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Chapter 16

Waves

Version 1216.1.K, 7 Sep 2012 Please send comments, suggestions, and errata via email to
kip@caltech.edu or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 16.1

Reader’s Guide

• This chapter relies heavily on Chaps. 13 and 14.

• Chap. 17 (compressible flows) relies to some extent on Secs. 16.2, 16.3 and 16.5 of
this chapter.

• The remaining chapters of this book do not rely significantly on this chapter.

16.1 Overview

In the preceding chapters, we have derived the basic equations of fluid dynamics and devel-
oped a variety of techniques to describe stationary flows. We have also demonstrated how,
even if there exists a rigorous, stationary solution of these equations for a time-steady flow,
instabilities may develop and the amplitude of oscillatory disturbances will grow with time.
These unstable modes of an unstable flow can usually be thought of as waves that interact
strongly with the flow and extract energy from it. Waves, though, are quite general and can
be studied independently of their sources. Fluid dynamical waves come in a wide variety
of forms. They can be driven by a combination of gravitational, pressure, rotational and
surface-tension stresses and also by mechanical disturbances, such as water rushing past a
boat or air passing through a larynx. In this chapter, we shall describe a few examples of
wave modes in fluids, chosen to illustrate general wave properties.

The most familiar types of wave are probably gravity waves on the surface of a large
body of water (Sec. 16.2), e.g. ocean waves and waves on lakes and rivers. We consider
these in the linear approximation and find that they are dispersive in general, though they
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become nondispersive in the long-wavelength (shallow-water) limit, i.e., when they can feel
the water’s bottom. We shall illustrate gravity waves by their roles in helioseismology, the
study of coherent-wave modes excited within the body of the sun by convective overturning
motions. We shall also examine the effects of surface tension on gravity waves, and in this
connection shall develop a mathematical description of surface tension (Box 16.4).

In contrast to the elastodynamic waves of Chap. 12, waves in fluids often develop ampli-
tudes large enough that nonlinear effects become important (Sec. 16.3). The nonlinearities
can cause the front of a wave to steepen and then break—a phenomenon we have all seen at
the sea shore. It turns out that, at least under some restrictive conditions, nonlinear waves
have some very surprising properties. There exist soliton or solitary-wave modes in which
the front-steepening due to nonlinearity is stably held in check by dispersion, so particular
wave profiles are quite robust and propagate for long intervals of time without breaking or
dispersing. We shall demonstrate this by studying flow in a shallow channel. We shall also
explore the remarkable behaviors of such solitons when they pass through each other.

In a nearly rigidly rotating fluid, there is a remarkable type of wave in which the restoring
force is the Coriolis effect, and which have the unusual property that their group and phase
velocities are oppositely directed. These so-called Rossby waves, studied in Sec. 16.4, are
important in both the oceans and the atmosphere.

The simplest fluid waves of all are small-amplitude sound waves—a paradigm for scalar
waves. These are nondispersive, just like electromagnetic waves, and are therefore sometimes
useful for human communication. We shall study sound waves in Sec.16.5 and shall use
them to explore (i) the radiation reaction force that acts back on a wave-emitting object (a
fundamental physics issue), and (ii) matched asymptotic expansions (a mathematical physics
technique). We shall also describe how sound waves can be produced by fluid flows. This will
be illustrated with the problem of sound generation by high-speed turbulent flows—a problem
that provides a good starting point for the topic of the following chapter, compressible flows.

As in Chaps. 14 and 15, readers are urged to watch movies in parallel with reading this
chapter; see Box 16.2.

16.2 Gravity Waves on the Surface of a Fluid

Gravity waves1 are waves on and beneath the surface of a fluid, for which the restoring force
is the downward pull of gravity. Familiar examples are ocean waves and the waves produced
on the surface of a pond when a pebble is thrown in. Less familiar are “g-modes” of vibration
of the sun, discussed at the end of this section.

Consider a small-amplitude wave propagating along the surface of a flat-bottomed lake
with depth ho, as shown in Fig. 16.1. As the water’s displacement is small, we can describe
the wave as a linear perturbation about equilibrium. The equilibrium water is at rest, i.e. it
has velocity v = 0. The water’s perturbed motion is essentially inviscid and incompressible,
so ∇ ·v = 0. A simple application of the equation of vorticity transport, Eq. (14.3), assures
us that, since the water is static and thus irrotational before and after the wave passes, it

1Not to be confused with gravitational waves, which are waves in the relativistic gravitational field (space-
time curvature) that propagate at the speed of light, and which we shall meet in Chap. 27
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Box 16.2

Movies Relevant to this Chapter

We strongly recommend that the reader view the following movies dealing with waves:

• Waves in Fluids, by A. E. Bryson (196?), film in the series by the National Com-
mittee for Fluid Mechanics Films, available in 2012 at http://web.mit.edu/hml/
ncfmf.html .

• Rotating Flows, by Dave Fultz (1969); also at http://web.mit.edu/hml/ncfmf.

html – relevant to Rossby waves, Sec. 16.4.

• Fluid Motion in a Gravitational Field, by Hunter Rouse (196?), available
in 2012 at http://www.iihr.uiowa.edu/research/publications-and-media/

films-by-hunter-rouse/ – relevant to gravity waves on the surface of water,
Sec. 16.2.

must also be irrotational within the wave. Therefore, we can describe the wave inside the
water by a velocity potential ψ whose gradient is the velocity field,

v = ∇ψ . (16.1)

Incompressibility, ∇ · v = 0, applied to this equation, implies that the velocity potential ψ
satisfies Laplace’s equation

∇2ψ = 0 (16.2)

We introduce horizontal coordinates x, y and a vertical coordinate z measured upward
from the lake’s equilibrium surface (cf. Fig. 16.1), and for simplicity we confine attention to

2   /k

z

(x,t)
x

h0

Fig. 16.1: Gravity Waves propagating horizontally across a lake of depth ho.
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a sinusoidal wave propagating in the x direction with angular frequency ω and wave number
k. Then ψ and all other perturbed quantities have the form f(z) exp[i(kx − ωt)] for some
function f(z). More general disturbances can be expressed as a superposition of many of
these elementary wave modes propagating in various horizontal directions (and in the limit,
as a Fourier integral). All of the properties of such superpositions follow straightforwardly
from those of our elementary plane-wave mode (see Secs. 7.2.2 and 7.3), so we shall continue
to focus on it.

We must use Laplace’e equation (16.2) to solve for the vertical variation, f(z), of the
velocity potential. As the horizontal variation at a particular time is ∝ exp(ikx), direct
substitution into Eq. (16.2) gives two possible vertical variations, ψ ∝ exp(±kz). The
precise linear combination of these two forms is dictated by the boundary conditions. The
one that we shall need is that the vertical component of velocity vz = ∂ψ/∂z vanish at the
bottom of the lake (z = −ho). The only combination that can vanish is a sinh function. Its
integral, the velocity potential, therefore involves a cosh function:

ψ = ψ0 cosh[k(z + ho)] exp[i(kx− ωt)]. (16.3)

An alert reader might note at this point that, for this ψ, the horizontal component of
velocity vx = ψ,x = ikψ does not vanish at the lake bottom, in violation of the no-slip
boundary condition. In fact, as we discussed in Sec 14.4, a thin, viscous boundary layer
along the bottom of the lake will join our potential-flow solution (16.3) to nonslipping fluid
at the bottom. We shall ignore the boundary layer under the (justifiable) assumption that
for our oscillating waves it is too thin to affect much of the flow.

Returning to the potential flow, we must also impose a boundary condition at the surface.
This can be obtained from Bernoulli’s law. The version of Bernoulli’s law that we need is
that for an irrotational, isentropic, time-varying flow:

v
2/2 + h + Φ+ ∂ψ/∂t = constant everywhere in the flow (16.4)

[Eqs. (13.50), (13.54)]. We shall apply this law at the surface of the perturbed water. Let
us examine each term: (i) The term v

2/2 is quadratic in a perturbed quantity and therefore
can be dropped. (ii) The enthalpy h = u+P/ρ (cf. Box 12.1) is a constant since u and ρ are
constants throughout the fluid and P is constant on the surface (equal to the atmospheric
pressure). [Actually, there will be a slight variation of the surface pressure caused by the
varying weight of the air above the surface, but as the density of air is typically ∼ 10−3 that
of water, this is a very small correction.] (iii) The gravitational potential at the fluid surface
is Φ = gξ, where ξ(x, t) is the surface’s vertical displacement from equilibrium and we ignore
an additive constant. (iv) The constant on the right hand side, which could depend on time
C(t), can be absorbed into the velocity potential term ∂ψ/∂t without changing the physical
observable v = ∇ψ. Bernoulli’s law applied at the surface therefore simplifies to give

gξ +
∂ψ

∂t
= 0 . (16.5)

Now, the vertical component of the surface velocity in the linear approximation is just
vz(z = 0, t) = ∂ξ/∂t. Expressing vz in terms of the velocity potential we then obtain

∂ξ

∂t
= vz =

∂ψ

∂z
. (16.6)



5

Combining this with the time derivative of Eq. (16.5), we obtain an equation for the vertical
gradient of ψ in terms of its time derivative:

g
∂ψ

∂z
= −∂

2ψ

∂t2
. (16.7)

Finally, substituting Eq. (16.3) into Eq. (16.7) and setting z = 0 [because we derived
Eq. (16.7) only at the water’s surface], we obtain the dispersion relation for linearized gravity
waves:

ω2 = gk tanh(kho) (16.8)

How do the individual elements of fluid move in a gravity wave? We can answer this
question by computing the vertical and horizontal components of the velocity by differenti-
ating Eq. (16.3) [Ex. 16.1]. We find that the fluid elements undergo elliptical motion similar
to that found for Rayleigh waves on the surface of a solid (Sec.12.4). However, in gravity
waves, the sense of rotation of the particles is always the same at a particular phase of the
wave, in contrast to reversals found in Rayleigh waves.

We now consider two limiting cases: deep water and shallow water.

16.2.1 Deep Water Waves

When the water is deep compared to the wavelength of the waves, kho ≫ 1, the dispersion
relation (16.8) becomes

ω =
√

gk . (16.9)

Thus, deep water waves are dispersive; their group velocity Vg ≡ dω/dk = 1
2

√

g/k is half

their phase velocity, Vφ ≡ ω/k =
√

g/k. [Note: We could have deduced the deep-water
dispersion relation (16.9), up to a dimensionless multiplicative constant, by dimensional
arguments: The only frequency that can be constructed from the relevant variables g, k, ρ
is
√
gk.]

