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Chapter 17

Compressible and Supersonic Flow

Version 1217.2.K.tex 2 June 2013
Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to

Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 17.1

Reader’s Guide

• This chapter relies heavily on Chap. 13 and on Secs. 16.2, 16.3 and 16.5 of Chap.
16.

• No subsequent chapters rely substantially on this one.

17.1 Overview

So far, we have mainly been concerned with flows that are slow enough that they may be
treated as incompressible. We now consider flows in which the velocity approaches or even
exceeds the speed of sound and in which changes of density along streamlines cannot be
ignored. Such flows are common in aeronautics and astrophysics. For example, the motion
of a rocket through the atmosphere is faster than the speed of sound in air. In other words,
it is supersonic. Therefore, if we transform into the frame of the rocket, the flow of air past
the rocket is also supersonic.

When the flow speed exceeds the speed of sound in some reference frame, it is not possible
for a pressure pulse to travel upstream in that frame and change the direction of the flow.
However, if there is a solid body in the way (e.g. a rocket or aircraft), the flow direction
must change. In a supersonic flow, this change happens nearly discontinuously, through the
formation of shock fronts at which the flow suddenly decelerates from supersonic to subsonic.
An example is shown in Fig. 17.1. Shock fronts are an inevitable feature of supersonic flows.

In another example of supersonic flow, a rocket itself is propelled by the thrust created
by its nozzle’s escaping hot gases. These hot gases move through the rocket nozzle at
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Fig. 17.1: Complex pattern of shock fronts formed around a model aircraft in a wind tunnel with
air moving ten percent faster than the speed of sound (i.e. with Mach number M = 1.1.) Image
from W. G. Vicenti; reproduced from Van Dyke 1982.

supersonic speeds, expanding and cooling as they accelerate. In this manner, the random
thermal motion of the gas molecules is converted into an organized bulk motion that carries
negative momentum away from the rocket and pushes it forward.

The solar wind furnishes yet another example of a supersonic flow. This high-speed flow
of ionized gas is accelerated in the solar corona and removes a fraction ∼ 10−14 of the sun’s
mass every year. Its own pressure accelerates it to supersonic speeds of ∼ 400 km s−1.
When the outflowing solar wind encounters a planet, it is rapidly decelerated to subsonic
speed by passing through a strong discontinuity, known as a bow shock, that surrounds the
planet (Fig. 17.2). The bulk kinetic energy in the solar wind, built up during acceleration,
is rapidly and irreversibly transformed into heat as it passes through this shock front.

In this chapter, we shall study some properties of supersonic flows. After restating the
basic equations of compressible fluid dynamics (Sec. 17.2), we shall analyze three impor-

Sun
400 km s -1

Earth

Bow Shock

Fig. 17.2: The supersonic solar wind forms a type of shock front known as a bow shock when it
passes by a planet.
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tant, simple cases: stationary, quasi-one-dimensional flow (Sec. 17.3), time-dependent, one
dimensional flow (Sec. 17.4), and normal adiabatic shock fronts (Sec. 17.5). In these sec-
tions, we shall apply the results of our analyses to some contemporary examples, including
the Space Shuttle (Box 17.4), rocket engines, shock tubes, and the Mach cone, N-wave and
sonic booms produced by supersonic projectiles and aircraft. In Sec. 17.6, we will develop
similarity-solution techniques for supersonic flows and apply them to supernovae, underwater
depth charges, and nuclear-bomb explosions in the earth’s atmosphere.

As in our previous fluid-dynamics chapters, we strongly encourage readers to view relevant
movies in parallel with reading this chapter. See Box 17.2.

Box 17.2

Movies Relevant to this Chapter

We strongly recommend that the reader view the following movies dealing with com-
pressible and supersonic flows:

• Effects of Fluid Compressibility by Hunter Rouse (196?), available in 2013
at http://www.iihr.uiowa.edu/research/publications-and-media/

films-by-hunter-rouse/ . Covers most everything in this chapter except
Riemann invariants. [KIP: CHECK]

• Channel Flow of a Compressible Fluid by Donald Coles (1968), film in the se-
ries by the National Committee for Fluid Mechanics Films, available in 2013 at
http://web.mit.edu/hml/ncfmf.html . Focuses on shock fronts and quasi-one-
dimensional flow through throats.

• Waves in Fluids, by A. E. Bryson (196?), film in the series by the National Com-
mittee for Fluid Mechanics Films, available in 2013 at http://web.mit.edu/hml/
ncfmf.html . Includes segments on shock fronts and on hydraulic jumps.

17.2 Equations of Compressible Flow

In Chap. 13, we derived the equations of fluid dynamics, allowing for compressibility. We ex-
pressed them as laws of mass conservation [Eq. (13.29)], momentum conservation [∂(ρv)/∂t+
∇ · T = 0 with T as given in Table 13.3], and energy conservation [∂U/∂t +∇ · F = 0 with
U and F as given in Table 13.3]; and also an evolution law for entropy [Eq. (13.76)]. When,
as in this chapter, heat conduction is negligible (κ → 0) and the gravitational field is a
time-independent, external one (not generated by the flowing fluid), these equations become

∂ρ

∂t
+∇ · (ρv) = 0 , (17.1a)

∂(ρv)

∂t
+∇ · (Pg + ρv ⊗ v − 2ησ − ζθg) = ρg , (17.1b)
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∂

∂t

[

(
1

2
v2 + u+ Φ)ρ

]

+∇ · [(1
2
v2 + h + Φ)ρv − 2ησ · v − ζθv] = 0 , (17.1c)

∂(ρs)

∂t
+∇ · (ρsv) = 1

T

(

2ησ : σ + ζθ2
)

. (17.1d)

Here σ : σ is index-free notation for σijσij .
Some comments are in order. Equation (17.1a) is the complete mass conservation equa-

tion (continuity equation) assuming that matter is neither added to nor removed from the
flow. Equation (17.1b) expresses the conservation of momentum allowing for one external
force, gravity. Other external forces (e.g. electromagnetic) can be added. Equation (17.1c),
expressing energy conservation, includes a viscous contribution to the energy flux. If there
are sources or sinks of fluid energy, then these must be included on the right-hand side of this
equation. Possible sources of energy include chemical or nuclear reactions; possible energy
sinks include cooling by emission of radiation. Equation (17.1d) expresses the evolution of
entropy, and will also need modification if there are additional contributions to the energy
equation. The right-hand side of this equation is the rate of increase of entropy due to
viscous heating. This equation is not independent of the preceding equations and the laws
of thermodynamics, but is often more convenient to use. In particular, one often uses it
(together with the first law of thermodynamics) in place of energy conservation (17.1c).

These equations must be supplemented with an equation of state in the form P (ρ, T )
or P (ρ, s). For simplicity, we shall often focus on an ideal gas (one with P ∝ ρkBT ) that
undergoes adiabatic evolution with constant specific-heat ratio (adiabatic index; Ex. 5.4) γ,
so the equation of state has the simple polytropic form (Box 13.2)

P = K(s)ργ . (17.2a)

Here K(s) is a function of the entropy per unit mass s and is thus constant during adiabatic
evolution, but will change across shocks because the entropy increases in a shock (Sec. 17.5).
The value of γ depends on the number of thermalized internal degrees of freedom of the gas’s
constituent particles (Ex. 17.1). For a gas of free particles (e.g. fully ionized hydrogen), it
is γ = 5/3; for the earth’s atmosphere, at temperatures between about 10 K and 400 K, it
is γ = 7/5 = 1.4 (Ex. 17.1).

For a polytropic gas with P = K(s)ργ, we can integrate the first law of thermodynamics
(Box 13.2) to obtain a formula for the internal energy per unit mass,

u =
P

(γ − 1)ρ
, (17.2b)

where we have assumed that the internal energy vanishes as the temperature T → 0 and
thence P → 0. It will prove convenient to express the density ρ, the internal energy per unit
mass u and the enthalpy per unit mass h in terms of the sound speed

C =

√

(

∂P

∂ρ

)

s

=

√

γP

ρ
(17.2c)
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[Eq. (16.48)]. A little algebra gives

ρ =

(

C2

γK

)1/(γ−1)

, u =
C2

γ(γ − 1)
, h = u+

P

ρ
=

C2

γ − 1
. (17.2d)

****************************
EXERCISES

Exercise 17.1 **Example: Values of γ
Consider an ideal gas consisting of several different particle species, e.g. diatomic oxygen
molecules and nitrogen molecules in the case of the Earth’s atmosphere. Consider a sample
of this gas with volume V , containing NA particles of various species A, all in thermody-
namic equilibrium at a temperature T sufficiently low that we can ignore effects of special
relativity. Let species A have νA internal degrees of freedom with Hamiltonian quadratic in
their generalized coordinates (e.g., rotation and vibration), that are sufficiently thermally
excited to have reached energy equipartition. Then the equipartition theorem (Sec. 4.4.4)
dictates that each such particle has 3

2
kBT of translational energy plus 1

2
νAkBT of internal

energy, and the fact that the gas is ideal dictates that each particle contributes kBT/V to
the pressure. Correspondingly, the sample’s total energy E and pressure P are

E =
∑

A

(

3

2
+

νA
2

)

NAkBT , P =
1

V

∑

A

NAkBT . (17.3a)

(a) Use the laws of thermodynamics to show that the specific heats at fixed volume and
pressure are

CV ≡
(

T∂S

∂T

)

V,NA

=
E

T
=
∑

A

(

3

2
+

νA
2

)

NAkB , CP =

(

T∂S

∂T

)

P,NA

= CV +
PV

T
,

(17.3b)
so the ratio of specific heats is

γ =
CP

CV
= 1 +

∑

ANA
∑

ANA

(

3
2
+ νA

2

) ; (17.3c)

cf. Ex. 5.4.

(b) If there are no thermalized internal degrees of freedom, νA = 0 (e.g., for a fully ion-
ized, nonrelativistic gas), then γ = 5/3. For the earth’s atmosphere, at temperatures
between about 10 K and 400 K, the rotational degrees of freedom of the O2 and N2

molecules are thermally excited, but the temperature is too low to excite their vibra-
tional degrees of freedom. Explain why this means that νO2 = νN2 = 2, which implies
γ = 7/5 = 1.4. (Hint: there are just two orthogonal axes around which the diatomic
molecule can rotate.)
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Fig. 17.3: The ratio of specific heats γ for air as a function of temperature.

(c) Between about 1300 K and roughly 10,000 K the vibrational degrees of freedom are
thermalized but the molecules have not dissociated substantially into individual atoms
nor become substantially ionized. Explain why this means that νO2 = νN2 = 4 in this
temperature range, which implies γ = 9/7 = 1.29. (Hint: an oscillator has kinetic
energy and potential energy.)

(d) At roughly 10,000 K the two oxygen atoms in O2 dissociate from each other, the two
nitrogen atoms in N2 dissociate, and electrons begin to ionize from the atoms. Explain
why this drives γ up toward 5/3 ≃ 1.67.

