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We have reached the final Part of this book, in which we present an introduction to
the basic concepts of general relativity and its most important applications. This subject,
although a little more challenging than the material that we have covered so far, is nowhere
near as formidable as its reputation. Indeed, if you have mastered the techniques developed
in the first five Parts, the path to the Einstein Field Equations should be short and direct.

The General Theory of Relativity is the crowning achievement of classical physics, the
last great fundamental theory created prior to the discovery of quantum mechanics. Its
formulation by Albert Einstein in 1915 marks the culmination of the great intellectual ad-
venture undertaken by Newton 250 years earlier. Einstein created it after many wrong turns
and with little experimental guidance, almost by pure thought. Unlike the special theory,
whose physical foundations and logical consequences were clearly appreciated by physicists
soon after Einstein’s 1905 formulation, the unique and distinctive character of the general
theory only came to be widely appreciated long after its creation. Ultimately, in hindsight,
rival classical theories of gravitation came to seem unnatural, inelegant and arbitrary by
comparison.1

Experimental tests of Einstein’s theory also were slow to come; only since 1970 have
there been striking tests of high enough precision to convince most empiricists that, in all
probability, and in its domain of applicability, general relativity is essentially correct. Despite
this, it is still very poorly tested compared with, for example, quantum electrodynamics.

We begin our discussion of general relativity in Chap. 24 with a review, and an elab-
oration, of special relativity as developed in Chap. 2, focusing on those concepts that are
crucial for the transition to general relativity. Our elaboration includes: (i) an extension
of differential geometry to curvilinear coordinate systems and general bases both in the flat
spacetime of special relativity and in the curved spacetime that is the venue for general
relativity, (ii) an in-depth exploration of the stress-energy tensor, which in general relativity
generates the curvature of spacetime, and (iii) construction and exploration of the reference
frames of accelerated observers, e.g. physicists who reside on the Earth’s surface.

In Chap. 25, we turn to the basic concepts of general relativity, including spacetime
curvature, the Einstein Field Equation that governs the generation of spacetime curvature,
the laws of physics in curved spacetime, and weak-gravity limits of general relativity.

1For a readable account at a popular level, see Will (1993); for a more detailed, scholarly account see,
e.g. Pais (1982).
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In the remaining chapters, we explore applications of general relativity to stars, black
holes, gravitational waves, experimental tests of the theory, and cosmology. We begin in
Chap 26 by studying the spacetime curvature around and inside highly compact stars (such as
neutron stars). We then discuss the implosion of massive stars and describe the circumstances
under which the implosion inevitably produces a black hole, we explore the surprising and,
initially, counter-intuitive properties of black holes (both nonspinning holes and spinning
holes), and we learn about the many-fingered nature of time in general relativity. In Chap.
27, we study experimental tests of general relativity, and then turn to gravitational waves, i.e.
ripples in the curvature of spacetime that propagate with the speed of light. We explore the
properties of these waves, their close analogy with electromagnetic waves, their production
by binary stars and merging black holes, projects to detect them, both on earth and in space,
and the prospects for using them to explore observationally the “warped side of the universe”
and the nature of ultrastrong spacetime curvature. Finally, in Chap. 28 we draw upon all the
previous Parts of this book, combining them with general relativity to describe the universe
on the largest of scales and longest of times: cosmology. It is here, more than anywhere else
in classical physics, that we are conscious of reaching a frontier where the still-promised land
of quantum gravity beckons.
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Please send comments, suggestions, and errata via email to kip@caltech.edu or on paper to
Kip Thorne, 350-17 Caltech, Pasadena CA 91125

Box 24.1

Reader’s Guide

• This chapter relies significantly on

– Chapter 2 on special relativity, which now should be regarded as Track One.

– The discussion of connection coefficients in Sec. 11.8.

• This chapter is a foundation for the presentation of general relativity theory and
cosmology in Chaps. 25–28.

24.1 Overview

We begin our discussion of general relativity in this chapter with a review and elaboration
of relevant material already covered in earlier chapters. In Sec. 24.2, we give a brief encap-
sulation of the special theory drawn largely from Chap. 2, emphasizing those aspects that
underpin the transition to general relativity. Then in Sec. 24.3 we collect, review and extend
the fundamental ideas of differential geometry that have been scattered throughout the book
and which we shall need as foundations for the mathematics of spacetime curvature (Chap.
25); most importantly, we generalize differential geometry to encompass coordinate systems
whose coordinate lines are not orthogonal and bases that are not orthonormal

Einstein’s field equation (to be studied in Chap. 25) is a relationship between the curva-
ture of spacetime and the matter that generates it, akin to the Maxwell equations’ relation-
ship between the electromagnetic field and the electric currents and charges that generate

1
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it. The matter in Einstein’s equation is described by the stress-energy tensor that we in-
troduced in Sec. 2.13. We revisit the stress-energy tensor in Sec. 24.4 and develop a deeper
understanding of its properties.

In general relativity one often wishes to describe the outcome of measurements made by
observers who refuse to fall freely—e.g., an observer who hovers in a spaceship just above the
horizon of a black hole, or a gravitational-wave experimenter in an earth-bound laboratory.
As a foundation for treating such observers, in Sec. 24.5 we examine measurements made by
accelerated observers in the flat spacetime of special relativity.

24.2 Special Relativity Once Again

A pre-requisite to learning the theory of general relativity is to understand special relativity
in geometric language. In Chap. 2, we discussed the foundations of special relativity with
this in mind. In this section we briefly review the most important points.

We suggest that any reader who has not studied Chap. 2 read this Sec. 24.2 first, to get
an overview and flavor of what will be important for our development of general relativity;
and then (or in parallel with reading this Sec. 24.2), read those relevant sections of Chap. 2
that the reader does not already understand.

24.2.1 Geometric, Frame-Independent Formulation

In Secs. 1.1.1 and 2.2.2, we learned that every law of physics must be expressible as a geo-
metric, frame-independent relationship between geometric, frame-independent objects. This
is equally true in Newtonian physics, in special relativity and in general relativity. The
key difference between the three is the geometric arena: In Newtonian physics, the arena
is 3-dimensional Euclidean space; in special relativity, it is 4-dimensional Minkowski space-
time; in general relativity (Chap. 25), it is 4-dimensional curved spacetime; see Fig. 1 in the
Introduction to Part I, and the associated discussion.

In special relativity, the demand that the laws be geometric relationships between ge-
ometric objects that live in Minkowski spacetime is called the Principle of Relativity ; see
Sec. 2.2.2. Examples of the geometric objects are: (i) A point P in spacetime (which rep-
resents an event); Sec. 2.2.1. (ii) A parametrized curve in spacetime, such as the world
line P(τ) of a particle, for which the parameter τ is the particle’s proper time, i.e. the time
measured by an ideal clock1 that the particle carries (Fig. 24.1); Sec. 2.4.1. (iii) Vectors,
such as the particle’s 4-velocity ~u = dP/dτ [the tangent vector to the curve P(τ)] and the
particle’s 4-momentum ~p = m~u (with m the particle’s rest mass); Secs. 2.2.1 and 2.4.1. (iv)
Tensors, such as the electromagnetic field tensor F( , ); Secs. 1.3 and 2.3. A tensor, as

we recall, is a linear real-valued function of vectors; when one puts vectors ~A and ~B into
the two slots of F, one obtains a real number (a scalar) F( ~A, ~B) that is linear in ~A and in ~B

1Recall that an ideal clock is one that ticks uniformly when compared, e.g., to the period of the light
emitted by some standard type of atom or molecule, and that has been made impervious to accelerations
so two ideal clocks momentarily at rest with respect to each other tick at the same rate independent of
their relative acceleration; see Secs. 2.2.1 and 2.4.1, and for greater detail, pp. 23–29 and 395–399 of Misner,
Thorne and Wheeler (1973), henceforth cited as MTW.
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Fig. 24.1: The world line P(τ) of a particle in Minkowski spacetime and the tangent vector
~u = dP/dτ to this world line; ~u is the particle’s 4-velocity. The bending of the world line is
produced by some force that acts on the particle, e.g. by the Lorentz force embodied in Eq. (24.3).
Also shown is the light cone emitted from the event P(τ = 1). Although the axes of an (arbitrary)
inertial reference frame are shown, no reference frame is needed for the definition of the world line
or its tangent vector ~u or the light cone, or for the formulation of the Lorentz force law.

so for example F( ~A, b ~B + c ~C) = bF( ~A, ~B) + cF( ~A, ~C). When one puts a vector ~B into just
one of the slots of F and leaves the other empty, one obtains a tensor with one empty slot,
F( , ~B), i.e. a vector. The result of putting a vector into the slot of a vector is the scalar

product, ~D( ~B) = ~D · ~B = g( ~D, ~B), where g( , ) is the metric.
In Secs. 2.3 and 2.4.1, we tied our definitions of the inner product and the spacetime

metric to the ticking of ideal clocks: If ∆~x is the vector separation of two neighboring events
P(τ) and P(τ +∆τ) along a particle’s world line, then

g(∆~x,∆~x) ≡ ∆~x ·∆~x ≡ −(∆τ)2 . (24.1)

This relation for any particle with any timelike world line, together with the linearity of
g( , ) in its two slots, is enough to determine g completely and to guarantee that it is

symmetric, g( ~A, ~B) = g( ~B, ~A) for all ~A and ~B. Since the particle’s 4-velocity ~u is

~u =
dP
dτ

= lim
∆τ→0

P(τ +∆τ)−P(τ)

∆τ
≡ lim

∆τ→0

∆~x

∆τ
, (24.2)

Eq. (24.1) implies that ~u · ~u = g(~u, ~u) = −1 (Sec. 2.4.1).
The 4-velocity ~u is an example of a timelike vector (Sec. 2.2.2); it has a negative inner

product with itself (negative “squared length”). This shows up pictorially in the fact that ~u
lies inside the light cone (the cone swept out by the trajectories of photons emitted from the

tail of ~u; see Fig. 24.1). Vectors ~k on the light cone (the tangents to the world lines of the

photons) are null and so have vanishing squared lengths, ~k · ~k = g(~k,~k) = 0; and vectors
~A that lie outside the light cone are spacelike and have positive squared lengths, ~A · ~A > 0.
See Sec. 2.2.2.

An example of a physical law in 4-dimensional geometric language is the Lorentz force
law (Sec. 2.4.2)

d~p

dτ
= qF( , ~u) . (24.3)
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Here q is the particle’s charge and both sides of this equation are vectors, i.e. first-rank
tensors, i.e. tensors with just one slot. As we learned in Secs. 1.5.1 and 2.5, it is convenient
to give names to slots. When we do so, we can rewrite the Lorentz force law as

dpα

dτ
= qF αβuβ . (24.4)

Here α is the name of the slot of the vector d~p/dτ , α and β are the names of the slots of
F, β is the name of the slot of u, and the double use of β with one up and one down on
the right side of the equation represents the insertion of ~u into the β slot of F, whereby the
two β slots disappear and we wind up with a vector whose slot is named α. As we learned
in Sec. 1.5, this slot-naming index notation is isomorphic to the notation for components of
vectors, tensors, and physical laws in some reference frame. However, no reference frames are
needed or involved when one formulates the laws of physics in geometric, frame-independent
language as above.

Those readers who do not feel completely comfortable with these concepts, statements
and notation should reread the relevant portions of Chaps. 2 and 1.

****************************
EXERCISES

Exercise 24.1 Practice: Frame-Independent Tensors
Let A,B be second rank tensors.

(a) Show that A + B is also a second rank tensor.

(b) Show that A ⊗ B is a fourth rank tensor.

(c) Show that the contraction of A⊗B on its first and fourth slots is a second rank tensor.
(If necessary, consult Chap. 2 for a discussion of contraction).

(d) Write the following quantities in slot-naming index notation: the tensor A⊗B, and the
simultaneous contraction of this tensor on its first and fourth slots and on its second
and third slots.