16.2.2 Shallow Water Waves

For shallow water waves, with kho ≪ 1, the dispersion relation (16.8) becomes

ω =
√

gho k . (16.10)

Thus, these waves are nondispersive; their phase and group velocities are Vφ = Vg =
√
gho.

Below, when studying solitons, we shall need two special properties of shallow water
waves. First, when the depth of the water is small compared with the wavelength, but not
very small, the waves will be slightly dispersive. We can obtain a correction to Eq. (16.10)
by expanding the tanh function of Eq. (16.8) as tanhx = x − x3/3 + . . . . The dispersion
relation then becomes

ω =
√

gho

(

1− 1

6
k2h2o

)

k . (16.11)
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Second, by computing v = ∇ψ from Eq. (16.3), we find that in the shallow-water limit the
horizontal motions are much larger than the vertical motions, and are essentially independent
of depth. The reason, physically, is that the fluid acceleration is produced almost entirely by
a horizontal pressure gradient (caused by spatially variable water depth) that is independent
of height; see Ex. 16.1.

Often shallow-water waves have heights ξ that are comparable to the water’s undisturbed
depth ho, and ho changes substantially from one region of the flow to another. A familiar
example is an ocean wave nearing a beach. In such cases, the wave equation is modified
by nonlinear and height-dependent effects. In Box 16.3 we derive the equations that govern
such waves, and in Exs. 16.2 and 16.8 and Sec. 16.3 below we explore properties of these
waves.

Box 16.3

Nonlinear Shallow-Water Waves with Variable Depth

Consider a nonlinear shallow-water wave propagating on a body of water with variable
depth. Let ho(x, y) be the depth of the undisturbed water at location (x, y) and let
ξ(x, y, t) be the height of the wave, so the depth of the water in the presence of the wave
is h = ho+ξ. As in the linear-wave case, so also here, the transverse fluid velocity (vx, vy)
inside the water is nearly independent of height z, so the wave is characterized by three
functions ξ(x, y, t), vx(x, y, t) and vy(x, y, t). These functions are governed by the law of
mass conservation and the inviscid Navier Stokes equation (Euler equation).

The mass per unit area is ρh = ρ(ho+ ξ) and the corresponding mass flux (mass crossing
a unit length per unit time) is ρhv = ρ(ho+ξ)v, where v is the 2-dimensional, horizontal
vectorial velocity v = vxex + vyvy. Mass conservation, then, says that ∂[ρ(ho + ξ)]/∂t +
(2)
∇ · [ρ(ho + ξ)v] = 0, where (2)

∇ is the 2-dimensional gradient operator that acts
solely in the horizontal (x, y) plane. Since ρ is constant and ho is time independent, this
becomes

∂ξ/∂t + (2)
∇ · [(ho + ξ)v] = 0 . (1a)

The Navier Stokes equation for v at an arbitrary height z in the water says ∂v/∂t +
(v · (2)∇)v = −(1/ρ) (2)

∇P , and hydrostatic equilibrium says the pressure is the weight
per unit area of the overlying water, P = g(ξ− z)ρ (where height z is measured from the
water’s undisturbed surface). Combining these equations we obtain

∂v/∂t + (v · (2)∇)v + g (2)
∇ · ξ = 0 . (1b)

Equations (1) are used, for example, in theoretical analyses of tsunamis (Ex. 16.2).

****************************

EXERCISES

Exercise 16.1 Example: Fluid Motions in Gravity Waves
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(a) Show that in a gravity wave in water of arbitrary depth, (deep, shallow, or in between),
each fluid element undergoes elliptical motion. (Assume that the amplitude of the
water’s displacement is small compared to a wavelength.)

(b) Calculate the longitudinal diameter of the motion’s ellipse, and the ratio of vertical to
longitudinal diameters, as functions of depth.

(c) Show that for a deep-water wave, kho ≫ 1, the ellipses are all circles with diameters
that die out exponentially with depth.

(d) We normally think of a circular motion of fluid as entailing vorticity, but a gravity
wave in water has vanishing vorticity. How can this vanishing vorticity be compatible
with the circular motion of fluid elements?

(e) Show that for a shallow-water wave, kho ≪ 1, the motion is (nearly) horizontal and
independent of height z.

(f) Compute the fluid’s pressure perturbation δP (x, z, t) inside the fluid for arbitrary
depth. Show that, for a shallow-water wave the pressure is determined by the need to
balance the weight of the overlying fluid, but for general depth, vertical fluid accelera-
tions alter this condition of weight balance.

Exercise 16.2 Example: Shallow-Water Waves with Variable Depth; Tsunamis2

Consider small-amplitude (linear) shallow-water waves in which the height of the bottom
boundary varies, so the unperturbed water’s depth is variable: ho = ho(x, y).

(a) From the theory of non-linear shallow-water waves with variable depth, in Box 16.3,
show that the wave equation for the perturbation ξ(x, y, t) of the water’s height takes
the form

∂2ξ

∂t2
− (2)

∇ · (gho(2)∇ξ) = 0 . (16.12)

Here (2)
∇ is the 2-dimensional gradient operator that acts in the horizonta (x, y) plane.

Note that gho is the square of the wave’s propagation speed C2 (phase speed and group
speed), so this equation takes the form (7.17) that we studied in the geometric optics
approximation in Sec. 7.3.1.

(b) Describe what happens to the direction of propagation of a wave as the depth ho of
the water varies (either as a set of discrete jumps in ho or as a slowly varying ho). As
a specific example, how must the propagation direction change as waves approach a
beach (but when they are sufficiently far out from the beach that nonlinearities have
not yet caused them to begin to break). Compare with your own observations at a
beach.

2Exercise courtesy David Stevenson.
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(c) Tsunamis are gravity waves with enormous wavelengths, ∼ 100 km or so, that propa-
gate on the deep ocean. Since the ocean depth is typically ho ∼ 4 km, tsunamis are
governed by the shallow-water wave equation (16.12). What would you have to do to
the ocean floor to create a lens that would focus a tsunami, generated by an earthquake
near Japan, so that it destroys Los Angeles? For simulations of tsunami propagation,
see, e.g., http://bullard.esc.cam.ac.uk/~taylor/Tsunami.html .

(d) The height of a tsunami, when it is in the ocean with depth ho ∼ 4 km, is only ∼ 1 meter
or less. Use the geometric-optics approximation (Sec. 7.3) to show that the tsunami’s
wavelength decreases as λ ∝

√
ho and its amplitude increases as max(ξ) ∝ 1/ho

1/4 as
the tsunami nears land and the water’s depth ho decreases.

(e) How high, max(ξ), does the tsunami get when nonlinearities become strongly impor-
tant? (Assume a height of 1 m in the deep ocean.) How does this compare with the
heights of historically disastrous tsunamis when they hit land? From your answer you
should conclude that the nonlinearities must play a major role in raising the height.
Equations (1) in Box 16.3 are used by geophysicists to analyze this nonlinear growth of
the tsunami height. If the wave breaks, then these equations fail, and ideas developed
(in rudimentary form) in Ex. 17.7 must be used.

****************************

16.2.3 Capillary Waves and Surface Tension

When the wavelength is very short (so k is very large), we must include the effects of surface
tension on the surface boundary condition. Surface tension can be treated as an isotropic
force per unit length, γ, that lies in the surface and is unaffected by changes in the shape
or size of the surface; see Box 16.4. In the case of a gravity wave, this tension produces on
the fluid’s surface a net downward force per unit area −γd2ξ/dx2 = γk2ξ, where k is the
horizontal wave number. [This downward force is like that on a curved violin string; cf. Eq.
(12.27) and associated discussion.] This additional force must be included in Eq. (16.5) as
an augmentation of ρg. Correspondingly, the effect of surface tension on a mode with wave
number k is simply to change the true acceleration of gravity to an effective acceleration of
gravity

g → g +
γk2

ρ
. (16.13)

The remainder of the derivation of the dispersion relation for deep gravity waves carries over
unchanged, and the dispersion relation becomes

ω2 = gk +
γk3

ρ
(16.14)

[cf. Eqs. (16.9) and (16.13)]. When the second term dominates, the waves are sometimes
called capillary waves. In Exs. 16.6 and 16.7 we explore some aspects of capillary waves. In
Exs. 16.3–16.5 we explore some other aspects of surface tension.
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Box 16.4

Surface Tension

In a water molecule, the two hydrogen atoms stick out from the larger oxygen atom
somewhat like Micky Mouse’s ears, with an H-O-H angle of 105 degrees. This asymmetry
of the molecule gives rise to a large electric dipole moment. In the interior of a body of
water, the dipole moments are oriented rather randomly, but near the water’s surface they
tend to be parallel to the surface and bond with each other so as to create surface tension
— a macroscopically isotropic, two-dimensional tension force (force per unit length) γ
that is confined to the water’s surface.

γ
γ

L

(a)
(b)

z
y

x P

More specifically, consider a line L in the water’s surface, with unit length [drawing
(a) above]. The surface water on one side of L exerts a tension (pulling) force on the
surface water on the other side. The magnitude of this force is γ and it is orthogonal to
the line L regardless of L’s orientation. This is analogous to an isotropic pressure P in
three dimensions, which acts orthogonally across any unit area.

Choose a point P in the water’s surface and introduce local Cartesian coordinates
there with x and y lying in the surface and z orthogonal to it [drawing (b) above]. In this
coordinate system, the 2-dimensional stress tensor associated with surface tension has
components (2)T xx = (2)T yy = −γ, analogous to the 3-dimensional stress tensor for an
isotropic pressure, Txx = Tyy = Tzz = P . We can also use a 3-dimensional stress tensor
to describe the surface tension: Txx = Tyy = −γδ(z); all other Tjk = 0. If we integrate
this 3-dimensional stress tensor through the water’s surface, we obtain the 2-dimensional
stress tensor:

∫

Tjkdz =(2) Tjk; i.e.,
∫

Txxdz =
∫

Tyydz = −γ. The 2-dimensional metric
of the surface is (2)g = g − ez ⊗ ez; in terms of this 2-dimensional metric, the surface
tension’s 3-dimensional stress tensor is T = −γδ(z)(2)g .

Water is not the only fluid that exhibits surface tension; all fluids do so, at the
interfaces between themselves and other substances. For a thin film, e.g. a soap bubble,
there are two interfaces (the top face and the bottom face of the film), so if we ignore the
film’s thickness, its stress tensor is twice as large as for a single surface, T = −2γδ(z)(2)g.

The hotter the fluid, the more randomly are oriented its surface molecules and hence
the smaller the fluid’s surface tension γ. For water, γ varies from 75.6 dyne/cm at T = 0
C, to 72.0 dyne/cm at T = 25 C, to 58.9 dyne/cm at T = 100 C.

