Consider the secondary wave generated by t ∝MO∗e−iky sin θo in the holographic reconstruc-
tion process of Fig. 10.8, Eqs. 10.7 and Ex. 10.2.

(a) Assume, for simplicity, that the mirror and reference waves propagate nearly perpen-
dicular to the hologram, so θo ≪ 90o and θs ≃ 2θo ≪ 90o; but assume that θs is still
large enough that fairly far from the hologram the object wave and secondary waves
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separate cleanly from each other. Then, taking account of the fact that the object wave
field has the form O(x, y, z)eikz, show that the secondary wave is the phase conjugated
object wave defined in Sec. 10.4, except that it is propagating in the +z direction rather
than −z, i.e. it has been reflected through the z = 0 plane. Then use this, and the
discussion of phase conjugation in Sec. 10.4, to show that the secondary wave carries
an image that resides in front of the hologram and is turned inside out, as discussed
near the end of Sec. 10.3. Show, further, that if θo is not ≪ 90o degrees (but is < 30o,
so θs is a real angle and the secondary image actually exists), then the secondary image
is changed by a distortion along the y direction. What is the nature of the distortion,
a squashing or a stretch?

(b) Suppose that a hologram has been made, with θo < 30o. Show that it is possible
to perform image reconstruction with a modified reference wave (different from Fig,
10.8) in such a manner that the secondary, phase-conjugated wave emerges precisely
perpendicular to the hologram and undistorted.

****************************

10.5 Maxwell’s Equations in a Nonlinear Medium;

Nonlinear Dielectric Susceptibilities;

Electro-Optic Effects

In nonlinear optics, one is often concerned with media that that are electrically polarized
with polarization (electric dipole moment per unit volume) P, but that have no free charges
or currents and are unmagnetized. In such a medium, the charge and current densities
associated with the polarization are

ρP = −∇ ·P , jP =
∂P

∂t
, (10.16a)

and Maxwell’s equations in SI units take the form

∇ · E =
ρP
ǫ0
, ∇ ·B = 0 , ∇× E = −∂B

∂t
, ∇×B = µ0

(

jP + ǫ0
∂E

∂t

)

, (10.16b)

which should be familiar. When rewritten in terms of the electric displacement vector

D ≡ ǫ0E+P , (10.17)

these Maxwell equations take following the alternative form

∇ ·D = 0 , ∇ ·B = 0 , ∇×E = −∂B
∂t

, ∇×B = µ0

∂D

∂t
, (10.18)



22

which should also be familiar. By taking the curl of the third Maxwell equation (10.16b),
using the relation ∇×∇×E = −∇2E+∇(∇ ·E), and combining with the time derivative
of the fourth Maxwell equation (10.16b) and with ǫ0µ0 = 1/c2 and jP = ∂P/∂t, we obtain
the following wave equation for the electric field, sourced by the medium’s polarization:

∇2E−∇(∇ · E) = 1

c2
∂2(E+P/ǫ0)

∂t2
. (10.19)

If the electric field is sufficiently weak and the medium is homogeneous and isotropic (the
case treated in most textbooks on electromagnetic theory), the polarization P is proportional
to the electric field: P = ǫ0χ0Ej , where χ0 is the medium’s electrical susceptibility. In this
case the medium does not introduce any nonlinearities into Maxwell’s equations, the right
side of Eq. (10.19) becomes [(1 + χ0)/c

2]∂E/∂t2, the divergence of (10.19) implies that the
divergence of E vanishes, and therefore (10.19) becomes the standard dispersionless wave
equation

∇2E− n2

c2
∂2E

∂t2
= 0 , with n

2 = 1 + χ0 . (10.20)

In many dielectric media, however, a strong electric field can produce a polarization that
is nonlinear in the field. In such “nonlinear media,” the general expression for the (real)
polarization in terms of the (real) electric field is

Pi = ǫ0(χijEj + 2dijkEjEk + 4χijklEjEkEl + . . .) . (10.21)

Here χij , the linear susceptibility, is proportional to the 3-dimensional metric, χij = χ0gij =
χ0δij, if the medium is isotropic (i.e., if all directions in it are equivalent), but otherwise is
tensorial; and the dijk and χijkl are nonlinear susceptibilities, referred to as second-order and
third-order because of the two and three E’s that multiply them in Eq. (10.21). The nor-
malizations used for these second- and third-order susceptibilities differ from one researcher
to another: sometimes the factor ǫ0 is omitted in Eq. (10.21); occasionally the factors of 2
and 4 are omitted. A compressed 2-index notation is sometimes used for the components of
dijk; see Box 10.2 below.

With P given by Eq. (10.21), the wave equation (10.19) becomes

∇2E−∇(∇ · E)− 1

c2
ǫ · ∂

2E

∂t2
=

1

c2ǫ0

∂2 PNL

∂t2
, where ǫij = δij + χij (10.22a)

and PNL is the nonlinear part of the polarization:

PNL
i = ǫ0(2dijkEjEk + 4χijklEjEkEl + . . .) . (10.22b)

When PNL is strong enough to be important and a monochromatic wave at frequency
ω enters the medium, the nonlinearities lead to harmonic generation—i.e., the production
of secondary waves with frequencies 2ω, 3ω, . . .; see below. As a result, an electric field
in the medium cannot oscillate at just one frequency, and each of the electric fields in
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expression (10.22b) for the nonlinear polarization must be a sum of pieces with different
frequencies. Because the susceptibilities can depend on frequency, this means that, when
using expression (10.21), one sometimes must break Pi and each Ei up into its frequency
components and use different values of the susceptibility to couple the different frequencies
together. For example, one of the terms in Eq. (10.22b) will become

P
(4)
i = 4ǫ0χijklE

(1)
j E

(2)
k E

(3)
l , (10.23)

where E
(n)
j oscillates at frequency ωn, P

(4)
i oscillates at frequency ω4, and χijkl depends on

the four frequencies ω1, . . . , ω4. Although this is complicated in the general case, in most
practical applications, resonant coupling (or equivalently energy and momentum conservation
for photons) guarantees that only a single set of frequencies is important, and the resulting
analysis simplifies substantially. See, e.g., Sec. 10.6.1 below.

Because all the tensor indices on the susceptibilities except the first index get contracted
into the electric field in expression (10.21), we are free to (and it is conventional to) define
the susceptibilities as symmetric under interchange of any pair of indices that does not
include the first. When [as has been tacitly assumed in Eq. (10.21)] there is no hysteresis
in the medium’s response to the electric field, the energy density of interaction between the
polarization and the electric field is

U = ǫ0

(

χijEiEj

2
+

2dijkEiEjEk

3
+

4χijklEiEjEkEl

4
+ · · ·

)

, (10.24a)

and the polarization is related to this energy of interaction, in Cartesian coordinates, by

Pi =
∂U

∂Ei
, (10.24b)

which agrees with Eq. (10.21) providing the susceptibilities are symmetric under interchange
of all pairs of indices, including the first. We shall assume such symmetry.3 If the crystal is
isotropic (as will be the case if it has cubic symmetry and reflection symmetry), then each
of its tensorial susceptibilities is constructable from the metric gij = δij and a single scalar
susceptibility; see Ex. 10.7:

χij = χ0gij , dijk = 0 , χijkl =
1

3
χ4(gijgkl + gikgjl + gilgjk) , χijklm = 0 , · · · .

(10.25)
[There is a caveat to these symmetry arguments: When the nonlinear susceptibilities depend
significantly on the frequencies of the three or four waves, then these simple symmetries can
be broken. For example, the third-order susceptibility, χijkl, for an isotropic medium depends
on which of the three input waves is paired with the output wave in Eq. (10.25); so when
one orders the input waves with wave 1 on the j index, 2 on the k index and 3 on the l index

3For further details see, e.g., Secs. 16.2 and 16.3 of Yariv (1989) or Sec. 14.3 of Sharma (2006). In a lossy
medium, symmetry on the first index is lost; see Sec. 8.1 of Yariv and Pochi (2007).
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(and output 4 on the i index), the three terms in χijkl [Eq. (10.25)] have different scalar
coefficients. We shall ignore this subtlety in the remainder of this chapter. For details see,
e.g., Sec. 14.3 of Sharma (2006).]

A simple model of a crystal which explains how nonlinear susceptibilities can arise is the
following. Imagine each ion in the crystal as having a valence electron that can oscillate
in response to a sinusoidal electric field. The electron can be regarded as residing in a
potential well which, for low-amplitude oscillations, is very nearly harmonic (potential energy
quadratic in displacement; restoring force proportional to displacement; “spring constant”
independent of displacement). However, if the electron’s displacement from equilibrium
becomes a significant fraction of the interionic distance, it will begin to feel the electrostatic
attraction of the neighboring ions, and its spring constant will weaken. This means that the
potential the electron sees is really not that of a harmonic oscillator, but rather that of an
anharmonic oscillator , V (x) = αx2− βx3 + · · · , where x is the electron’s displacement from
equilibrium. The nonlinearities in this potential cause the electron’s amplitude of oscillation,
when driven by a sinusoidal electric field, to be nonlinear in the field strength, and that
nonlinear displacement causes the crystal’s polarization to be nonlinear.4 For most crystals,
the spatial arrangement of the ions causes the electron’s potential energy V to be different
for displacements in different directions, and this causes the nonlinear susceptibilities to be
anisotropic.