The actual value of γ as a function of temperature for the range 200 K to 1300 K is shown
in Fig. 17.3. Evidently, as stated above, γ = 1.4 is a good approximation only up to about
400 K, and the transition toward γ = 1.29 occurs gradually between about 400 K and 1400
K as the vibrational degrees of freedom gradually become thermalized and begin to obey the
equipartion theorem (Sec. 4.4.4).

****************************

17.3 Stationary, Irrotational, Quasi-One-Dimensional Flow

17.3.1 Basic Equations; Transition from Subsonic to Supersonic

Flow

In their full generality, the fluid dynamic equations (17.1) are quite unwieldy. To demonstrate
some of the novel features of supersonic flow, we shall proceed as in earlier chapters: We
shall specialize to a very simple type of flow in which the physical effects of interest are
strong, and extraneous effects are negligible.

In particular, in this section, we shall seek insight into smooth transitions between subsonic

and supersonic flow by restricting ourselves to a stationary (∂/∂t = 0), irrotational (∇×v =
0) flow in which gravity and viscosity are negligible (Φ = g = η = ζ = 0), as are various
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effects not included in our general equations: chemical reactions, thermal conductivity and
radiative losses. (We shall explore some effects of gravity in Ex. 17.4.) The vanishing
viscosity implies [from the entropy evolution equation (17.1d)] that the entropy per baryon
s is constant along each flow line. We shall assume that s is the same on all flow lines, so
the flow is fully isentropic (s constant everywhere) and the pressure P = P (ρ, s) can thus be
regarded as a function only of the density, P = P (ρ). When we need a specific form for P (ρ),
we will use the polytropic form P = K(s)ργ for an ideal gas with constant specific-heat ratio
γ [Eqs. (17.2); Ex. 17.1], but much of our analysis will be done for a general isentropic P (ρ).
We will make one further approximation, that the flow is almost one dimensional. In other
words, the velocity vectors all make small angles with each other in the region of interest.

These drastic simplifications are actually appropriate for many cases of practical interest.
Granted these simplifications, we can consider a narrow bundle of streamlines which we call
a streamtube and introduce, as a tool in studying it, its cross sectional area A normal to
the flow (Fig. 17.4a).

As the flow is stationary, the equation of mass conservation (17.1a) states that the rate ṁ
at which mass passes through the streamtube’s cross section must be independent of position
along the tube:

ρvA = ṁ = constant; (17.4a)

here v is the speed of the fluid in the streamtube. Rewriting this in differential form, we
obtain

dA

A
+

dρ

ρ
+

dv

v
= 0 . (17.4b)

Because the flow is stationary and inviscid, the law of energy conservation (17.1c) reduces
to Bernoulli’s theorem [Eqs. (13.51), (13.50)]:

h+
1

2
v2 = h1 = constant (17.4c)

along each streamline and thus along our narrow streamtube; here h1 is the specific enthalpy
at a location where the flow velocity v vanishes (e.g. in chamber 1 of Fig. 17.5a below).

SupersonicSubsonic

M

A

1

1

A
A*

A*

(a)

(b)

Fig. 17.4: Stationary, transonic flow in a converging then diverging streamtube. (a) The stream-
tube. (b) The flow’s Mach number M = v/C (horizontal axis) as a function of the streamtube’s
area A (vertical axis). The flow is subsonic to the left of the streamtube’s throat A = A∗, sonic at
the throat, and supersonic to the right.
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Since the flow is adiabatic, we can use the first law of thermodynamics (Box 13.2) dh =
dP/ρ+ Tds = dP/ρ = C2dρ/ρ [where C is the speed of sound (17.2c)] to write Eq. (17.4c)
in the differential form

dρ

ρ
+

vdv

C2
= 0 . (17.4d)

Finally and most importantly, we combine Eqs. (17.4b) and (17.4d) to obtain

dv

v
=

dA/A

M2 − 1
,

dρ

ρ
=

dA/A

M−2 − 1
, (17.5)

where
M ≡ v/C (17.6)

is the Mach number. This Mach number is an important new dimensionless number that is
used to characterize compressible flows. When the Mach number is less than 1, the flow is
called subsonic; when M > 1, it is supersonic. By contrast with the Reynolds, Rossby and
Ekman numbers, which are usually defined using a single set of (characteristic) values of
the flow parameters (V , ν, Ω, L) and thus have a single value for any given flow, the Mach
number by convention is defined at each point in the flow and thus is a flow variable M(x)
similar to v(x) and ρ(x).

Equations (17.5) make remarkable predictions, which we illustrate in Fig. 17.4 for a
particular flow called “transonic”

1. The only locations along a streamtube at which M can be unity (v = C) are those
where A is an extremum—e.g., for the streamtube of Fig. 17.4, the minimum A = A∗

(the tube’s “throat”).

2. At points along a streamtube where the flow is subsonic, M < 1 (left side of the stream-
tube in Fig. 17.4), v increases when A decreases, in accord with everyday experience.

3. At points where the flow is supersonic, M > 1 (right side of Fig. 17.4), v increases
when A increases—just the opposite of everyday experience.

These conclusions are very useful in analyzing stationary, high-speed flows.

17.3.2 Setting up a Stationary, Transonic Flow

The reader may wonder, at this point, whether it is easy to set up a transonic flow in which
the speed of the fluid changes continuously from subsonic to supersonic, as in Fig. 17.4
above. The answer is quite illuminating. We can illustrate the answer using two chambers
maintained at different pressures, P1 and P2, and connected through a narrow channel, along
which the cross sectional area passes smoothly through a minimum A = A∗, the channel’s
throat (Fig. 17.5a). When P2 = P1, there will be no flow between the two chambers. When
we decrease P2 slightly below P1, there will be a slow subsonic flow through the channel
(curves 1 in Fig. 17.5b,c). As we decrease P2 further, there comes a point (P = P crit

2 ) at
which the flow is forced to be transonic at the channel’s throat A = A∗ (curves 2). For all
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Amin

(b)

(a)

(c)

v

xCritical Point

1

2

3 4

2a

2b

1

2
3

42a

2b

x

P2

P2P

P1

P

1

Fig. 17.5: Stationary flow through a channel between two chambers maintained at different pres-
sures P1 and P2. When the pressure difference P1 − P2 is large enough, the flow is subsonic to the
left of the channel’s throat and supersonic to the right. As it nears or enters the second chamber,
the supersonic flow must encounter a strong shock, where it decelerates abruptly to subsonic speed.
The forms of the various velocity profiles v(x) in drawing (c) are explained in Box 17.3.

pressures P2 < P crit

2 , the flow is also transonic at the throat and has a universal form to the
left of and near the throat, independent of the value of P2 (curves 2)—including a universal
value ṁcrit for the rate of mass flow through the throat! This universal flow is supersonic
to the right of the throat (curves 2b), but it must be brought to rest in chamber 2, since
there is a hard wall at the chamber’s end. How is it brought to rest? Through a shock front,
where it is driven subsonic almost discontinuously (curves 3 and 4; Sec. 17.5 below).

How, physically, is it possible for the transonic flow to have a universal form to the left
of the shock? The key is that, in any supersonic region of the flow, disturbances are unable
to propagate upstream, so the upstream fluid has no way of knowing what the pressure P2

is in chamber 2. Although the flow to the left of the shock is universal, the location of the
shock and the nature of the subsonic, post-shock flow are affected by P2, since information
can propagate upstream through that subsonic flow, from chamber 2 to the shock.

The reader might now begin to suspect that the throat, in the transonic case, is a very
special location. It is, and that location is known as a critical point of the stationary flow.
From a mathematical point of view, critical points are singular points of the equations (17.4)
and (17.5) of stationary flow. This singularity shows up in the solutions to the equations, as
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Box 17.3

Velocity Profiles for One-Dimensional Flow Between Chambers

Consider the adiabatic, stationary flow of an isentropic, polytropic fluid P = Kργ

between the two chambers shown in Fig. 17.3. Describe the channel between chambers
by its cross sectional area as a function of distance, A(x), and describe the flow by the
fluid’s velocity v(x) and its sound speed C(x). There are two coupled algebraic equations
for v(x) and C(x): mass conservation ρvA = ṁ [Eq. (17.4a)] and the Bernoulli theorem
h+ 1

2
v2 = h1 [Eq. (17.4c)], which, for our polytropic fluid, become [see Eqs. (17.2d)]:

C2/(γ−1)v = (γK)1/(γ−1)ṁ/A ,
C2

γ − 1
+

v2

2
=

C2
1

γ − 1
. (1)

These equations are graphed in diagrams below for three different mass flow rates ṁ.
Mass conservation [the first of Eqs. (1)] is a set of generalized hyperbolae, one for each
value of the channel’s area A∗ < Aa < Ab < Ac. The Bernoulli theorem [the second
of Eqs. (1)] is a single ellipse. On a chosen diagram (for a chosen ṁ), the dot at the
intersection of the ellipse with a hyperbola tells us the flow velocity v and speed of sound
C at each of the two points in the channel where the area A has the hyperbola’s value.

v

C

A
*

Aa

v 
=
 C

Ab
Ac

m<mcrit
. .

v

C

A
*

Aa

v 
=
 C

Ab

Ac

m=mcrit
. .

v

C

A
*

Aa

v 
=
 C

Ab

Ac

m > mcrit
. .

There is a critical mass flow rate ṁcrit (central diagram), such that the hyperbola
A = A∗ (the channel’s throat) is tangent to the ellipse at the point v = C, so the flow is
Mach 1 (v = C). For this ṁ, the sequence of dots along the ellipse, moving from lower
right to upper left, represents the transonic flow, which begins subsonic and becomes
supersonic (upward swooping solid curve in the drawing below); and the same sequence
of dots, moving in the opposite direction from upper left to lower right, represents a flow
that begins supersonic and smoothly transitions to subsonic (downward swooping solid
curve, below). When ṁ < ṁcrit (left diagram above; top and bottom quadrants below),
the sequence of dots beginning at lower right reaches the throat A = A∗ at a subsonic
velocity, so the solution climbs upward along the ellipse to that point then descends back
down, mapping out a fully subsonic solution v(x) below — and similarly for the dots on
the upper branch of the ellipse, which map out a fully supersonic solution below. When
ṁ > Ṁcrit (right diagram above), the dots map out curves in the left and right quadrants
below that never reach the sonic point and are double valued for v(x)—and are thus
unphysical. Therefore, the mass flow rate ṁ can never exceed ṁcrit.

v

xA
*

AaAa AcAbAbAc

m<mcrit
. .

m<mcrit
. .

m>mcrit
. .

m>mcrit
. .
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depicted in Fig. 17.5(c). The universal solution that passes transonically through the critical
point (solution 2) joins onto two different solutions to the right of the throat: solution 2a,
which is supersonic, and solution 2b, which is subsonic. Which solution occurs in practice
depends on conditions downstream. Other solutions that are arbitrarily near this universal
solution [dashed curves in Fig. 17.5(c)] are either double valued and consequently unphysical,
or are everywhere subsonic or everywhere supersonic (in the absence of shocks); see Box 17.3
and Ex. 17.2.

The existence of critical points is a price we must pay, mathematically, for not allowing
our equations to be time dependent. If we were to solve the time-dependent equations (which
would then be partial differential equations), we would find that they change from elliptic
to hyperbolic as the flow passes through a critical point.