In Exs. 16.3–16.5 we explore some applications of surface tension. In Sec. 16.2.3 and
Exs. 16.6 and 16.7, we explore the influence of surface tension on water waves.
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****************************

EXERCISES

Exercise 16.3 Problem: Maximum size of a water droplet
What is the maximum size of water droplets that can form by water very slowly dripping out
of a syringe? and out of a water faucet (whose opening is far larger than that of a syringe)?

Exercise 16.4 Problem: Force Balance for an Interface Between Two Fluids
Consider a point P in the curved interface between two fluids. Introduce Cartesian coor-
dinates at P with x and y parallel to the interface and z orthogonal [as in diagram (b)
of Box 16.4], and orient the x and y axes along the directions of the interface’s “principal
curvatures”, so the local equation for the interface is

z =
x2

2R1
+

y2

2R2
. (16.15)

Here R1 and R2 are the surface’s “principal radii of curvature” at P; note that each of them
can be positive or negative, depending on whether the surface bends up or down along their
directions. Show that, in equilibrium, stress balance ∇ · T = 0 for the surface implies that
the pressure difference across the surface is

∆P = γ

(

1

R1
+

1

R2

)

, (16.16)

where γ is the surface tension.

Exercise 16.5 Challenge: Minimum Area of Soap Film
For a soap film that is attached to a bent wire (e.g. to the circular wire that a child uses to
blow a bubble), the air pressure on the film’s two sides is the same. Therefore, Eq. (16.16)
(with γ replaced by 2γ since the film has two faces) tells us that at every point of the film, its
two principal radii of curvature must be equal and opposite, R1 = −R2. It is an interesting
excercise in differential geometry to show that this means that the soap film’s surface area
is an extremum with respect to variations of the film’s shape, holding its boundary on the
wire fixed. If you know enough differential geometry, prove this extremal-area property of
soap films, and then show that, in order for the film’s shape to be stable, its extremal area
must actually be a minimum.

Exercise 16.6 Problem: Capillary Waves
Consider deep-water gravity waves of short enough wavelength that surface tension must be
included, so the dispersion relation is Eq. (16.14). Show that there is a minimum value of
the group velocity and find its value together with the wavelength of the associated wave.
Evaluate these for water (γ ∼ 70 dyne cm−1). Try performing a crude experiment to verify
this phenomenon.
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Exercise 16.7 Example: Boat Waves
A toy boat moves with uniform velocity u across a deep pond (Fig. 16.2). Consider the wave
pattern (time-independent in the boat’s frame) produced on the water’s surface at distances
large compared to the boat’s size. Both gravity waves and surface-tension or capillary waves
are excited. Show that capillary waves are found both ahead of and behind the boat, and
gravity waves, solely inside a trailing wedge. More specifically:

(a) In the rest frame of the water, the waves’ dispersion relation is Eq. (16.14). Change
notation so ω is the waves’ angular velocity as seen in the boat’s frame and ωo in the
water’s frame, so the dispersion relation is ω2

o = gk + (γ/ρ)k3. Use the doppler shift
(i.e. the transformation between frames) to derive the boat-frame dispersion relation
ω(k).

(b) The boat radiates a spectrum of waves in all directions. However, only those with
vanishing frequency in the boat’s frame, ω = 0, contribute to the time-independent
(“stationary”) pattern. As seen in the water’s frame and analyzed in the geometric
optics approximation of Chap. 7, these waves are generated by the boat (at points
along its horizontal dash-dot trajectory in Fig. 16.2) and travel outward with the group
velocity Vgo. Regard Fig. 16.2 as a snapshot of the boat and water at a particular
moment of time. Consider a wave that was generated at an earlier time, when the boat
was at location P, and that traveled outward from there with speed Vgo at an angle φ
to the boat’s direction of motion. (You may restrict yourself to 0 ≤ φ ≤ π/2.) Identify
the point Q that this wave has reached, at the time of the snapshot, by the angle θ
shown in the figure. Show that θ is given by

tan θ =
Vgo(k) sinφ

u− Vgo(k) cosφ
, (16.17a)

where k is determined by the dispersion relation ω0(k) together with the “vanishing ω”
condition

ω0(k, φ) = uk cosφ . (16.17b)

u

Gravity  
W

aves

gw
P

Q

Vgo

Fig. 16.2: Capillary and gravity waves excited by a small boat (Ex. 16.7).
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(c) Specialize to capillary waves [k ≫
√

gρ/γ]. Show that

tan θ =
3 tanφ

2 tan2 φ− 1
. (16.18)

Demonstrate that the capillary wave pattern is present for all values of θ (including in
front of the boat, π/2 < θ < π, and behind it, 0 ≤ θ ≤ π/2).

(d) Next, specialize to gravity waves and show that

tan θ =
tanφ

2 tan2 φ+ 1
. (16.19)

Demonstrate that the gravity-wave pattern is confined to a trailing wedge with angles
θ < θgw = sin−1(1/3) = 19.47o; cf. Fig. 16.2. You might try to reproduce these results
experimentally.

****************************

16.2.4 Helioseismology

The sun provides an excellent example of the excitation of small amplitude waves in a fluid
body. In the 1960s, Robert Leighton and colleagues discovered that the surface of the sun
oscillates vertically with a period of roughly five minutes and a speed of ∼ 1 km s−1. This
was thought to be an incoherent surface phenomenon until it was shown that the observed
variation was, in fact, the superposition of thousands of highly coherent wave modes excited
within the sun’s interior — normal modes of the sun. Present day techniques allow surface
velocity amplitudes as small as 2 mm s−1 to be measured, and phase coherence for intervals as
long as a year has been observed. Studying the frequency spectrum and its variation provides
a unique probe of the sun’s interior structure, just as the measurement of conventional seismic
waves, as described in Sec.12.4, probes the earth’s interior.

The description of the normal modes of the sun requires some modification of our treat-
ment of gravity waves. We shall eschew details and just outline the principles. First, the
sun is (very nearly) spherical. We therefore work in spherical polar coordinates rather than
Cartesian coordinates. Second, the sun is made of hot gas and it is no longer a good approx-
imation to assume that the fluid is always incompressible. We must therefore replace the
equation ∇·v = 0 with the full equation of continuity (mass conservation) together with the
equation of energy conservation which governs the relationship between the perturbations of
density and pressure. Third, the sun is not uniform. The pressure and density in the unper-
turbed gas vary with radius in a known manner and must be included. Fourth, the sun has a
finite surface area. Instead of assuming that there will be a continuous spectrum of waves, we
must now anticipate that the boundary conditions will lead to a discrete spectrum of normal
modes. Allowing for these complications, it is possible to derive a differential equation for
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Fig. 16.3: (a) Measured frequency spectrum for solar p-modes with different values of the quantum
numbers n, l. The error bars are magnified by a factor 1000. Frequencies for modes with n > 30
and l > 1000 have been measured. (b) Sample eigenfunctions for g and p modes labeled by n
(subscripts) and l (parentheses). The ordinate is the radial velocity and the abscissa is fractional
radial distance from the sun’s center to its surface. The solar convection zone is the shaded region
at the bottom. (Adapted from Libbrecht and Woodard 1991.)

the perturbations to replace Eq. (16.7). It turns out that a convenient dependent variable
(replacing the velocity potential ψ) is the pressure perturbation. The boundary conditions
are that the displacement vanish at the center of the sun and that the pressure perturbation
vanish at the surface.

At this point the problem is reminiscent of the famous solution for the eigenfunctions of
the Schrödinger equation for a hydrogen atom in terms of associated Laguerre polynomials.
The wave frequencies of the sun’s normal modes are given by the eigenvalues of the differential
equation. The corresponding eigenfunctions can be classified using three quantum numbers,
n, l,m, where n counts the number of radial nodes in the eigenfunction and the angular
variation of the pressure perturbation is proportional to the spherical harmonic Y m

l (θ, φ). If
the sun were precisely spherical, the modes with the same n and l but different m would
be degenerate, just as is the case with an atom when there is no preferred direction in
space. However, the sun rotates with a latitude-dependent period in the range ∼ 25 − 30
days and this breaks the degeneracy just as an applied magnetic field in an atom breaks
the degeneracy of the atom’s states (the Zeeman effect). From the observed splitting of
the solar-mode spectrum, it is possible to learn about the distribution of rotational angular
momentum inside the sun.

When this problem is solved in detail, it turns out that there are two general classes of
modes. One class is similar to gravity waves, in the sense that the forces which drive the
gas’s motions are produced primarily by gravity (either directly, or indirectly via the weight
of overlying material producing pressure that pushes on the gas.) These are called g modes.
In the second class (known as p and f modes), the pressure forces arise mainly from the
compression of the fluid just like in sound waves (which we shall study in Sec. 16.5 below).
Now, it turns out that the g modes have large amplitudes in the middle of the sun, whereas
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the p and f modes are dominant in the outer layers [cf. Fig. 16.3(b)]. The reasons for this
are relatively easy to understand and introduce ideas to which we shall return:

The sun is a hot body, much hotter at its center (T ∼ 1.5 × 107 K) than on its surface
(T ∼ 6000 K). The sound speed C is therefore much greater in its interior and so p and
f modes of a given frequency ω can carry their energy flux ∼ ρξ2ω2c (Sec.16.5) with much
smaller amplitudes ξ than near the surface. Therefore the p- and f -mode amplitudes are
much smaller in the center of the sun than near the surface.

The g-modes are controlled by different physics and thus behave differently: The outer
∼ 30 percent (by radius) of the sun is convective (cf. Chap. 18) because the diffusion of heat
is inadequate to carry the huge amount of nuclear energy being generated in the solar core.
The convection produces an equilibrium variation of pressure and density with radius that
are just such as to keep the sun almost neutrally stable, so that regions that are slightly hotter
(cooler) than their surroundings will rise (sink) in the solar gravitational field. Therefore
there cannot be much of a mechanical restoring force which would cause these regions to
oscillate about their average positions, and so the g modes (which are influenced almost
solely by gravity) have little restoring force and thus are evanescent in the convection zone,
and so their amplitudes decay quickly with increasing radius there.

We should therefore expect only p and f modes to be seen in the surface motions and
this is, indeed the case. Furthermore, we should not expect the properties of these modes to
be very sensitive to the physical conditions in the core. A more detailed analysis bears this
out.