Because the total energy required to liberate the electron from its lattice site is roughly
one eV and the separation between lattice sites is ∼ 10−10 m, the characteristic electric field
for strong instantaneous nonlinearities is ∼ 1V/10−10m = 1010V m−1 = 1V (100pm)−1. Cor-
respondingly, since dijk has dimensions 1/(electric field) and χijkl has dimensions 1/(electric
field)2, rough upper limits on their Cartesian components are

dijk . 100 pmV−1 , χ4 ∼ χijkl .
(

100 pmV−1
)2

. (10.26)

For comparison, because stronger fields will pull electrons out of solids, the strongest continuous-
wave electric fields that occur in practical applications are E ∼ 106 V m−1 corresponding to
maximum intensities F ∼ 1 kW / mm2 = 1 GW/m2. These numbers dictate that, unless
the second-order dijk are suppressed by isotropy, they will produce much larger effects than
the third-order χijkl, which in turn will dominate over all higher orders.

In the next few sections, we shall explore how the nonlinear susceptibilities produce
nonlinear couplings of optical waves. There is, however, another application that we must
mention in passing. When a slowly changing, non-wave electric field Ek is applied to a
nonlinear medium, it can be thought of as producing a change in the linear dielectric tensor
for waves ∆χij = 2(dijk + dikj)Ek+ quadratic terms [cf. Eq. (10.20)]. This is an example
(e.g. Boyd 2008) of an electro-optic effect : the modification of optical properties of a
medium by an applied electric field. Electro-optic effects are very important in modern
optical technology. For example, Pockels cells (used to modulate Gaussian light beams),
optical switches (used in Q-switched lasers) and liquid crystal displays (used for computer
screens and television screens) are based on electro-optic effects. For some details of several

4Quantitative details are worked out, e.g., in Sec. 16.3 of Yariv (1989).
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important electro-optic effects and their applications, see, e.g. Chap. 9 of Yariv and Yeh
(2006).

****************************

EXERCISES

Exercise 10.7 Derivation and Example: Nonlinear Susceptibilities for an Isotropic Medium

Explain why the nonlinear susceptibilities for an isotropic medium have the forms
given in Eq. (10.25). [Hint: Use the facts that the χ’s must be symmetric in all their
indices, and that, because the medium is isotropic, the χ’s must be constructable from
the only isotropic tensors available to us, the (symmetric) metric tensor gij and the
(antisymmetric) Levi-Civita tensor ǫijk.] What are the corresponding forms, in an
isotropic medium, of χijklmn and χijklmnp?

****************************

10.6 Three-Wave Mixing in Anisotropic, Nonlinear Crys-

tals

10.6.1 Resonance Conditions for 3-Wave Mixing

When a beam of light is sent through a nonlinear crystal, the nonlinear susceptibilities
produce wave-wave mixing. The mixing due to the second-order susceptibility dijk is called
three-wave mixing because three electric fields appear in the polarization-induced interaction
energy, Eq. (10.24a). The mixing produced by the third-order χijkl is similarly called four-
wave mixing. Three-wave mixing dominates in an anisotropic medium, but is suppressed
when the medium is isotropic, leaving four-wave mixing as the leading-order nonlinearity.

For use in our analyses of three-wave mixing, in Box 10.2 we list the second-order sus-
ceptibilities and some other properties of several specific nonlinear crystals.

Let us examine three-wave mixing in a general anisotropic crystal. Because the nonlinear
susceptibilities are so small [i.e., because the input wave will generally be far weaker than 1010

V m−1 = 1 V (100pm)−1], the nonlinearities can be regarded as small perturbations. Suppose
that two waves, labeled n = 1 and n = 2, are injected into the anisotropic crystal, and let
their wave vectors be kn when one ignores the (perturbative) nonlinear susceptibilities but
keeps the large linear χij . Because χij is an anisotropic function of frequency, the dispersion
relation for these waves (ignoring the nonlinearities), Ω(k), will typically be anisotropic.
The frequencies of the two input waves satisfy this dispersion relation, ωn = Ω(kn), and the
waves’ forms are

E
(n)
j = ℜ

(

A(n)
j ei(kn·x−ωnt)

)

=
1

2

(

A(n)
j ei(kn·x−ωnt) +A(n)∗

j ei(−kn·x+ωnt)
)

, (10.27)
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Box 10.2

Properties of Some Anisotropic, Nonlinear Crystals

Notation for Second-Order Susceptibilities

In tabulations of the second-order nonlinear susceptibilities dijk, a compressed two-
index notation dab is often used, with the indices running over

a : 1 = x, 2 = y, 3 = z,

b : 1 = xx, 2 = yy, 3 = zz, 4 = yz = zy, 5 = xz = zx, 6 = xy = yx . (1)

Crystals with Large Second-Order Susceptibilities

The following crystals have especially large second-order susceptibilities:

Te: Tellurium d33 = dzzz = 650 pm V−1

CdGeAs2 d36 = dzyx = 450 pm V−1

Se: Selenium d33 = dzzz = 160 pm V−1 . (2)

However, they are not widely used in nonlinear optics because some of their other proper-
ties are unfavorable. On the other hand, glasses containing Tellurium or Sellenium have
moderately large nonlinearities and are useful.

KH2PO4, Potassium Dihidrogen Phosphate; also called KDP

This is among the most widely used nonlinear crystals in 2013, not because of its
nonlinear susceptibilities (which are quite modest) but because (i) it can sustain large
electric fields without suffering damage, (ii) it is highly birefringent (different light speeds
in different directions and for different polarizations), which as we shall see in Sec. 10.6.3
is useful for phase matching), and (iii) it has large electro-optic coefficients (end of Sec.
10.5). At linear order, it is axisymmetric around the z-axis, and its indices of refrac-
tion and susceptibilities have the following dependence on wavelength λ (measured in
microns), which we shall use in Sec. 10.6.3:

(no)
2 = 1 + χxx = 1 + χyy = 2.259276 +

0.01008956

λ2 − 0.012942625
+

13.005522λ2

λ2 − 400
,

(ne)
2 = 1 + χzz = 2.132668 +

0.008637494

λ2 − 0.012281043
+

3.2279924λ2

λ2 − 400
. (3)

The second-order nonlinearities break the axisymmetry of KDP, giving rise to

d36 = dzyx = 0.44 pm V−1 . (4)

Although this is three orders of magnitude smaller than the largest nonlinearities avail-
able, its smallness is compensated by its ability to sustain large electric fields.



27

Box 10.2 (continued)

KTiOPO4, Potassium Titanyl Phosphate; also known as KTP

This is quite widely used in 2013, e.g. in green laser pointers (Ex. 10.13). At linear
order it is non-axisymmetric, but with only modest birefringence: its indices of refraction
along its three principal axes, at the wavelengths λ = 1064µm and 532µm, are

1064µm : nx =
√

1 + χxx = 1.740 , ny =
√

1 + χyy = 1.747 , nz =
√

1 + χzz = 1.830 ;

532µm : nx =
√

1 + χxx = 1.779 , ny =
√

1 + χyy = 1.790 , nz =
√

1 + χzz = 1.887 ;

(5)

Its third order nonlinearities are moderately large: in units pm V−1

d31 = dzxx = 6.5 , d32 = dzyy = 5.0 , d33 = dzzz = 13.7 ,

d24 = dxyz = dxzy = 7.6 , d15 = dxxz = dxzx = 7.6 . (6)

Notice that symmetry on the first index is modestly broken: dzxx = 6.5 6= dxxz = 7.6.
This symmetry breaking is caused by the crystal’s dissipating a small portion of the light
power that drives it.

Evolution of Materials

Over the past three decades materials scientists have found and developed nonlinear
crystals with ever improving properties. By the time you read this book, the most widely
used crystals are likely to have changed.

where we have denoted their vectorial complex amplitudes by A(n)
j . We shall adopt the

convention that wave 1 is the wave with the larger frequency, so ω1 − ω2 ≥ 0.
These two input waves couple, via the second-order nonlinear susceptibility dijk, to pro-

duce the following contribution to the medium’s nonlinear polarization vector:

P
(3)
i = 2ǫ0dijk 2E

(1)
j E

(2)
k

= ǫ0dijk

(

A(1)
j A(2)

k ei(k1+k2)·xei(ω1+ω2)t + A(1)
j A(2)∗

k ei(k1−k2)·xei(ω1−ω2)t + cc
)

,(10.28)

where “cc” means complex conjugate.5 This sinusoidally oscillating polarization produces
source terms in Maxwell’s equations (10.16b) and the wave equation (10.19): an oscillating,
polarization-induced charge density ρP = −∇ ·P(3) and current density jP = ∂P(3)/∂t. This
polarization charge and current, like P(3) itself [Eq. (10.28)], consist of two traveling waves,
one with frequency and wave vector

ω3 = ω1 + ω2 , k3 = k1 + k2 ; (10.29a)

the other with frequency and wave vector

ω3 = ω1 − ω2 , k3 = k1 − k2 . (10.29b)

5The reason for the factor 2 in the defintion Pi = 2ǫ0dijkEjEk is to guarantee a factor unity in Eq. (10.28)
and in the resulting coupling constant κ of Eq. (10.38) below.