****************************

24.2.2 Inertial Frames and Components of Vectors, Tensors and

Physical Laws

In special relativity, a key role is played by inertial reference frames, Sec. 2.2.1. An inertial
frame is an (imaginary) latticework of rods and clocks that moves through spacetime freely
(inertially, without any force acting on it). The rods are orthogonal to each other and
attached to inertial-guidance gyroscopes so they do not rotate. These rods are used to
identify the spatial, Cartesian coordinates (x1, x2, x3) = (x, y, z) of an event P [which we
also denote by lower case Latin indices xj(P) with j running over 1,2,3]. The latticework’s
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clocks are ideal and are synchronized with each other via the Einstein light-pulse process.
They are used to identify the temporal coordinate x0 = t of an event P; i.e. x0(P) is the
time measured by that latticework clock whose world line passes through P, at the moment
of passage. The spacetime coordinates of P are denoted by lower case Greek indices xα, with
α running over 0,1,2,3. An inertial frame’s spacetime coordinates xα(P) are called Lorentz
coordinates or inertial coordinates.

In the real universe, spacetime curvature is very small in regions well-removed from
concentrations of matter, e.g. in intergalactic space; so special relativity is highly accurate
there. In such a region, frames of reference (rod-clock latticeworks) that are non-accelerating
and non-rotating with respect to cosmologically distant galaxies (and thence with respect
to a local frame in which the cosmic microwave radiation looks isotropic) constitute good
approximations to inertial reference frames.

Associated with an inertial frame’s Lorentz coordinates are basis vectors ~eα that point
along the frame’s coordinate axes (and thus are orthogonal to each other) and have unit
length (making them orthonormal); Sec. 2.5. This orthonormality is embodied in the inner
products

~eα · ~eβ = ηαβ , (24.5)

where by definition

η00 = −1 , η11 = η22 = η33 = +1 , ηαβ = 0 if α 6= β . (24.6)

Here and throughout Part VII (as in Chap. 2), we set the speed of light to unity (i.e. we use
the geometrized units introduced in Sec. 1.10), so spatial lengths (e.g. along the x axis) and
time intervals (e.g. along the t axis) are measured in the same units, seconds or meters with
1 s = 2.99792458× 108 m.

In Sec. 2.5 (see also Sec. 1.5), we used the basis vectors of an inertial frame to build a
component representation of tensor analysis. The fact that the inner products of timelike
vectors with each other are negative, e.g. ~e0 · ~e0 = −1, while those of spacelike vectors
are positive, e.g. ~e1 · ~e1 = +1, forced us to introduce two types of components: covariant
(indices down) and contravariant (indices up). The covariant components of a tensor were
computable by inserting the basis vectors into the tensor’s slots, uα = ~u(~eα) ≡ ~u · ~eα;
Fαβ = F(~eα, ~eβ). For example, in our Lorentz basis the covariant components of the metric
are gαβ = g(~eα, ~eβ) = ~eα ·~eβ = ηαβ. The contravariant components of a tensor were related to
the covariant components via “index lowering” with the aid of the metric, Fαβ = gαµgβνF

µν ,
which simply said that one reverses the sign when lowering a time index and makes no change
of sign when lowering a space index. This lowering rule implied that the contravariant
components of the metric in a Lorentz basis are the same numerically as the covariant
components, gαβ = ηαβ , and that they can be used to raise indices (i.e. to perform the trivial
sign flip for temporal indices) F µν = gµαgνβFαβ. As we saw in Sec. 2.5, tensors can be
expressed in terms of their contravariant components as ~p = pα~eα, and F = F αβ~eα ⊗ ~eβ,
where ⊗ represents the tensor product [Eqs. (1.5)].

We also learned in Chap. 2 that any frame independent geometric relation between tensors
can be rewritten as a relation between those tensors’ components in any chosen Lorentz
frame. When one does so, the resulting component equation takes precisely the same form
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as the slot-naming-index-notation version of the geometric relation (Sec. 1.5.1 and end of Sec.
2.5). For example, the component version of the Lorentz force law says dpα/dτ = qF αβuβ,
which is identical to Eq. (24.4). The only difference is the interpretation of the symbols. In
the component equation F αβ are the components of F and the repeated β in F αβuβ is to be
summed from 0 to 3. In the geometric relation F αβ means F( , ) with the first slot named
α and the second β, and the repeated β in F αβuβ implies the insertion of ~u into the second
slot of F to produce a single-slotted tensor, i.e. a vector whose slot is named α.

As we saw in Sec. 2.6, a particle’s 4-velocity ~u (defined originally without the aid of
any reference frame; Fig. 24.1) has components, in any inertial frame, given by u0 = γ,
uj = γvj where vj = dxj/dt is the particle’s ordinary velocity and γ ≡ 1/

√

1− δijvivj.
Similarly, the particle’s energy E ≡ p0 is mγ and its spatial momentum is pj = mγvj , i.e.
in 3-dimensional geometric notation, p = mγv. This is an example of the manner in which
a choice of Lorentz frame produces a “3+1” split of the physics: a split of 4-dimensional
spacetime into 3-dimensional space (with Cartesian coordinates xj) plus 1-dimensional time
t = x0; a split of the particle’s 4-momentum ~p into its 3-dimensional spatial momentum p

and its 1-dimensional energy E = p0; and similarly a split of the electromagnetic field tensor
F into the 3-dimensional electric field E and 3-dimensional magnetic field B; cf. Secs. 2.6
and 2.11.

The principle of relativity (all laws expressible as geometric relations between geometric
objects in Minkowski spacetime), when translated into 3+1 language, says that, when the
laws of physics are expressed in terms of components in a specific Lorentz frame, the form of
those laws must be independent of one’s choice of frame. The components of tensors in one
Lorentz frame are related to those in another by a Lorentz transformation (Sec. 2.7), so the
principle of relativity can be restated as saying that, when expressed in terms of Lorentz-
frame components, the laws of physics must be Lorentz-invariant (unchanged by Lorentz
transformations). This is the version of the principle of relativity that one meets in most
elementary treatments of special relativity. However, as the above discussion shows, it is a
mere shadow of the true principle of relativity—the shadow cast onto Lorentz frames when
one performs a 3+1 split. The ultimate, fundamental version of the principle of relativity is
the one that needs no frames at all for its expression: All the laws of physics are expressible
as geometric relations between geometric objects that reside in Minkowski spacetime.

24.2.3 Light Speed, the Interval, and Spacetime Diagrams

One set of physical laws that must be the same in all inertial frames is Maxwell’s equations.
Let us discuss the implications of Maxwell’s equations and the principle of relativity for the
speed of light c. (For a more detailed discussion see Sec. 2.2.2.) According to Maxwell, c
can be determined by performing non-radiative laboratory experiments; it is not necessary
to measure the time it takes light to travel along some path; see Box 2.2. The principal of
relativity requires that such experiments must give the same result for c, independent of the
reference frame in which the measurement apparatus resides, so the speed of light must be
independent of reference frame. It is this frame independence that enables us to introduce
geometrized units with c = 1.

Another example of frame independence (Lorentz invariance) is provided by the interval
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between two events (Sec. 2.2.3). The components gαβ = ηαβ of the metric imply that, if ∆~x is
the vector separating the two events and ∆xα are its components in some Lorentz coordinate
system, then the squared length of ∆~x [also called the interval and denoted (∆s)2] is given
by

(∆s)2 ≡ ∆~x ·∆~x = g(∆~x,∆~x) = gαβ∆x
α∆xβ = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 .

(24.7)
Since ∆~x is a geometric, frame-independent object, so must be the interval. This implies that
the equation (∆s)2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 by which one computes the interval
between the two chosen events in one Lorentz frame must give the same numerical result
when used in any other frame; i.e., this expression must be Lorentz invariant. This invariance
of the interval is the starting point for most introductions to special relativity—and, indeed,
we used it as a starting point in Sec. 2.2.

Spacetime diagrams will play a major role in our development of general relativity. Ac-
cordingly, it is important that the reader feel very comfortable with them. We recommend
reviewing Fig. 2.7 and Ex. 2.14.

****************************
EXERCISES

Exercise 24.2 Example: Invariance of a Null Interval
You have measured the intervals between a number of adjacent events in spacetime and
thereby have deduced the metric g. Your friend claims that the metric is some other frame-
independent tensor g̃ that differs from g. Suppose that your correct metric g and his wrong
one g̃ agree on the forms of the light cones in spacetime, i.e. they agree as to which intervals
are null, which are spacelike and which are timelike; but they give different answers for the
value of the interval in the spacelike and timelike cases, i.e. g(∆~x,∆~x) 6= g̃(∆~x,∆~x). Prove
that g̃ and g differ solely by a scalar multiplicative factor, g̃ = ag for some scalar a. We
say that g̃ and g are conformal to each other. [Hint : pick some Lorentz frame and perform
computations there, then lift yourself back up to a frame-independent viewpoint.]

Exercise 24.3 Problem: Causality
If two events occur at the same spatial point but not simultaneously in one inertial frame,
prove that the temporal order of these events is the same in all inertial frames. Prove also
that in all other frames the temporal interval ∆t between the two events is larger than in
the first frame, and that there are no limits on the events’ spatial or temporal separation in
the other frames. Give two proofs of these results, one algebraic and the other via spacetime
diagrams.

****************************
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24.3 Differential Geometry in General Bases and

in Curved Manifolds

The differential geometry (tensor-analysis) formalism reviewed in the last section is inade-
quate for general relativity in several ways:

First, in general relativity we shall need to use bases ~eα that are not orthonormal, i.e. for
which ~eα · ~eβ 6= ηαβ. For example, near a spinning black hole there is much power in using a
time basis vector ~et that is tied in a simple way to the metric’s time-translation symmetry
and a spatial basis vector ~eφ that is tied to its rotational symmetry. This time basis vector
has an inner product with itself ~et ·~et = gtt that is influenced by the slowing of time near the
hole so gtt 6= −1; and ~eφ is not orthogonal to ~et, ~et · ~eφ = gtφ 6= 0, as a result of the dragging
of inertial frames by the hole’s spin. In this section, we shall generalize our formalism to
treat such non-orthonormal bases.

Second, in the curved spacetime of general relativity (and in any other curved space, e.g.
the two-dimensional surface of the earth), the definition of a vector as an arrow connecting
two points (Secs. 1.2 and 2.2.1) is suspect, as it is not obvious on what route the arrow
should travel nor that the linear algebra of tensor analysis should be valid for such arrows.
In this section we shall refine the concept of a vector to deal with this problem, and in the
process we shall find ourselves introducing the concept of a tangent space in which the linear
algebra of tensors takes place—a different tangent space for tensors that live at different
points in the space.

Third, once we have been forced to think of a tensor as residing in a specific tangent
space at a specific point in the space, there arises the question of how one can transport
tensors from the tangent space at one point to the tangent space at an adjacent point. Since
the notion of a gradient of a vector depends on comparing the vector at two different points
and thus depends on the details of transport, we will have to rework the notion of a gradient
and the gradient’s connection coefficients; and since, in doing an integral, one must add
contributions that live at different points in the space, we must also rework the notion of
integration.

We shall tackle each of these three issues in turn in the following four subsections.

24.3.1 Non-Orthonormal Bases

Consider an n-dimensional manifold, i.e., a space that, in the neighborhood of any point, has
the same topological and smoothness properties as n-dimensional Euclidean space, though
it might not have a locally Euclidean metric and perhaps no metric at all. Examples that
do have metrics are 4-dimensional spacetime, 3-dimensional Euclidean space, and the 2-
dimensional surface of a sphere. In this chapter, all manifolds we consider will have metrics.

At some point P in our chosen n-dimensional manifold with metric, introduce a set of
basis vectors {~e1, ~e2, . . . , ~en} and denote them generally as ~eα. We seek to generalize the
formalism of Sec. 24.2 in such a way that the index manipulation rules for components of
tensors are unchanged. For example, we still want it to be true that covariant components
of any tensor are computable by inserting the basis vectors into the tensor’s slots, Fαβ =
F(~eα, ~eβ), and that the tensor itself can be reconstructed from its contravariant components
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as F = F µν~eµ ⊗~eν , and that the two sets of components are computable from each other via
raising and lowering with the metric components, Fαβ = gαµgβνF

µν . The only thing we do
not want to preserve is the orthonormal values of the metric components; i.e. we must allow
the basis to be nonorthonormal and thus ~eα · ~eβ = gαβ to have arbitrary values (except that
the metric should be nondegenerate, so no linear combination of the ~eα’s vanishes, which
means that the matrix ||gαβ|| should have nonzero determinant).