16.3 Nonlinear Shallow-Water Waves and Solitons

In recent decades, solitons or solitary waves have been studied intensively in many different
areas of physics. However, fluid dynamicists became familiar with them in the nineteenth
century. In an oft-quoted passage, John Scott-Russell (1844) described how he was riding
along a narrow canal and watched a boat stop abruptly. This deceleration launched a single
smooth pulse of water which he followed on horseback for one or two miles, observing it
“rolling on a rate of some eight or nine miles an hour, preserving its original figure some
thirty feet long and a foot to a foot and a half in height”. This was a soliton – a one
dimensional, nonlinear wave with fixed profile traveling with constant speed. Solitons can
be observed fairly readily when gravity waves are produced in shallow, narrow channels. We
shall use the particular example of a shallow, nonlinear gravity wave to illustrate solitons in
general.

16.3.1 Korteweg-de Vries (KdV) Equation

The key to a soliton’s behavior is a robust balance between the effects of dispersion and the
effects of nonlinearity. When one grafts these two effects onto the wave equation for shallow
water waves, then at leading order in the strengths of the dispersion and nonlinearity one gets
the Korteweg-de Vries (KdV) equation for solitons. Since a completely rigorous derivation
of the KdV equation is quite lengthy, we shall content ourselves with a somewhat heuristic



15

derivation that is based on this grafting process, and is designed to emphasize the equation’s
physical content.

We choose as the dependent variable in our wave equation the height ξ of the water’s
surface above its quiescent position, and we confine ourselves to a plane wave that propagates
in the horizontal x direction so ξ = ξ(x, t).

In the limit of very weak waves, ξ(x, t) is governed by the shallow-water dispersion relation
ω =

√
gho k, where ho is the depth of the quiescent water. This dispersion relation implies

that ξ(x, t) must satisfy the following elementary wave equation [cf. Eq. (16.12)]:

0 =
∂2ξ

∂t2
− gho

∂2ξ

∂x2
=

(

∂

∂t
−

√

gho
∂

∂x

)(

∂

∂t
+
√

gho
∂

∂x

)

ξ . (16.20)

In the second expression, we have factored the wave operator into two pieces, one that
governs waves propagating rightward, and the other leftward. To simplify our derivation
and the final wave equation, we shall confine ourselves to rightward propagating waves, and
correspondingly we can simply remove the left-propagation operator from the wave equation,
obtaining

∂ξ

∂t
+
√

gho
∂ξ

∂x
= 0 . (16.21)

(Leftward propagating waves are described by this same equation with a change of sign.)
We now graft the effects of dispersion onto this rightward wave equation. The dispersion

relation, including the effects of dispersion at leading order, is ω =
√
gho k(1 − 1

6
k2h2o)

[Eq. (16.11)]. Now, this dispersion relation ought to be derivable by assuming a variation
ξ ∝ exp[i(kx − ωt)] and substituting into a generalization of Eq. (16.21) with corrections
that take account of the finite depth of the channel. We will take a short cut and reverse
this process to obtain the generalization of Eq. (16.21) from the dispersion relation. The
result is

∂ξ

∂t
+
√

gho
∂ξ

∂x
= −1

6

√

gho h
2
o

∂3ξ

∂x3
, (16.22)

as a simple calculation confirms. This is the “linearized KdV equation”. It incorporates weak
dispersion associated with the finite depth of the channel but is still a linear equation, only
useful for small-amplitude waves.

Now let us set aside the dispersive correction and tackle the nonlinearity using the equa-
tions derived in Box 16.3. Denoting the depth of the disturbed water by h = ho + ξ, the
nonlinear law of mass conservation [Eq. (1a) of Box 16.3] becomes

∂h

∂t
+
∂(hv)

∂x
= 0 , (16.23a)

and the Navier Stokes equation [Eq. (1b) of Box 16.3] becomes

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= 0 . (16.23b)

Here we have specialized the equations in Box 16.3 to a one-dimensional wave in the channel
and to a constant depth ho of the channel’s undisturbed water. Equations (16.23a) and
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(16.23b) can be combined to obtain

∂
(

v − 2
√
gh

)

∂t
+
(

v −
√

gh
) ∂

(

v − 2
√
gh

)

∂x
= 0 . (16.23c)

This equation shows that the quantity v − 2
√
gh is constant along characteristics that

propagate with speed v −
√
gh. (This constant quantity is a special case of a “Riemann

invariant”, a concept that we shall study in Chap. 17.) When, as we shall require below, the
nonlinearites are modest so h does not differ greatly from ho, these characteristics propagate
leftward, which implies that for rightward propagating waves they begin at early times in
undisturbed fluid where v = 0 and h = ho. Therefore, the constant value of v − 2

√
gh is

−2
√
gho, and correspondingly in regions of disturbed fluid

v = 2
(

√

gh−
√

gho

)

. (16.24)

Substituting this into Eq. (16.23a), we obtain

∂h

∂t
+
(

3
√

gh− 2
√

gho

) ∂h

∂x
= 0 . (16.25)

We next substitute ξ = h− ho and expand to first order in ξ to obtain the final form of our
wave equation with nonlinearities but no dispersion:

∂ξ

∂t
+
√

gho
∂ξ

∂x
= −3ξ

2

√

g

ho

∂ξ

∂x
, (16.26)

where the term on the right hand side is the nonlinear correction.
We now have separate dispersive corrections (16.22) and nonlinear corrections (16.26) to

the rightward wave equation (16.21). Combining the two corrections into a single equation,
we obtain

∂ξ

∂t
+
√

gho

[(

1 +
3ξ

2ho

)

∂ξ

∂x
+
h2o
6

∂3ξ

∂x3

]

= 0 . (16.27)

Finally, we substitute

χ ≡ x−
√

gho t (16.28)

to transform into a frame moving rightward with the speed of small-amplitude gravity waves.
The result is the full Korteweg-deVries or KdV equation:

∂ξ

∂t
+

3

2

√

g

ho

(

ξ
∂ξ

∂χ
+

1

9
h3o
∂3ξ

∂χ3

)

= 0 . (16.29)

16.3.2 Physical Effects in the KdV Equation

Before exploring solutions to the KdV equation (16.29), let us consider the physical effects
of its nonlinear and dispersive terms. The second (nonlinear) term 3

2

√

g/ho ξ∂ξ/∂χ derives
from the nonlinearity in the (v · ∇)v term of the Navier-Stokes equation. The effect of this
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nonlinearity is to steepen the leading edge of a wave profile and flatten the trailing edge
(Fig. 16.4.) Another way to understand the effect of this term is to regard it as a nonlinear
coupling of linear waves. Since it is nonlinear in the wave amplitude, it can couple together
waves with different wave numbers k. For example, if we have a purely sinusoidal wave
∝ exp(ikx), then this nonlinearity will lead to the growth of a first harmonic ∝ exp(2ikx).
Similarly, when two linear waves with spatial frequencies k, k′ are superposed, this term will
describe the production of new waves at the sum and difference spatial frequencies. We have
already met such wave-wave coupling in our study of nonlinear optics (Chap. 10), and in
the route to turbulence for rotating Couette flow (Fig. 15.16), and we shall meet it again in
nonlinear plasma physics (Chap. 23).

The third term in (16.29), 1
6

√

g/ho h
3
o ∂

3ξ/∂χ3, is linear and is responsible for a weak
dispersion of the wave. The higher-frequency Fourier components travel with slower phase
velocities than lower-frequency components. This has two effects. One is an overall spreading
of a wave in a manner qualitatively familiar from elementary quantum mechanics; cf. Ex.
7.2. For example, in a Gaussian wave packet with width ∆x, the range of wave numbers k
contributing significantly to the profile is ∆k ∼ 1/∆x. The spread in the group velocity is
then ∼ ∆k ∂2ω/∂k2 ∼ (gho)

1/2h2o k∆k [cf. Eq. (16.11)]. The wave packet will then double in
size in a time

tspread ∼
∆x

∆vg
∼

(

∆x

ho

)2
1

k
√
gho

. (16.30)

The second effect is that since the high-frequency components travel somewhat slower than
the low-frequency components, there will be a tendency for the profile to become asymmetric
with the leading edge less steep than the trailing edge.

Given the opposite effects of these two corrections (nonlinearity makes the wave’s leading
edge steeper; dispersion reduces its steepness), it should not be too surprising in hindsight
that it is possible to find solutions to the KdV equation with constant profile, in which
nonlinearity balances dispersion. What is quite surprising, though, is that these solutions,
called solitons, are very robust and arise naturally out of random initial data. That is to
say, if we solve an initial value problem numerically starting with several peaks of random
shape and size, then although much of the wave will spread and disappear due to dispersion,
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Fig. 16.4: Steepening of a Gaussian wave profile by the nonlinear term in the KdV equation. The
increase of wave speed with amplitude causes the leading part of the profile to steepen with time
and the trailing part to flatten. In the full KdV equation, this effect can be balanced by the effect
of dispersion, which causes the high-frequency Fourier components in the wave to travel slightly
slower than the low-frequency components. This allows stable solitons to form.
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Fig. 16.6: Profile of the single-soliton solution (16.33), (16.31) of the KdV equation. The width
χ1/2 is inversely proportional to the square root of the peak height ξo.

we will typically be left with several smooth soliton solutions, as in Fig. 16.5.

16.3.3 Single-Soliton Solution

We can discard some unnecessary algebraic luggage in the KdV equation (16.29) by trans-
forming both independent variables using the substitutions

ζ =
ξ

ho
, η =

3χ

ho
=

3(x−
√
gho t)

ho
, τ =

9

2

√

g

ho
t . (16.31)

The KdV equation then becomes

∂ζ

∂τ
+ ζ

∂ζ

∂η
+
∂3ζ

∂η3
= 0 . (16.32)

There are well understood mathematical techniques3 for solving equations like the KdV
equation. However, we shall just quote solutions and explore their properties. The simplest

3See, for example, Whitham (1974).
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solution to the dimensionless KdV equation (16.32) is

ζ = ζ0 sech2

[

(

ζ0
12

)1/2 (

η − 1

3
ζ0τ

)

]

. (16.33)

This solution describes a one-parameter family of stable solitons. For each such soliton (each
ζ0), the soliton maintains its shape while propagating at speed dη/dτ = ζ0/3 relative to a
weak wave. By transforming to the rest frame of the unperturbed water using Eqs. (16.31)
and (16.28), we find for the soliton’s speed there;

dx

dt
=

√

gho

[

1 +

(

ξo
2ho

)]

. (16.34)

The first term is the propagation speed of a weak (linear) wave. The second term is the
nonlinear correction, proportional to the wave amplitude ξo = hoζo. The half width of
the wave may be defined by setting the argument of the hyperbolic secant to unity. It is
η1/2 = (12/ζo)

1/2, corresponding to

x1/2 = χ1/2 =

(

4h3o
3ξo

)1/2

. (16.35)

The larger the wave amplitude, the narrower its length and the faster it propagates; cf.
Fig. 16.6.