28

If either of these (ω3,k3) satisfies the medium’s dispersion relation ω = Ω(k), then the

polarization will generate an electromagnetic wave E
(3)
j that propagates along in resonance

with its polarization-vector source in the wave equation

∇2E(3) −∇(∇ ·E(3)) +
ω2
3

c2
ǫ · E(3) =

1

c2ǫ0

∂2P(3)

∂t2
(10.30)

[the frequency-ω3 part of Eq. (10.22a)]. Therefore, this new electromagnetic wave, with
frequency ω3 and wave vector k3, will grow as it propagates.

For most choices of the input waves, i.e. most choices of {k1, ω1 = Ω(k1), k2, ω2 = Ω(k2)},
neither of the polarizations P(3) will have a frequency ω3 = ω1 ± ω2 and wave vector k3 =
k1±k2 that satisfy the medium’s dispersion relation, and thus neither will be able to create
a third electromagnetic wave resonantly; the wave-wave mixing is ineffective. However, for
certain special choices of the input waves, resonant coupling will be achieved, and a strong
third wave will be produced. See Sec. 10.6.3 below for details.

In nonlinear optics, enforcing the resonance conditions (10.29), with all three waves
satisfying their dispersion relations, is called phase matching, because it guarantees that the
new wave propagates along in phase with the polarization produced by the the two old waves.

The resonance conditions (10.29) have simple quantum mechanical interpretations—a
fact that is not at all accidental: quantum mechanics underlies the classical theory that
we are developing. Each classical wave is carried by photons that have discrete energies
En = ~ωn and discrete momenta pn = ~kn. The input waves are able to produce, resonantly,
waves with ω3 = ω1 ± ω2 and k3 = k1 ± k2, if those waves satisfy the dispersion relation.
Restated in quantum mechanical terms, the condition of resonance with the “+” sign rather
than the “−” is

E3 = E1 + E2 , p3 = p1 + p2 . (10.31a)

This has the quantum mechanical meaning that one photon of energy E1 and momentum p1,
and another of energy E2 and momentum p2 combine together, via the medium’s nonlineari-
ties, and are annihilated (in the language of quantum field theory), and by their annihilation
they create a new photon with energy E3 = E1+ E2 and momentum p3 = p1 +p2. Thus, the
classical condition of resonance is the quantum mechanical condition of energy-momentum
conservation for the sets of photons involved in a quantum annihilation and creation pro-
cess. For this process to proceed, not only must energy-momentum conservation be satisfied,
but all three photons must have energies and momenta that obey the photons’ semiclassical
Hamiltonian relation E = H(p) (i.e., the dispersion relation ω = Ω(k) with H = ~Ω, E = ~ω,
and p = ~k).

Similarly, the classical conditions of resonance with the “−” sign rather than the “+” can
be written (after bringing photon 2 to the left-hand side) as

E3 + E2 = E1 , p3 + p2 = p1 . (10.31b)

This has the quantum mechanical meaning that one photon of energy E1 and momentum
p1 gets annihilated, via the medium’s nonlinearities, and from its energy and momentum
there are created two photons, with energies E2, E3 and momenta p2, p3 that satisfy energy-
momentum conservation.
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10.6.2 Three-Wave-Mixing Evolution Equations in a Medium

that is Dispersion-Free and Isotropic at Linear Order

Consider the simple, idealized case where the linear part of the susceptibility χjk is isotropic
and frequency-independent, χjk = χ0gjk, and correspondingly Maxwell’s equations imply
∇ ·E = 0. The Track-One part of this chapter will be confined to this idealized case. In the
next section (Track Two), we shall treat the more realistic case, which has dispersion and
anisotropy at linear order.

In our idealized case, the dispersion relation, ignoring the nonlinearities, takes the simple,
nondispersive form [which follows from Eq. (10.20)]

ω =
c

n
k, where k = |k|, n =

√

1 + χ0 . (10.32)

Consider three-wave mixing for waves 1, 2, and 3 that all propagate in the same z direction
with wave numbers that satisfy the resonance condition k3 = k1 + k2. The dispersion-free
dispersion relation (10.32) guarantees that the frequencies will also resonate, ω3 = ω1+ω2. If

we write the new wave as E
(3)
i = ℜ(A(3)

i ei(k3z−ω3t)) = 1
2
A(3)

i ei(k3z−ω3t) + cc, then its evolution
equation (10.30), when combined with Eqs. (10.27) and (10.28), will take the form

∇2
(

A(3)
i ei(k3z−ω3t)

)

+
n2ω2

3

c2
A(3)

i ei(k3z−ω3t) = −2
ω2
3

c2
dijkA(1)

j A(2)
k ei(k3z−ω3t) . (10.33)

Using the dispersion relation (10.32) and the fact that the lengthscale on which wave 3
changes is long compared to its wavelength (which is always the case because the fields are

always much weaker than 1010 V m−1), the left-hand side becomes 2ik3dA(3)
i /dz, and Eq.

(10.33) then becomes (with the aid of the dispersion relation) dA(3)
i /dz = i(k3/n

2)dijkA(1)
j A(2)

k .
This and similar computations for evolution of the other two waves (Ex. 10.8) give the fol-
lowing equations for the rates of change of the three waves’ complex amplitudes:

dA(3)
i

dz
= i

k3
n2
dijkA(1)

j A(2)
k at ω3 = ω1 + ω2 , k3 = k1 + k2 ; (10.34a)

dA(1)
i

dz
= i

k1
n2
dijkA(3)

j A(2)∗
k at ω1 = ω3 − ω2 , k1 = k3 − k2 ; (10.34b)

dA(2)
i

dz
= i

k2
n2
dijkA(3)

j A(1)∗
k at ω2 = ω3 − ω1 , k2 = k3 − k1 . (10.34c)

Therefore, each wave’s amplitude changes with distance z travelled at a rate proportional
to the product of the field strengths of the other two waves.

It is instructive to rewrite the evolution equations (10.34) in terms of renormalized scalar

amplitudes An and unit-normed polarization vectors f
(n)
j for the three waves n = 1, 2, 3:

A(n)
j =

√

2kn
ǫ0n2

An f
(n)
j =

√

2ωn

ǫ0c n
An f

(n)
j . (10.35)

This renormalization is motivated by the fact that |An|2 is proportional to the flux of quanta
dNn/dAdt associated with wave n. Specifically: the energy density in wave n is (neglecting
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nonlinearities) U = ǫo(1 + χo)E2 = 1
2
ǫon

2|A(n)|2 (where the bar means time average); the
energy flux is this U times the wave speed c/n:

Fn =
1

2
ǫonc|A(n)|2 = ωn|An|2 ; (10.36)

and the flux of quanta is this Fn divided by the energy En = ~ωn of each quantum:
dNn/dAdt = |An|2/~.

The 3-wave-mixing evolution equations (10.34), rewritten in terms of the renormalized
amplitudes, take the simple form

dA3

dz
= iκA1A2 ,

dA1

dz
= iκA3A

∗
2 ,

dA2

dz
= iκA3A

∗
1 ; κ =

√

2ω1ω2ω3

ǫ0c3n3
dijk f

(1)
i f

(2)
j f

(3)
k .

(10.37)
It is straightforward to verify that these evolution equations guarantee energy conservation
d/dz(F1+F2+F3) = 0, with Fn given by Eq. (10.36). Therefore, at least one wave will grow
and at least one wave will decay due to three-wave mixing.

When waves 1 and 2 are the same wave, the three-wave mixing leads to frequency doubling :
ω3 = 2ω1. In this case, the nonlinear polarization that produces the third wave is Pi =
ǫ0dijkE

(1)
j E

(2)
k , by contrast with that when waves 1 and 2 are different, Pi = 2ǫ0dijkE

(1)
j E

(2)
j

[Eq. (10.28)]. [In the latter case the factor 2 arises because we are dealing with cross terms

in (E
(1)
j + E

(2)
j )(E

(1)
k + E

(2)
k ).] Losing the factor 2 and making wave 2 the same as wave 1

leads to an obvious modification of the evolution equations (10.37):

dA3

dz
=
iκ

2
(A1)

2 ,
dA1

dz
= iκA3A

∗
1 ; κ =

1

c

√

ω2
1ω3

n3
dijk f

(1)
i f

(1)
j f

(3)
k . (10.38)

Once again, it is easy to verify energy conservation, d/dz(F1 + F3) = 0. We shall discuss
frequency doubling in Sec. 10.7.1.

****************************

EXERCISES

Exercise 10.8 Derivation: Evolution Equations in Idealized Three-Wave Mixing

Derive Eqs. (10.34b) and (10.34c) for the amplitudes of waves 1 and 2 produced by
three-wave mixing.