From a physical point of view, critical points are the places where a sound wave propagat-
ing upstream remains at rest in the flow. They are therefore the one type of place from which
time-dependent transients, associated with setting up the flow in the first place, cannot de-
cay away (if the equations are dissipation-free, i.e., inviscid). Thus, even the time-dependent
equations can display peculiar behaviors at a critical point. However, when dissipation is
introduced, these peculiarities get smeared out.

****************************
EXERCISES

Exercise 17.2 Problem: Explicit Solution for Flow Between Chambers When γ = 3
For γ = 3 and for a channel with A = A∗(1 + x2), solve the flow equations (1) of Box 17.3
analytically and explicitly for v(x), and verify that the solutions have the qualitative forms
depicted in the bottom figure of Box 17.3.

****************************

17.3.3 Rocket Engines

We have shown that, in order to push a quasi-one-dimensional flow from subsonic to super-
sonic, one must send it through a throat. This result is exploited in the design of rocket
engines and jet engines.

In a rocket engine, hot gas is produced by controlled burning of fuel in a large chamber,
and the gas then escapes through a converging-diverging (also known as De Laval) nozzle,
as shown in Fig. 17.6. The nozzle is designed with a skirt so the flow becomes supersonic
smoothly when it passes through the nozzle’s throat.

To analyze this flow in some detail, let us approximate it as precisely steady, isentropic
and quasi-one-dimensional, and the gas as ideal and inviscid with constant ratio of specific
heats γ. In this case, the enthalpy is h = C2/(γ − 1) [Eqs. (17.2d)], so Bernoulli’s theorem
(17.4c) reduces to

C2

(γ − 1)
+

1

2
v2 =

C2
1

(γ − 1)
. (17.7)
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Subsonic Flow

Combustion
Chamber

Supersonic Flow

Ve
P1

A*

P*

De Laval Nozzle

Skirt

Fig. 17.6: Schematic illustration of a rocket engine. Note the skirt, which increases the thrust
produced by the escaping exhaust gases.

Here C is the sound speed in the flow and C1 is the “stagnation” sound speed, i.e., the sound
speed evaluated in the rocket chamber where v = 0 . Dividing this Bernoulli theorem by C2

and manipulating, we learn how the sound speed varies with Mach number M = v/C:

C = C1

[

1 +
γ − 1

2
M2

]−1/2

. (17.8)

From mass conservation [Eq. (17.4a)], we know that the cross sectional area A varies as A ∝
ρ−1v−1 ∝ ρ−1M−1C−1 ∝ M−1C(γ+1)/(1−γ), where we have used ρ ∝ C2/(γ−1) [Eqs. (17.2d)].
Combining with Eq. (17.8), and noting that M = 1 where A = A∗ (i.e., the flow is sonic at
the throat), we find that

A

A∗

=
1

M

[

2

γ + 1
+

(

γ − 1

γ + 1

)

M2

]

(γ+1)
2(γ−1)

, (17.9)

The pressure P∗ at the throat can be deduced from P ∝ ργ ∝ C2γ/(γ−1) [Eqs. (17.2a) and
(17.2d)] together with Eq. (17.8) with M = 0 and P = P1 = (stagnation pressure) in the
chamber and M = 1 at the throat:

P∗ = P1

(

2

γ + 1

)
γ

γ−1

. (17.10)

We use these formulas in Box 17.4 and Ex. 17.3 to evaluate, numerically, some features of
the space shuttle and its rocket engines.

Bernoulli’s theorem is a statement that the fluid’s energy is conserved along a stream-
tube. (For conceptual simplicity we shall regard the entire interior of the nozzle as a single
streamtube.) By contrast with energy, the fluid’s momentum is not conserved, since it pushes
against the nozzle wall as it flows. As the subsonic flow accelerates down the nozzle’s con-
verging region, the area of its streamtube diminishes, and the momentum flowing per second
in the streamtube, (P +ρv2)A, decreases; momentum is being transferred to the nozzle wall.
If the rocket did not have a skirt, but instead opened up completely to the outside world at
its throat, the rocket thrust would be

T∗ = (ρ∗v
2
∗
+ P∗)A∗ = (γ + 1)P∗A∗ . (17.11)
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This is much less than if momentum had been conserved along the subsonic, accelerating
streamtubes.

Much of the “lost” momentum is regained, and the thrust is made significantly larger than
T∗, by the force of the skirt on the stream tube in the diverging part of the nozzle (Fig. 17.6).
The nozzle’s skirt keeps the flow quasi-one-dimensional well beyond the throat, driving it
more and more strongly supersonic. In this accelerating, supersonic flow the tube’s rate of
momentum flow (ρv2 + P )A increases downstream, and there is a compensating increase of
the rocket’s forward thrust. This skirt-induced force accounts for a significant fraction of the
thrust of a well-designed rocket engine.

Rockets work most efficiently when the exit pressure of the gas, as it leaves the base
of the skirt, matches the external pressure in the surrounding air. When the pressure in
the exhaust is larger than the external pressure, the flow is termed under-expanded and a
pulse of low pressure, known as a rarefaction will be driven into the escaping gases causing
them to expand and increasing their speed. However, the exhaust will now be pushing on
the surrounding air, rather than on the rocket. More thrust could have been exerted on
the rocket if the flow had not been under-expanded. By contrast, when the exhaust has a
smaller pressure than the surrounding air (i.e., is over-expanded), shock fronts will form near
the exit of the nozzle, affecting the fluid flow and sometimes causing separation of the flow
from the nozzle’s walls. It is important that the nozzle’s skirt be shaped so that the exit
flow is neither seriously over- nor under-expanded.

****************************
EXERCISES

Exercise 17.3 Problem: Space Shuttle’s Solid-Fuel Boosters

Use the rough figures in Box 17.4 to estimate the energy released per unit mass in burning
the fuel. Does your answer seem reasonable to you?

Exercise 17.4 **Example: Adiabatic, Spherical Accretion of Gas Onto a Black Hole or

Neutron Star

Consider a black hole or neutron star with mass M, at rest in interstellar gas that has
constant ratio of specific heats γ. In this exercise you will derive some features of the
adiabatic, spherical accretion of the gas onto the hole or star, a problem first solved by
Bondi (1952). This exercise shows how gravity can play a role analogous to a De Laval
nozzle: it can trigger a transition of the flow from subsonic to supersonic.

(a) Let ρ∞ and C∞ be the density and sound speed in the gas far from the hole (at
radius r = ∞). Use dimensional analysis to estimate the rate of accretion of mass Ṁ
onto the star or hole, in terms of the parameters of the system: M, γ, ρ∞, C∞, and
Newton’s gravitation constant G. [Hint: dimensional considerations alone cannot give
the answer. Why? Augment your dimensional considerations by a knowledge of how
the answer should scale with one of the parameters, e.g. the density, ρ∞.]

(b) Give a simple physical argument, devoid of dimensional considerations, that produces
the same answer for Ṁ, to within a multiplicative factor of order unity, as you deduced
in part (a).
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Box 17.4

Space Shuttle

NASA’s (now defunct) Space Shuttle provides many nice examples of the behavior of
supersonic flows. At launch, the shuttle and fuel had a mass ∼ 2×106 kg. The maximum
thrust, T ∼ 3×107N, occurred at lift-off and gave the rocket an initial acceleration relative
to the ground of ∼ 0.5g. This increased to ∼ 3g as the fuel was burned and the total
mass diminished. Most of the thrust was produced by two solid-fuel boosters that burned
fuel at a combined rate of ṁ ∼ 10, 000 kg s−1 over a two minute period. Their combined
thrust was T ∼ 2 × 107N averaged over the two minutes, from which we can estimate
the speed of the escaping gases as they left the nozzles’ skirts. Assuming this speed was
quite supersonic (so Pe ≪ ρev

2
e), we estimate that ve ∼ T/ṁ ∼ 2km s−1. The combined

exit areas of the two skirts was Ae ∼ 20m2, roughly four times the combined throat area,
A∗. Using Eq. (17.9) with γ ∼ 1.29, we deduce that the exit Mach number was Me ∼ 3.

From T ∼ ρev
2
eAe and Pe = γC2

eρe we deduce the exit pressure, Pe ∼ T/γM2
eAe ∼

8×104 N m−2, about atmospheric. The stagnation pressure within the combustion region
was [combine Eqs. (17.2a), (17.2d) and (17.8)]

P1 ∼ Pe

[

1 +
(γ − 1)M2

e

2

]

γ
γ−1

∼ 35 atmospheres. (1)

Of course, the actual operation was far more complex than this. For example, to optimize
the final altitude, one must allow for the decreasing mass and atmospheric pressure as
well as the two-dimensional gas flow through the nozzle.

The space shuttle can also be used to illustrate the properties of shock waves
(Sec. 17.5 below). When the shuttle re-entered the atmosphere, it was highly super-
sonic, and therefore was preceded by a strong shock front that heated the onrushing air
and consequently heated the shuttle. The shuttle continued moving supersonically down
to 15 km altitude, and until this time it created a shock-front pattern that could be
heard on the ground as a sonic boom. The maximum heating rate occurred at 70 km
altitude. Here, the shuttle moved at V ∼ 7 km s−1 and the sound speed is about 280 m
s−1, giving a Mach number of 25. For the specific heat ratio γ ∼ 1.5 and mean molecular
weight µ ∼ 10 appropriate to dissociated air, the strong-shock Rankine-Hugoniot rela-
tions (17.37), together with P = (ρ/µmp)kBT and C2 = γP/ρ, predict the post-shock
temperature

T ∼ 2(γ − 1)µmpV
2

(γ + 1)2k
∼ 9000K (2)

Exposure to gas at this high temperature heated the shuttle’s nose to ∼ 1800K.

There is a second, well-known consequence of this high temperature: it is sufficient
to ionize the air partially as well as dissociate it. As a result, during reentry the shuttle
was surrounded by a sheath of plasma, which, as we shall discover in Chap. 19, prevented
radio communication. The blackout lasted for about 12 minutes.
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(c) Because the neutron star and black hole are both very compact with intense gravity
near their surfaces, the inflowing gas is guaranteed to accelerate to supersonic speeds
as it falls in. Explain why the speed will remain supersonic in the case of the hole,
but must transition through a shock to subsonic flow near the surface of the neutron
star. If the star has the same mass M as the hole, will the details of its accretion
flow [ρ(r), C(r), v(r)] be the same as or different from those for the hole, outside the
star’s shock? Will the mass accretion rates Ṁ be the same or different? Justify your
answers, physically.