Let us return to Scott-Russell’s soliton. Converting to SI units, the speed was about 4 m
s−1 giving an estimate of the depth of the canal as ho ∼ 1.6 m. Using the width x1/2 ∼ 5 m,
we obtain a peak height ξo ∼ 0.25 m, somewhat smaller than quoted but within the errors
allowing for the uncertainty in the definition of the width and an (appropriate) element of
hyperbole in the account.

16.3.4 Two-Soliton Solution

One of the most fascinating properties of solitons is the way that two or more waves interact.
The expectation, derived from physics experience with weakly coupled normal modes, might
be that, if we have two well separated solitons propagating in the same direction with the
larger wave chasing the smaller wave, then the larger will eventually catch up with the
smaller, and nonlinear interactions between the two waves will essentially destroy both,
leaving behind a single, irregular pulse which will spread and decay after the interaction.
However, this is not what happens. Instead, the two waves pass through each other unscathed
and unchanged, except that they emerge from the interaction a bit sooner than they would
have had they moved with their original speeds during the interaction. See Fig. 16.7. We
shall not pause to explain why the two waves survive unscathed, save to remark that there
are topological invariants in the solution which must be preserved. However, we can exhibit



20

-25 -20 -15 -10 -5

1
2
3
4
5
6

-10 -5 5 10

1
2
3
4
5
6

5 10 15 20 25

1
2
3
4
5
6

τ = − 9 τ = 0 τ = 9

η

ζ

η
0

ζ

η

ζ

Fig. 16.7: Two-Soliton solution to the dimensionless KdV equation (16.32). This solution describes
two waves well separated for τ → −∞ that coalesce and then separate producing the original two
waves in reverse order as τ → +∞. The notation is that of Eq. (16.36); the values of the parameters
in that equation are η1 = η2 = 0 (so the solitons will be merged at time η = 0), α1 = 1, α2 = 1.4.

one such two-soliton solution analytically:

ζ =
∂2

∂η2
[12 lnF (η, τ)] ,

where F = 1 + f1 + f2 +

(

α2 − α1

α2 + α1

)2

f1f2 ,

and fi = exp[−αi(η − ηi) + α3
i τ ] ; (16.36)

here αi and ηi are constants. This solution is depicted in Fig. 16.7.

16.3.5 Solitons in Contemporary Physics

Solitons were re-discovered in the 1960’s when they were found in numerical simulations of
plasma waves. Their topological properties were soon discovered and general methods to
generate solutions were derived. Solitons have been isolated in such different subjects as the
propagation of magnetic flux in a Josephson junction, elastic waves in anharmonic crystals,
quantum field theory (as instantons) and classical general relativity (as solitary, nonlinear
gravitational waves). Most classical solitons are solutions to one of a relatively small number
of nonlinear ordinary differential equations, including the KdV equation, Burgers’ equation
and the sine-Gordon equation. Unfortunately it has proved difficult to generalize these
equations and their soliton solutions to two and three spatial dimensions.

Just like research into chaos, studies of solitons have taught physicists that nonlinearity
need not lead to maximal disorder in physical systems, but instead can create surprisingly
stable, ordered structures.

****************************

EXERCISES

Exercise 16.8 Example: Breaking of a Dam
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Consider the flow of water along a horizontal channel of constant width after a dam breaks.
Sometime after the initial transients have died away,4 the flow may be described by the
nonlinear, unidirectional, shallow-water wave equations (16.23a) and (16.23b):

∂h

∂t
+
∂(hv)

∂x
= 0 ,

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= 0 . (16.37)

Here h is the height of the flow, v is the horizontal speed of the flow and x is distance along
the channel measured from the location of the dam. Solve for the flow assuming that initially
(at t = 0) h = ho for x < 0 and h = 0 for x > 0 (no water). Your solution should have
the form shown in Fig. 16.8. What is the speed of the front of the water? [Hints: Note
that from the parameters of the problem we can construct only one velocity,

√
gho and no

length except ho. It therefore is a reasonable guess that the solution has the self-similar form
h = ho h̃(ξ), v =

√
gho ṽ(ξ), where h̃ and ṽ are dimensionless functions of the similarity

variable

ξ =
x/t√
gho

. (16.38)

Using this ansatz, convert the partial differential equations (16.37) into a pair of ordinary
differential equations which can be solved so as to satisfy the initial conditions.]

t=0123

h

h

x

o

Fig. 16.8: The water’s height h(x, t) after a dam breaks.

Exercise 16.9 Derivation: Single-Soliton Solution
Verify that expression (16.33) does indeed satisfy the dimensionless KdV equation (16.32).

Exercise 16.10 Derivation: Two-Soliton Solution

(a) Verify, using symbolic-manipulation computer software (e.g., Maple or Mathemat-
ica) that the two-soliton expression (16.36) satisfies the dimensionless KdV equation.
(Warning: Considerable algebraic travail is required to verify this by hand, directly.)

4In the idealized case that the dam is removed instantaneously, there will be no transients and Eqs.
(16.37) will describe the flow from the outset.
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(b) Verify, analytically, that the two-soliton solution (16.36) has the properties claimed
in the text: First consider the solution at early times in the spatial region where
f1 ∼ 1, f2 ≪ 1. Show that the solution is approximately that of the single-soliton
described by Eq. (16.33). Demonstrate that the amplitude is ζ01 = 3α2

1 and find the
location of its peak. Repeat the exercise for the second wave and for late times.

(c) Use a computer to follow, numerically, the evolution of this two-soliton solution as time
η passes (thereby filling in timesteps between those shown in Fig. 16.7).

****************************

16.4 Rossby Waves in a Rotating Fluid

In a nearly rigidly rotating fluid, with the rotational angular velocity Ω parallel or antiparallel
to the acceleration of gravity g = −gez, the Coriolis effect observed in the co-rotating
reference frame (Sec. 14.5) provides the restoring force for an unusual type of wave motion
called “Rossby waves.” These waves are seen in the Earth’s oceans and atmosphere [with
Ω =(Earth’s rotational angular velocity) sin(latitude) ez; see Box 14.3].

For a simple example, we consider the sea above a sloping seabed; Fig. 16.9. We assume
the unperturbed fluid has vanishing velocity v = 0 in the Earth’s rotating frame, and
we study weak waves in the sea with oscillating velocity v. (Since the fluid is at rest in
the equilibrium state about which we are perturbing, we write the perturbed velocity as
v rather than δv.) We assume that the wavelengths are long enough that viscosity and
surface tension are negligible. We also, in this case, restrict attention to small-amplitude
waves so that nonlinear terms can be dropped from our dynamical equations. The perturbed
Navier-Stokes equation (14.51a) then becomes (after linearization)

∂v

∂t
+ 2Ω× v =

−∇δP ′

ρ
. (16.39)

Here, as in Sec. 14.5, δP ′ is the perturbation in the effective pressure [which includes gravi-
tational and centrifugal effects, P ′ = P + ρΦ− 1

2
ρ(Ω× x)2]. Taking the curl of Eq. (16.39),

h

z

y

Fig. 16.9: Geometry of ocean for Rossby waves.
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we obtain for the time derivative of the waves’ vorticity

∂ω

∂t
= 2(Ω · ∇)v . (16.40)

We seek a wave mode with angular frequency ω and wave number k, in which the horizontal
fluid velocity oscillates in the x direction and (in accord with the Taylor-Proudman theorem,
Sec. 14.5.3) is independent of z, so

vx and vy ∝ exp[i(kx− ωt)] ,
∂vx
∂z

=
∂vy
∂z

= 0 . (16.41)

The only allowed vertical variation is in the vertical velocity vz, and differentiating ∇ ·v = 0
with respect to z, we obtain

∂2vz
∂z2

= 0 . (16.42)

The vertical velocity therefore varies linearly between the surface and the sea floor. Now,
one boundary condition is that the vertical velocity must vanish at the surface. The other is
that, at the sea floor z = −h, we must have vz(−h) = −αvy, where α is the tangent of the
angle of inclination of the sea floor. The solution to Eq. (16.42) satisfying these boundary
conditions is

vz =
αz

h
vy . (16.43)

Taking the vertical component of Eq. (16.40) and evaluating ωz = vy,x − vx,y = ikvy, we
obtain

ωkvy = 2Ω
∂vz
∂z

=
2Ωαvy
h

. (16.44)

The dispersion relation therefore has the quite unusual form

ωk =
2Ωα

h
. (16.45)

Rossby waves have interesting properties: They can only propagate in one direction—
parallel to the intersection of the sea floor with the horizontal (our ex direction). Their phase
velocity Vph and group velocity Vg are equal in magnitude but in opposite directions,

Vph = −Vg =
2Ωα

k2h
ex . (16.46)

If we use ∇ · v = 0, we discover that the two components of horizontal velocity are in
quadrature, vx = iαvy/kh. This means that, when seen from above, the fluid circulates with
the opposite sense to the angular velocity Ω.

Rossby waves plays an important role in the circulation of the earth’s oceans; see, e.g.,
Chelton and Schlax (1996). A variant of these Rossby waves in air can be seen as undula-
tions in the atmosphere’s jet stream produced when the stream goes over a sloping terrain
such as that of the Rocky Mountains; and another variant in neutron stars generates gravi-
tational waves (ripples of spacetime curvature) that are a promising source for ground-based
gravitational-wave detectors such as LIGO.
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****************************

EXERCISES

Exercise 16.11 Example: Rossby Waves in a Cylndrical Tank with Sloping Bottom

In the film Rotating Fluids by David Fultz (1969), about 20 minutes 40 seconds into the film,
an experiment is described in which Rossby waves are excited in a rotating cylindrical tank
with inner and outer vertical walls and a sloping bottom. Figure 16.10a is a photograph
of the tank from the side, showing its bottom which slopes upward toward the center, and
a bump on the bottom which generates the Rossby waves. The tank is filled with water,
then set into rotation with an angular velocity Ω; the water is given time to settle down
into rigid rotation with the cylinder. Then the cylinder’s angular velocity is reduced by a
small amount, so the water is rotating at angular velocity ∆Ω ≪ Ω relative to the cylinder.
As the water passes over the hump on the tank bottom, the hump generates Rossby waves.
Those waves are made visible by injecting dye at a fixed radius, through a syringe attached
to the tank. Figure 16.10b is a photograph of the dye trace as seen looking down on the tank
from above. If there were no Rossby waves present, the trace would be circular. The Rossby
waves make it pentagonal. In this exercise you will work out the details of the Rossby waves,
explore their physics, and explain the shape of the trace.