We can easily achieve our goal by introducing a second set of basis vectors, denoted
{~e1, ~e2, . . . , ~en}, which is dual to our first set in the sense that

~eµ · ~eβ ≡ g(~eµ, ~eβ) = δµβ . (24.8)

Here δαβ is the Kronecker delta. This duality relation actually constitutes a definition of the
eµ once the ~eα have been chosen. To see this, regard ~eµ as a tensor of rank one. This tensor is
defined as soon as its value on each and every vector has been determined. Expression (24.8)
gives the value ~eµ(~eβ) = ~eµ · ~eβ of ~eµ on each of the four basis vectors ~eβ; and since every
other vector can be expanded in terms of the ~eβ ’s and ~eµ( ) is a linear function, Eq. (24.8)
thereby determines the value of ~eµ on every other vector.

The duality relation (24.8) says that ~e1 is always perpendicular to all the ~eα except ~e1;
and its scalar product with ~e1 is unity—and similarly for the other basis vectors. This
interpretation is illustrated for 3-dimensional Euclidean space in Fig. 24.2. In Minkowski
spacetime, if ~eα are an orthonormal Lorentz basis, then duality dictates that ~e0 = −~e0, and
~ej = +~ej .

The duality relation (24.8) leads immediately to the same index-manipulation formalism
as we have been using, if one defines the contravariant, covariant and mixed components of
tensors in the obvious manner

F µν = F(~eµ, ~eν) , Fαβ = F(~eα, ~eβ) , F µ
β = F(~eµ, ~eβ) ; (24.9)

e

e

e

e e

1

2

3
3

1

Fig. 24.2: Non-orthonormal basis vectors ~ej in Euclidean 3-space and two members ~e 1 and ~e 3 of
the dual basis. The vectors ~e1 and ~e2 lie in the horizontal plane, so ~e 3 is orthogonal to that plane,
i.e. it points vertically upward, and its inner product with ~e3 is unity. Similarly, the vectors ~e2 and
~e3 span a vertical plane, so ~e 1 is orthogonal to that plane, i.e. it points horizontally, and its inner
product with ~e1 is unity.
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see Ex. 24.4. Among the consequences of this duality are the following: (i)

gµβgβν = δµν , (24.10)

i.e., the matrix of contravariant components of the metric is inverse to that of the covariant
components, ||gµν|| = ||gαβ||−1; this relation guarantees that when one raises an index on
a tensor Fαβ with gµβ and then lowers it back down with gβµ, one recovers one’s original
covariant components Fαβ unaltered. (ii)

F = F µν~eµ ⊗ ~eν = Fαβ~e
α ⊗ ~eβ = F µ

β~eµ ⊗ ~eβ , (24.11)

i.e., one can reconstruct a tensor from its components by lining up the indices in a manner
that accords with the rules of index manipulation. (iii)

F(~p, ~q) = F αβpαpβ , (24.12)

i.e., the component versions of tensorial equations are identical in mathematical symbology
to the slot-naming-index-notation versions.

Associated with any coordinate system xα(P) there is a coordinate basis whose basis
vectors are defined by

~eα ≡ ∂P
∂xα

. (24.13)

Since the derivative is taken holding the other coordinates fixed, the basis vector ~eα points
along the α coordinate axis (the axis on which xα changes and all the other coordinates are
held fixed).

In an orthogonal curvilinear coordinate system, e.g. circular polar coordinates (̟, φ) in
Euclidean 2-space (Fig. 24.3), this coordinate basis is quite different from the coordinate
system’s orthonormal basis. For example, ~eφ = (∂P/∂φ)̟ is a very long vector at large radii

eω∼ = ∂P/∂ω

eω∼

eφ= ∂P/∂φ

eφ

eφ∼

Fig. 24.3: A circular coordinate system {̟,φ} and its coordinate basis vectors ~e̟ = ∂P/∂̟,
~eφ = ∂P/∂φ at several locations in the coordinate system. Also shown is the orthonormal basis
vector ~eφ̂.
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and a very short vector at small radii; the corresponding unit-length vector is ~eφ̂ = (1/̟)~eφ =
(1/̟)∂/∂φ, i.e. the derivative with respect to physical distance along the φ direction. By
contrast, ~e̟ = (∂P/∂̟)φ already has unit length, so the corresponding orthonormal basis
vector is simply ~e ˆ̟ = ~e̟. The metric components in the coordinate basis are readily seen
to be gφφ = ̟2, g̟̟ = 1, g̟φ = gφ̟ = 0, which are in accord with the equation for the
squared distance (interval) between adjacent points ds2 = gijdx

idxj = d̟2 + ̟2dφ2. The
metric components in the orthonormal basis, of course, are gîĵ = δij .

Henceforth, we shall use hats to identify orthonormal bases; bases whose indices do not
have hats will typically (though not always) be coordinate bases.

We can construct the basis {~eµ} that is dual to the coordinate basis {~eα} = {∂P/∂xα}
by taking the gradients of the coordinates, viewed as scalar fields xα(P):

~eµ = ~∇xµ . (24.14)

It is straightforward to verify the duality relation (24.8) for these two bases:

~eµ · ~eα = ~eα · ~∇xµ = ∇~eαx
µ = ∇∂P/∂xαxµ =

∂xµ

∂xα
= δµα . (24.15)

In any coordinate system, the expansion of the metric in terms of the dual basis, g =
gαβ~e

α ⊗ ~eβ = gαβ ~∇xα ⊗ ~∇xβ is intimately related to the line element ds2 = gαβdx
αdxβ:

Consider an infinitesimal vectorial displacement d~x = dxα(∂/∂xα). Insert this displacement
into the metric’s two slots, to obtain the interval ds2 along d~x. The result is ds2 = gαβ∇xα⊗
∇xβ(d~x, d~x) = gαβ(d~x ·∇xα)(d~x ·∇xβ) = gαβdx

αdxβ ; i.e.

ds2 = gαβdx
αdxβ . (24.16)

Here the second equality follows from the definition of the tensor product ⊗, and the third
from the fact that for any scalar field ψ, d~x ·∇ψ is the change dψ along d~x.

Any two bases {~eα} and {~eµ̄} can be expanded in terms of each other:

~eα = ~eµ̄L
µ̄
α , ~eµ̄ = ~eαL

α
µ̄ . (24.17)

(Note: by convention the first index on L is always placed up and the second is always placed
down.) The quantities ||Lµ̄

α|| and ||Lα
µ̄|| are transformation matrices and since they operate

in opposite directions, they must be the inverse of each other

Lµ̄
αL

α
ν̄ = δµ̄ν̄ , Lα

µ̄L
µ̄
β = δαβ . (24.18)

These ||Lµ̄
α|| are the generalizations of Lorentz transformations to arbitrary bases; cf. Eqs.

(2.34) and (2.35a). As in the Lorentz-transformation case, the transformation laws (24.17)
for the basis vectors imply corresponding transformation laws for components of vectors and
tensors—laws that entail lining up indices in the obvious manner; e.g.

Aµ̄ = Lα
µ̄Aα , T µ̄ν̄

ρ̄ = Lµ̄
αL

ν̄
βL

γ
ρ̄T

αβ
γ , and similarly in the opposite direction.

(24.19)
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For coordinate bases, these Lµ̄
α are simply the partial derivatives of one set of coordinates

with respect to the other

Lµ̄
α =

∂xµ̄

∂xα
, Lα

µ̄ =
∂xα

∂xµ̄
, (24.20)

as one can easily deduce via

~eα =
∂P
∂xα

=
∂xµ

∂xα
∂P
∂xµ

= ~eµ
∂xµ

∂xα
. (24.21)

In many physics textbooks a tensor is defined as a set of components Fαβ that obey the
transformation laws

Fαβ = Fµν
∂xµ

∂xα
∂xν

∂xβ
. (24.22)

This definition (valid only in a coordinate basis) is in accord with Eqs. (24.19) and (24.20),
though it hides the true and very simple nature of a tensor as a linear function of frame-
independent vectors.

****************************
EXERCISES

Exercise 24.4 Derivation: Index Manipulation Rules from Duality
For an arbitrary basis {~eα} and its dual basis {~eµ}, use (i) the duality relation (24.8), (ii) the

definition (24.9) of components of a tensor, and (iii) the relation ~A · ~B = g( ~A, ~B) between
the metric and the inner product to deduce the following results:

(a) The relations
~eµ = gµα~eα , ~eα = gαµ~e

µ . (24.23)

(b) The fact that indices on the components of tensors can be raised and lowered using
the components of the metric, e.g.

F µν = gµαFα
ν , pα = gαβp

β . (24.24)

(c) The fact that a tensor can be reconstructed from its components in the manner of Eq.
(24.11).

Exercise 24.5 Practice: Transformation Matrices for Circular Polar Bases
Consider the circular polar coordinate system {̟, φ} and its coordinate bases and orthonor-
mal bases as discussed in Fig. 24.3 and the associated text. These coordinates are related
to Cartesian coordinates {x, y} by the usual relations x = ̟ cosφ, y = ̟ sinφ.

(a) Evaluate the components (Lx
̟ etc.) of the transformation matrix that links the two

coordinate bases {~ex, ~ey} and {~e̟, ~eφ}. Also evaluate the components (L̟
x etc.) of

the inverse transformation matrix.
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(b) Evaluate, similarly, the components of the transformation matrix and its inverse linking
the bases {~ex, ~ey} and {~e ˆ̟ , ~eφ̂}.

(c) Consider the vector ~A ≡ ~ex + 2~ey. What are its components in the other two bases?

****************************

24.3.2 Vectors as Directional Derivatives; Tangent Space; Commu-

tators

As was discussed above, in the introduction to Sec. 24.3, the notion of a vector as an arrow
connecting two points is problematic in a curved manifold, and must be refined. As a first
step in the refinement, let us consider the tangent vector ~A to a curve P(ζ) at some point
Po ≡ P(ζ = 0). We have defined that tangent vector by the limiting process

~A ≡ dP
dζ

≡ lim
∆ζ→0

P(∆ζ)− P(0)

∆ζ
(24.25)

[Eq. (24.2)]. In this definition the difference P(ζ) − P(0) means the tiny arrow reaching
from P(0) ≡ Po to P(∆ζ). In the limit as ∆ζ becomes vanishingly small, these two points
get arbitrarily close together; and in such an arbitrarily small region of the manifold, the
effects of the manifold’s curvature become arbitrarily small and negligible (just think of an
arbitrarily tiny region on the surface of a sphere), so the notion of the arrow should become
sensible. However, before the limit is completed, we are required to divide by ∆ζ , which
makes our arbitrarily tiny arrow big again. What meaning can we give to this?

ζ= −0.5

ζ=0
ζ=0.5

A=dP

dζ

Fig. 24.4: A curve P(ζ) on the surface of a sphere and the curve’s tangent vector ~A = dP/dζ at
P(ζ = 0) ≡ Po. The tangent vector lives in the tangent space at Po, i.e. in the flat plane that is
tangent to the sphere there as seen in the flat Euclidean 3-space in which the sphere’s surface is
embedded.
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One way to think about it is to imagine embedding the curved manifold in a higher
dimensional flat space (e.g., embed the surface of a sphere in a flat 3-dimensional Euclidean
space as shown in Fig. 24.4). Then the tiny arrow P(∆ζ)− P(0) can be thought of equally
well as lying on the sphere, or as lying in a surface that is tangent to the sphere and is flat,
as measured in the flat embedding space. We can give meaning to [P(∆ζ) − P(0)]/∆ζ if
we regard this as a formula for lengthening an arrow-type vector in the flat tangent surface;
correspondingly, we must regard the resulting tangent vector ~A as an arrow living in the
tangent surface.

The (conceptual) flat tangent surface at the point Po is called the tangent space to the
curved manifold at that point. It has the same number of dimensions n as the manifold
itself (two in the case of Fig. 24.4). Vectors at Po are arrows residing in that point’s tangent
space, tensors at Po are linear functions of these vectors, and all the linear algebra of vectors
and tensors that reside at Po occurs in this tangent space. For example, the inner product
of two vectors ~A and ~B at Po (two arrows living in the tangent space there) is computed via

the standard relation ~A · ~B = g( ~A, ~B) using the metric g that also resides in the tangent
space.