****************************

10.6.3 T2 Three-Wave Mixing in a Birefringent Crystal:

Phase Matching and Evolution Equations

Ordinary Waves, Extraordinary Waves, and Dispersion Relations
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In reality, all nonlinear media have frequency-dependent dispersion relations and most
are anisotropic at linear order and therefore birefringent (different wave speeds in different
directions). An example is the crystal KDP (Box 10.2), which has indices of refraction

no =
√

1 + χxx =
√

1 + χyy , ne =
√

1 + χzz; , (10.39)

that depend on the light’s wave number k = 2π/λ in the manner shown in Fig. 10.12a and in
Eq. (3) of Box 10.2. The subscript “o” stands for ordinary ; e, for extraordinary ; see below.

Maxwell’s equations imply that, in this crystal, for plane, monochromatic waves prop-
agating in the x − z plane at an angle θ to the symmetry axis [k = k(sin θex + cos θez)],
there are two dispersion relations corresponding to the two polarizations of the electric field:
(i) If E is orthogonal to the symmetry axis, then (as is shown in Ex. 10.9), it must also
be orthogonal to the propagation direction (i.e., must point in the ey direction), and the
dispersion relation is

ω/k

c
= (phase speed in units of speed of light) =

1

no
, (10.40a)

independent of the angle θ. These waves are called ordinary, and their phase speed (10.40a)
is the lower curve in Fig. 10.12a; at k = 10µm−1 (point A), the phase speed is 0.663c, while
at k = 20µm−1, it is 0.649c. (ii) If E is not orthogonal to the symmetry axis, then (Ex.
10.9) it must lie in the plane formed by k and the symmetry axis (the x − z) plane, with
Ex/Ez = −(ne/no)

2 cot θ [which means that E is not orthogonal to the propagation direction
unless the crystal is isotropic, ne = no, which it is not]; and the dispersion relation is

ω/k

c
=

1

n
=

√

cos2 θ

n2o

+
sin2 θ

n2e

. (10.40b)

In this case the waves are called extraordinary. As the propagation direction varies from
parallel to the symmetry axis (cos θ = 1) to perpendicular (sin θ = 1), this extraordinary
phase speed varies from c/no (the lower curve in Fig. 10.12; 0.663c at k = 10µm−1), to c/ne
(the upper curve; 0.681c at k = 10µm−1).

Phase Matching for Frequency Doubling in a KDP Crystal

This birefringence enables one to achieve phase matching (satisfy the resonance con-
ditions) in three-wave mixing. As an example, consider the resonance conditions for a
frequency-doubling device (discussed in further detail in the next section): one in which
the two input waves are identical, so k1 = k2 and k3 = 2k1 point in the same direction.
Let this common propagation direction be at an angle θ to the symmetry axis. Then the
resonance conditions reduce to the demands that the output wave number be twice the in-
put wave number, k3 = 2k1, and the output phase speed be the same as the input phase
speed, ω3/k3 = ω1/k1. Now, for waves of the same type (both ordinary or both extraor-
dinary), the phase speed is a monotonic decreasing function of wave number [Fig. 10.12a
and Eqs. (10.40)], so there is no choice of propagation angle θ that enables these resonance
conditions to be satisfied. The only way to satisfy them is by using ordinary input waves and
extraordinary output waves, and then only for a special, frequency-dependent propagation
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Fig. 10.12: (a) The inverse of the index of refraction n
−1 (equal to the phase speed in units of

the speed of light) for electromagnetic waves propagating at an angle θ to the symmetry axis of
a KDP crystal, as a function of wave number k in reciprocal microns. See Eq. (10.40a) for lower
curve and Eq. (10.40b) with θ = π/2 for upper curve. For extraordinary waves propagating at an
arbitrary angle θ to the crystal’s symmetry axis, n−1 is a mean [Eq. (10.40b)] of the two plotted
curves. The plotted curves are fit by the analytical formulae (3) of Box 10.2. (b) The angle θ to
the symmetry axis at which ordinary waves with wave number k1 (e.g. point A) must propagate in
order that 3-wave mixing be able to produce frequency doubled or phase conjugated extraordinary
waves (e.g. point B).

direction. This technique is called type I phase matching ; “type I” because there are other
techniques for phase matching (i.e. for arranging that the resonance conditions be satisfied);
see, e.g., Ex. 10.13d.

As an example, if the input waves are ordinary, with k1 = 10µm−1 (approximately the
value for light from a ruby laser; point A in Fig. 10.12a), then the output waves must be
extraordinary and must have the same phase speed as the input waves (same height in
Fig. 10.12a) and have k3 = 2k1 = 20µm−1 (i.e., point B). This phase speed is between
c/ne(2k1) and c/no(2k1), and thus can be achieved for a special choice of propagation angle:
θ = 56.7o (point A in Fig. 10.12b). In general, Eqs. (10.40) imply that the unique propagation
direction θ at which the resonance conditions can be satisfied is the following function of the
input wave number k1:

sin2 θ =
1/n2o(k1) − 1/n2o(2k1)

1/n2e(2k1)− 1/n2o(2k1)
. (10.41)

This resonance angle is plotted as a function of wave number for KDP in Fig. 10.12b.
This special case of identical input waves illustrates the very general phenomenon, that

at fixed input frequencies, the resonance conditions can be satisfied only for special, discrete
input and output directions.

For our frequency doubling example, the extraordinary dispersion relation (10.40b) for
the output wave can be rewritten as

ω =
ck

n
= Ωe(k) = c

√

k2z
no(k)2

+
k2x

ne(k)2
, where k =

√

k2x + k2z . (10.42)
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Correspondingly, the group velocity6 V j
g = ∂Ω/∂kj for the output wave has components

V x
g = Vph sin θ

(

n2

n2e

− n2 cos2 θ

n2o

d ln no
d ln k

− n2 sin2 θ

n2e

d ln no
d ln k

)

,

V z
g = Vph cos θ

(

n2

n2o

− n2 cos2 θ

n2o

d ln no
d ln k

− n2 sin2 θ

n2e

d ln no
d ln k

)

, (10.43)

where Vph = ω/k = c/n is the phase velocity. For an ordinary input wave with k1 = 10µm−1

(point A in Fig. 10.12) and an extraordinary output wave with k3 = 20µm−1 (point B),
these formulae give for the direction of the output group velocity (direction along which the
output waves grow) θg = arctan(V x

g /V
z
g ) = 58.4o, compared to the direction of the common

input-output phase velocity θ = 56.7o; and they give for the magnitude of the group velocity
Vg = 0.628c, compared to the common phase velocity vph = 0.663c. Thus, the differences
between the group velocity and the phase velocity are small, but they do differ.

Evolution Equations

Once one has found wave vectors and frequencies that satisfy the resonance conditions,
the evolution equations for the two (or three) coupled waves have the same form as in the ide-
alized dispersion-free, isotropic case [Eqs. (10.38) or (10.37)], but with minor modifications.
Specifically:

Let planar input waves impinge on a homogeneous, nonlinear crystal at some plane z = 0
and therefore (by symmetry) have energy fluxes inside the crystal that evolve as functions
of z only: Fn = Fn(z) for waves n = 1 and 3 in the case of frequency doubling (or 1, 2, 3 in
the case of three different waves). Then energy conservation dictates that

d

dz

∑

n

Fnz = 0 , (10.44)

where Fn z(z) is the z component of the energy flux for wave n. It is convenient to define
a complex amplitude An for wave n that is related to the wave’s complex electric field
amplitude by an analog of Eq. (10.35):

A(n)
j = ζn

√

2ωn

ǫ0c n
Anf

(n)
j . (10.45)

Here f
(n)
j is the wave’s polarization vector, nn is its index of refraction (defined by ωn/kn =

c/nn), and ζn is some positive real constant that depends on the relative directions of kn,
f (n), ez and has a value which ensures that

Fn z = ωn|An|2 (10.46)

[same as Eq. (10.36) but with Fn replaced by Fn z]. Since the energy flux is ~ωn times the
photon number flux, this equation tells us that |An|2/~ is the photon number flux (just like
the idealized case).

6Since a wave’s energy travels with the group velocity, it must be that Vg = E×H/U , where U is the
wave’s energy density, E×H is its Poynting vector (energy flux), and H = B/µ0 (in our dielectric medium).
It can be shown explicitly that this, indeed, is the case.
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Because the evolution equations involve the same photon creation and annihilation pro-
cesses as in the idealized case, they must have the same mathematical form as in the ideal-
ized case [Eqs. (10.38) or (10.37)], except for the magnitude of the coupling constant. (For
a proof see Ex. 10.10.) Specifically, for frequency doubling of a wave 1 to produce wave 3
(ω3 = ω1 + ω2), the resonant evolution equations and coupling constant are:

dA3

dz
=
iκ

2
(A1)

2 ,
dA1

dz
= iκA3A

∗
1 ; κ = β

√

2ω2
1ω3

ǫ0c3n21n3
dijk f

(1)
i f

(1)
j f

(3)
k (10.47)

[cf. Eqs. (10.38) for the idealized case]. For resonant mixing of three different waves (ω3 =
ω1 + ω2), they are:

dA3

dz
= iκA1A2 ,

dA1

dz
= iκA3A

∗
2 ,

dA2

dz
= iκA3A

∗
1 ; κ = β ′

√

2ω1ω2ω3

ǫ0c3n1n2n3
dijk f

(1)
i f

(2)
j f

(3)
k

(10.48)
[cf. Eqs. (10.37) for the idealized case]. Here β and β ′ are constants of order unity that
depend on the relative directions of ez and the wave vectors kn and polarization vectors f (n);
see Ex. 10.10.