Because the slope of the bottom is cylindrical rather than planar, this is somewhat
different from the situation in the text (Fig. 16.9). However, we can deduce the details
of the waves in this cylindrical case from those for the planar case by geometric-optics
considerations (Sec. 7.3), making modest errors because the wavelength of the waves is not
all that small compared to the circumference around the tank.

(a) Using geometric optics, show that the rays along which the waves propagate are circles
centered on the tank’s symmetry axis.

(b) Focus on the ray that is half way between the inner and outer walls of the tank. Let its
radius be a and the depth of the water there be h, and the slope angle of the tank floor
be α. Introduce quasi-Cartesian coordinates x = aφ, y = −̟, where {̟, φ, z} are
cylindrical coordinates. By translating the Cartesian-coordinate waves of the text into

Fig. 16.10: Rossby waves in a rotating cylinder with sloping bottom. From Fultz (1969).
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quasi-Cartesian coordinates and noting from Fig. 16.10b that five wavelengths must fit
into the circumference around the cylinder, show that the velocity field has the form
v̟, vφ, vz ∝ ei(5φ+ωt) and deduce the ratios of the three components of velocity to each
other. This solution has nonzero radial velocity at the walls — a warning that edge
effects will modify the waves somewhat. This analysis ignores those edge effects.

(c) Because the waves are generated by the ridge on the bottom of the tank, the wave
pattern must remain at rest relative to that ridge, which means it must rotate relative to
the fluid’s frame with the angular velocity dφ/dt = −∆Ω. From the waves’ dispersion
relation deduce ∆Ω/Ω, the fractional slowdown of the tank that had to be imposed, in
order to generate the observed pentagonal wave.

(d) Compute the displacement field δx(̟, φ, z, t) of a fluid element whose undisplaced loca-
tion (in the rigidly rotating cylindrical coordinates) is (̟, φ, z). Explain the pentagonal
shape of the movie’s dye lines in terms of this displacement field.

(e) Compute the wave’s vertical vorticity field ωz (relative to the rigidly rotating flow),
and show that as a fluid element moves, and the vertical vortex line through it shortens
or lengths due to the changing water depth, ωz changes proportionally to the vortex
line’s length (as it must).

****************************

16.5 Sound Waves

So far, our discussion of fluid dynamics has mostly been concerned with flows sufficiently slow
that the density can be treated as constant. We now introduce the effects of compressibility
by discussing sound waves (in a non-rotating reference frame). Sound waves are prototypical
scalar waves and therefore are simpler in many respects than vector electromagnetic waves
and tensor gravitational waves.

Consider a small-amplitude sound wave propagating through a homogeneous, time inde-
pendent fluid. The wave’s oscillations are generally very quick compared to the time for heat
to diffuse across a wavelength, so the pressure and density perturbations are adiabatically
related:

δP = C2δρ , (16.47)

where

C ≡
[(

∂P

∂ρ

)

s

]1/2

, (16.48)

which will turn out to be the wave’s propagation speed — the speed of sound. The per-
turbation of the fluid velocity (which we denote v since the unperturbed fluid is static) is
related to the pressure perturbation by the linearized Euler equation

∂v

∂t
= −∇δP

ρ
. (16.49a)
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A second relation between v and δP can be obtained by combining the linearized law of
mass conservation ρ∂v/∂t = −ρ∇ · v with the adiabatic pressure-density relation (16.47):

∇ · v = − 1

ρC2

∂ δP

∂t
. (16.49b)

By equating the divergence of Eq. (16.49a) to the time derivative of Eq. (16.49b), we obtain
a simple, dispersion-free wave equation for the pressure perturbation:

(

∂2

∂t2
− C2∇2

)

δP = 0 . (16.50)

Thus, as claimed, C is the wave’s propagation speed.
For a perfect gas, this adiabatic sound speed is C = (γP/ρ)1/2 where γ is the ratio of

specific heats (see Ex. 5.4). The sound speed in air at 20◦C is 340m s−1. In water under
atmospheric conditions, it is about 1.5km s−1 (not much different from sound speeds in
solids).

Because the vorticity of the unperturbed fluid vanishes and the wave contains no vorticity-
producing forces, the wave’s vorticity vanishes, ∇ × v = 0. This permits us to express the
wave’s velocity perturbation as the gradient of a velocity potential, v = ∇ψ. Inserting this
into the perturbed Euler equation (16.49a) we get the pressure perturbation expressed in
terms of ψ:

δP = −ρ∂ψ
∂t

, where v = ∇ψ . (16.51)

The first of these relations guarantees that ψ satisfies the same wave equation as δP :

(

∂2

∂t2
− C2∇2

)

ψ = 0 . (16.52)

It is sometimes useful to describe the wave by its oscillating pressure δP and sometimes by
its oscillating potential ψ.

The general solution of the wave equation (16.52) for plane sound waves propagating in
the ±x directions is

ψ = f1(x− Ct) + f2(x+ Ct) , (16.53)

where f1, f2 are arbitrary functions.

****************************

EXERCISES

Exercise 16.12 Problem: Sound Wave in an Inhomogeneous Fluid
Consider a sound wave propagating through a static, inhomogeneous fluid in the absence of
gravity. (The inhomogeneity could arise, e.g., from a spatially variable temperature and/or
chemical composition.) The unperturbed density and sound speed are functions of location
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in space, ρo(x) and C(x), while the equilibrium pressure P is constant (due to hydrostatic
equilibrium) and the equilibrium velocity vanishes.

By repeating the analysis in Eqs. (16.47)–(16.50), show that the wave equation becomes

W
∂2δP

∂t2
−∇ · (WC2

∇δP ) = 0 , where W =
1

ρC2
. (16.54)

[Hint: It may be helpful to employ the concept of Lagrangian vs. Eulerian perturbations, as
described by Eq. (19.41).] Equation (16.54) is an example of the prototypical wave equation
(7.17) that we used in Sec. 7.3.1 to illustrate the geometric-optics formalism. The functional
form of W and the placement of W and C2 (inside vs. outside the derivatives) have no
influence on the wave’s dispersion relation or its rays or phase, in the geometric optics limit,
but they do influence the propagation of the wave’s amplitude. See Sec. 7.3.1.

****************************

16.5.1 Wave Energy

We shall use sound waves to illustrate how waves carry energy. The fluid’s energy density
is U = (1

2
v2 + u)ρ [Table 13.1 with Φ = 0]. The first term is the fluid’s kinetic energy;

the second, its internal energy. The internal energy density can be evaluated by a Taylor
expansion in the wave’s density perturbation:

uρ = [uρ] +

[(

∂(uρ)

∂ρ

)

s

]

δρ+
1

2

[(

∂2(uρ)

∂ρ2

)

s

]

δρ2 (16.55)

where the three coefficients in brackets [] are evaluated at the equilibrium density. The first
term in Eq. (16.55) is the energy of the background fluid, so we shall drop it. The second
term will average to zero over a wave period, so we shall also drop it. The third term can
be simplified using the first law of thermodynamics in the form du = Tds−Pd(1/ρ) (which
implies [∂(uρ)/∂ρ]s = u+ P/ρ), followed by the definition h = u+ P/ρ of enthalpy density,
followed by the first law in the form dh = Tds + dP/ρ, followed by expression (16.48) for
the speed of sound. The result is

(

∂2(uρ)

∂ρ2

)

s

=

(

∂h

∂ρ

)

s

=
C2

ρ
. (16.56)

Inserting this into the third term of Eq. (16.55) and averaging over a wave period and
wavelength, we obtain for the wave energy per unit volume U = 1

2
ρv2 + (C2/2ρ)δρ2. Using

v = ∇ψ [the second of Eqs. (16.51)] and δρ = (ρ/C2)∂ψ/∂t [from δρ = (∂ρ/∂P )sδP =
δP/C2 and the first of Eqs. (16.51)], we bring this into the form

U =
1

2
ρ

[

(∇ψ)2 +
1

C2

(

∂ψ

∂t

)2
]

= ρ(∇ψ)2 . (16.57)

The second equality can be deduced by multiplying the wave equation (16.52) by ψ and
averaging. Thus, there is equipartition of energy between the kinetic and internal energy
terms.
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The energy flux is F = (1
2
v2+h)ρv [Table 13.1 with Φ = 0]. The kinetic energy flux (first

term) is third order in the velocity perturbation and therefore vanishes on average. For a
sound wave, the internal energy flux (second term) can be brought into a more useful form
by expanding the enthalpy per unit mass:

h = [h] +

[(

∂h

∂P

)

s

]

δP = [h] +
δP

ρ
. (16.58)

Here we have used the first law of thermodynamics dh = Tds+ (1/ρ)dP and adiabaticity of
the perturbation, s =constant; and the terms in square brackets are unperturbed quantities.
Inserting this into F = hρv and expressing δP and v in terms of the velocity potential [Eqs.
(16.51)], and averaging over a wave period and wavelength, we obtain for the energy flux
F = ρhv = δP v, which becomes

F = −ρ
(

∂ψ

∂t

)

∇ψ . (16.59)

This equation and Eq. (16.57) are a special case of the scalar-wave energy flux and energy
density discussed in Sec. 7.3.1 and Ex. 7.4 [Eqs. (7.18) with W = ρ/C2].

For a locally plane wave with ψ = ψo cos(k · x−ωt+ϕ) (where ϕ is an arbitrary phase),
the energy density (16.57) is U = 1

2
ρψ2

ok
2, and the energy flux (16.59) is F = 1

2
ρψ2

oωk. Since,

for this dispersion-free wave, the phase and group velocities are both V = (ω/k)k̂ = Ck̂
(where k̂ = k/k is the unit vector pointing in the wave-propagation direction), the energy
density and flux are related by

F = UV = UCk̂ . (16.60)

The energy flux is therefore the product of the energy density and the wave velocity, as we
might have anticipated.

When studying dispersive waves in plasmas (Chaps. 21 and 23) we shall return to the
issue of energy transport, and shall see that just as information in waves is carried at the
group velocity, not the phase velocity, so energy is also carried at the group velocity.

In Sec. 7.3.1 we used the above equations for the sound-wave energy density U and
flux F to illustrate, via geometric-optics considerations, the behavior of wave energy in an
inhomogeneous, time-varying medium.

The energy flux carried by sound is conventionally measured in dB (decibels). The flux
in decibels, FdB, is related to the flux F in W m−2 by

FdB = 120 + 10 log10(F ) . (16.61)

Sound that is barely audible is about 1 dB. Normal conversation is about 50-60 dB. Jet
aircraft and rock concerts can cause exposure to more than 120 dB with consequent damage
to the ear.