This pictorial way of thinking about the tangent space and vectors and tensors that reside
in it is far too heuristic to satisfy most mathematicians. Therefore, mathematicians have
insisted on making it much more precise at the price of greater abstraction: Mathematicians
define the tangent vector to the curve P(ζ) to be the derivative d/dζ which differentiates
scalar fields along the curve. This derivative operator is very well defined by the rules of
ordinary differentiation; if ψ(P) is a scalar field in the manifold, then ψ[P(ζ)] is a function
of the real variable ζ , and its derivative (d/dζ)ψ[P(ζ)] evaluated at ζ = 0 is the ordinary
derivative of elementary calculus. Since the derivative operator d/dζ differentiates in the
manifold along the direction in which the curve is moving, it is often called the directional
derivative along P(ζ). Mathematicians notice that all the directional derivatives at a point
Po of the manifold form a vector space (they can be multiplied by scalars and added and
subtracted to get new vectors), and so the mathematicians define this vector space to be the
tangent space at Po.

This mathematical procedure turns out to be isomorphic to the physicists’ more heuris-
tic way of thinking about the tangent space. In physicists’ language, if one introduces
a coordinate system in a region of the manifold containing Po and constructs the corre-
sponding coordinate basis ~eα = ∂P/∂xα, then one can expand any vector in the tangent

space as ~A = Aα∂P/∂xα. One can also construct, in physicists’ language, the directional

derivative along ~A; it is ∂ ~A ≡ Aα∂/∂xα. Evidently, the components Aα of the physicist’s

vector ~A (an arrow) are identical to the coefficients Aα in the coordinate-expansion of the
directional derivative ∂ ~A. There therefore is a one-to-one correspondence between the direc-

tional derivatives ∂ ~A at Po and the vectors ~A there, and a complete isomorphism between
the tangent-space manipulations that a mathematician will perform treating the directional
derivatives as vectors, and those that a physicist will perform treating the arrows as vectors.

“Why not abandon the fuzzy concept of a vector as an arrow, and redefine the vector ~A to
be the same as the directional derivative ∂ ~A?” mathematicians have demanded of physicists.
Slowly, over the past century, physicists have come to see the merit in this approach: (i) It
does, indeed, make the concept of a vector more rigorous than before. (ii) It simplifies a
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number of other concepts in mathematical physics, e.g., the commutator of two vector fields;
see below. (iii) It facilitates communication with mathematicians. With these motivations
in mind, and because one always gains conceptual and computational power by having
multiple viewpoints at one’s finger tips [see, e.g., p. 160 of Feynman (1966)], we shall regard
vectors henceforth both as arrows living in a tangent space and as directional derivatives.
Correspondingly, we shall assert the equalities

∂P
∂xα

=
∂

∂xα
, ~A = ∂ ~A , (24.26)

and shall often expand vectors in a coordinate basis using the notation

~A = Aα ∂

∂xα
. (24.27)

This directional-derivative viewpoint on vectors makes natural the concept of the commu-
tator of two vector fields ~A and ~B: [ ~A, ~B] is the vector which, when viewed as a differential
operator, is given by [∂ ~A, ∂ ~B]—where the latter quantity is the same commutator as one meets
elsewhere in physics, e.g. in quantum mechanics. Using this definition, we can compute the
components of the commutator in a coordinate basis:

[ ~A, ~B] ≡
[

Aα ∂

∂xα
, Bβ ∂

∂xβ

]

=

(

Aα∂B
β

∂xα
− Bα∂A

β

∂xα

)

∂

∂xβ
. (24.28)

This is an operator equation where the final derivative is presumed to operate on a scalar
field just as in quantum mechanics. From this equation we can read off the components of the
commutator in any coordinate basis; they are AαBβ

,α −BαAβ
,α, where the comma denotes

partial differentiation. Figure 24.5 uses this equation to deduce the geometric meaning of
the commutator: it is the fifth leg needed to close a quadrilateral whose other four legs are
constructed from the vector fields ~A and ~B.

The commutator is useful as a tool for distinguishing between coordinate bases and
non-coordinate bases (also called non-holonomic bases): In a coordinate basis, the basis
vectors are just the coordinate system’s partial derivatives, ~eα = ∂/∂xα, and since partial
derivatives commute, it must be that [~eα, ~eβ] = 0. Conversely (as Fig. 24.5 explains), if
one has a basis with vanishing commutators [~eα, ~eβ ] = 0, then it is possible to construct a
coordinate system for which this is the coordinate basis. In a non-coordinate basis, at least
one of the commutators [~eα, ~eβ] will be nonzero.

24.3.3 Differentiation of Vectors and Tensors; Connection Coeffi-

cients

In a curved manifold, the differentiation of vectors and tensors is rather subtle. To elucidate
the problem, let us recall how we defined such differentiation in Minkowski spacetime or
Euclidean space (Sec. 1.7). Converting to the above notation, we began by defining the
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A

A

B

B

A B[      ],

Fig. 24.5: The commutator [ ~A, ~B] of two vector fields. In this diagram, the vectors are assumed to
be so small that the curvature of the manifold is negligible in the region of the diagram, so all the
vectors can be drawn lying in the manifold itself rather than in their respective tangent spaces. In
evaluating the two terms in the commutator (24.28), a locally orthonormal coordinate basis is used,
so Aα∂Bβ/∂xα is the amount by which the vector ~B changes when one travels along ~A (i.e. it is the
rightward & downward pointing dashed curve in the upper right), and Bα∂Aβ/∂xα is the amount
by which ~A changes when one travels along ~B (i.e. it is the rightward & upward pointing dashed
curve). According to Eq. (24.28), the difference of these two dashed curves is the commutator
[ ~A, ~B]. As the diagram shows, this commutator closes the quadrilateral whose legs are ~A and ~B. If
the commutator vanishes, then there is no gap in the quadrilateral, which means that in the region
covered by this diagram one can construct a coordinate system in which ~A and ~B are coordinate
basis vectors.

directional derivative of a tensor field F(P) along the tangent vector ~A = d/dζ to a curve
P(ζ):

∇ ~AF ≡ lim
∆ζ→0

F[P(∆ζ)]− F[P(0)]

∆ζ
. (24.29)

This definition is problematic because F[P(∆ζ))] lives in a different tangent space than
F[P(0)]. To make the definition meaningful, we must identify some connection between the
two tangent spaces, when their points P(∆ζ) and P(0) are arbitrarily close together. That
connection is equivalent to identifying a rule for transporting F from one tangent space to
the other.

In flat space or flat spacetime, and when F is a vector ~F , that transport rule is obvious:
keep ~F parallel to itself and keep its length fixed during the transport; in other words,
keep constant its components in an orthonormal coordinate system (Cartesian coordinates
in Euclidean space, Lorentz coordinates in Minkowski spacetime). This is called the law of
parallel transport. For a tensor F, the parallel transport law is the same: keep its components
fixed in an orthonormal coordinate basis.

Now, just as the curvature of the earth’s surface prevents one from placing a Cartesian
coordinate system on it, so nonzero curvature of any other manifold prevents one from
introducing orthonormal coordinates; see Sec. 25.3. However, in an arbitrarily small region
on the earth’s surface, one can introduce coordinates that are arbitrarily close to Cartesian
(as surveyors well know); the fractional deviations from Cartesian need be no larger than
O(L2/R2), where L is the size of the region and R is the earth’s radius (see Sec. 25.3).
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Similarly, in curved spacetime, in an arbitrarily small region, one can introduce coordinates
that are arbitrarily close to Lorentz, differing only by amounts quadratic in the size of the
region — and similarly for a local orthonormal coordinate basis in any curved manifold.

When defining ∇ ~AF, one is sensitive only to first order changes of quantities, not second,
so the parallel transport used in defining it in a flat manifold, based on constancy of compo-
nents in an orthonormal coordinate basis, must also work in a local orthonormal coordinate
basis of any curved manifold: In Eq. (24.29) one must transport F from P(∆ζ) to P(0), hold-
ing its components fixed in a locally orthonormal coordinate basis (parallel transport), and
then take the difference in the tangent space at Po = P(0), divide by ∆ζ , and let ∆ζ → 0.
The result is a tensor at Po: the directional derivative ∇ ~AF of F.

Having made the directional derivative meaningful, one can proceed as in Secs. 1.7 and
2.10: define the gradient of F by ∇ ~AF = ~∇F( , , ~A) [i.e., put ~A in the last, differentiation,

slot of ~∇F; Eq. (1.15b)].

As in Chap. 2, in any basis we denote the components of ~∇F by Fαβ;γ ; and as in Sec. 11.8
(elasticity theory), we can compute these components in any basis with the aid of that basis’s
connection coefficients.

In Sec. 11.8, we restricted ourselves to an orthonormal basis in Euclidean space and
thus had no need to distinguish between covariant and contravariant indices; all indices
were written as subscripts. Now, with non-orthonormal bases and in spacetime, we must
distinguish covariant and contravariant indices. Accordingly, by analogy with Eq. (11.69),
we define the connection coefficients Γµ

αβ as

∇β~eα ≡ ∇~eβ~eα = Γµ
αβ~eµ . (24.30)

The duality between bases ~eν · ~eα = δνα then implies

∇β~e
µ ≡ ∇~eβ~e

µ = −Γµ
αβ~e

α . (24.31)

Note the sign flip, which is required to keep ∇β(~e
µ ·~eα) = 0, and note that the differentiation

index always goes last on Γ. Duality also implies that Eqs. (24.30) and (24.31) can be
rewritten as

Γµ
αβ = ~eµ · ∇β~eα = −~eα∇β~e

µ . (24.32)

With the aid of these connection coefficients, we can evaluate the components Aα;β of
the gradient of a vector field in any basis. We just compute

Aµ
;β~eµ = ∇β

~A = ∇β(A
µ~eµ) = (∇βA

µ)~eµ + Aµ∇β~eµ

= Aµ
,β~eµ + AµΓα

µβ~eα

= (Aµ
,β + AαΓµ

αβ)~eµ . (24.33)

In going from the first line to the second, we have used the notation

Aµ
,β ≡ ∂~eβA

µ ; (24.34)

i.e. the comma denotes the result of letting a basis vector act as a differential operator on
the component of the vector. In going from the second line of (24.33) to the third, we have
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renamed some summed-over indices. By comparing the first and last expressions in Eq.
(24.33), we conclude that

Aµ
;β = Aµ

,β + AαΓµ
αβ . (24.35)

The first term in this equation describes the changes in ~A associated with changes of its
component Aµ; the second term corrects for artificial changes of Aµ that are induced by
turning and length changes of the basis vector ~eµ. We shall use the short-hand terminology
that the second term “corrects the index µ”.

By a similar computation, we conclude that in any basis the covariant components of the
gradient are

Aα;β = Aα,β − Γµ
αβAµ , (24.36)

where again Aα,β ≡ ∂~eβAα. Notice that, when the index being corrected is down [α in Eq.
(24.36)], the connection coefficient has a minus sign; when it is up [µ in Eq. (24.35)], the
connection coefficient has a plus sign. This is in accord with the signs in Eqs. (24.31)–(24.32).

These considerations should make obvious the following equations for the components of
the gradient of a tensor:

F αβ
;γ = F αβ

,γ + Γα
µγF

µβ + Γβ
µγF

αµ , Fαβ;γ = Fαβ,γ − Γµ
αγFµβ − Γµ

βγFαµ . (24.37)

Notice that each index of F must be corrected, the correction has a sign dictated by whether
the index is up or down, the differentiation index always goes last on the Γ, and all other
indices can be deduced by requiring that the free indices in each term be the same and all
other indices be summed.