(d) By combining the Euler equation for v(r) with the equation of mass conservation,
Ṁ = 4πr2ρv, and with the sound-speed equation C2 = (∂P/∂ρ)s, show that

(v2 − C2)
1

ρ

dρ

dr
=

GM
r2

− 2v2

r
. (17.12)

Thereby deduce that the flow speed vs, sound speed Cs, and radius rs at the sonic

point (the radius of transition from subsonic to supersonic flow) are related by

v2s = C2
s =

GM
2rs

. (17.13)

(e) By combining with the Bernoulli equation (with the effects of gravity included), deduce
that the sound speed at the sonic point is related to that at infinity by

C2
s =

2C2
∞

5− 3γ
(17.14)

and that the radius of the sonic point is

rs =
(5− 3γ)

4

GM
C2

∞

. (17.15)

Thence also deduce a precise value for the mass accretion rate Ṁ in terms of the
parameters of the problem. Compare with your estimate of Ṁ in parts (a) and (b).
[Comment: For γ = 5/3, which is the value for hot, ionized gas, this analysis places the
sonic point at an arbitrarily small radius. In this limiting case (i) general relativistic
effects strengthen the gravitational field, thereby moving the sonic point well outside
the star or hole, and (ii) your answer for Ṁ has a finite value close to the general
relativistic prediction. See Ex. 26.10.

(f) Much of the interstellar medium is hot and ionized, with density about one proton per
cubic centimeter and temperature about 104 K. In such a medium, what is the mass
accretion rate onto a 10 solar mass hole, and approximately how long does it take for
the hole’s mass to double?

****************************
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17.4 One Dimensional, Time-Dependent Flow

17.4.1 Riemann Invariants

Let us turn now to time-dependent flows. Again we confine our attention to the simplest sit-
uation that illustrates the physics, in this case, truly one-dimensional motion of an isentropic
fluid in the absence of viscosity, thermal conductivity and gravity, so the flow is adiabatic
as well as isentropic (entropy constant in time as well as space). The motion of the gas in
such a flow is described by the equation of continuity (17.1a) and the Euler equation (17.1b)
specialized to one dimension:

dρ

dt
= −ρ

∂v

∂x
,

dv

dt
= −1

ρ

∂P

∂x
, (17.16)

where
d

dt
=

∂

∂t
+ v

∂

∂x
(17.17)

is the convective (advective) time derivative—the time derivative moving with the fluid.
Given an isentropic equation of state P = P (ρ) that relates the pressure to the density,

these two nonlinear equations can be combined into a single second order differential equation
in the velocity. However, it is more illuminating to work with the first-order set. As the
gas is isentropic, the density ρ and sound speed C = (dP/dρ)1/2 can both be regarded as
functions of a single thermodynamic variable, which we choose to be the pressure.

Taking linear combinations of Eqs. (17.16), we obtain two partial differential equations

∂v

∂t
± 1

ρC

∂P

∂t
+ (v ± C)

(

∂v

∂x
± 1

ρC

∂P

∂x

)

= 0 , (17.18)

which together are equivalent to Eqs. (17.16). We can rewrite these equations in terms of
Riemann invariants

J± ≡ v ±
∫

dP

ρC
(17.19)

and characteristic speeds

V± ≡ v ± C (17.20)

in the following way:
(

∂

∂t
+ V±

∂

∂x

)

J± = 0 . (17.21)

Equation (17.21) tells us that the convective derivative of each Riemann invariant J±

vanishes for an observer who moves, not with the fluid speed, but, instead, with the speed
V±. We say that each Riemann invariant is conserved along its characteristic (denoted by
C±), which is a path through spacetime satisfying

C± :
dx

dt
= v ± C . (17.22)
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Note that in these equations, both v and C are functions of x and t.
The characteristics have a natural interpretation. They describe the motion of small

disturbances traveling backward and forward relative to the fluid at the local sound speed.
As seen in the fluid’s local rest frame v = 0, two neighboring events in the flow, separated
by a small time interval ∆t and a space interval ∆x = +C∆t so that they lie on the same
C+ characteristic, will have small velocity and pressure differences satisfying ∆v = −∆P/ρC
[as one can deduce from Eqs. (17.16) with v = 0, d/dt = ∂/∂t and C2 = dP/dρ]. Now, for
a linear sound wave, propagating along the positive x direction, ∆v and ∆P will separately
vanish. However in a nonlinear wave, only the combination ∆J+ = ∆v+∆P/ρC will vanish
along C+. Integrating over a finite interval of time, we recover the constancy of J+ along the
characteristic C+ [Eq. (17.21)].

The Riemann invariants provide a general method for deriving the details of the flow
from initial conditions. Suppose that the fluid velocity and the thermodynamic variables are
specified over an interval of x, designated ∂S, at an initial time t = 0 (Fig. 17.7). This means
that J± are also specified over this interval. We can then determine J± at any point P in the
domain of dependence S of ∂S (i.e., at any point linked to ∂S by two characteristics C±) by
simply propagating each of J± unchanged along its characteristic. From these values of J±

at P, we can solve algebraically for all the other flow variables (v, P , ρ, ...) at P. To learn
the evolution outside the domain of dependence S, we must specify the initial conditions
outside ∂S.

In practice, we do not actually know the characteristics C± until we have solved for the
flow variables, so we must solve for the characteristics as part of the solution process. This
means, in practice, that the solution involves algebraic manipulations of (i) the equation
of state and the relations J± = v ±

∫

dP/ρC, which give J± in terms of v and C; and

t

xA B

P

C
:J  = const

C +
:

 

J +
= co

nst

S

-
-

Fig. 17.7: Spacetime diagram showing the characteristics (thin solid and dashed lines) for a one
dimensional adiabatic flow of an isentropic gas. The paths of the fluid elements are shown as thick
solid lines. Initial data are presumed to be specified over some interval ∂S of x at time t = 0. The
Riemann invariant J+ is constant along each characteristic C+ (thin dashed line) and thus at point
P it has the same value, unchanged, as at point A in the initial data. Similarly J− is invariant along
each characteristic C− (thin solid line) and thus at P it has the same value as at B. The shaded
area of spacetime is the domain of dependence S of ∂S.
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Fig. 17.8: Evolution of a nonlinear sound wave. The fluid at the crest of the wave moves faster
than the fluid in the trough. Mathematically, the flow eventually becomes triple-valued (dashed
curve). Physically, a shock wave develops (vertical solid line).

(ii) the conservation laws that J± are constant along C±, i.e. along curves dx/dt = v ± C.
These algebraic manipulations have the goal of deducing C(x, t) and v(x, t) from the initial
conditions on ∂S. We shall exhibit a specific example in the next subsection.

We can use Riemann invariants to understand qualitatively how a nonlinear sound wave
evolves with time. If the wave propagates in the positive x direction into previously undis-
turbed fluid (fluid with v = 0), then the J− invariant, propagating backward along C−, is
constant everywhere, so v =

∫

dP/ρC + constant. Let us use q ≡
∫

dP/ρC as our wave
variable. For an ideal gas with constant ratio of specific heats γ, q = 2C/(γ − 1), so our
oscillating wave variable is essentially the oscillating sound speed. Constancy of J− then says
that v = q − q0, where q0 is the stagnation value of q, i.e. the value of q in the undisturbed
fluid in front of the wave.

Now, J+ = v + q is conserved on each rightward characteristic C+, and so both v and q
are separately conserved on each C+. If we sketch a profile of the wave pulse as in Fig. 17.8
and measure its amplitude using the quantity q, then the relation v = q − q0 says that
the fluid at the crest of the wave moves faster than the fluid in a trough. This causes the
leading edge of the wave to steepen, a process we have already encountered in our discussion
of shallow-water solitons (Fig. 16.4). Now, sound waves, by contrast with shallow-water
waves (where dispersion counteracts the steepening), are non-dispersive so the steepening
will continue until |dv/dx| → ∞ (Fig. 17.8). When the velocity gradient becomes sufficiently
large, viscosity and dissipation will become strong, producing an increase of entropy and a
breakdown of our isentropic flow. This breakdown and entropy increase will occur in an
extremely thin region—a shock wave, which we shall study in Sec. 17.5.

17.4.2 Shock Tube

We have shown how one dimensional isentropic flows can be completely analyzed by propa-
gating the Riemann invariants along characteristics. Let us illustrate this in more detail by
analyzing a shock tube, a laboratory device for creating supersonic flows and studying the
behavior of shock waves. In a shock tube, high pressure gas is retained at rest in the left half
of a long tube by a thin membrane (Fig. 17.9a). At time t = 0, the membrane is ruptured by
a laser beam and the gas rushes into the tube’s right half, which has usually been evacuated.
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Fig. 17.9: Shock Tube. (a) At t ≤ 0 gas is held at rest at high pressure P0 in the left half of
the tube. (b) At t > 0 the high-pressure gas moves rightward down the tube at high speed, and a
rarefaction wave propagates leftward at the sound speed. (c) Space-time diagram showing the flow’s
characteristics (C+: thin dashed lines; C−: thin solid lines) and fluid paths (thick solid lines). To
the left of the rarefaction wave, x < −Cot, the fluid is undisturbed. To the right of the gas front,
x > [2/(γ − 1)]Cot, is undisturbed (near) vacuum

Diagnostic photographs and velocity and pressure measurements are synchronized with the
onset of the flow.

Let us idealize the operation of a shock tube by assuming, once more, that the gas is
ideal with constant γ, so that P ∝ ργ . For times t ≤ 0, we suppose that the gas has uniform
density ρ0 and pressure P0 (and consequently uniform sound speed C0) at x ≤ 0, and that
ρ = P = 0 at x ≥ 0. At time t = 0, the barrier is removed and the gas flows towards positive
x. Now, the first Riemann invariant J+ is conserved on C+, which originates in the static
gas, so it has the value

J+ = v +
2C

γ − 1
=

2C0

γ − 1
. (17.23)

Note that in this case, the invariant is the same on all rightward characteristics, i.e. through-
out the flow, so

v =
2(C0 − C)

γ − 1
everywhere. (17.24)

The second invariant is

J− = v − 2C

γ − 1
. (17.25)

Its constant values are not so easy to identify because those characteristics C− that travel
through the perturbed flow all emerge from the origin, where v and C are indeterminate;
cf. Fig. 17.9c. However, by combining Eq. (17.24) with Eq. (17.25), we deduce that v and
C are separately constant on each characteristic C−. This enables us, trivially, to solve the
differential equation dx/dt = v − C for the leftward characteristics C−, obtaining

C− : x = (v − C)t . (17.26)
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Here we have set the constant of integration equal to zero so as to obtain all the characteristics
that propagate through the perturbed fluid. (For those in the unperturbed fluid, v = 0 and
C = C0, so x = x0 − C0t with x0 < 0 the characteristic’s initial location.)