16.5.2 Sound Generation

So far in this book, we have been concerned with describing how different types of waves
propagate. It is also important to understand how they are emitted. We now outline some
aspects of the theory of sound generation.
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The reader should be familiar with the theory of electromagnetic wave emission [e.g.,
Chap. 9 of Jackson (1999)]. There, one considers a localised region containing moving
charges and consequently variable currents. The source can be described as a sum over
electric and magnetic multipoles, and each multipole in the source produces a characteristic
angular variation of the distant radiation field. The radiation-field amplitude decays inversely
with distance from the source and so the Poynting flux varies with the inverse square of the
distance. Integrating over a large sphere gives the total power radiated by the source, broken
down into the power radiated by each multipolar component. The ratio of the power in
successive multipole pairs [e.g., (magnetic dipole power)/(electric dipole power) ∼ (electric
quadrupole power)/(electric dipole power)] is typically ∼ (b/λ̄)2, where b is the size of the
source and λ̄ = 1/k is the waves’ reduced wavelength. When λ̄ is large compared to b (a
situation referred to as slow motion since the source’s charges then generally move at speeds
∼ (b/λ̄)c small compared to the speed of light c), the most powerful radiating multipole is
the electric dipole d(t). The dipole’s average emitted power is given by the Larmor formula

P =
d̈2

6πǫ0c3
, (16.62)

where d̈ is the second time derivative of d, the bar denotes a time average, and c is the speed
of light.

This same procedure can be followed when describing sound generation. However, as
we are dealing with a scalar wave, sound can have a monopolar source. As an pedagogical
example, let us set a small, spherical, elastic ball, surrounded by fluid, into radial oscillation
(not necessarily sinusoidal) with oscillation frequencies of order ω, so the emitted waves have
reduced wavelengths of order λ̄ = C/ω. Let the surface of the ball have radius a+ ξ(t), and
impose the slow-motion and small-amplitude conditions that

λ̄≫ a≫ |ξ| . (16.63)

As the waves will be spherical, the relevant outgoing-wave solution of the wave equation
(16.52) is

ψ =
f(t− r/C)

r
, (16.64)

where f is a function to be determined. Since the fluid’s velocity at the ball’s surface must
match that of the ball, we have (to first order in v and ψ)

ξ̇er = v(a, t) = ∇ψ ≃ −f(t− a/C)

a2
er ≃ −f(t)

a2
er , (16.65)

where in the third equality we have used the slow-motion condition. Solving for f(t) and
inserting into Eq. (16.64), we see that

ψ(r, t) = −a
2ξ̇(t− r/C)

r
. (16.66)

It is customary to express the radial velocity perturbation v in terms of an oscillating
fluid monopole moment

q = 4πρa2ξ̇ . (16.67)
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Physically this is the total radial discharge of air mass (i.e. mass per unit time) crossing an
imaginary fixed spherical surface of radius slightly larger than that of the oscillating ball.
In terms of q, we have ξ̇(t) = q(t)/4πρa2. Using this and Eq. (16.66), we compute for the
power radiated as sound waves [Eq. (16.59) integrated over a sphere centered on the ball]

P =
q̇2

4πρC
. (16.68)

Note that the power is inversely proportional to the signal speed. This is characteristic
of monopolar emission and in contrast to the inverse cube variation for dipolar emission
[Eq. (16.62)].

The emission of monopolar waves requires that the volume of the emitting solid body
oscillate. When the solid simply oscillates without changing its volume, for example the reed
on a musical instrument, dipolar emission will usually dominate. We can think of this as
two monopoles of size a in antiphase separated by some displacement b ∼ a. The velocity
potential in the far field is then the sum of two monopolar contributions, which almost cancel.
Making a Taylor expansion, we obtain

ψdipole

ψmonopole

∼ b

λ̄
∼ ωb

C
, (16.69)

where ω and λ̄ are the characteristic magnitudes of the angular frequency and reduced
wavelength of the waves (which we have not assumed to be precisely sinusoidal).

This reduction of ψ by the slow-motion factor b/λ̄ implies that the dipolar power emis-
sion is weaker than the monopolar power by a factor ∼ (b/λ̄)2 for similar frequencies and
amplitudes of motion—the same factor as for electromagnetic waves (see above). However,
to emit dipole radiation, momentum must be given to and removed from the fluid. In other
words the fluid must be forced by a solid body. In the absence of such a solid body, the
lowest multipole that can be radiated effectively is quadrupolar radiation, which is weaker
by yet one more factor of (b/λ̄)2.

These considerations are important for understanding how noise is produced by the in-
tense turbulence created by jet engines, especially close to airports. We expect that the
sound emitted by the free turbulence in the wake just behind the engine will be quadrupolar
and will be dominated by emission from the largest (and hence fastest) turbulent eddies.
[See the discussion of turbulent eddies in Sec. 15.4.4.] Denote by ℓ and vℓ the size and
turnover speed of these largest eddies. Then the characteristic size of the sound’s source
will be a ∼ b ∼ ℓ, the mass discharge will be q ∼ ρℓ2vℓ, the characteristic frequency will
be ω ∼ vℓ/ℓ, the reduced wavelength of the sound waves will be λ̄ = c/ω ∼ ℓc/vℓ, and the
slow-motion parameter will be b/λ̄ ∼ ωb/c ∼ vℓ/c. The quadrupolar power radiated per
unit volume [Eq. (16.68) divided by the volume ℓ3 of an eddy and reduced by ∼ (b/λ̄)4] will
therefore be

dP
d3x

∼ ρ
v3ℓ
ℓ

(vℓ
c

)5

, (16.70)

and this power will be concentrated around frequency ω ∼ vℓ/ℓ. For air of fixed sound speed
and length scale, and for which the largest eddy speed is proportional to some characteristic
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speed V (e.g. the average speed of the air leaving the engine), the sound generation increases
proportional to the eighth power of the Mach number M = V/c. This is known as Lighthill’s
law. The implications for the design of jet engines should be obvious.

****************************

EXERCISES

Exercise 16.13 Problem: Aerodynamic Sound Generation
Consider the emission of quadrupolar sound waves by a Kolmogorov spectrum of free turbu-
lence (Sec. 15.4.4). Show that the power radiated per unit frequency interval has a spectrum

Pω ∝ ω−7/2 .

Also show that the total power radiated is roughly a fraction M5 of the power dissipated in
the turbulence, where M is the Mach number.

****************************

16.5.3 T2 Radiation Reaction, Runaway Solutions, and Matched

Asymptotic Expansions

Let us return to our idealized example of sound waves produced by a radially oscillating,
spherical ball. We shall use this example to illustrate several deep issues in theoretical
physics: the radiation-reaction force that acts back on a source due to its emission of radia-
tion, a spurious runaway solution to the source’s equation of motion caused by the radiation-
reaction force, and matched asymptotic expansions, a mathematical technique for solving field
equations when there are two different regions of space in which the equations have rather
different behaviors.5 We shall meet these concepts again, in a rather more complicated way,
in Chap. 27, when studying the radiation reaction force caused by emission of gravitational
waves.

For our oscillating ball, the two different regions of space that we shall match to each
other are the near zone, r ≪ λ̄, and the wave zone, r & λ̄.

We consider, first, the near zone, and we redo, from a new point of view, the analysis of
the matching of the near-zone fluid velocity to the ball’s surface velocity and the computation
of the pressure perturbation. Because the region near the ball is small compared to λ̄ and the
fluid speeds are small compared to C, the flow is very nearly incompressible, ∇·v = ∇2ψ = 0;
cf. the discussion of conditions for incompressibility in Sec. 13.6. [The near-zone equation
∇2ψ = 0 is analogous to ∇2Φ = 0 for the Newtonian gravitational potential in the weak-
gravity near zone of a gravitational-wave source (Chap. 27).]

The general monopolar (spherical) solution to ∇2ψ = 0 is

ψ =
A(t)

r
+B(t) . (16.71)

5Our treatment is based on Burke (1970).
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Matching the fluid’s radial velocity v = ∂ψ/∂r = −A/r2 at r = a to the ball’s radial velocity
ξ̇, we obtain

A(t) = −a2ξ̇(t) . (16.72)

From the point of view of near-zone physics there is no mechanism for generating a nonzero
spatially constant term B(t) in ψ [Eq. (16.71)], so if one were unaware of the emitted
waves and their action back on the source, one would be inclined to set this B(t) to
zero. [This is analogous to a Newtonian physicist, who would be inclined to write the
quadrupolar contribution to an axisymmetric source’s external gravitational field in the
form Φ = P2(cos θ)[A(t)r

−3 + B(t)r2] and then, being unaware of gravitational waves and
their action back on the source, would set B(t) to zero; see Chap. 27]. Taking this near-zone
point of view, with B = 0, we infer that the fluid’s pressure perturbation acting on the ball’s
surface is

δP = −ρ∂ψ(a, t)
∂t

= −ρȦ
a

= ρaξ̈ (16.73)

[Eqs. (16.51)) and (16.72)].
The motion ξ(t) of the ball’s surface is controlled by the elastic restoring forces in its

interior and the fluid pressure perturbation δP on its surface. In the absence of δP the
surface would oscillate sinusoidally with some angular frequency ωo, so ξ̈ + ω2

oξ = 0. The
pressure will modify this to

m(ξ̈ + ω2
oξ) = −4πa2δP , (16.74)

where m is an effective mass, roughly equal to the ball’s true mass, and the right hand side
is the integral of the radial component of the pressure perturbation force over the sphere’s
surface. Inserting the near-zone viewpoint’s pressure perturbation (16.73), we obtain

(m+ 4πa3ρ)ξ̈ +mω2
oξ = 0 . (16.75)

Evidently, the fluid increases the ball’s effective inertial mass (it loads additional mass onto
the ball), and thereby reduces its frequency of oscillation to

ω =
ωo√
1 + κ

, where κ =
4πa3ρ

m
(16.76)

is a measure of the coupling strength between the ball and the fluid. In terms of this loaded
frequency, the equation of motion becomes

ξ̈ + ω2ξ = 0 . (16.77)

This near-zone viewpoint is not quite correct, just as the standard Newtonian viewpoint
is not quite correct for the near-zone gravity of a gravitational-wave source (Chap. 27). To
improve on this viewpoint, we temporarily move out into the wave zone and identify the
general, outgoing-wave solution to the sound wave equation,

ψ =
f(t− ǫr/c)

r
(16.78)

[Eq. (16.64)]. Here f is a function to be determined by matching to the near zone, and ǫ
is a parameter that has been inserted to trace the influence of the outgoing-wave boundary
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condition. For outgoing waves (the real, physical, situation), ǫ = +1; if the waves were
ingoing, we would have ǫ = −1.