If we have been given a basis, then how can we compute the connection coefficients? We
can try to do so by drawing pictures and examining how the basis vectors change from point
to point—a method that is fruitful in spherical and cylindrical coordinates in Euclidean
space (Sec. 11.8). However, in other situations this method is fraught with peril, so we need
a firm mathematical prescription. It turns out that the following prescription works; see Ex.
24.7 for a proof:

(i) Evaluate the commutation coefficients cαβ
ρ of the basis, which are defined by the two

equivalent relations

[~eα, ~eβ] ≡ cαβ
ρ~eρ , cαβ

ρ ≡ ~eρ · [~eα, ~eβ ] . (24.38a)

[Note that in a coordinate basis the commutation coefficients will vanish. Warning : com-
mutation coefficients also appear in the theory of Lie Groups; there it is conventional to use
a different ordering of indices than here, cαβ

ρ
here = cραβLie groups

.] (ii) Lower the last index on
the commutation coefficients using the metric components in the basis:

cαβγ ≡ cαβ
ρgργ . (24.38b)

(iii) Compute the quantities

Γαβγ ≡ 1

2
(gαβ,γ + gαγ,β − gβγ,α + cαβγ + cαγβ − cβγα) . (24.38c)
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Here the commas denote differentiation with respect to the basis vectors as though the metric
components were scalar fields [as in Eq. (24.34)]. Notice that the pattern of indices is the
same on the g’s and on the c’s. It is a peculiar pattern—one of the few aspects of index
gymnastics that cannot be reconstructed by merely lining up indices. In a coordinate basis
the c terms will vanish, so Γαβγ will be symmetric in its last two indices. In an orthonormal
basis gµν are constant so the g terms will vanish, and Γαβγ will be antisymmetric in its first
two indices. And in a Cartesian or Lorentz coordinate basis, which is both coordinate and
orthonormal, both the c terms and the g terms will vanish, so Γαβγ will vanish. (iv) Raise
the first index on Γαβγ to obtain the connection coefficients

Γµ
βγ = gµαΓαβγ . (24.38d)

In a coordinate basis, the Γµ
βγ are called Christoffel symbols.

The above prescription, steps (i), (ii), (iii), for computing the connection coefficients

follows from two key properties of the gradient ~∇: First, The gradient of the metric tensor
vanishes,

~∇g = 0 . (24.39)

Second, for any two vector fields ~A and ~B, the gradient is related to the commutator by

∇ ~A
~B −∇ ~B

~A = [ ~A, ~B] . (24.40)

For a derivation of these relations and then a derivation of the prescription (i), (ii), (iii), see
Exs. 24.6 and 24.7.

The gradient operator ~∇ is an example of a geometric object that is not a tensor. The con-
nection coefficients Γµ

βγ = ~eµ ·
(

∇~eβ~eγ
)

can be regarded as the components of ~∇; and because
it is not a tensor, these components do not obey the tensorial transformation law (24.19)
when switching from one basis to another. Their transformation law is far more complicated
and is very rarely used. Normally one computes them from scratch in the new basis, using
the above prescription or some other, equivalent prescription (cf. Chap. 14 of MTW). For
most curved spacetimes that one meets in general relativity, these computations are long and
tedious and therefore are normally carried out on computers using symbolic-manipulation
software such as Maple or Mathematica, or programs such as GR-Tensor and MathTensor
that run under Maple or Mathematica. Such software is easily found on the Internet using
a search engine. A particularly simple Mathematica program for use with coordinate bases
is presented and discussed in Appendix C of Hartle (2003), and is available on that book’s
website, http://web.physics.ucsb.edu/~gravitybook/ .

****************************
EXERCISES

Exercise 24.6 Derivation: Properties of the Gradient ~∇

(a) Derive Eq. (24.39). [Hint: At a point P where ~∇g is to be evaluated, introduce a
locally orthonormal coordinate basis (i.e. locally Cartesian or locally Lorentz). When
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computing in this basis, the effects of curvature will show up only at second order in
distance from P. Show that in this basis, the components of ~∇g vanish, and from this
infer that ~∇g, viewed as a frame-independent third-rank tensor, vanishes.]

(b) Derive Eq. (24.40). [Hint: Again work in a locally orthonormal coordinate basis.]

Exercise 24.7 Derivation and Example: Prescription for Computing Connection Coeffi-
cients
Derive the prescription (i), (ii), (iii) [Eqs. (24.38)] for computing the connection coefficients

in any basis. [Hints: (i) In the chosen basis, from ~∇g = 0 infer that Γαβγ + Γβαγ = gαβ,γ.
Notice that this determines the part of Γαβγ that is symmetric in its first two indices. Show
that the number of independent components of Γαβγ thereby determined is 1

2
n2(n + 1). (ii)

From Eq. (24.40) infer that Γγβα − Γγαβ = cαβγ , which fixes the part of Γ antisymmetric in
the last two indices. Show that the number of independent components thereby determined
is 1

2
n2(n− 1). (iii) Infer that the number of independent components determined by (i) and

(ii) together is n3, which is the entirety of Γαβγ . By somewhat complicated algebra, deduce
Eq. (24.38c) for Γαβγ . (The algebra is sketched in Ex. 8.15 of MTW). (iv) Then infer the
final answer (24.38d) for Γµ

βγ.]

Exercise 24.8 Practice: Commutation and Connection Coefficients for Circular Polar Bases
Consider the circular polar coordinates {̟, φ} of Fig. 24.3 and their associated bases.

(a) Evaluate the commutation coefficients cαβ
ρ for the coordinate basis {~e̟, ~eφ}, and also

for the orthonormal basis {~e ˆ̟ , ~eφ̂}.

(b) Compute by hand the connection coefficients for the coordinate basis and also for the
orthonormal basis, using Eqs. (24.38a)–(24.38d). [Note: the answer for the orthonor-
mal basis was worked pictorially in our study of elasticity theory; Fig. 11.15 and Eq.
(11.71).]

(c) Repeat this computation using symbolic manipulation software on a computer.

Exercise 24.9 Practice: Connection Coefficients for Spherical Polar Coordinates

(a) Consider spherical polar coordinates in 3-dimensional space and verify that the non-
zero connection coefficients, assuming an orthonormal basis, are given by Eq. (11.72).

(b) Repeat the exercise assuming a coordinate basis with

er ≡
∂

∂r
, eθ ≡

∂

∂θ
, eφ ≡ ∂

∂φ
. (24.41)

(c) Repeat both computations using symbolic manipulation software on a computer.
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Exercise 24.10 Practice: Index Gymnastics — Geometric Optics

This exercise gives the reader practice in formal manipulations that involve the gradient
operator. In the geometric optics (eikonal) approximation of Sec. 7.3, for electromagnetic

waves in Lorenz gauge one can write the 4-vector potential in the form ~A = ~Aeiϕ, where ~A
is a slowly varying amplitude and ϕ is a rapidly varying phase. By the techniques of Sec.
7.3, one can deduce from the vacuum Maxwell equations that the wave vector, defined by
~k ≡ ~∇ϕ, is null: ~k · ~k = 0.

(a) Rewrite all of the equations in the above paragraph in slot-naming index notation.

(b) Using index manipulations, show that the wave vector ~k (which is a vector field because

the wave’s phase ϕ is a vector field) satisfies the geodesic equation ∇~k
~k = 0 (cf. Sec.

24.5.2 below). The geodesics, to which ~k is the tangent vector, are the rays discussed
in Sec. 7.3, along which the waves propagate.

****************************

24.3.4 Integration

Our desire to use general bases and work in curved maniforlds gives rise to two new issues
in the definition of integrals.

First, the volume elements used in integration involve the Levi-Civita tensor [Eqs. (2.43),
(2.52), (2.55)], so we need to know the components of the Levi-Civita tensor in a general
basis. It turns out (see, e.g., Ex. 8.3 of MTW) that the covariant components differ from
those in an orthonormal basis by a factor

√

|g| and the contravariant by 1/
√

|g|, where

g ≡ det ||gαβ|| (24.42)

is the determinant of the matrix whose entries are the covariant components of the metric.
More specifically, let us denote by [αβ . . . ν] the value of ǫαβ...ν in an orthonormal basis of
our n-dimensional space [Eq. (2.43)]:

[12 . . . n] = +1 ,

[αβ . . . ν] = +1 if α, β, . . . , ν is an even permutation of 1, 2, . . . , n

= −1 if α, β, . . . , ν is an odd permutation of 1, 2, . . . , n

= 0 if α, β, . . . , ν are not all different. (24.43)

(In spacetime the indices must run from 0 to 3 rather than 1 to n = 4). Then in a general
right-handed basis the components of the Levi-Civita tensor are

ǫαβ...ν =
√

|g| [αβ . . . ν] , ǫαβ...ν = ± 1
√

|g|
[αβ . . . ν] , (24.44)
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where the ± is plus in Euclidean space and minus in spacetime. In a left-handed basis the
sign is reversed.

As an example of these formulas, consider a spherical polar coordinate system (r, θ, φ)
in three-dimensional Euclidean space, and use the three infinitesimal vectors dxj(∂/∂xj) to
construct the volume element dΣ [cf. Eq. (1.26)]:

dΣ = ǫ

(

dr
∂

∂r
, dθ

∂

∂θ
, dφ

∂

∂φ

)

= ǫrθφdrdθdφ =
√
gdrdθdφ = r2 sin θdrdθdφ . (24.45)

Here the second equality follows from linearity of ǫ and the formula for computing its com-
ponents by inserting basis vectors into its slots; the third equality follows from our formula
(24.44) for the components, and the fourth equality entails the determinant of the metric
coefficients, which in spherical coordinates are grr = 1, gθθ = r2, gφφ = r2 sin2 θ, all other gjk
vanish, so g = r4 sin2 θ. The resulting volume element r2 sin θdrdθdφ should be familiar and
obvious.

The second new integration issue that we must face is the fact that integrals such as
∫

∂V

T αβdΣβ (24.46)

[cf. Eqs. (2.55), (2.56)] involve constructing a vector T αβdΣβ in each infinitesimal region
dΣβ of the surface of integration ∂V , and then adding up the contributions from all the
infinitesimal regions. A major difficulty arises from the fact that each contribution lives in
a different tangent space. To add them together, we must first transport them all to the
same tangent space at some single location in the manifold. How is that transport to be
performed? The obvious answer is “by the same parallel transport technique that we used
in defining the gradient.” However, when defining the gradient we only needed to perform
the parallel transport over an infinitesimal distance, and now we must perform it over long
distances. When the manifold is curved, long-distance parallel transport gives a result that
depends on the route of the transport, and in general there is no way to identify any preferred
route; see, e.g., Sec. 11.4 of MTW.

As a result, integrals such as (24.46) are ill-defined in a curved manifold. The only
integrals that are well defined in a curved manifold are those such as

∫

∂V
SαdΣα whose in-

finitesimal contributions SαdΣα are scalars, i.e. integrals whose value is a scalar. This fact
will have profound consequences in curved spacetime for the laws of conservation of energy,
momentum, and angular momentum (Secs. 25.7 and 25.9.4).

****************************
EXERCISES

Exercise 24.11 Practice: Integration — Gauss’s Theorem
In 3-dimensional Euclidean space the Maxwell equation ∇ ·E = ρe/ǫ0 can be combined with
Gauss’s theorem to show that the electric flux through the surface ∂V of a sphere is equal
to the charge in the sphere’s interior V divided by ǫ0:

∫

∂V

E · dΣ =

∫

V

(ρe/ǫ0)dΣ . (24.47)
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Introduce spherical polar coordinates so the sphere’s surface is at some radius r = R. Con-
sider a surface element on the sphere’s surface with vectorial legs dφ∂/∂φ and dθ∂/∂θ. Eval-
uate the components dΣj of the surface integration element dΣ = ǫ(..., dθ∂/∂θ, dφ∂/∂φ).
(Here ǫ is the Levi-Civita tensor.) Similarly, evaluate dΣ in terms of vectorial legs in the
sphere’s interior. Then use these results for dΣj and dΣ to convert Eq. (24.47) into an
explicit form in terms of integrals over r, θ, φ. The final answer should be obvious, but the
above steps in deriving it are informative.

****************************

24.4 The Stress-Energy Tensor Revisited

In Sec. 2.13.1, we defined the stress-energy tensor T of any matter or field as a symmetric,
second-rank tensor that describes the flow of 4-momentum through spacetime. More specif-
ically, the total 4-momentum ~P that flows through some small 3-volume ~Σ (defined in Sec.