It is useful to keep in mind the following magnitudes of the quantitites that appear in
these three-wave-coupling equations (Ex. 10.11)

Fn . 1GWm−2 , |An| . 10−3
√
Jm−1 , κ . 105J−1/2 , |κAn| . 1/cm . (10.49)

We shall use the evolution equations (10.47) and (10.48) in the next section to explore
several applications of three-wave mixing.

****************************

EXERCISES

Exercise 10.9 T2 **Example: Dispersion Relation for an Anisotropic Medium

Consider a wave propagating through a dielectric medium that is anisotropic, but not
necessarily—for the moment—axisymmetric. Let the wave be sufficiently weak that non-
linear effects are unimportant. Define the wave’s displacement vector in the usual way,
Di = ǫ0Ei + Pi [Eq. (10.17)].

(a) Show that

Di = ǫoǫijEj , where ǫij ≡ δij + χij ≡ “dielectric tensor” ; (10.50)

ǫo is often absorbed into the dielectric tensor, but we find it more convenient to nor-
malize ǫij so that in vacuum ǫij = δij .

(b) Show that the wave equation (10.19) for the electric field takes the form

−∇2E+∇(∇ · E) = − 1

c2
ǫ · ∂

2E

∂t2
. (10.51)
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(d) Now specialize to a monochromatic plane wave with angular frequency ω and wave
vector k. Show that the wave equation (10.51) reduces to

LijEj = 0 , where Lij = kikj − k2δij +
ω2

c2
ǫij . (10.52a)

This equation says that Ej is an eigenvector of Lij with vanishing eigenvalue, which is
possible if and only if

det||Lij || = 0 . (10.52b)

This vanishing determinant is the waves’ dispersion relation. We shall use it in Chap.
21 to study waves in plasmas.

(e) Next specialize to an axisymmetric medium and orient the symmetry axis along the z
direction so the only nonvanishing components of ǫij are ǫ11 = ǫ22 and ǫ33, and let the

wave propagate in a direction k̂ that makes an angle θ to the symmetry axis. Show
that in this case Lij has the form

||Lij || = k2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(no/n)
2 − cos2 θ 0 sin θ cos θ
0 (no/n)

2 − 1 0
sin θ cos θ 0 (ne/n)

2 − sin2 θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (10.53a)

and the dispersion relation (10.52b) reduces to

(

1

n2
− 1

n2o

)(

1

n2
− cos2 θ

n2o

− sin2 θ

n2e

)

= 0 , (10.53b)

where 1/n = ω/kc, no =
√
ǫ11 =

√
ǫ22, and ne =

√
ǫ33, in accord with Eq. (10.39).

(f) Show that this dispersion relation has the two solutions (ordinary and extraordinary)
discussed in the text, Eqs. (10.40a) and (10.40b), and show that the electric fields
associated with these two solutions point in the directions described in the text.

Exercise 10.10 T2 **Derivation and Example: Evolution Equations for Realistic Wave-
Wave Mixing

Derive the evolution equations (10.48) for 3-wave mixing. [The derivation of those (10.47)
for frequency doubling is similar.] You could proceed as follows:

(a) Insert expressions (10.27) and (10.28) into the general wave equation (10.30) and ex-
tract the portions with frequency ω3 = ω1 + ω2, thereby obtaining the generalization
of Eq. (10.33):

∇2
(

A(3)
i ei(k3z−ω3t)

)

− ∂2

∂xi∂xj

(

A(3)
j ei(k3z−ω3t)

)

+
ω2
3

c2
ǫijA(3)

j ei(k3z−ω3t)

= −2
ω2
3

c2
dijkA(1)

j A(2)
k eik3z−ω3t . (10.54)
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(b) Infer from the homogeneous wave equation (10.51) for E(3) that ei(k3·x−ω3t) satisfies that
same wave equation. Then, splitting each wave into its scalar field and polarization
vector, A(n)

i ≡ A(n)f
(n)
i , and letting each A(n) be a function of z (because of the

boundary condition that the 3-wave mixing begins at the crystal face z = 0), show

that Eq. (10.54) reduces to α3dA(3)/dz = i(k3/n
2
3)dijkf

(1)
j f

(2)
k A(1)A(2), where α3 is a

constant of order unity that depends on the relative orientations of the unit vectors ez,
f (3), and k̂3. Note that, aside from α3, this is the same evolution equation as for our
idealized isotropic, dispersion-free medium, Eq. (10.34a). Show that, similarly, A(1)(z)
and A(2)(z) satisfy the same equations (10.34b) and (10.34c) as in the idealized case,
aside from multiplicative constants α1 and α2.

(c) Adopting the renormalizations A(n) = ζn
√

ωn/nn An [Eq. (10.45)] with ζn so chosen
that the photon number flux for wave n is proportional to |An|2, show that your
evolution equations for An become Eqs. (10.48), except that the factor β ′ and thence
the value of κ might be different for each equation.

(d) Since the evolution entails one photon with frequency ω1 and one with frequency
ω2 anihilating to produce a photon with frequency ω3, it must be that d|A1|3/dz =
d|A2|3/dz = −d|A3|2/dz. (These are called Manley-Rowe relations.) By imposing this
on your evolution equations in part (c), deduce that all three coupling constants κ
must be the same, and thence also all three β ′ must be the same; and therefore the
evolution equations take precisely the claimed form, (10.48).

Exercise 10.11 T2 **Derivation: Magnitudes of 3-Wave-Mixing Quantities

Derive Eqs. (10.49). Hints: The maximum energy flux in a wave arises from the limit
E . 106Vm−1 on the wave’s electric field to ensure that it not pull electrons out of the
surface of the nonlinear medium; and the maximum coupling constant κ arises from the
largest values |dijk| . 10pm V−1 for materials typically used in 3-wave mixing (Box 10.2).

****************************

10.7 Applications of Three-Wave Mixing: Frequency

Doubling, Optical Parametric Amplification,

and Squeezed Light

10.7.1 Frequency Doubling

Frequency doubling (also called second harmonic generation) is one of the most important
applications of wave-wave mixing. As we have already discussed briefly in Secs. 10.6.2 (Track
One) and 10.6.3 (Track Two), it can be achieved by passing a single wave (which plays the
role of both wave n = 1 and wave n = 2) through a nonlinear crystal, with the propagation
direction chosen to satisfy the resonance conditions. As we have also seen in the previous
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section (Track Two), the crystal’s birefringence and dispersion have little influence on the
growth of the output wave, n = 3 with ω3 = 2ω1; it grows with distance inside the crystal at
a rate given by Eqs. (10.47), which is the same as in the Track-One case of a medium that
is isotropic at linear order, Eqs. (10.38). By doing a sufficiently good job of phase matching
(satisfying the resonance conditions) and choosing the thickness of the crystal appropriately,
one can achieve close to 100% conversion of the input-wave energy into frequency-doubled
energy. More specifically, if wave 1 enters the crystal at z = 0 with A1(0) = A1o which we
choose (without loss of generality) to be real, and if there is no incoming wave 3 so A3(0) = 0,
then the solution to the evolution equations (10.47) or (10.38) is

A3 =
i√
2
A1o tanh

(

κ√
2
A1o z

)

, A1 = A1o sech

(

κ√
2
A1o z

)

. (10.55)

It is easy to see that this solution has the following properties: (i) It satisfies energy con-
servation, 2|A3| + |A1|2 = |A1 o|2. (ii) At a depth z = 1.246/(κA1o) into the crystal, half
the initial energy has been frequency doubled. (iii) As z increases beyond this half-doubling
depth, the light asymptotes to fully frequency doubled.

One might expect the frequency doubling to proceed onward to 4ω1 etc. However, it
typically does not because these higher-frequency waves typically fail to satisfy the crystal’s
dispersion relation.

As an example, the Neodymium:YAG (Nd3+:YAG) laser, which is based on an Yttrium
Aluminum Garnet crystal with trivalent Neodymium impurities, is among the most attractive
of all lasers for a combination of high frequency stability, moderately high power, and high
efficiency. However, this laser operates in the infrared, at a wavelength of 1.064 microns.
For many purposes, one wants optical light. This can be achieved by frequency doubling
the laser’s output, thereby obtaining 0.532 micron (green) light. This is how green laser
pointers, used in lecturing, work (though in 2012 they are typically driven not by Nd:YAG
but rather a relative; see Ex. 10.13.