Now Eq. (17.26) is true on each characteristic in the perturbed fluid. Therefore it is true
throughout the perturbed fluid. We can therefore combine Eqs. (17.24), (17.26) to solve for
v(x, t) and C(x, t) throughout the perturbed fluid. That solution, together with the obvious
solution (same as initial data) to the left and right of the perturbed fluid, is:

v = 0 , C = C0 at x < −C0t ,

v =
2

γ + 1

(

C0 +
x

t

)

, C =
2C0

γ + 1
−
(

γ − 1

γ + 1

)

x

t
at − C0t < x <

2C0

γ − 1
t ,

vacuum prevails at x >
2C0

γ − 1
t . (17.27)

Notice, in this solution, that the gas at x < 0 remains at rest until a rarefaction wave from
the origin reaches it. Thereafter it is accelerated rightward by the local pressure gradient,
and as it accelerates it expands and cools so its speed of sound C goes down; asymptotically
it reaches zero temperature as exhibited by C = 0 and an asymptotic speed v = 2C0/(γ−1)
[cf. Eq. (17.23)]; see Fig. 17.9b,c. In the expansion, the internal random velocity of the gas
molecules is transformed into an ordered velocity just as in a rocket’s exhaust. However, the
total energy per unit mass in the stationary gas is u = C2

0/γ(γ − 1) [Eq. (17.2d)], which is
less than the asymptotic kinetic energy per unit mass of 2C2

0/(γ − 1)2. The missing energy
has gone into performing work on the gas that is still struggling to reach its asymptotic
speed.

In the more realistic case, where there initially is some low-density gas in the evacuated
half of the tube, the expanding driver gas creates a strong shock as it plows into the low-
density gas; hence the name “shock tube”. In the next section we shall explore the structure
of this and other shock fronts.

****************************
EXERCISES

Exercise 17.5 Problem: Fluid Paths in Free Expansion

We have computed the velocity field for a freely expanding gas in one dimension, Eq. (17.27).
Use this result to show that the path of an individual fluid element, which begins at x =
x0 < 0, is

x =
2C0t

γ − 1
+

(

γ + 1

γ − 1

)

x0

(−C0t

x0

)
2

γ+1

at 0 < −x0

C0

< t .

Exercise 17.6 Problem: Riemann Invariants for Shallow-Water Flow; Breaking of a Dam

Consider the one-dimensional flow of shallow water in a straight, narrow channel, neglecting
dispersion and boundary layers. The equations governing the flow, as derived and discussed
in Box 16.3 and Eqs. 16.23, are

∂h

∂t
+

∂(hv)

∂x
= 0 ,

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= 0 . (17.28)
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Here h(x, t) is the height of the water and v(x, t) is its depth-independent velocity.

(a) Find two Riemann invariants J± for these equations, and find two conservation laws
for these J± which are equivalent to the shallow-water equations (17.28).

(b) Use these Riemann invariants to demonstrate that shallow-water waves steepen in the
manner depicted in Fig. 16.4, a manner analogous to the peaking of the nonlinear
sound wave in Fig. 17.8.

(c) Use these Riemann invariants to solve for the flow of water h(x, t) and v(x, t) after a
dam breaks (the problem posed in Ex. 16.9, and there solved via similarity methods).
The initial conditions, at t = 0, are v = 0 everywhere, and h = ho at x < 0, h = 0 (no
water) at x > 0.

****************************

17.5 Shock Fronts

We have just demonstrated that in an ideal gas with constant adiabatic index γ, large per-
turbations to fluid dynamical variables inevitably evolve to form a divergently large velocity
gradient—a shock front or a shock wave or simply a shock. Now, when the velocity gra-
dient becomes large, we can no longer ignore the viscous stress because the viscous terms
in the Navier-Stokes equation involve second derivatives in space, whereas the inertial term
involves only first derivatives. As in turbulence and in boundary layers, so also in a shock
front, the viscous stresses convert the fluid’s ordered, bulk kinetic energy into microscopic
kinetic energy, i.e. thermal energy. The ordered fluid velocity v thereby is rapidly—almost
discontinuously—reduced from supersonic to subsonic, and the fluid is heated.

The cooler, supersonic region of incoming fluid is said to be ahead of or upstream from

the shock, and it hits the shock’s front side; the hotter, subsonic region of outgoing fluid is
said to be behind or downstream from the shock, and it emerges from the shock’s back side;
see Fig. 17.10 below.

17.5.1 Junction Conditions Across a Shock; Rankine-Hugoniot Re-

lations

Viscosity is crucial to the internal structure of the shock, but it is just as negligible in the
downstream flow behind the shock as in the upstream flow ahead of the shock, since there
velocity gradients are modest again. Remarkably, if (as is usually the case) the shock front is
very thin compared to the length scales in the upstream and downstream flows, and the time
for the fluid to pass through the shock is short compared to the upstream and downstream
timescales, then we can deduce the net influence of the shock on the flow without any
reference to the viscous processes that operate within the shock, and without reference to
the shock’s detailed internal structure. We do so by treating the shock as a discontinuity
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across which certain junction conditions must be satisfied. This is similar to electromagnetic
theory, where the junction conditions for the electric and magnetic fields across a material
interface are independent of the detailed structure of the interface.

The keys to the shock’s junction conditions are the conservation laws for mass, momentum
and energy: The fluxes of mass, momentum, and energy must usually be the same in the
downstream flow, emerging from the shock, as in the upstream flow, entering the shock. To
understand this, we first note that, because the time to pass through the shock is so short,
mass, momentum and energy cannot accumulate in the shock, so the flow can be regarded
as stationary. In a stationary flow, the mass flux is always constant, as there is no way to
create new mass or destroy old mass. Its continuity across the shock can be written as

[ρv · n] = 0 , (17.29a)

where n is the unit normal to the shock front and the square bracket means the difference
in the values on the downstream and upstream sides of the shock. Similarly, the total
momentum flux, T · n, must be conserved in the absence of external forces. Now T has both
a mechanical component, Pg + ρv ⊗ v and a viscous component, −ζθg − 2ησ. However,
the viscous component is negligible in the upstream and downstream flows, which are being
matched to each other, so the mechanical component by itself must be conserved across the
shock front:

[(Pg + ρv ⊗ v) · n] = 0 . (17.29b)

Similar remarks apply to the energy flux, though here we must be slightly more restrictive.
There are three ways that a change in the energy flux could occur. First, energy may be
added to the flow by chemical or nuclear reactions that occur in the shock front. Second,
the gas may be heated to such a high temperature that it will lose energy in the shock
front through the emission of radiation. Third, energy may be conducted far upstream by
suprathermal particles so as to pre-heat the incoming gas. This will thicken the shock front
and may make it so thick that it can no longer sensibly be approximated as a discontinuity.
If any of these processes are occurring, we must check to see whether they are strong enough
to significantly influence energy conservation across the shock. What such a check often
reveals is that preheating is negligible, and the lengthscales over which the chemical and
nuclear reactions and radiation emission operate are much greater than the length over which
viscosity acts. In this case we can conserve energy flux across the viscous shock and then
follow the evolutionary effects of reactions and radiation (if significant) in the downstream
flow.

A shock with negligible preheating, and with negligible radiation emission and chemical
and nuclear reactions inside the shock, will have the same energy flux in the departing,
downstream flow as in the entering, upstream flow, i.e., they will satisfy

[(

1

2
v2 + h

)

ρv · n
]

= 0 . (17.29c)

Shocks which satisfy the conservation laws of mass, momentum and energy, Eqs. (17.29),
are said to be adiabatic.
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Fig. 17.10: Terminology and notation for a shock front and the flow into and out of it.

By contrast, with mass, momentum and energy, the entropy will not be conserved across
a shock front, since viscosity and other dissipative processes increase the entropy as the fluid
flows through the shock. So far, the only type of dissipation which we have discussed is
viscosity and this is sufficient by itself to produce a shock front and keep it thin. However,
heat conduction (Sec. 18.2) and electrical resistivity, which is important in magnetic shocks
(Chap. 19), can also contribute to the dissipation and can influence the detailed structure of
the shock front.

For an adiabatic shock, the three requirements of mass, momentum and energy conserva-
tion [Eqs. (17.29)], known collectively as the Rankine-Hugoniot relations, enable us to relate
the downstream flow and its thermodynamic variables to their upstream counterparts.1

Let us work in a reference frame where the incoming flow is normal to the shock front and
the shock is at rest, so the flow is stationary in the shock’s vicinity. Then the conservation
of tangential momentum — the tangential component of Eq. (17.29b) — tells us that the
outgoing flow is also normal to the shock in our chosen reference frame. We say that the
shock is normal, not oblique.

We use the subscripts 1, 2 to denote quantities measured ahead of and behind the shock
respectively; i.e., 1 is the incoming flow and 2 is the outgoing flow (Fig. 17.10). The Rankine-
Hugoniot relations (17.29) then take the forms

ρ2v2 = ρ1v1 = j , (17.30a)

P2 + ρ2v
2
2 = P1 + ρ1v

2
1 , (17.30b)

h2 +
1

2
v22 = h1 +

1

2
v21 , (17.30c)

where j is the mass flux, which is determined by the upstream flow.
These equations can be brought into a more useful form by replacing the density ρ with

the specific volume V ≡ 1/ρ, replacing the specific enthalpy h by its value in terms of P and

1The existence of shocks was actually understood quite early on, more or less in this way, by Stokes. How-

ever, he was persuaded by his former student Rayleigh and others that such discontinuities were impossible

because they would violate energy conservation. With a deference that professors traditionally show their

students, Stokes believed him. They were both making an error in their analysis of energy conservation, due

to inadequate understanding of thermodynamics in that era.
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V , h = u+ P/ρ = u+ PV , and performing some algebra; the result is

u2 − u1 =
1

2
(P1 + P2)(V1 − V2) , (17.31a)

j2 =
P2 − P1

V1 − V2
, (17.31b)

v1 − v2 = [(P2 − P1)(V1 − V2)]
1/2 . (17.31c)

This is the most widely used form of the Rankine-Hugoniot relations. It must be augmented
by an equation of state in the form

u = u(P, V ) . (17.32)

Some of the physical content of these Rankine-Hugoniot relations is depicted in Fig. 17.11.
The thermodynamic state of the upstream (incoming) fluid is the point (V1, P1) in this
volume-pressure diagram. The thick solid curve, called the shock adiabat, is the set of
all possible downstream (outgoing) fluid states. This shock adiabat can be computed by
combining Eq. (17.31a) with the equation of state (17.32). Those equations will actually
give a curve that extends away from (V1, P1) in both directions, up-leftward and down-
rightward. Only the up-leftward portion is compatible with an increase of entropy across the
shock; the down-rightward portion requires an entropy decrease, which is forbidden by the
second law of thermodynamics, and therefore is not drawn on Fig. 17.11. The actual location
(V2, P2) of the downstream state along the shock adiabat is determined by Eq. (17.31b) in
a simple way: the slope of the dotted line connecting the upstream and downstream states
is −j2, where j is the mass flux passing through the shock. When one thereby has learned
(V2, P2), one can compute the downstream speed v2 from Eq. (17.31c).