2.12.1), going from the negative side of ~Σ to its positive side, is

T( , ~Σ) = (total 4-momentum ~P that flows through ~Σ); i.e., T αβΣβ = P α (24.48)

[Eq. (2.66)]. Of course, this stress-energy tensor depends on the location P of the 3-volume
in spacetime; i.e., it is a tensor field T(P).

From this geometric, frame-independent definition of the stress-energy tensor, we were
able to read off the physical meaning of its components in any inertial reference frame
[Eqs. (2.67)]: T 00 is the total energy density, including rest mass-energy; T j0 = T 0j is the
j-component of momentum density, or equivalently the j-component of energy flux; and T jk

are the components of the stress tensor, or equivalently of the momentum flux.
In Sec. 2.13.2, we formulated the law of conservation of 4-momentum in a local form and

a global form. The local form,

~∇ · T = 0 , (24.49)

says that, in any chosen Lorentz frame, the time derivative of the energy density plus the
divergence of the energy flux vanishes, ∂T 00/∂t + ∂T 0j/∂xj = 0, and similarly for the mo-
mentum, ∂T j0/∂t + ∂T jk/∂xk = 0. The global form,

∫

∂V
T αβdΣβ = 0 [Eq. (2.71)] says that

all the 4-momentum that enters a closed 4-volume V in spacetime through its boundary ∂V
in the past must ultimately exit through ∂V in the future; cf. Fig. 2.11. Unfortunately, this
global form requires transporting vectorial contributions T αβdΣβ to a common location and
adding them, which cannot be done in a route-independent way in curved spacetime; see the
end of Sec. 24.3.4 above. Therefore (as we shall discuss in greater detail in Secs. 25.7 and
25.9.4), the global conservation law becomes problematic in curved spacetime.

The stress-energy tensor and local 4-momentum conservation will play major roles in our
development of general relativity. Almost all of our examples will entail perfect fluids.

Recall [Eq. (2.74a)] that in the local rest frame of a perfect fluid, there is no energy flux
or momentum density, T j0 = T 0j = 0, but there is a total energy density (including rest
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mass) ρ and an isotropic pressure P :

T 00 = ρ , T jk = Pδjk . (24.50)

From this special form of T αβ in the fluid’s local rest frame, one can derive a geometric,
frame-independent expression for the fluid’s stress-energy tensor T in terms of its 4-velocity
~u, the metric tensor g, and the rest-frame energy density ρ and pressure P :

T = (ρ+ P )~u⊗ ~u+ Pg ; i.e., T αβ = (ρ+ P )uαuβ + Pgαβ ; (24.51)

[Eq. (2.74b)]; see Ex. 2.26. This expression for the stress-energy tensor of a perfect fluid is
an example of a geometric, frame-independent description of physics.

The equations of relativistic fluid dynamics for a perfect fluid are obtained by inserting
the stress-energy tensor (24.51) into the law of 4-momentum conservation ~∇ · T = 0, and
augmenting with the law of rest-mass conservation. We explored this in brief in Ex. 2.26, and
in much greater detail in Sec. 13.8.2. Applications that we have explored are the relativistic
Bernoulli equation and ultrarelativistic jets (Sec. 13.8.2) and relativistic shocks (Ex. 17.8).
In Sec. 13.8.3 we explored in detail the slightly subtle way in which a fluid’s nonrelativistic
energy density, energy flux, and stress tensor arise from the relativistic perfect-fluid stress-
energy tensor (24.51).

These issues for a perfect fluid are so important that readers are encouraged to review
them (except possibly the applications) in preparation for our foray into general relativity.

Four other examples of the stress-energy tensor are those for the electromagnetic field
(Ex. 2.28), for a kinetic-theory swarm of relativistic particles (Secs. 3.4.2 and 3.5.3), for a
point particle (Box 24.2) and for a relativistic fluid with viscosity and diffusive heat con-
duction (Ex. 24.13). However, we shall not do much with any of these during our study of
general relativity.

****************************
EXERCISES

Exercise 24.12 T2 Derivation: Stress-Energy Tensor for a Point Particle
Show that the point-particle stress-energy tensor (4) of Box 24.2 satisfies that Box’s Eq. (3),
as there claimed.

Exercise 24.13 Example: Stress-Energy Tensor for a Viscous Fluid with Diffusive Heat
Conduction

This exercise serves two roles: It develops the relativistic stress-energy tensor for a viscous
fluid with diffusive heat conduction, and in the process it allows the reader to gain practice
in index gymnastics.

In our study of elasticity theory, we introduced the concept of the irreducible tensorial parts
of a second-rank tensor in Euclidean space (Box. 11.2). Consider a relativistic fluid flowing

through spacetime, with a 4-velocity ~u(P). The fluid’s gradient ~∇~u (uα;β in slot-naming
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Box 24.2

T2 Stress-Energy Tensor for a Point Particle

For a point particle that moves through spacetime along a world line P(ζ) (where ζ is
the affine parameter such that the particle’s 4-momentum is ~p = d/dζ), the stress-energy
tensor will vanish everywhere except on the world line itself. Correspondingly, T must
be expressed in terms of a Dirac delta function. The relevant delta function is a scalar
function of two points in spacetime, δ(Q,P) with the property that when one integrates
over the point P, using the 4-dimensional volume element dΣ (which in any inertial frame
just reduces to dΣ = dtdxdydz), one obtains

∫

V

f(P)δ(Q,P)dΣ = f(Q) . (1)

Here f(P) is an arbitrary scalar field and the region V of 4-dimensional integration must
include the point Q. One can easily verify that in terms of Lorentz coordinates this delta
function can be expressed as

δ(Q,P) = δ(tQ − tP)δ(xQ − xP)δ(yQ − yP)δ(zQ − zP) , (2)

where the deltas on the right-hand side are ordinary one-dimensional Dirac delta func-
tions. [Proof: Simply insert Eq. (2) into Eq. (1), replace dΣ by dtQdxQdyQdzQ, and
perform the four integrations.]

The general definition (24.48) of the stress-energy tensor T implies that that the integral
of a point particle’s stress-energy tensor over any 3-surface S that slices through the
particle’s world line just once, at an event P(ζo), must be equal to the particle’s 4-
momentum at the intersection point:

∫

S

T αβdΣβ = pα(ζo) . (3)

It is a straightforward but sophisticated exercise (Ex. 24.12) to verify that the following
frame-independent expression has this property:

T(Q) =

∫ +∞

−∞

~p(ζ)⊗ ~p(ζ)δ (Q,P(ζ)) dζ . (4)

Here the integral is along the world line P(ζ) of the particle, and Q is the point at
which T is being evaluated [the integration point in Eq. (3)]. Therefore, Eq. (4) is the
point-particle stress-energy tensor.

index notation) is a second-rank tensor in spacetime. With the aid of the 4-velocity itself,
we can break it down into irreducible tensorial parts as follows:

uα;β = −aαuβ +
1

3
θPαβ + σαβ + ωαβ . (24.52)
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Here: (i)
Pαβ ≡ gαβ + uαuβ (24.53)

is a tensor that projects vectors into the 3-space orthogonal to ~u; it can also be regarded as
that 3-space’s metric; see Ex. 2.10. (ii) σαβ is symmetric and trace-free and is orthogonal to
the 4-velocity, and (iii) ωαβ is antisymmetric and is orthogonal to the 4-velocity.

(a) Show that the rate of change of ~u along itself, ∇~u~u (i.e., the fluid 4-acceleration) is
equal to the vector ~a that appears in the decomposition (24.52). Show, further, that
~a · ~u = 0.

(b) Show that the divergence of the 4-velocity, ∇ · ~u, is equal to the scalar field θ that
appears in the decomposition (24.52). As we shall see in part (d), this is the fluid’s
rate of expansion.

(c) The quantities σαβ and ωαβ are the relativistic versions of a Newtonian fluid’s shear
and rotation tensors, which we introduced in Sec. 13.7.1. Derive equations for these
tensors in terms of uα;β and Pµν .

(d) Show that, as viewed in a Lorentz reference frame where the fluid is moving with speed
small compared to the speed of light, to first-order in the fluid’s ordinary velocity
vj = dxj/dt, the following are true: (i) u0 = 1, uj = vj; (ii) θ is the nonrelativistic
rate of expansion of the fluid, θ = ∇ · v ≡ vj ,j [Eq. (13.67)]; (iii) σjk is the fluid’s
nonrelativistic shear [Eq. (13.67)]; (iv) ωjk is the fluid’s nonrelativistic rotation tensor
[denoted rjk in Eq. (13.67)].

(e) At some event P where we want to know the influence of viscosity on the fluid’s
stress-energy tensor, introduce the fluid’s local rest frame. Explain why, in that frame,
the only contributions of viscosity to the components of the stress-energy tensor are
T jk
visc = −ζθgjk − 2µσjk, where ζ and µ are the coefficient’s of bulk and shear viscosity;

the contributions to T 00 and T j0 = T 0j vanish. [Hint: see Eq. (13.73) and associated
discussions].

(f) From nonrelativistic fluid mechanics, infer that, in the fluid’s rest frame at P, the
only contributions of diffusive heat conductivity to the stress-energy tensor are T 0j

cond =
T j0
cond = −κ∂T/∂xj , where κ is the fluid’s thermal conductivity and T is its temperature.

[Hint: see Eq. (13.74) and associated discussion.]

(g) From this, deduce the following geometric, frame-invariant form of the fluid’s stress-
energy tensor:

Tαβ = (ρ+ P )uαuβ + Pgαβ − ζθgαβ − 2µσαβ − 2κ u(αPβ)
µT;µ . (24.54)

Here the parentheses in the last term mean to symmetrize in the α and β slots.

Comment: From the divergence of this stress-energy tensor, plus the first law of thermody-
namics and the law of rest-mass conservation, one can derive the full theory of relativistic
fluid mechanics for a fluid with viscosity and heat flow; see, e.g., Ex. 22.7 of MTW.

****************************
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24.5 The Proper Reference Frame of an Accelerated Ob-

server

Physics experiments and astronomical measurements almost always use apparatus that ac-
celerates and rotates. For example, if the apparatus is in an earth-bound laboratory and
is attached to the laboratory floor and walls, then it accelerates upward (relative to freely
falling particles) with the negative of the “acceleration of gravity”, and it rotates (relative to
inertial gyroscopes) because of the rotation of the earth. It is useful, in studying such appa-
ratus, to regard it as attached to an accelerating, rotating reference frame. As preparation
for studying such reference frames in the presence of gravity, we here shall study them in
flat spacetime. For a somewhat more sophisticated treatment, see pages 163–176, 327–332
of MTW.