Frequency doubling also plays a key role in laser fusion, where intense, pulsed laser
beams, focused on a pellet of fusion fuel, compress and heat the pellet to high densities and
temperatures. Because the beam’s energy flux is inversely proportional to the area of its
focused cross section, and because the larger the wavelength, the more seriously diffraction
impedes making the cross section small, it is important to give the beam a very short
wavelength. This is achieved by multiple frequency doublings, which can and do occur in
the experimental setup of laser fusion, though not in typical nonlinear crystals.

****************************

EXERCISES

Exercise 10.12 Derivation: Saturation in Frequency Doubling

Derive the solution (10.55) to the evolution equations (10.47) for frequency doubling, and
verify that it has the claimed properties.
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Fig. 10.13: Structure of a green laser pointer, circa 2012. [From Wikimedia Commons: File:Green-
laser-pointer-dpss-diagrams.jpg .]

Exercise 10.13 **Example: Frequency Doubling in a Green Laser Pointer

Green laser pointers, popular in 2013, have the structure shown in Fig. 10.13. A battery-
driven infrared diode laser puts out 808 nm light that pumps a Nd:YVO4 laser crystal
(Neodymium-doped ytrium vanadate; a relative of Nd:YAG). The 1064 nm light beam from
this Nd:YVO4 laser is frequency doubled by a KTP crystal, resulting in 532 nm green light.
An infrared filter removes all the 880 nm and 1064 nm light from the output, leaving only
the green.

(a) To make the frequency doubling as efficient as possible, the light is focused to as small a
beam radius ̟o as diffraction allows, as it travels through the KTP crystal. Assuming
that the crystal length is L ≃ 1 cm, show that ̟o ≃

√

λL/2π ≃ 10µm (about 10 times
larger than the 1064 nm wavelength). [Hint: use the properties of Gaussian beams;
Sec. 8.5.5]

(b) The 1064 nm beam has an input power W1o ≃ 100 mW as it enters the KTP crystal.
Show that its energy flux and its electric field strength are F ≃ 30 MW m−2 and
A(1) ≃ 160 kV m−1.

(c) Assuming that phase matching has been carried out successfully (i.e., photon energy
and momentum conservation have been enforced), use Eq. (10.47)) or (10.55) for the
growth of the green output light, and KTP’s nonlinear susceptibility [Eq. (6) of Box
10.2], to show that the output green beam has |A3|2 ∼ 0.1A2

1o, corresponding to an
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output power W3 ∼ 0.02W1o ≃ 2 mW. This is close to the maximum legal power for
such a laser pointer in the United States in 2013: 5 mW.

(d) Using the indices of refraction for KTP at 1064 nm and 532 nm listed in Eq. (5) of
Box 10.2, work out the details of how the phase matching (enforcement of energy and
momentum conservation for photons) can be achieved for this frequency doubling in
KTP.

****************************

10.7.2 Optical Parametric Amplification

In optical parametric amplification, the energy of a pump wave is used to amplify an ini-
tially weak signal wave and also amplify an uninteresting idler wave. The waves satisfy
the resonance conditions with ωp = ωs + ωi. The pump wave and signal wave are fed into
an anisotropic nonlinear crystal, propagating in (nearly) the same direction, with nonzero
renormalized amplitudes Apo and Aso at z = 0. The idler wave has Aio = 0 at the entry
plane. Because the pump wave is so strong, it is negligibly influenced by the three-wave
mixing; i.e., Ap remains constant inside the crystal.

The evolution equations for the (renormalized) signal and idler amplitudes are

dAs

dz
= −iκApA

∗
i ,

dAi

dz
= −iκApA

∗
s (10.56)

[Eqs. (10.48) or (10.37)]. For the initial conditions of weak signal wave and no idler wave,
the solution to these equations is

As = Aso cosh(|γ|z) , Ai =
γ

|γ|A
∗
so sinh(|γ|z) ; γ ≡ −iκAp . (10.57)

Thus, the signal field grows exponentially, after an initial pause, with an e-folding length
1/|γ|, which for strong 3-wave nonlinearities is of order a centimeter [Ex. (10.14)].

****************************

EXERCISES

Exercise 10.14 Derivation: e-folding Length for an Optical Parametric Amplifier

Estimate the magnitude of the e-folding length for an optical parametric amplifier that is
based on a strong 3-wave nonlinearity.

****************************
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10.7.3 Degenerate Optical Parameteric Amplification: Squeezed

Light

Consider optical parametric amplification with the signal and idler frequencies identical, so
the idler field is the same as the signal field and the pump frequency is twice the signal
frequency: ωp = 2ωs. This condition is called degenerate. Adjust the phase of the pump field
so that γ = −iκAp is real and positive. Then the equation of evolution for the signal field is
the same as appears in frequency doubling [Eq. (10.47) or (10.38)]:

dAs/dz = γA∗
s . (10.58)

The resulting evolution is most clearly understood by decomposing As into its real and
imaginary parts (as we did in Ex. 6.23 when studying thermal noise in an oscillator): As =
X1 + iX2. Then the time evolving electric field is

E ∝ ℜ(Ase
i(ksz−ωst)) = X1 cos(ksz − ωst) +X2 sin(ksz − ωst) . (10.59)

Therefore, X1 is the amplitude of the field’s cosine quadrature and X2 is the amplitude of
its sine quadrature. Equation (10.58) then says that dX1/dz = γX1, dX2/dz = −γX2, so

X1 = X1oe
γz , X2 = X2oe

−γz . (10.60)

Therefore, the wave’s cosine quadrature gets amplified as the wave propagates, and its sine
quadrature gets attenuated. This is called squeezing because X2 is reduced (squeezed) while
X1 is increased. It is a phenomenon known to children who swing; see Ex. 10.15.

Squeezing is especially interesting when it is applied to noise. Typically, a wave has equal
amounts of noise in its two quadratures, i.e. the standard deviations ∆X1 and ∆X2 of the
two quadratures are equal (as was the case in Ex. 6.23). When such a wave is squeezed, its
two standard deviations get altered in such a way that their product is unchanged:

∆X1 = ∆X1o e
γz ; ∆X2 = ∆X2o e

−γz , ∆X1∆X2 = constant . (10.61)

see Fig. 10.14 below. When, as here, the standard deviations of two quadratures differ, the
light is said to be in a squeezed state.

In quantum theory, X1 and X2 are complementary observables; they are described by
Hermitian operators that do not commute. The uncertainty principle associated with their
noncommutation implies that their product ∆X1∆X2 has some minimum possible value.
This minimum is achieved by the wave’s vacuum state, which has ∆X1 = ∆X2 with values
corresponding to one half quantum of energy (vacuum fluctuations) in the field mode that we
are studying. When this “quantum electrodynamic vacuum” is fed into a degenerate optical
parametric amplifier, the vacuum noise gets squeezed in the same manner (10.60) as any
other noise.

Squeezed states of light, including this squeezed vacuum, have great promise for fun-
damental physics experiments and technology. For example, they can be used to reduce
the photon shot noise of an interferometer or a laser below the “standard quantum limit”
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of ∆N =
√
N (Poisson statistics), thereby improving the signal to noise ratio in certain

communications devices, and in laser interferometer gravitational-wave detectors.7

We explore some properties of squeezed light in Ex. 10.16.

****************************

EXERCISES

Exercise 10.15 ** Example: Squeezing by Children Who Swing

A child, standing in a swing, bends her knees then straightens them twice per swing period,
making the distance ℓ from the swing’s support to her center of mass oscillate as ℓ = ℓ0 +
ℓ1 sin 2ω0t. Here ω0 =

√
gℓ0 is the swing’s mean angular frequency.

(a) Show that the swing’s angular displacement from vertical, θ, obeys the equation of
motion

d2θ

dt2
+ ω2

0θ = −ω2
1 sin(2ω0t)θ , (10.62)

where ω1 =
√
gℓ1 and θ is assumed small, θ ≪ 1.

(b) Write θ = X1 cosω0t +X2 sinω0t. Assuming that ℓ1 ≪ ℓ0 so ω1 ≪ ω0, show that the
child’s knee bending (her “pumping” the swing) squeezes θ:

X1(t) = X1(0)e
−(ω2

1
/8ωo)t , X2(t) = X2(0)e

+(ω2

1
/8ωo)t (10.63)

(c) Explain how this squeezing is related to the child’s conscious manipulation of the swing
— i.e., to her strategy for increasing the swing’s amplitude when she starts up, and
her strategy for reducing the amplitude when she wants to quit swinging.

Exercise 10.16 **Squeezed States of Light

Consider a plane, monochromatic electromagnetic wave with angular frequency ω, whose
electric is expressed in terms of its complex amplitude X1 + iX + 2 by Eq. (10.60). Because
the field (inevitably) is noisy, its quadrature amplitudes X1 and X2 are random processes
with means X̄1, X̄2 and variances ∆X1, ∆X2.

(a) Normal, classical light has equal amounts of noise in its two quadratures. Explain why
it can be represented by Fig. 10.14a.

(b) Explain why Fig. 10.14b represents phase-squeezed light, and show that its electric field
as a function of time has the form shown in Fig. 10.15.