This wave-zone solution remains valid down into the near zone. In the near zone we can
perform a slow-motion expansion to bring it into the same form as the near-zone velocity
potential (16.71):

ψ =
f(t)

r
− ǫ

ḟ(t)

C
+ . . . . (16.79)

The second term is sensitive to whether the waves are outgoing or ingoing and thus must
ultimately be responsible for the radiation reaction force that acts back on the oscillating
ball; for this reason we will call it the radiation-reaction potential.

Equating the first term of this ψ to the first term of (16.71) and using the value (16.72)
of A(t) obtained by matching the fluid velocity to the ball velocity, we obtain

f(t) = A(t) = −a2ξ̇(t) . (16.80)

This equation tells us that the wave field f(t − r/C)/r generated by the ball’s surface
displacement ξ(t) is given by ψ = −a2ξ̇(t − r/C)/r [Eq. (16.66)] — the result we derived
more quickly in the previous section. We can regard Eq. (16.80) as matching the near-zone
solution outward onto the wave-zone solution to determine the wave field as a function of
the source’s motion.

Equating the second term of Eq. (16.79) to the second term of the near-zone velocity
potential (16.71) we obtain

B(t) = −ǫ ḟ (t)
C

= ǫ
a2

C
ξ̈(t) . (16.81)

This is the term in the near-zone velocity potential ψ = A/r + B that will be responsible
for radiation reaction. We can regard this radiation reaction potential ψRR = B(t) as having
been generated by matching the wave zone’s outgoing (ǫ = +1) or ingoing (ǫ = −1) wave
field back into the near zone.

This pair of matchings, outward then inward (Fig. 16.11), is a special, almost trivial
example of the technique of matched asymptotic expansions — a technique developed by
applied mathematicians to deal with much more complicated matching problems than this
one (see e.g. Cole, 1968).

The radiation-reaction potential ψRR = B(t) = ǫ(a2/C)ξ̈(t) gives rise to a radiation-
reaction contribution to the pressure on the ball’s surface δPRR = −ρψ̇RR = −ǫ(ρa2/C)

...
ξ .

Inserting this into the equation of motion (16.74) along with the loading pressure (16.73)
and performing the same algebra as before, we get the following radiation-reaction-modified
form of Eq. (16.77):

ξ̈ + ω2ξ = ǫτ
...
ξ , where τ =

κ

1 + κ

a

C
(16.82)

is less than the fluid’s sound travel time to cross the ball’s radius, a/C. The term ǫτ
...
ξ in the

equation of motion is the ball’s radiation-reaction acceleration, as we see from the fact that
it would change sign if we switched from outgoing waves, ǫ = +1, to ingoing waves, ǫ = −1.
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In the absence of radiation reaction, the ball’s surface oscillates sinusoidally in time,
ξ = e±iωt. The radiation reaction term produces a weak damping of these oscillations:

ξ ∝ e±iωte−σt , where σ =
1

2
ǫ(ωτ)ω (16.83)

with ǫ = +1 is the radiation-reaction-induced damping rate. Note that in order of magnitude
the ratio of the damping rate to the oscillation frequency is σ/ω = ωτ . ωa/C = a/λ̄, which
is small compared to unity by virtue of the slow-motion assumption. If the waves were
ingoing rather than outgoing, ǫ = −1, the fluid’s oscillations would grow. In either case,
outgoing waves or ingoing waves, the radiation reaction force removes energy from the ball
or adds it at the same rate as the sound waves carry energy off or bring it in. The total
energy, wave plus ball, is conserved.

Expression (16.83) is two linearly independent solutions to the equation of motion (16.82),
one with the sign + and the other −. Since this equation of motion has been made third
order by the radiation-reaction term, there must be a third independent solution. It is easy
to see that, up to a tiny fractional correction, that third solution is

ξ ∝ eǫt/τ . (16.84)

For outgoing waves, ǫ = +1, this solution grows exponentially in time, on an extremely rapid
timescale τ . a/C; it is called a runaway solution.

Such runaway solutions are ubiquitous in equations of motion with radiation reaction.
For example, a computation of the electromagnetic radiation reaction on a small, classical,
electrically charged, spherical particle gives the Abraham-Lorentz equation of motion

m(ẍ− τ
...
x) = Fext (16.85)

(Rorlich 1965; Sec. 16.2 of Jackson 1999). Here x(t) is the the particle’s world line, Fext is
the external force that causes the particle to accelerate, and the particle’s inertial mass m
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zone

wave zone

ψ = 
A(t-r/C)

r
= 

−a2 ξ(t-r/C).
r

ψRR = B = ε (a2/C) ξ
..

Fig. 16.11: Matched asymptotic expansions for oscillating ball emitting sound waves. The near-
zone expansion feeds the radiation field ψ = 1

rA(t − r/C) = −1
ra

2ξ̇(t − r/C) into the wave zone.

The wave-zone expansion then feeds the radiation-reaction field ψRR = B = ǫ(a2/C)ξ̈ back into the
near zone, and it produces the radiation-reaction pressure δPRR = −ρψ̇RR on the ball’s surface.
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includes an electrostatic contribution analogous to 4πa3ρ in our fluid problem. The timescale
τ , like that in our fluid problem, is very short, and when the external force is absent, there
is a runaway solution x ∝ et/τ .

Much human heat and confusion were generated, in the the early and mid 20th century,
over these runaway solutions (see, e.g., Rorlich 1965). For our simple model problem, little
heat or confusion need be expended. One can easily verify that the runaway solution (16.84)
violates the slow-motion assumption a/λ̄≪ 1 that underlies our derivation of the radiation
reaction acceleration. It therefore is a spurious solution.

Our model problem is sufficiently simple that one can dig deeper into it and learn that the
runaway solution arises from the slow-motion approximation trying to reproduce a genuine,
rapidly damped solution and getting the sign of the damping wrong (Ex. 16.15 and Burke
1970).

****************************

EXERCISES

Exercise 16.14 Problem: Energy Conservation for Radially Oscillating Ball Plus Sound
Waves
For the radially oscillating ball as analyzed in Sec. 16.5.3, verify that the radiation reaction
acceleration removes energy from the ball, plus the fluid loaded onto it, at the same rate as
the sound waves carry energy away.

Exercise 16.15 Problem: Radiation Reaction Without the Slow Motion Approximation
Redo the computation of radiation reaction for a radially oscillating ball immersed in a
fluid, without imposing the slow-motion assumption and approximation. Thereby obtain
the following coupled equations for the radial displacement ξ(t) of the ball’s surface and the
function Φ(t) ≡ a−2f(t− ǫa/C), where ψ = r−1f(t− ǫr/C) is the sound-wave field:

ξ̈ + ω2
oξ = κΦ̇ , ξ̇ = −Φ − ǫ(a/C)Φ̇ . (16.86)

Show that in the slow-motion regime, this equation of motion has two weakly damped solu-
tions of the same form (16.83) as we derived using the slow-motion approximation, and one
rapidly damped solution ξ ∝ exp(−ǫκt/τ). Burke (1970) shows that the runaway solution
(16.84) obtained using the slow-motion approximation is caused by that approximation’s
futile attempt to reproduce this genuine, rapidly damped solution.

Exercise 16.16 Problem: Sound Waves from a Ball Undergoing Quadrupolar Oscillations
Repeat the analysis of sound wave emission, radiation reaction, and energy conservation, as
given in Sec. 16.5.3 and Ex. 16.14, for axisymmetric, quadrupolar oscillations of an elastic
ball, rball = a+ ξ(t)P2(cos θ).

Comment: Since the lowest multipolar order for gravitational waves is quadrupolar, this
exercise is closer to the analogous problem of gravitational wave emission than the monopolar
analysis in the text.
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Hint: If ω is the frequency of the ball’s oscillations, then the sound waves have the form

ψ = Kℜ
[

e−iωt

(

n2(ωr/C)− iǫj2(ωr/C)

r

)]

, (16.87)

where K is a constant, ℜ(X) is the real part of X, ǫ is +1 for outgoing waves and −1 for
ingoing waves, and j2 and n2 are the spherical Bessel and spherical Neuman functions of
order 2. In the distant wave zone, x ≡ ωr/C ≫ 1,

n2(x)− iǫj2(x) =
eiǫx

x
; (16.88)

in the near zone x = ωr/C ≪ 1,

n2(x) = − 3

x3
(

1 & x2 & x4 & . . .
)

, j2(x) =
x2

15

(

1 & x2 & x4 & . . .
)

. (16.89)

Here “& xn” means “+ (some constant)xn”.

****************************

Bibliographic Note

For textbook treatments of waves in fluids, we recommend Lighthill (1978) and Whitham
(1974), and from a more elementary and physical viewpoint, Tritton (1977). To develop
physical insight into gravity waves on water and sound waves in a fluid, we suggest portions
of the movie by Bryson (1964). For solitary-wave solutions to the Korteweg-deVries equation,
see materials, including brief movies, at the website of Takasaki (2006).

For a brief, physically oriented introduction to Rayleigh-Bénard convection, see Chap. 4
of Tritton (1987). In their Chaps. 5 and 6, Landau and Lifshitz (1959) give a fairly succinct
treatment of diffusive heat flow in fluids, the onset of convection in several different physical
situations, and the concepts underlying double diffusion. In his Chaps. 2–6, Chandrasekhar
(1961) gives a thorough and rich treatment of the influence of a wide variety of phenomena
on the onset of convection, and on the types of fluid motions that can occur near the onset of
convection. The book by Turner (1973) is a thorough treatise on the influence of buoyancy
(thermally induced and otherwise) on fluid motions. It includes all topics treated in Sec. ??

and much much more.
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Box 16.5

Important Concepts in Chapter 16

• Gravity waves on water and other liquids, Sec. 16.2

– Deep water waves and shallow water waves, Secs. 16.2.1, 16.2.2

– Nonlinear shallow water waves, Box 16.3

– Tsunamis, Ex. 16.6

– Dispersion, Sec. 16.3.1

– Steepening due to nonlinear effects, Sec. 16.3.1, Fig. 16.4

– Solitons or solitary waves; nonlinear steepening balances dispersion, Sec. 16.3
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• Surface tension and its stress tensor, Box 16.4
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• Rossby Waves in a Rotating Fluid, Sec. 16.4

• Sound waves in fluids and gases, Sec. 16.5

– Sound wave generation in slow-motion approximation: power proportional to
squared time derivative of monopole moment, Sec. 16.5.2
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