Consider an observer with 4-velocity ~U , who moves along an accelerated world line
through flat spacetime (Fig. 24.6) so she has a nonzero 4-acceleration

~a = ~∇~U
~U . (24.55)

Have that observer construct, in the vicinity of her world line, a coordinate system {xα̂}
(called her proper reference frame) with these properties: (i) The spatial origin is centered

on her world line at all times, i.e., her world line is given by xĵ = 0. (ii) Along her world

line, the time coordinate x0̂ is the same as the proper time ticked by an ideal clock that she
carries. (iii) In the immediate vicinity of her world line, the spatial coordinates xĵ measure

x
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e
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Fig. 24.6: The proper reference frame of an accelerated observer. The spatial basis vectors ~ex̂,
~eŷ, and ~eẑ are orthogonal to the observer’s world line and rotate, relative to local gyroscopes, as
they move along the world line. The flat 3-planes spanned by these basis vectors are surfaces of
constant coordinate time x0̂ ≡ (proper time as measured by the observer’s clock at the event where
the 3-plane intersects the observer’s world line); in other words, they are the observer’s “3-space”. In
each of these flat 3-planes the spatial coordinates x̂, ŷ, ẑ are Cartesian, with ∂/∂x̂ = ~ex̂, ∂/∂ŷ = ~eŷ,
∂/∂ẑ = ~eẑ.
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physical distance along the axes of a little Cartesian latticework that she carries (and that
she regards as purely spatial, which means it lies in the 3-plane orthogonal to her world line).
These properties dictate that, in the immediate vicinity of her world line, the metric has the
form ds2 = ηα̂β̂dx

α̂dxβ̂ , where ηα̂β̂ are the Lorentz-basis metric coefficients, Eq. (24.6); in
other words, all along her world line the coordinate basis vectors are orthonormal:

gα̂β̂ =
∂

∂xα̂
· ∂

∂xβ̂
= ηα̂β̂ at xĵ = 0 . (24.56)

Properties (i) and (ii) dictate, moreover, that along the observer’s world line, the basis

vector ~e0̂ ≡ ∂/∂x0̂ differentiates with respect to her proper time, and thus is identically

equal to her 4-velocity ~U ,

~e0̂ =
∂

∂x0̂
= ~U . (24.57)

There remains freedom as to how the observer’s latticework is oriented, spatially. The
observer can lock it to the gyroscopes of an inertial-guidance system that she carries (Box
24.3), in which case we shall say that it is “ronrotating”; or she can rotate it relative to
such gyroscopes. For generality, we shall assume that the latticework rotates. Its angu-
lar velocity, as measured by the observer (by comparing the latticework’s orientation with
inertial-guidance gyroscopes), is a 3-dimensional, spatial vector Ω in the 3-plane orthogonal

to her world line; and as viewed in 4-dimensional spacetime, it is a 4-vector ~Ω whose compo-
nents in the observer’s reference frame are Ωĵ 6= 0 and Ω0̂ = 0. Similarly, the latticework’s
acceleration, as measured by an inertial-guidance accelerometer attached to it (Box 24.3), is
a 3-dimensional spatial vector a which can be thought of as a 4-vector with components in

Box 24.3

Inertial Guidance Systems

Aircraft and rockets often carry inertial guidance systems, which consist of an ac-
celerometer and a set of gyroscopes.

The accelerometer measures the system’s 4-acceleration ~a (in relativistic language).
Equivalently, it measures the system’s Newtonian 3-acceleration a relative to inertial
coordinates in which the system is momentarily at rest. As we shall see in Eq. (24.58)
below, these quantities are two different ways of thinking about the same thing.

Each gyroscope is forced to remain at rest in the aircraft or rocket by a force that is
applied at its center of mass. Such a force exerts no torque around the center of mass,
so the gyroscope maintains its direction (does not precess) relative to an inertial frame
in which it is momentarily at rest.

As the accelerating aircraft or rocket turns, its walls rotate with some angular velocity
~Ω relative to these inertial-guidance gyroscopes. This is the angular velocity discussed
in the text, between Eq. (24.57) and Eq. (24.58).

From the time evolving 4-acceleration ~a(τ) and angular velocity ~Ω(τ), a computer can
calculate the aircraft’s (or rocket’s) world line and its changing orientation.
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the observer’s frame

a0̂ = 0 , aĵ = (ĵ-component of the measured a). (24.58)

This 4-vector, in fact, is the observer’s 4-acceleration, as one can verify by computing the
4-acceleration in an inertial frame in which the observer is momentarily at rest.

Geometrically, the coordinates of the proper reference frame are constructed as follows:
(i) Begin with the basis vectors ~eα̂ along the observer’s world line (Fig. 24.6)—basis vectors

that satisfy equations (24.56) and (24.57), and that rotate with angular velocity ~Ω relative to

gyroscopes. Through the observer’s world line at time x0̂ construct the flat 3-plane spanned
by the spatial basis vectors ~eĵ . Because ~eĵ · ~e0̂ = 0, this 3-plane is orthogonal to the world

line. All events in this 3-plane are given the same value of coordinate time x0̂ as the event
where it intersects the world line; thus the 3-plane is a surface of constant coordinate time
x0̂. The spatial coordinates in this flat 3-plane are ordinary, Cartesian coordinates xĵ with
~eĵ = ∂/∂xĵ .

24.5.1 Relation to Inertial Coordinates; Metric in Proper Reference

Frame; Transport Law for Rotating Vectors

It is instructive to examine the coordinate transformation between these proper-reference-
frame coordinates xα̂ and the coordinates xµ of an inertial reference frame. We shall pick a
very special inertial frame for this purpose: Choose an event on the observer’s world line, near
which the coordinate transformation is to be constructed; adjust the origin of the observer’s
proper time so this event is x0̂ = 0 (and of course xĵ = 0); and choose the inertial frame
to be one which, arbitrarily near this event, coincides with the observer’s proper reference
frame. Then, if we were doing Newtonian physics, the coordinate transformation from the
proper reference frame to the inertial frame would have the form (accurate through terms
quadratic in xα̂)

xi = xî +
1

2
aî(x0̂)2 + ǫî ĵk̂Ω

ĵxk̂x0̂ , x0 = x0̂ . (24.59)

Here the term 1
2
aĵ(x0̂)2 is the standard expression for the vectorial displacement produced,

after time x0̂ by the acceleration aĵ ; and the term ǫî ĵk̂Ω
ĵxk̂x0̂ is the standard expression for

the displacement produced by the rotation rate (rotational angular velocity) Ωĵ during a short

time x0̂. In relativity theory there is only one departure from these familiar expressions (up

through quadratic order): after time x0̂ the acceleration has produced a velocity vĵ = aĵx0̂

of the proper reference frame relative to the inertial frame; and correspondingly there is a
Lorentz-boost correction to the transformation of time: x0 = x0̂ + vĵxĵ = x0̂(1 + aĵx

ĵ) [cf.
Eq. (2.37c)], accurate only to quadratic order. Thus, the full transformation to quadratic
order is

xi = xî +
1

2
aî(x0̂)2 + ǫî ĵk̂Ω

ĵxk̂x0̂ ,

x0 = x0̂(1 + aĵx
ĵ) . (24.60a)
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From this transformation and the form of the metric, ds2 = −(dx0)2 + δijdx
idxj in the

inertial frame, we easily can evaluate the form of the metric, accurate to linear order in x,
in the proper reference frame:

ds2 = −(1 + 2a · x)(dx0̂)2 + 2(Ω× x) · dx dx0̂ + δjkdx
ĵdxk̂ (24.60b)

(Ex. 24.14a). Here the notation is that of 3-dimensional vector analysis, with x the 3-vector

whose components are xĵ , dx that with components dxĵ, a that with components aĵ, and Ω

that with components Ωĵ .
Because the transformation (24.60a) was constructed near an arbitrary event on the

observer’s world line, the metric (24.60b) is valid near any and every event on its world
line; i.e., it is valid all along the world line. It, in fact, is the leading order in an expansion
in powers of the spatial separation xĵ from the world line. For higher order terms in this
expansion see, e.g., Ni and Zimmermann (1978).

Notice that precisely on the observer’s world line, the metric coefficients gα̂β̂ [the coeffi-

cients of dxα̂dxβ̂ in Eq. (24.60b)] are gα̂β̂ = ηα̂β̂ , in accord with equation (24.56). However,
as one moves farther and farther away from the observer’s world line, the effects of the accel-
eration aĵ and rotation Ωĵ cause the metric coefficients to deviate more and more strongly
from ηα̂β̂.

From the metric coefficients of Eq. (24.60b), one can compute the connection coefficients
Γα̂

β̂γ̂ on the observer’s world line; and from these connection coefficients, one can infer the

rates of change of the basis vectors along the world line, ∇~U~eα̂ = ∇0̂~eα̂ = Γµ̂
α̂0̂~eµ̂ . The result

is (Ex. 24.14b)

∇~U ~̂e0̂ ≡ ∇~U
~U = ~a , (24.61a)

∇~U~eĵ = (~a · ~eĵ)~U + ǫ(~U, ~Ω, ~eĵ , ) . (24.61b)

Equation (24.61b) is the general “law of transport” for constant-length vectors that are
orthogonal to the observer’s world line and that the observer thus sees as purely spatial: For
the spin vector ~S of an inertial-guidance gyroscope (Box 24.3), the transport law is (24.61b)

with ~eĵ replaced by ~S and with ~Ω = 0:

∇~U
~S = ~U(~a · ~S) ; (24.62)

This is called Fermi-Walker transport. The term on the right-hand side of this transport law is
required to keep the spin vector always orthogonal to the observer’s 4-velocity, ∇~U(

~S · ~U) = 0.

For any other vector ~A, which rotates relative to inertial-guidance gyroscopes, the transport
law has in addition to this “keep-it-orthogonal-to ~U ” term, also a second term which is the
4-vector form of dA/dt = Ω×A:

∇~U
~A = ~U(~a · ~A) + ǫ(~U, ~Ω, ~A, . . . ) . (24.63)

Equation (24.61b) is this general transport law with ~A replaced by ~eĵ .
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24.5.2 Geodesic Equation for a Freely Falling Particle

Consider a particle with 4-velocity ~u that moves freely through the neighborhood of an
accelerated observer. As seen in an inertial reference frame, the particle travels through
spacetime on a straight line, also called a geodesic of flat spacetime. Correspondingly, a
geometric, frame-independent version of its geodesic law of motion is

∇~u~u = 0 ; (24.64)

i.e., it parallel transports its 4-velocity ~u along itself. It is instructive to examine the compo-
nent form of this geodesic equation in the proper reference frame of the observer. Since the
components of ~u in this frame are uα = dxα/dτ , where τ is the particle’s proper time (not
the observer’s proper time), the components uα̂ ;µ̂u

µ̂ = 0 of the geodesic equation (24.64) are

uα̂,µ̂u
µ̂ + Γα̂

µ̂ν̂u
µ̂uν̂ =

(

∂

∂xµ̂
dxα̂

dt

)

dxµ̂

dτ
+ Γα̂

µ̂ν̂u
µ̂uν̂ = 0 ; (24.65)

or equivalently

d2xα̂

dτ 2
+ Γα̂

µ̂ν̂
dxµ̂

dτ

dxν̂

dτ
= 0 . (24.66)

Suppose, for simplicity, that the particle is moving slowly relative to the observer, so its
ordinary velocity vĵ = dxĵ/dx0̂ is very nearly equal to uĵ = dxĵ/dτ and is very small

compared to unity (the speed of light), and u0̂ = dx0̂/dτ is very nearly unity. Then to first

order in the ordinary velocity vĵ, the spatial part of the geodesic equation (24.66) becomes

d2xî

(dx0̂)2
= −Γî

0̂0̂ − (Γî
ĵ0̂ + Γî

0̂ĵ)v
ĵ . (24.67)

By computing the connection coefficients from the metric coefficients of Eq. (24.60b) (Ex.
24.14), we bring this low-velocity geodesic law of motion into the form

d2xî

(dx0̂)2
= −aî − 2ǫî ĵk̂Ω

ĵvk̂ , i.e.,
d2x

(dx0̂)2
= −a− 2Ω× v . (24.68)

This is the standard nonrelativistic form of the law of motion for a free particle as seen in
a rotating, accelerating reference frame: the first term on the right-hand side is the inertial
acceleration due to the failure of the frame to fall freely, and the second term is the Coriolis
acceleration due to the frame’s rotation. There would also be a centrifugal acceleration if
we had kept terms higher order in distance away from the observer’s world line, but it has
been lost due to our linearizing the metric (24.60b) in that distance.

This analysis shows how the elegant formalism of tensor analysis gives rise to familiar
physics. In the next few chapters we will see it give rise to less familiar, general relativistic
phenomena.

****************************
EXERCISES
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Exercise 24.14 Derivation: Proper Reference Frame

(a) Show that the coordinate transformation (24.60a) brings the metric ds2 = ηαβdx
αdxβ

into the form (24.60b), accurate to linear order in separation xĵ from the origin of
coordinates.

(b) Compute the connection coefficients for the coordinate basis of (24.60b) at an arbitrary
event on the observer’s world line. Do so first by hand calculations, and then verify
your results using symbolic-manipulation software on a computer.

(c) From those connection coefficients show that the rate of change of the basis vectors eα̂
along the observer’s world line is given by (24.61a), (24.61b).

(d) From the connection coefficients show that the low-velocity limit (24.67) of the geodesic
equation is given by (24.68).