(c) Explain why Fig. 10.14c represents amplitude-squeezed light, and construct a diagram
of its electric field as a function of time analogous to Fig. 10.15.

7For detailed discussions see, e.g., Walls (1983), Wu et al . (1986), and LaPorta et al . (1989).
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Fig. 10.14: Error boxes in the complex amplitude plane for several different electromagnetic waves:
(a) Classical light. (b) Phase-squeezed light. (c) Amplitude-squeezed light. (d) The quantum
electrodynamical vacuum. (e) The squeezed vacuum.

(d) Figure 10.14d represents the vacuum state of light’s frequency-ω plane-wave mode.
Give a formula for the diameter of the mode’s circular error box. Construct a diagram
of the electric field as a function of time analogous to Fig. 10.15.

(e) Figure 10.14e represents the squeezed vacuum. Construct a diagram of its electric field
as a function of time analogous to Fig. 10.15.

E

t

Fig. 10.15: The error band for the electric field E(t), as measured at a fixed location in space,
when phase-squeezed light passes by.

****************************

10.8 Four-Wave Mixing in Isotropic Media

10.8.1 Third-Order Susceptibilities and Field Strengths

The nonlinear polarization for four-wave mixing, P
(4)
i = 4ǫ0χijklEjEkEl, is typically smaller

than that P
(3)
i = 2ǫ0dijkEjEk for 3-wave mixing by ∼ E|χ/d| ∼ (106 Vm−1)(100pmV−1) ∼

10−4. (Here we have used the largest electric field that solids typically can support.) There-
fore (as we have already discussed), only when dijk is greatly suppressed by isotropy of the
nonlinear material does χijkl and 4-wave mixing become the dominant nonlinearity. And in
that case, we expect the propagation lengthscale for strong, cumulative 4-wave mixing to be
∼ 104 larger than that (∼ 1 cm) for the strongest 3-wave mixing; i.e., ℓ4w & 100 m.

In reality, as we shall see in the next subsection, this estimate is overly pessimistic. In
special materials, ℓ4w can be less than a meter (though still much bigger than the 3-wave
mixing’s centimeter). Two factors enable this: (i) If the nonlinear material is a fluid (e.g.
CS2) confined by solid walls, then it can support somewhat larger electric field strengths
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than a nonlinear crystal’s maximum, 106 Vm−1. (ii) If the nonlinear material is made of
molecules significantly larger than 10−10 m (e.g., organic molecules), then the molecular
electric dipoles induced by an electric field can be significantly larger than our estimates
(10.26); and correspondingly, |χijkl| can significantly exceed (100 pm V−1)2; see Table 10.1.

Material Wavelength n χ1111 (pm/V)2 n2 (10−20m2 W−1)
Fused Silica 0.694 µm 1.455 56.4 3.
SF6 glass 1.06 1.77 587. 21.
CS2 liquid 1.06 1.594 6,400. 290.
2-Methyl-4-nitroaniline
(MNA) organic crystal† 1.8 1.69× 105 5,800.

PTS polydiacetylene
polymeric crystal† 1.88 5.53× 105 1.8× 104

†Also has large dijk.

Table 10.1: Materials used in 4-wave mixing. At the indicated light wavelength, n is the index
of refraction, χ1111 is the third-order nonlinear susceptibility, and n2 is the Kerr coefficient of Eq.
(10.70). Adapted from Table 8.8 of Yariv and Yeh (2007).

In the next two subsections, we shall give (i) an example with strong 4-wave mixing: phase
conjugation by a half-meter-long cell containing CS2 liquid; and then (ii) an example with
weak but important 4-wave mixing: light propagation in a multi-kilometer long fused-silica
optical fiber.

10.8.2 Phase Conjugation Via Four-Wave Mixing in CS2 Fluid

As an example of four-wave mixing, we discuss phase conjugation in a rectangular cell that
contains CS2 liquid (Fig. 10.16a).8 The fluid is pumped by two strong waves, 1 and 2,
propagating in opposite directions with the same frequency as the incoming wave 3 that is
to be phase conjugated. The pump waves are planar without modulation, but wave 3 has a
spatial modulation (slow compared to the wave number) that carries, for example, a picture;
A3 = A3(x, y; z). As we shall see, nonlinear interaction of the two pump waves 1 & 2 and
the incoming wave 3 produces outgoing wave 4, which is the phase conjugate of wave 3. All
four waves propagate in planes of constant x and have their electric fields in the x direction,
so the relevant component of the third-order nonlinearity is χxxxx = χ1111.

The resonance conditions (photon energy and momentum conservation) for this 4-wave
mixing process are ω4 = ω1 + ω2 − ω3 and k4 = k1 + k2 − k3. Since the three input waves
all have the same frequency, ω1 = ω2 = ω3 = ω, the output wave 4 will also have ω4 = ω,
so this is fully degenerate four-wave mixing. Since the pump waves propagate in opposite
directions, they satisfy k1 = −k2, whence the output wave has k4 = −k3; i.e., it propagates
in the opposite direction to the input wave 3 and has the same frequency, as it must, if it is
to be (as we claim) the phase conjugate of 3.

8This example is adapted from Sec. 8 of Yariv and Yeh (2007).
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Fig. 10.16: (a) A phase conjugating mirror based on 4-wave mixing. (b) The evolution of the
incoming wave’s flux and the phase conjugated wave’s flux inside the mirror (the nonlinear medium).

The nonlinear polarization that generates wave 4 is P
(4)
x = 4ǫ0χ1111(E

(1)
x E

(2)
x E

(3)
x +

E
(2)
x E

(3)
x E

(1)
x + . . .). There are six terms in the sum (six ways to order the three waves),

so P
(4)
x = 24ǫ0χ1111E

(1)
x E

(2)
x E

(3)
x . Inserting E

(n)
x = 1

2
(A(n)ei(kn·x−ωnt) + A(n)∗ei(−kn+ωnt)) into

this P
(4)
x and plucking out the relevant term for our phase conjugation process (with the

signal wave 3 phase conjugated and the pump waves not), we obtain

P (4)
x = 3ǫ0χ1111A(1)A(2)A(3)∗e−i(k4·x−ω4t) . (10.64)

Inserting these into the wave equation for wave 4 in an isotropic medium, (∇2 + n2ω2
4/c

2)

(A(4)e−i(k4·x−ω4t)) = −ω2
4P

(4)
x [analog of the isotropic-medium wave equation (10.33) for 3-

wave mixing] and making use of the fact that the lengthscale on which wave 4 changes is long
compared to its wavelength, we obtain the following evolution equation for wave 4, which
we augment with that for wave 3, obtained in the same way:

dA(4)

dz
= −3ik

n2
χ1111A(1)A(2)A(3)∗ ,

dA(3)

dz
= −3ik

n2
χ1111A(1)A(2)A(4)∗ . (10.65)

Here we have dropped subscripts from k since all waves have the same scalar wave number,
and we have used the dispersion relation ω/k = c/n common to all four waves since they
all have the same frequency. We have not written down the evolution equations for the
pump waves because in practice they are very much stronger than the incoming and phase
conjugated waves, so they change hardly at all during the evolution.

It is convenient to change normalizations of the wave fields, as in 3-wave mixing, from A(n)

(the electric field) to An (the square root of energy flux divided by frequency, An =
√

Fn/ωn):

A(n) =

√

2k

ǫ0n2
An =

√

2ωn

ǫ0cn
An (10.66)

[Eq. (10.35)]. Inserting these into the evolution equations (10.65) and absorbing the constant
pump-wave amplitudes into a coupling constant, we obtain

dA4

dz
= −iκA∗

3 ,
dA3

dz
= −iκ∗A4 ; κ =

6ω2

c2n2ǫ0
χ1111A1A2 . (10.67)
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These are our final, very simple equations for the evolution of the input and phase
conjugate waves in our isotropic, nonlinear medium (CS2 fluid). Inserting the index of
refraction n = 1.594 and nonlinear susceptibility χ1111 = 6400 (pm/V)2 for CS2 (Table 10.1),
the angular frequency corresponding to 1.06 µm wavelength light from, say, a Nd:YAG laser,
and letting both pump waves n = 1 and 2 have energy fluxes Fn = ω|An|2 = 5 × 1010

W m−2 (corresponding to electric field amplitudes 6.1 × 106 V m−1, six times larger than
good nonlinear crystals can support), we obtain for the magnitude of the coupling constant
|κ| = 1/0.59 m. Thus, the CS2 cell of Fig. 10.16a need only be a half meter thick in order
to produce strong phase conjugation.

For an input wave A3o(x, y) at the cell’s front face z = 0 and no input wave 4, the solution
to the evolution equations (10.67) is easily found to be, in the interior of the cell:

A4(x, y, z) =
κ

|κ|

(

sin[|κ|(z − L)]

cos[|κ|L]

)

A
∗
3o(x, y) , A3(x, y, z) =

(

cos[|κ|(z − L)]

cos[|κ|L]

)

A3o(x, y) .