Possible Downstream State

Increasing Entropy

s = constant
Shock
Adiabat

Upstream State

V2 V1

P2

P
1 s = constant

V

P

slope
-j 2

Fig. 17.11: Shock adiabat. The pressure and specific volume V = 1/ρ in the upstream flow
are P1 and V1, and in the downstream flow P2 and V2. The dashed curves are ordinary adiabats
(curves of constant entropy per unit mass s). The thick curve is the shock adiabat, the curve of
allowed downstream states (V2, P2) for a given upstream state (V1, P1). The actual location of the
downstream state on this adiabat is determined by the mass flux j flowing through the shock: the
slope of the dotted line connecting the upstream and downstream states is −j2.
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It can be shown that the pressure and density always increase across a shock (as is the
case in Fig. 17.11), and the fluid always decelerates,

P2 > P1 , V2 < V1 , v2 < v1 ; (17.33)

see Ex. 17.7. It also can be demonstrated in general, and will be verified in a particular case
below, that the Rankine-Hugoniot relations require the flow to be supersonic with respect
to the shock front upstream v1 > C1 and subsonic downstream, v2 < C2. Physically, this is
sensible (as we have seen above): When the fluid approaches the shock supersonically, it is not
possible to communicate a pressure pulse upstream from the shock (via a Riemann invariant
moving at the speed of sound) and thereby cause the flow to decelerate; therefore, to slow the
flow a shock must develop.2 By contrast, the shock front can and does respond to changes
in the downstream conditions, since it is in causal contact with the downstream flow; sound
waves and a Riemann invariant can propagate upstream, through the downstream flow, to
the shock.

To summarize, shocks are machines that decelerate a normally incident upstream flow to
a subsonic speed, so it can be in causal contact with conditions downstream. In the process,
bulk momentum flux, ρv2, is converted into pressure, bulk kinetic energy is converted into
internal energy, and entropy is manufactured by the dissipative processes at work in the
shock front. For given upstream conditions, the downstream conditions are fixed by the
conservation laws of mass, momentum and energy, and are independent of the detailed
dissipation mechanisms.

****************************
EXERCISES

Exercise 17.7 Derivation and Challenge: Signs of Change Across a Shock

(a) Almost all equations of state satisfy the condition (∂2V/∂P 2)s > 0. Show that, when
this is satisfied, the Rankine-Hugoniot relations and the law of entropy increase imply
that the pressure and density must increase across a shock and the fluid must decelerate;
i.e., P2 > P1, V2 < V1, and v2 < v1.

(b) Show that in a fluid that violates (∂2V/∂P 2)s > 0, the pressure and density must
still increase and the fluid decelerate across a shock, as otherwise the shock would be
unstable.

For a solution to this exercise, see Sec. 84 of Landau and Lifshitz (1959).

Exercise 17.8 T2 Problem: Relativistic Shock

In astrophysics (e.g. in supernova explosions and in jets emerging from the vicinities of black
holes), one sometimes encounters shock fronts for which the flow speeds relative to the shock
approach the speed of light, and the internal energy density is comparable to the fluid’s
rest-mass density.

2Of course, if there is some faster means of communication, for example photons or, in an astrophysical

context, cosmic rays or neutrinos, then there may be a causal contact between the shock and the inflowing

gas, and this can either prevent shock formation or lead to a more complex shock structure.
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(a) Show that the relativistic Rankine-Hugoniot equations for such a shock take the fol-
lowing form:

η22 − η21 = (P2 − P1)(η1V1 + η2V2) , (17.34a)

j2 =
P2 − P1

η1V1 − η2V2
, (17.34b)

v2γ2 = jV2 , v1γ1 = jV1 . (17.34c)

Here, (i) we use units in which the speed of light is one (as in Chap. 2); (ii) V ≡ 1/ρo is
the volume per unit rest mass and ρo is the rest-mass density (equal to some standard
rest mass per baryon times the number density of baryons; cf. Sec. 2.12.3); (iii) we
denote the total density of mass-energy including rest mass by ρR (it was denoted ρ
in Chap. 2) and the internal energy per unit rest mass by u so ρR = ρo(1 + u); and in
terms of these the quantity η ≡ (ρR + P )/ρo = 1+ u+ P/ρo = 1+ h is the relativistic
enthalpy per unit rest mass (i.e. the enthalpy per unit rest mass including the rest-
mass contribution to the energy) as measured in the fluid rest frame; (iv) P is the
pressure as measured in the fluid rest frame; (v) v is the flow velocity in the shock’s
rest frame and γ ≡ 1/

√
1− v2 (not the adiabatic index!), so vγ is the spatial part of

the flow 4-velocity; and (vi) j is the rest-mass flux (rest mass per unit area per unit
time) entering and leaving the shock.

(b) Use a pressure-volume diagram to discuss these relativistic Rankine-Hugoniot equations
in a manner analogous to Fig. 17.11.

(c) Show that in the nonrelativistic limit, the relativistic Rankine-Hugoniot equations
(17.34) reduce to the nonrelativistic ones (17.30 ).

(d) It can be shown (Thorne 1973) that, as for nonrelativistic shocks, so also relativistically,
in general P2 > P1, V2 < V1 and v2 < v1. Consider, as an example, a relativistic
shock propagating through a fluid in which the mass density due to radiation greatly
exceeds that due to matter (a radiation dominated fluid), so P = ρR/3 (Sec. 3.5.5).
Show that v1v2 = 1/3, which implies v1 > 1/

√
3 and v2 < 1/

√
3. Show further that

P2/P1 = (v21 − 1/3)γ2
1 .

Exercise 17.9 **Problem: Hydraulic Jumps and Breaking Ocean Waves

Run water at a high flow rate from a kitchen tap onto a dinner plate (Fig. 17.12). What you
see is called a hydraulic jump. It is the kitchen analog of a breaking ocean wave, and the
shallow-water-wave analog of a shock front in a compressible gas. In this exercise you will
develop the theory of hydraulic jumps (and breaking ocean waves) using the same tools as
for shock fronts.

(a) Recall that for shallow-water waves, the water motion, below the water’s surface, is
nearly horizontal with speed independent of depth z (Ex. 16.1). The same is true of
the water in front of and behind a hydraulic jump. Apply the conservation of mass and
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Fig. 17.12: Hydraulic jump on a dinner plate under a kitchen tap.

momentum to a hydraulic jump, in the jump’s rest frame, to obtain equations for the
height of the water h2 and water speed v2 behind the jump (emerging from it) in terms
of those in front of the jump, h1, v1. These are the analog of the Rankine-Hugoniot
relations for a shock front. [Hint: In momentum conservation you will need to use the
pressure P as a function of height in front of and behind the jump.]

(b) You did not use energy conservation across the jump in your derivation, but it was
needed in the analysis of a shock front. Why?

(c) Show that the upstream speed v1 is greater than the speed
√
gh1 of small-amplitude,

upstream gravity waves [shallow-water waves; Eq. (16.10) and associated discussion];
i.e. the upstream flow is supersonic. Similarly show that the downstream flow speed
v2 is slower than the speed

√
gh2 of small-amplitude, downstream gravity waves; i.e.,

the downstream flow is subsonic.

(d) We normally view a breaking ocean wave in the rest frame of the quiescent upstream
water. Use your hydraulic-jump equations to show that the speed of the breaking
wave as seen in this frame is related to the depths h1 and h2 in front of and behind
the breaking wave by

vbreak =

[

g(h1 + h2)h2

2h1

]1/2

;

see Fig. 17.13.

vbreak

v=0

h2

h1

Fig. 17.13: Ocean wave breaking on a slowly sloping beach. The depth of water ahead of the wave
is h1 and the depth behind the wave is h2.
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****************************

17.5.2 Junction Conditions for Ideal Gas with Constant γ

To make the shock junction conditions more explicit, let us again specialize to an ideal
gas with constant specific-heat ratio γ (a polytropic gas), so the equation of state is u =
PV/(γ − 1) and the sound speed is C =

√

γP/ρ =
√
γPV [Eqs. (17.2)]. We measure the

strength of the shock using the shock Mach number M , which is defined to be the Mach
number in the upstream flow relative to the shock,

M ≡ M1 = v1/C1 =
√

v21/γP1V1 . (17.35)

With the aid of this equation of state and Mach number, we can bring the Rankine-Hugoniot
relations (17.31) into the form

ρ1
ρ2

=
V2

V1

=
v2
v1

=
γ − 1

γ + 1
+

2

(γ + 1)M2
, (17.36a)

P2

P1

=
2γM2

γ + 1
− γ − 1

γ + 1
, (17.36b)

M2
2 =

2 + (γ − 1)M2

2γM2 − (γ − 1)
. (17.36c)

Here M2 ≡ v2/c2 is the downstream Mach number.
The results for this equation of state illustrate a number of general features of shocks: The

density and pressure increase across the shock, the flow speed decreases, and the downstream
flow is subsonic—all discussed above—and one important new feature: A shock weakens as
its Mach number M decreases. In the limit that M → 1, the jumps in pressure, density, and
speed vanish and the shock disappears.

In the strong-shock limit, M ≫ 1, the jumps are

ρ1
ρ2

=
V2

V1

=
v2
v1

≃ γ − 1

γ + 1
, (17.37a)

P2

P1
≃ 2γM2

γ + 1
. (17.37b)

Thus, the density jump is always of order unity, but the pressure jump grows ever larger as
M increases. Air has γ ≃ 1.4 (Ex. 17.1), so the density compression ratio for a strong shock
in air is ρ2/ρ1 = 6 and the pressure ratio is P2/P1 = 1.2M2. The space shuttle’s reentry
provides a nice example of these strong-shock Rankine-Hugoniot relations; see bottom half
of Box 17.4.

****************************
EXERCISES
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Exercise 17.10 Problem: Shock Tube

Consider a shock tube as discussed in Sec. 17.4 and Fig. 17.11. Suppose that there is a small
density of gas at rest in the evacuated half of the tube, with specific heat ratio γ1 which
might differ from that of the driver gas, and with initial sound speed C1. After the membrane
is ruptured, the driver gas will expand into the evacuated half of the tube forming a shock
front. Show that, in the limit of very large pressure ratio across the shock, the shock Mach
number is

M1 ≃
(

γ1 + 1

γ1 − 1

)(

C0

C1

)

,

where C0 is the driver gas’s initial sound speed.

****************************

17.5.3 Internal Structure of a Shock

Although they are often regarded as discontinuities, shocks, like boundary layers, do have
structure. The simplest case is that of a gas in which the shear viscosity coefficient is
molecular in origin and is given by η = ρν ∼ ρλvth/3, where λ is the molecular mean free
path and vth ∼ c is the mean thermal speed of the molecules (Ex. 3.19). In this case the
viscous stress Txx = −ζθ − 2ησxx is −(ζ + 4η/3)dv/dx, where ζ is the coefficient of bulk
viscosity which can be of the same order as the coefficient of shear viscosity. In the shock,
this must roughly balance the total kinetic momentum flux ∼ ρv2. If we estimate the velocity
gradient dv/dx by v1/δS where δS is a measure of the shock thickness and we estimate the
sound speed in the shock front by C ∼ v1, then we deduce that the shock thickness δS is
roughly equal to λ, the collision mean free path in the gas. For air at standard temperature
and pressure, the mean free path is λ ∼ (

√
2nπσ2)−1 ∼ 70 nm, where n is the molecular

density and σ is the molecular diameter. This is very small! Microscopically, it makes sense
that δS ∼ λ as an individual molecule only needs a few collisions to randomize its ordered
motion perpendicular to the shock front. However, this estimate raises a problem as it
brings into question our use of the continuum approximation (cf. Sec. 13.1). It turns out
that, when a more careful calculation of the shock structure is carried out incorporating heat
conduction, the shock thickness is several mean free paths, fluid dynamics is acceptable for
an approximate theory, and the results are in rough accord with measurements of the velocity
profiles of shocks with modest Mach numbers. Despite this, for an accurate description of
the shock structure, a kinetic treatment is usually necessary.