****************************

24.5.3 Uniformly Accelerated Observer

As an important example, consider an observer whose accelerated world line, written in some
inertial (Lorentz) coordinate system {t, x, y, z}, is

t = (1/κ) sinh(κτ) , x = y = 0 , z = (1/κ) cosh(κτ) . (24.69)

Here τ is proper time along the world line, and κ is the magnitude of the observer’s 4-
accelearation, κ = |~a| (which is constant along the world line); see Ex. 24.15, where the
reader can derive the various claims made in this section and the next.

The world line (24.69) is depicted in Fig. 24.7 as a thick, solid hyperbola that asymptotes
to the past light cone at early times and the future light cone at late times. The dots along the
world line mark events that have proper times τ = −1.2,−0.9,−0.6,−0.3, 0,+0.3,+0.6,+0.9,+1.2
(in units of 1/κ). At each of these dots, the 3-plane orthogonal to the world line is shown
as a dashed line (with the two dimensions out of the plane of the paper suppressed from the

diagram). This 3-plane is labeled by its coordinate time x0̂, which is equal to the proper
time of the dot. The basis vector ~e1̂ is chosen to point along the observer’s 4-acceleration, so

~a = κ~e1̂. The coordinate x1̂ measures proper distance along the straight line that starts out
tangent to ~e1̂. The other two basis vectors ~e2̂ and ~e3̂ point out of the plane of the figure, and

are parallel transported along the world line, ∇~U~e2̂ = ∇~U~e3̂ = 0; and x2̂ and x3̂ are measured
along straight lines, in the orthogonal 3-plane, that start out tangent to these vectors. This
construction implies that the resulting proper reference frame has vanishing rotation, ~Ω = 0
(Ex. 24.15), and that x2̂ = y, x3̂ = z, where y and z are coordinates in the {t, x, y, z} Lorentz
frame that we used to define the world line [Eq. (24.69)].

Usually, in constructing an observer’s proper reference frame, one confines attention to
the immediate vicinity of her world line. However, in this special case it is instructive to
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Fig. 24.7: The proper reference frame of a uniformly accelerated observer. All lengths and times
are measured in units of 1/κ. We show only two dimensions of the reference frame — those in the
2-plane of the observer’s curved world line.

extend the construction (the orthogonal 3-planes and their resulting spacetime coordinates)
outward arbitrarily far. By doing so, we discover that the 3-planes all cross at location
x1̂ = −1/κ, which means the coordinate system {xα̂} goes singular there. This singularity

shows up in a vanishing g0̂0̂(x
1̂ = 1/κ) for the spacetime metric, written in that coordinate

system:

ds2 = −(1 + κx1̂)2(dx0̂)2 + (dx1̂)2 + (dx2̂)2 + (dx3̂)2 . (24.70)

[Note that for |x1̂| ≪ 1/κ this metric agrees with the general proper-reference-frame metric
(24.60b)]. From Fig. 24.7, it should be clear that this coordinate system can only cover,
smoothly, one quadrant of Minkowski spacetime: the quadrant x > |t|.

24.5.4 Rindler Coordinates for Minkowski Spacetime

The spacetime metric (24.70) in our observer’s proper reference frame resembles the metric
in the vicinity of a black hole, as expressed in coordinates of observers who accelerate so as
to avoid falling into the hole. In preparation for discussing this in Chap. 26, we shall shift
the origin of our proper-reference-frame coordinates to the singular point, and rename them.
Specifically, we introduce so-called Rindler coordinates 2

t′ = x0̂ , x′ = x1̂ + 1/κ , y′ = x2̂ , z′ = x3̂ . (24.71)

2Named for Wolfgang Rindler.
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It turns out (Ex. 24.15) that these coordinates are related to the Lorentz coordinates that
we began with, in Eq. (24.69), by

t = x′ sinh(κt′) , x = x′ cosh(κt′) , y = y′ , z = z′ . (24.72)

The metric in this Rindler coordinate system, of course, is the same as (24.70) with displace-
ment of the origin:

ds2 = −(κx′)2dt′
2
+ dx′

2
+ dy′

2
+ dz′

2
. (24.73)

The world lines of constant {x′, y′, z′} have uniform acceleration, ~a = (1/x′)~ex′ . Thus,
we can think of these coordinates as the reference frame of a family of uniformly accelerated
observers, each of whom accelerates away from their horizon x′ = 0 with acceleration equal
to 1/(her distance x′ above the horizon). (We use the name “horizon” for x′ = 0 because it
represents the edge of the region of spacetime that these observers are able to observe.) The
local 3-planes orthogonal to these observers’ world lines all mesh to form global 3-planes of
constant t′. This is a major factor in making the metric (24.73) so simple.

****************************
EXERCISES

Exercise 24.15 Derivation: Uniformly Accelerated Observer and Rinder Coordinates
In this exercise you will derive the various claims made in Secs. 24.5.3 and 24.5.4

(a) Show that the parameter τ along the world line (24.69) is proper time, and that the
4-acceleration has magnitude |~a] = 1/κ.

(b) Show that the unit vectors ~eĵ introduced in Sec. 24.5.3 all obey the Fermi-Walker
transport law (24.62) and therefore, by virtue of Eq. (24.61b), the proper reference

frame built from them has vanishing rotation rate, ~Ω = 0.

(c) Show that the coordinates x2̂ and x3̂ introduced in Sec. 24.5.3 are equal to the y and z
coordinates of the inertial frame used to define the observer’s world line [Eq. (24.69)].

(d) Show that the proper-reference-frame coordinates constructed in Sec. 24.5.3 are related
to the original {t, x, y, z} coordinates by

t = (x1̂ + 1/κ) sinh(κx0̂) , x = (x1̂ + 1/κ) cosh(κx0̂) , y = x2̂ , z = x3̂ ; (24.74)

and from this, deduce the form (24.70) of the Minkowskii spacetime metric in the
observer’s proper reference frame.

(e) Show that, when converted to Rindler coordinates by moving the spatial origin, the
coordinate transformation (24.74) becomes (24.72), and the metric (24.70) becomes
(24.73).

(f) Show that observers at rest in the Rindler coordinate system, i.e. who move along
world lines of constant {x′, y′, z′}, have 4-acceleration ~a = (1/x′)~ex′ .
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Exercise 24.16 Gravitational Redshift

Inside a laboratory on the earth’s surface the effects of spacetime curvature are so small
that current technology cannot measure them. Therefore, experiments performed in the
laboratory can be analyzed using special relativity. (This fact is embodied in Einstein’s
equivalence principle; end of Sec. 25.2.)

(a) Explain why the spacetime metric in the proper reference frame of the laboratory’s
floor has the form

ds2 = (1 + 2gz)(dx0̂)2 + dx2 + dy2 + dz2 , (24.75)

plus terms due to the very slow rotation of the laboratory walls, which we shall neglect
in this exercise. Here g is the acceleration of gravity measured on the floor.

(b) An electromagnetic wave is emitted from the floor, where it is measured to have wave-
length λo, and is received at the ceiling. Using the metric (24.75), show that, as
measured in the proper reference frame of an observer on the ceiling, the received wave
has wavelength λr = λo(1 + gh), where h is the height of the ceiling above the floor;
i.e., the light is gravitationally redshifted by ∆λ/λo = gh. [Hint: show that all crests

of the wave must travel along world lines that have the same shape, z = F (x0̂ − x0̂e),

where F is some function and x0̂e is the coordinate time at which the crest is emitted
from the floor. You can compute the shape function F if you wish, but it is not needed
in deriving the gravitational redshift; only its universality is needed.]

The first high precision experiments to test this prediction were by Robert Pound and
his students Glen Rebca and XXXX Snider, in a tower at Harvard University in the
1950s and 60s. They achieved one percent accuracy. We shall discuss this gravitational
redshift in Sec. 27.2.1.

Exercise 24.17 Example: Rigidly Rotating Disk

Consider a thin disk, at z = 0 in a Lorentz reference frame, with radius R. The disk
rotates rigidly with angular velocity Ω. In the early years of special relativity there was
much confusion over the geometry of the disk: In the inertial frame it has physical radius
(proper distance from center to edge) R and physical circumference C = 2πR. But Lorentz
contraction dictates that, as measured on the disk, the circumference should be

√
1− v2 C

(with v = ΩR), and the physical radius, R, should be unchanged. This seemed weird. How
could an obviously flat disk in flat spacetime have a curved, non-Euclidean geometry, with
physical circumference divided by physical radius smaller than 2π? In this exercise you will
explore this issue.

(a) Consider a family of observers who ride on the edge of the disk. Construct a circular
curve, orthogonal to their world lines, that travels around the disk (at

√

x2 + y2 = R).

This curve can be thought of as lying in a 3-surface of constant time x0̂ of the observers’
proper reference frames. Show that it spirals upward in a Lorentz-frame spacetime
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diagram, so it cannot close on itself after traveling around the disk. This means that
the 3-planes, orthogonal to the observers’ world lines at the edge of the disk, cannot
mesh globally to form global 3-planes (by contrast with the case of the uniformly
accelerated observers in Sec. 24.5.4 and Ex. 24.15).

(b) Next, consider a 2-dimensional family of observers who ride on the surface of the
rotating disk. Show that at each radius

√

x2 + y2 =constant, the constant-radius
curve that is orthogonal to their world lines spirals upward in spacetime with a different
slope. Show this means that even locally, the 3-planes orthogonal to each of their world
lines cannot mesh to form larger 3-planes — and therefore, there does not reside, in
spacetime, any 3-surface orthogonal to these observers’ world lines. There is no 3-
surface that has the claimed non-Euclidean geometry.

****************************

Bibliographic Note

For a very readable presentation of most of this chapter’s material, from much the same
point of view, see Chap. 20 of Hartle (2003). For an equally elementary introduction from
a somewhat different viewpoint, see Chaps. 1–4 of Schutz (2009). A far more detailed
and somewhat more sophisticated introduction, largely but not entirely from our viewpoint,
will be found in Chaps. 1–6 of Misner, Thorne and Wheeler (1973). More sophisticated
treatments from rather different viewpoints than ours are given in Chaps. 1 and 2 and
Sec. 3.1 of Wald (1984), and in Chaps. 1 and 2 of Carroll (2004). A treasure trove of
exercises on this material, with solutions, will be found in Chaps. 6, 7, and 8 of Lightman,
Press, Price and Teukolsky (1975). See also the bibliography for Chap. 2. For a detailed
and sophisticated discussion of accelerated observers and the measurements they make, see
Gourgoulhon (2013).
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Box 24.4

Important Concepts in Chapter 24

• Most important concepts from Chap. 2

– Principle of Relativity, Sec. 24.2.1
– Metric defined in terms of interval, Sec. 24.2.1

– Inertial frames, Sec. 24.2.2
– Interval and spacetime diagrams, Sec. 24.2.3

• Differential geometry in general bases, Sec. 24.3

– Dual bases, {~eα}, {~eµ} with ~eα · ~eµ = δµα, Sec. 24.3.1
– Covariant, contravariant and mixed components of a tensor, Sec. 24.3.1

– Changes of bases and corresponding transformation of components of tensors,
Sec. 24.3.1

– Coordinate bases, Sec. 24.3.1
– Orthonormal bases, Sec. 24.2.2

– Vector as a differential operator (directional derivative), Sec. 24.3.2

– Tangent space, Sec. 24.3.2
– Commutator of vector fields, Sec. 24.3.2

– Parallel transport of vectors, Sec. 24.3.3
– Connection coefficients, how to compute them, and how to use them in com-

puting components of the gradients of tensor fields, Sec. 24.3.3
– Christoffel symbols (connection coefficients in a coordinate basis), Sec. 24.3.3

– Levi-Civita tensor and its components, Sec. 24.3.4
– Volume elements for integration, Sec. 24.3.4

• Stress-energy tensor, Sec. 24.4

– For perfect fluid, Sec. 24.4
– For point particle, Box 24.2

– For electromagnetic field, Ex. 2.28 of Chap 2.

• Proper reference frame of an accelerated observer and metric in it, Sec. 24.5

– Inertial guidance system and gyroscopes, Box 24.3

– Fermi-Walker Transport law for inertial-guidance gyroscope, Eq. (24.62)
– Metric in proper reference frame: Eq. (24.60)

– Geodesic law of motion, Sec. 24.5.2

– Uniformly accelerated observers, Sec. 24.5.3
– Rindler coordinates, Sec. 24.5.4
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