(10.68)
The corresponding energy fluxes, Fn = ω|An|2 (ignoring the spatial modulation) are plotted
in Fig. 10.16b above, for a crystal thickness L = 1/|κ| = 0.59 m. Notice that the pump
waves amplify the rightward propagating input wave, so it grows from the crystal front to
the crystal back; and at the same time, the interaction of the input wave with the pump
waves generates the leftward propagating phase conjugated wave, which begins with zero
strength at the back of the crystal and grows (when L ∼ 1/|κ|) to be stronger than the input
wave at the crystal front.

****************************

EXERCISES

Exercise 10.17 **Problem: Photon Creation and Annihilation in a Phase-Conjugate Mir-
ror

Describe the creation and annihilation of photons that underlies in a phase-conjugating
mirror’s four-wave mixing. Specifically: how many photons of each wave are created or
annihilated? [Hint: See the discussion of photon creation and annihilation for three-wave
mixing at the end of Sec. 10.6.1.]

Exercise 10.18 **Problem: Spontaneous Oscillation in 4-Wave Mixing

Suppose the thickness of the nonlinear medium of the text’s 4-wave mixing analysis is L =
π/2κ, so the denominators in Eqs. (10.68) are zero. Explain the physical nature of the
resulting evolution of waves 3 and 4.

Exercise 10.19 Problem: Squeezed Light Produced by Phase Conjugation

Suppose a light beam is split in two by a beam splitter. One beam is reflected off an ordinary
mirror, and the other off a phase conjugating mirror, and the beams are then recombined
at the beam splitter. Suppose that the powers returning to the beam splitter are nearly the
same; they differ by a fractional amount ∆P/P = ǫ≪ 1. Show that the recombined light is
in a strongly squeezed state, and discuss how one can guarantee it is phase squeezed, or (if
one prefers) amplitude squeezed.
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****************************

10.8.3 Optical Kerr Effect and Four-Wave Mixing in an Optical

Fiber

Suppose that an isotropic, nonlinear medium is driven by a single input plane wave polarized
in the x direction, Ex = ℜ[Ae−(kz−ωt)]. This input wave produces the following polarization
that propagates along with itself in resonance (Ex. 10.20):

Px = ǫ0χ0Ex + 6ǫ0χ1111E2Ex . (10.69)

Here the second term is due to four-wave mixing, and E2 is the time average of the square
of the electric field, which can be expressed in terms of the energy flux as E2 = F/ǫ0nc. The
four-wave-mixing term can be regarded as a nonlinear correction to χ0: ∆χ0 = 6χ1111E2 =
(6χ111/nc ǫ0)F ; and since the index of refraction is n =

√
1 + χ0, this corresponds to a

fractional change of index of refraction given by

∆n = n2F , where n2 =
3χ1111

n2c ǫ0
. (10.70)

This nonlinear change of n is called the optical Kerr effect, and the coefficient n2 is called
the Kerr coefficient and has dimensions of 1/(energy flux), i.e. m2 W−1. Values for n2 for
several materials are listed in Table 10.1 above.

We have already briefly discussed an important application of the optical Kerr effect: the
self focusing of a laser beam, which plays a key role in mode locked lasers (Sec. 10.2.3) and
also in laser fusion.

The optical Kerr effect is also important in the optical fibers used in modern commu-
nication (e.g., to carry telephone, television, and internet signals to your home). Such
fibers are generally designed to support just one spatial mode of propagation: the funda-
mental Gaussian mode of Sec. 8.5.5 or some analog of it. Their light-carrying cores are
typically made from fused silica, doped with particular impurities, so their Kerr coefficients
are n2 ≃ 3× 10−20 m2 W−1 (Table 10.1). Although the fibers are not spatially homogeneous
and the wave is not planar, one can show (and it should not be surprising) that the fibers
nontheless exhibit the optical Kerr effect, with ∆n = n2Feff . Here Feff , the effective energy
flux, is the light beam’s power P divided by an effective cross sectional area, πσ2

0, with σ0
the Gaussian beam’s radius, defined in Eq. (8.39): Feff = P/πσ2

0; see Sec. 14.1 of Yariv and
Yeh (2007).

As a realistic indication of the importance of the optical Kerr effect in communication
fibers, consider a signal beam with mean power P = 10 mW and a beam radius σ0 = 5µm
and thence effective energy flux Feff = 127 MW m−2. If the wavelength is 2π/k = 0.693µm,
then Table 10.1 gives n = 1.455 and n2 = 3 × 10−20 m2 W−1. When this beam travels a
distance L = 50 km along the fiber, its light experiences a phase shift

∆φ =
∆n

n
kL =

n2

n
FkL ≃ 1.2 radians . (10.71)
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A phase shift of this size or larger can cause significant problems for optical communication.
As examples: (i) Variations of the flux, when pulsed signals are being transmitted, cause
time-varying phase shifts that modify the signals’ phase evolution (self-phase modulation).
One consequence of this is broadening of each pulse; another is a nonlinearly induced chirping
of each pulse (slightly lower frequency at beginning and higher at end). (ii) Fibers generally
carry many channels of communication, with slightly different carrier frequencies, and the
time-varying flux of one channel can modify the phase evolution of another (cross-phase
modulation). Various techniques have been developed to deal with these issues. See, e.g.,
Chap. 14 of Yariv and Yeh (2007).

In long optical fibers, pulse broadening due to the nonlinear optical Kerr effect can be
counterbalanced by a narrowing of a pulse due to linear dispersion (dependence of group
velocity on frequency). The result is an optical soliton, i.e. a pulse of light with a very
special shape that travels down the fiber without any broadening or narrowing [see, e.g.,
Sec. 1.45 of Yariv and Yeh (2007)]. In Sec. 16.3, we shall study, in full mathematical detail,
this same soliton phenomenon for nonlinear waves on the surface of water; and in Sec. (23.6),
we shall study it for nonlinear waves in plasmas.

****************************

EXERCISES

Exercise 10.20 Derivation: Optical Kerr Effect

(a) Derive Eq. (10.69) for the polarization induced in an isotropic medium by a linearly
polarized electromagnetic wave.

(b) Fill in the remaining details of the derivation of Eq. (10.70) doe the optical Kerr effect.

****************************

Bibliographic Note

For a lucid and detailed discussion of lasers and their applications, see Saleh and Teich
(2007), and at a more advanced level, Yariv and Yeh (2007). For less detailed but clear
discussions see standard optics textbooks, such as Ghatak (2010), Hecht (2002), and Jenkins
and White (2001).

For a lucid and very detailed discussion of holography and its applications, see Goodman
(2005). Most optics textbooks contain less detailed but clear discussions. We like Brooker
(2003), Jenkins and White (2001), Ghatak (2010), Hecht (2002), and Sharma (2006).

Wave-wave mixing in nonlinear media is discussed in great detail, with many applica-
tions, by Yariv and Yeh (2007). Some readers might find an earlier book by Yariv (1989)
pedagogically easier; it was written when the subject was less rich, but the foundations were
already in place, and it has a more quantum mechanical focus. The fundamental concepts
of wave-wave mixing and its underlying physical processes are treated especially nicely by
Boyd (2008). A more elementary treatment with focus on applications is given by Saleh and
Teich (2007). Among treatments in standard optics texts, we like Sharma (2006).
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Box 10.3

Important Concepts in Chapter 10

• Lasers, Sec. 10.2

– Spontaneous emission, stimulated emission, and absorption, Sec. 10.2.1

– Population inversion and the basic principles underlying a laser, Sec. 10.2.1

– Types of lasers and their properties, Sec. 10.2.2

• Holography, Sec. 10.3

– Recording a hologram Sec. 10.3.1; Fig 10.6

– Using a hologram to reconstruct a 3D image, Sec. 10.3.2, Fig. 10.8

– Every day applications of holography, Sec. 10.3.2, Ex. 10.5

• Phase conjugation, its relationship to time reversal, and practical applications, Sec. 10.4;
Figs. 10.10, 10.11

– How phase conjugation is achieved via four-wave mixing, Sec. 10.8.2

• Nonlinear susceptibilities in a dielectric crystal, Eqs. (10.21), (10.24a)

– their magnitudes, Eqs. (10.26)

– their influence on Maxwell’s equations, Sec. 10.5

• Opto-electric effects and some applications, end of Sec. 10.5

• Resonance conditions for three-wave mixing and their relationship to creation and anni-
hilation of quanta, Sec. 10.6.1

– Why they can only be satisfied for a special and restricted set of waves, Sec. 10.6.3

• Three-wave mixing: general form of evolution equations, Secs. 10.6.2 and 10.6.3

• Applications of three-wave mixing

– Frequency doubling, Secs. 10.6.2, 10.7.1

– Optical parametric amplification, Sec. 10.7.2

– Squeezed light, and its relationship to degenerate optical parametric amplification,
Sec. 10.7.3

– Squeezing by a swinging child, Ex. 10.15

• Four-wave mixing in an isotropic medium, Sec. 10.8

– Phase conjugation via four-wave mixing, Sec. 10.8.2

– Optical Kerr effect, and its consequences in an optical fiber, Sec. 10.8.3
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