So far we have assumed that the shocked fluid is made of uncharged molecules. A more
complicated type of shock can arise in an ionized gas, i.e. a plasma (Part V). Shocks in the
solar wind are examples. In this case, the collision mean free paths are enormous, in fact
comparable with the transverse size of the shock, and therefore one might expect the shocks to
be so thick that the Rankine-Hugoniot relations will fail. However, spacecraft measurements
reveal solar-wind shocks that are relatively thin—far thinner than the collisional mean free
paths of the plasma’s electrons and ions. In this case, it turns out that collisionless, collective
elctromagnetic & charged-particle interactions in the plasma are responsible for the viscosity
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and dissipation. (The particles create plasma waves, which in turn deflect the particles.)
These processes are so efficient that thin shock fronts can occur without individual particles
having to hit one another. Since the shocks are thin, they must satisfy the Rankine-Hugoniot
relations. We shall discuss these collisionless shocks further in Sec. 23.6.

17.5.4 Mach Cone

The shock waves formed by a supersonically moving body are quite complex close to the
body and depend on its detailed shape, Reynolds’ number, etc.; see, e.g., Fig. 17.1 above.
However, far from the body, the leading shock has the form of the Mach cone shown in
Fig. 17.14. We can understand this cone by the construction shown in the figure. The
shock is the boundary between that fluid which is in sound-based causal contact with the
projectile and that which is not. This boundary is mapped out by (conceptual) sound waves
that propagate into the fluid from the projectile at the ambient sound speed C0. When the
projectile is at the indicated position, the envelope of the circles is the shock front and has
the shape of the Mach cone, with opening angle (the Mach angle)

α = sin−1(1/M) . (17.38)

Usually, there will be two such shock cones, one attached to the projectile’s bow shock
and the other formed out of the complex shock structure in its tail region. The pressure
must jump twice, once across each of these shocks, and will therefore form an N wave which
propagates cylindrically away from the projectile as shown in Fig. 17.15. Behind the first
shock, the density and pressure drop off gradually by more than the first shock’s compression.
As a result, the fluid flowing into the second shock has a lower pressure, density, and sound
speed than that flowing into the first (cf. Fig. 17.15). This causes the Mach number of the
second shock to be higher than that of the first, and its Mach angle thus to be smaller. As
a result, the separation between the shocks increases as they travel, ∝ ̟1/2 it turns out;
and the pressure jumps across the shocks decrease ∝ ̟−3/4. Here ̟ is the perpendicular
distance of the point of observation from the projectile’s trajectory. Often a double boom
can be heard on the ground. For a detailed analysis see Sec. 9.3 of Whitham (1974).

Present projectile position

C
0
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2
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0
t
1
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t
1
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Fig. 17.14: Construction for Mach cone formed by a supersonic projectile. The cone angle is
α = sin−1(M−1), where M = vp/C0 is the Mach number of the projectile.
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P

ground

Fig. 17.15: Double shock created by supersonic body and associated “N wave” pressure distribution
on the ground.

****************************
EXERCISES

Exercise 17.11 Problem: Sonic Boom from the Space Shuttle

Use the quoted scaling of N wave amplitude with cylindrical radius ̟ to make an order of
magnitude estimate of the flux of acoustic energy produced by the space shuttle flying at
Mach 2 at an altitude of 20km. Quote your answer in dB [cf. Eq. (16.61)].

****************************

17.6 Self-Similar Solutions — Sedov-Taylor Blast Wave

Strong explosions can generate shock waves. Examples include atmospheric nuclear explo-
sions, supernova explosions, and depth charges. The debris from a strong explosion will be
at much higher pressure than the surrounding gas and will therefore drive a strong spherical
shock into the surroundings. Initially, this shock wave will travel at roughly the radial speed
of the expanding debris. However, the mass of fluid swept up by the shock will eventually
exceed that of the explosion debris. The shock will then decelerate and the energy of the
explosion will be transferred to the swept-up fluid. It is of obvious importance to be able to
calculate how fast and how far the shock front will travel.

17.6.1 The Sedov-Taylor Solution

We first make an order of magnitude estimate. Let the total energy of the explosion be E
and the density of the surrounding fluid (assumed uniform) be ρ0. Then after time t, when
the shock radius is R(t), the mass of swept-up fluid will be m ∼ ρ0R

3. The fluid velocity
behind the shock will be roughly the radial velocity of the shock front, v ∼ Ṙ ∼ R/t, and
so the kinetic energy of the swept-up gas will be ∼ mv2 ∼ ρ0R

5/t2. There will also be
internal energy in the post-shock flow, with energy density roughly equal to the post-shock
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pressure, ρu ∼ P ∼ ρ0Ṙ
2 [cf. the strong-shock jump condition (17.36b) with P1 ∼ ρ0C

2
0 so

P1M
2 ∼ ρ0v

2 ∼ ρ0Ṙ
2]. The total internal energy within the expanding shock will then be

∼ ρṘ2R3 ∼ ρ0R
5/t2, equal in order of magnitude to the kinetic energy. Equating this to the

total energy E of the explosion, we obtain the estimate

E = κρ0R
5t−2 , (17.39)

where κ is a numerical constant of order unity. This implies that at time t the shock front
has reached the radius

R =

(

E

κρ0

)1/5

t2/5 . (17.40)

This scaling should hold roughly from the time that the mass of the swept-up gas is of order
that of the exploding debris, to the time that the shock weakens to a Mach number of order
unity so we can no longer use the strong-shock value ∼ ρ0Ṙ

2 for the post-shock pressure.
Note that we could have obtained Eq. (17.40) by a purely dimensional argument: E and

ρ0 are the only significant controlling parameters in the problem, and E1/5ρ
−1/5
0 t2/5 is the

only quantity with dimensions of length that can be constructed from E, ρ0 and t. However,
it is usually possible and always desirable to justify any such dimensional argument on the
basis of the governing equations.

If, as we shall assume, the motion remains radial and the gas is ideal with constant
specific-heat ratio γ, then we can solve for the details of the flow behind the shock front by
integrating the radial flow equations

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρv) = 0 , (17.41a)

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂P

∂r
= 0 , (17.41b)

∂

∂t

(

P

ργ

)

+ v
∂

∂r

(

P

ργ

)

= 0 . (17.41c)

The first two equations are the familiar continuity equation and Euler equation written
for a spherical flow. The third equation is energy conservation expressed as the adiabatic-
expansion relation, P/ργ =constant moving with a fluid element. Although P/ργ is time-
independent for each fluid element, its value will change from element to element. Gas that
has passed through the shock more recently will be given a smaller entropy than gas which
was swept up when the shock was stronger, and thus will have a smaller value of P/ργ .

Given suitable initial conditions, the partial differential equations (17.41) can be inte-
grated numerically. However, there is a practical problem: it is not easy to determine the
initial conditions in an explosion! Fortunately, at late times, when the inital debris mass is
far less than the swept-up mass, the fluid evolution is independent of the details of the initial
expansion and in fact can be understood analytically as a similarity solution. By this, we
mean that the shape of the radial profiles of pressure, density and velocity are independent
of time.

We have already met three examples of similarity solutions: the Blasius structure of a
laminar boundary layer (Sec. 14.4.1), the structure of a turbulent jet (Ex. 15.3), and the flow
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of water following the sudden rupture of a dam (Ex. 16.9). The one we explored in greatest
detail was the Blasius boundary layer (Sec. 14.4.1). There we argued on the basis of mass
and momentum conservation (or, equally well, via dimensional analysis) that the thickness
of the boundary layer as a function of distance x downstream would be ∼ δ = (νx/V )1/2

where V was the speed of the flow above the boundary layer. This motivated us to introduce
the dimensionless variable ξ = y/δ and argue that the boundary layer’s speed vx(x, y) would
be equal to the free stream velocity V times some universal function f ′(ξ). This ansatz
converted the fluid’s partial differential equations into an ordinary differential equation for
f(ξ), which we solved numerically.

Our explosion problem is somewhat similar. The characteristic scaling length in the
explosion is the radius R(t) = (E/κρ0)

1/5t2/5 of the shock [Eq. (17.40)], with κ an as-yet-
unknown constant, so the fluid and thermodynamic variables should be expressible as some
characteristic values multiplying universal functions of

ξ ≡ r/R(t) . (17.42)

Our thermodynamic variables are P, ρ, u, and natural choices for their characteristic values
are the values P2, ρ2, v2 immediately behind the shock. If we assume the shock is strong,
then we can use the strong-shock jump conditions (17.37) to determine those values, and
then write

P =
2

γ + 1
ρ0Ṙ

2P̃ (ξ) , (17.43a)

ρ =
γ + 1

γ − 1
ρ0 ρ̃(ξ) , (17.43b)

v =
2

γ + 1
Ṙ ṽ(ξ) , (17.43c)

with P̃ (1) = ρ̃(1) = ṽ(1) = 1 since ξ = 1 is the shock’s location. Note that the velocity v
is scaled to the post-shock velocity v2 measured in the inertial frame in which the upstream
fluid is at rest, rather than in the non-inertial frame in which the decelerating shock is at rest.
The self-similarity ansatz (17.43) and resulting similarity solution for the flow are called the
Sedov-Taylor blast-wave solution, since L. I. Sedov and G. I. Taylor independently developed
it.

The partial differential equations (17.41) can now be transformed into ordinary differ-
ential equations by inserting the ansatz (17.43) together with expression (17.40) for R(t),
changing the independent variables from r, t to R, ξ, and using

(

∂

∂t

)

r

= −
(

ξṘ

R

)

(

∂

∂ξ

)

R

+ Ṙ

(

∂

∂R

)

ξ

= −
(

2ξ

5t

)(

∂

∂ξ

)

R

+
2R

5t

(

∂

∂R

)

ξ

, (17.44)

(

∂

∂r

)

t

=

(

1

R

)(

∂

∂ξ

)

R

. (17.45)

Mass conservation, the Euler equation, and the equation of adiabatic expansion become, in
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that order:

0 = 2ρ̃ṽ′ − (γ + 1)ξρ̃′ + ṽ

(

2ρ̃′ +
4

ξ
ρ̃

)

, (17.46a)

0 = ρ̃ṽ[3(γ + 1)− 4ṽ′] + 2(γ + 1)ξρ̃ṽ′ − 2(γ − 1)P̃ ′ , (17.46b)

3 =

(

2ṽ

γ + 1
− ξ

)

(

P̃ ′

P̃
− γ

ρ̃′

ρ̃

)

. (17.46c)

These self-similarity equations can be solved numerically, subject to the boundary conditions
that ṽ, ρ̃ and P̃ are all zero at ξ = 0 and 1 at ξ = 1. Remarkably, Sedov (1957) found an
analytic solution, which is given in Sec. 99 of Landau and Lifshitz (1959) and in Sedov
(1993). The solution for an explosion in air (γ = 1.4) are exhibited in Fig. 17.16.

Armed with the solution for ṽ(ξ), ρ̃(ξ), P̃ (ξ) (numerical or analytic), we can evaluate the
flow’s energy E, which is equal to the explosion’s total energy during the time interval when
this similarity solution is accurate. The energy E is given by the integral

E =

∫ R

0

4πr2drρ

(

1

2
v2 + u

)

=
4πρ0R

3Ṙ2(γ + 1)

(γ − 1)

∫ 1

0

dξξ2ρ̃

(

2ṽ2

(γ + 1)2
+

2P̃

(γ + 1)2ρ̃

)

. (17.47)

Here we have used Eqs. (17.43) and substituted u = P/ρ(γ − 1) for the internal energy
[Eq. (17.2b)]. The energy E appears not only on the left side of this equation, but also on
the right, in the terms ρoR

3Ṙ2 = (4/25)E/κ. Thus, E cancels out, and Eq. (17.47) becomes
an equation for the unknown constant κ. Evaluating that equation numerically, we find that
κ varies from κ = 0.86 for γ = 1.4 (air) to κ = 0.49 for γ = 1.67 (monatomic gas or fully
ionized plasma).
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∼

Fig. 17.16: Scaled pressure, density and velocity as a function of scaled radius behind a Sedov-
Taylor blast wave in air with γ = 1.4.



35

It is enlightening to see how the fluid behaves in this blast-wave solution. The fluid that
passes through the shock is compressed so that it mostly occupies a fairly thin spherical shell
immediately behind the shock [see the spike in ρ̃(ξ) in Fig. 17.16]. The fluid in this shell
moves somewhat more slowly than the shock [v = 2Ṙ/(γ + 1); Eq. (17.43c) and Fig. 17.16];
i.e., it flows from the shock front through the high-density shell (fairly slowly relative to the
shell which remains attached to the shock), and on into the lower density post-shock region.
Since the post-shock flow is subsonic, the pressure within the blast wave is fairly uniform [see
the curve P̃ (ξ) in fig. 17.16]; in fact the central pressure is typically about half the maximum
pressure immediately behind the shock. This pressure pushes on the spherical shell, thereby
accelerating the freshly swept-up fluid.

17.6.2 Atomic Bomb

The first atomic bomb was exploded in New Mexico in 1945, and photographs released in 1947
(Fig. 17.17) showed the radius of the blast wave as a function of time. The pictures were well
fit by R ∼ 37(t/1ms)0.4 up to about t = 100 ms when the shock Mach number fell to about
unity (Fig. 17.17). Combining this information with the the above similarity solution, which
they had earlier derived independently (Taylor 1941, Sedov 1946), the Russian physicist L. I.
Sedov and the British physicist G. I. Taylor were both able to infer the total energy released,
which was an official American secret at the time. Their analyses of the data were published
later: Taylor (1950), Sedov (1957, 1993).

Adopting the specific heat ratio γ = 1.4 of air, the corresponding value κ = 0.86, and the
measured R ∼ 37(t/1ms)0.4, we obtain from Eq. (17.47) the estimate E ∼ 7.2×1013 j, which
is about the same energy release as 17 kilotons of TNT. This estimate is close to the Los
Alamos scientists estimate of 18 to 20 kilotons. (Hydrogen bombs have been manufactured
over a thousand times more energetic than this—as much as 57 megatons—but such awesome
weapons have not been deemed militarily useful, so today’s arsenals contain bombs that are
typically only ∼one megaton!)

We can use the Sedov-Taylor solution to infer some further features of the explosion. The
post-shock gas is at density ∼ (γ+1)/(γ− 1) ∼ 5 times the ambient density ρ0 ∼ 1 kg m−3.
Similarly, using the ideal gas law P = (ρ/mpµ)kBT with a mean molecular weight µ ∼ 10
and the strong-shock jump conditions (17.37), the post-shock temperature can be computed:

T2 =
mpµ

ρ2kB
P2 ∼ 4× 104

(

t

1ms

)−1.2

K . (17.48)

At early times, this is high enough to ionize the gas.

17.6.3 Supernovae

The evolution of most massive stars ends in a supernova explosion (like that which was
observed in 1987 in the Large Magellanic Cloud), in which a neutron star of mass m ∼ 3×1030

kg is formed. This neutron star has a gravitational binding energy of about 0.1mc2 ∼ 3×1046

J. Most of this binding energy is released in the form of neutrinos in the collapse that forms
the neutron star, but an energy E ∼ 1044J drives off the outer envelope of the pre-supernova
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Fig. 17.17: Photoraphs of the fireball (very hot post-shock gas) from the first atomic bomb
explosion, at Almagordo New Mexico on 16 July 1945; from Mack (1947).



37

Fig. 17.18: Cassiopeia A – a supernova remnant left behind by an exploding star in our Milky
Way galaxy approximately 300 years ago. The image to the left was made using the Very Large
Array Radio Telescope; that to the right by the Chandra X-ray Observatory.

star, a mass M0 ∼ 1031kg. This stellar material escapes with a rms speed V0 ∼ (2E/M0)
1/2 ∼

5000 km s−1. The expanding debris drives a blast wave into the surrounding interstellar
medium, which has density ρ0 ∼ 10−21kg m−3. The expansion of the blast wave can be
modeled using the Sedov-Taylor solution after the swept-up interstellar gas has become
large enough to dominate the blast debris, so the star-dominated initial conditions are no
longer important—i.e. after a time ∼ (3M0/4πρ0)

1/3/V0 ∼ 1000 yr. The blast wave then
decelerates in a Sedov-Taylor similarity way until the shock speed nears the sound speed
in the surrounding gas; this takes about 100, 000 yr. Supernova remnants of this sort are
efficient emitters of radio waves, and several hundred have been observed in our Milky Way
galaxy.

In some of the younger examples, like Cassiopeia A (Fig. 17.18), it is possible to determine
the expansion speed, and the effects of deceleration can be measured. The observations are
consistent with the prediction of the Sedov-Taylor solution, namely that the radius varies as
R ∝ t2/5, or R̈ = −3Ṙ2/2R.

****************************
EXERCISES

Exercise 17.12 Problem: Underwater explosions

A simple analytical solution to the Sedov-Taylor similarity equations, can be found for the
particular case γ = 7. This is a fair approximation to the behavior of water under explosive
conditions, as it will be almost incompressible.

(a) Make the ansatz (whose self-consistency we will check later), that the velocity in the
post-shock flow varies linearly with radius from the origin to the shock, i.e. ṽ(ξ) = ξ.
Use Eq. (17.44) to transform the equation of continuity into an ordinary differential
equation and hence solve for the density function ρ̃(ξ).
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(b) Next use the equation of motion to discover that P̃ (ξ) = ξ3.

(c) Verify that your solutions for the functions P̃ , ρ̃, ṽ satisfy the remaining entropy equa-
tion thereby vindicating the original ansatz.

(d) Finally, substitute into Eq. (17.47) to show that

E =
2πR5ρ0
225t2

(e) An explosive charge weighing 100kg with an energy release of 108J kg−1 is detonated
underwater. For what range of shock radii do you expect that the Sedov-Taylor simi-
larity solution will be valid?

Exercise 17.13 Problem: Stellar Winds

Many stars possess powerful stellar winds which drive strong spherical shock waves into the
surrounding interstellar medium. If the strength of the wind remains constant, the kinetic
and internal energy of the swept-up interstellar medium will increase linearly with time.

(a) Modify the text’s analysis of a point explosion to show that in this case the speed of
the shock wave at time t is 3R(t)/5t, where R is the associated shock radius. What is
the speed of the post-shock gas?

(b) Now suppose that the star explodes as a supernova and the blast wave expands into
the relatively slowly moving stellar wind. Suppose that before the explosion the rate
at which mass left the star and the speed of the wind were constant for a long time.
How do you expect the density of gas in the wind to vary with radius? Modify the
Sedov-Taylor analysis again to show that the expected speed of the shock wave at time
t is now 2R(t)/3t.

Exercise 17.14 Problem: Similarity Solution for Shock Tube

Use a similarity analysis to derive the solution (17.27) for the shock-tube flow depicted in
Fig. 17.9.

****************************

Bibliographic Note

For physical insight into compressible flows and shock waves, we recommend the movies
cited in Box 17.2. For textbook treatments, we recommend Anderson (2003), Liepmann
and Roshko (1968), Thompson (1984), the relevant sections of Landau and Lifshitz (1959);
and, at a more elementary and sometimes cursory level, Lautrup (2005). Whitham (1974)
is superb on all aspects, from an applied mathematician’s viewpoint.
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Box 17.5

Important Concepts in Chapter 17

• γ-law equation of state, P = K(s)ργ , Sec. 17.2

– Values of γ for various situations, Sec. 17.2, Ex. 17.1

• Mach number, subsonic flow, supersonic flow, Sec. 17.3.1

• Quasi-one-dimensional transonic flow, Sec. 17.3

– Opposite signs of dv/dA in supersonic vs. subsonic flow; and of dρ/dA, Sec.
17.3.1

– Sonic point and critical point of flow, Secs. 17.3.1 and 17.3.2

– How a rocket engine works, and its De Laval nozzle, Sec. 17.3.3

• Transonic accretion of gas onto a neutron star or black hole, Ex. 17.4

• Riemann invariants for one-dimensional, time-dependent compressible flow, Sec.
17.4.1

– Their use to compute the details of the flow, Secs. 17.4.1, 17.4.2

• Steepening of a nonlinear sound wave to form a shock, Sec. 17.4.1, Fig. 17.8

• Shock tube, Sec. 17.4.2

• Shock waves, Sec. 17.5

– Upstream and downstream sides of the shock, Sec. 17.5

– Adiabatic shock, Sec. 17.5.1

– Continuity of normal fluxes of mass, momentum and energy across an adiabatic
shock, Sec. 17.5.1

– Rankine-Hugoniot relations for shock; shock adiabat, Secs. 17.5.1, and 17.5.2;
and Ex. 17.8 in relativistic regime

– Internal structure and thickness of a shock and role of viscosity, Sec. 17.5.3

– Mach cone, N-wave and sonic boom, Sec. 17.5.4 and Ex. 17.11

– Hydraulic jump and breaking ocean waves, Ex. 17.9

• Sedov-Taylor similarity solution for the flow behind a shock, Sec. 17.6

– Application to bombs and supernovae, Secs. 17.6.2, 17.6.3
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Engineering-oriented textbooks on fluid mechanics generally contain detailed treatments
of quasi-one-dimensional flows, shocks, hydraulic jumps, and their real-world applications.
We like White (2008); Munson, Young and Okiishi (2006); and Potter et. al. (2012).

The two-volume treatise by Zel’dovich and Raizer (1979) is a compendium of insights
into shock waves and high-temperature hydrodynamics by an author (Yakov Borisovich
Zel’dovich) who had a huge influence in the design of nuclear and thermonuclear weapons in
the USSR and later on astrophysics and cosmology. Sedov (1993) — the tenth edition of a
book whose first was in 1943 — is a classic and insightful treatise on similarity methods in
physics.
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