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Box 27.1

Reader’s Guide

• This chapter relies significantly on

– Chapter 2 on special relativity

– Chapter 24, on the transition from special relativity to general relativity.

– Chapter 25, on the fundamental concepts of general relativity, especially Sec.
25.9 on weak, relativistic gravitational fields.

– Chapter 26, on relativistic stars and black holes.

– Sec. 7.3 on geometric optics.

• In addition, Sec. 27.2.3 on Fermat’s principle and gravitational lenses is closely
linked to Sec. 7.6 on gravitational lenses and Sec. 8.6 on diffraction at a caustic.

• Portions of this chapter are a foundation for Chap. 28, Cosmology.

27.1 Overview

In 1915, when Einstein formulated general relativity, human technology was incapable of
definitive experimental tests of his theory. Only a half century later did technology begin
to catch up. In the years since then, the best experiments have improved from accuracies of
a few tens of per cent to a part in 10,000 or 100,000; and general relativity has passed the
tests with flying colors. In Sec. 27.2, we shall describe some of these tests, derive general
relativity’s predictions for them, and discuss the experimental results.
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In the near future, observations of gravitational waves will radically change the character
of research on general relativity. They will produce, for the first time, tests of general
relativity in strong-gravity situations. They will permit us to study relativistic effects in
neutron-star and black-hole binaries with exquisite accuracies. They will enable us to map
the spacetime geometries of black holes with high precision, and study observationally the
large-amplitude, highly nonlinear vibrations of curved spacetime that occur when two black
holes collide and merge. And (as we shall see in Chap. 28), they may enable us to probe
the singularity in which the universe was born and the universe’s evolution in its first tiny
fraction of a second.

In this chapter, we shall develop the theory of gravitational waves in much detail and shall
describe the efforts to detect the waves and the sources that may be seen. More specifically,
in Sec. 27.3, we shall develop the mathematical description of gravitational waves, both
classically and quantum mechanically (in the language of gravitons), and we shall study their
propagation through flat spacetime. Then, in Sec. 27.4, we shall study their propagation
through curved spacetime using the tools of geometric optics. In Sec. 27.5, we shall develop
the simplest approximate method for computing the generation of gravitational waves, the
“quadrupole-moment formalism”; and we shall describe and present a few details of other,
more sophisticated and accurate methods based on multipolar expansions, post-Newtonian
techniques, and numerical simulations on supercomputers (“numerical relativity”). In Sec.
27.6, we shall turn to gravitational-wave detection, focusing especially on detectors such as
LIGO and LISA that rely on laser interferometry.

27.2 Experimental Tests of General Relativity

In this section, we shall describe briefly some of the most important experimental tests of
general relativity. For greater detail and other tests, see Will (1993ab, 2001, 2006)

27.2.1 Equivalence Principle, Gravitational redshift, and Global
Positioning System

A key aspect of the equivalence principle is the prediction that any object, whose size is
extremely small compared to the radius of curvature of spacetime and on which no nongrav-
itational forces act, should move on a geodesic. This means, in particular, that its trajectory
through spacetime should be independent of its chemical composition. This is called the
weak equivalence principle, or the universality of free fall.

Efforts to test the universality of free fall date back to Galileo’s (perhaps apocryphal)
experiment of dropping objects from the leaning tower of Pisa. Over the past century, a
sequence of ever-improving experiments led by Roland von Eötvös (∼ 1920), Robert Dicke
(∼ 1964), Vladimir Braginsky (∼ 1972), and Eric Adelberger (∼ 2008) have led to an
accuracy ∆a/a < 2×10−13 for the difference of gravitational acceleration toward the sun for
earth-bound bodies with very different chemical composition (Schlamminger et. al. 2008).
A proposed space experiment called STEP has the prospect to increase this accuracy to the
phenomenal level of ∆a/a . 1× 10−18.
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General relativity predicts that bodies with significant self gravity (even black holes)
should also fall, in a nearly homogeneous external gravitational field, with the same acceler-
ation as a body with negligible self gravity. This prediction has been tested by comparing the
gravitational accelerations of the earth and moon toward the sun. Their fractional difference
of acceleration [as determined by tracking the relative motions of the moon and earth using
laser beams fired from earth, reflected off mirrors that astronauts and cosmonauts have placed
on the moon, and received back at earth] has been measured to be ∆a/a . 1× 10−13. Since
the earth and moon have (gravitational potential energy)/(rest-mass energy) ≃ −4 × 10−10

and ≃ −2 × 10−11 respectively, this verifies that gravitational energy falls with the same
acceleration as other forms of energy to within about 2.5 parts in 10,000. For references and
for discussions of a variety of other tests of the Equivalence Principle, see Merkowitz (2010)
and Will (1993b, 2005).

From the equivalence principle, one can deduce that, for an emitter and absorber at rest
in a Newtonian gravitational field Φ, light (or other electromagnetic waves) must be gravi-
tationally redshifted by an amount ∆λ/λ = ∆Φ, where ∆Φ is the difference in Newtonian
potential between the locations of the emitter and receiver. (See Ex. 26.4 for a general rel-
ativistic derivation when the field is that of a nonspinning, spherical central body with the
emitter on the body’s surface and the receiver far from the body; see Ex. 24.16 for a deriva-
tion when the emitter and receiver are on the floor and celing of an earth-bound laboratory.)
Relativistic effects will produce a correction to this shift with magnitude ∼ (∆Φ)2 [cf. Eq.
(26.18)], but for experiments performed in the solar system, the currently available precision
is too poor to see this correction, so such experiments test the equivalence principle and not
the details of general relativity.

The highest precision test of this gravitational redshift thus far was NASA’s 1976 Gravity-
Probe-A Project (led by Robert Vessot), in which several atomic clocks were flown to a height
of about 10,000 km above the earth, and were compared with atomic clocks on the earth via
radio signals transmitted downward. After correcting for special relativistic effects due to
the relative motions of the rocket’s clocks and the earth clocks, the measured gravitational
redshift agreed with the prediction to within the experimental accuracy of about 2 parts in
10,000.

The Global Positioning System (GPS), by which one can routinely determine one’s lo-
cation on earth to within an accuracy of about 10 meters, is based on signals transmitted
from a set of earth-orbiting satellites. Each satellite’s position is encoded on its transmitted
signals, together with the time of transmission as measured by atomic clocks onboard the
satellite. A person’s GPS receiver contains a high-accuracy clock and a computer. It mea-
sures the signal arrival time and compares with the encoded transmission time to determine
the distance from satellite to receiver; and it uses that distance, for several satellites, together
with the encoded satellite positions, to determine (by triangulation) the receiver’s location
on earth.

The transmission times encoded on the signals are corrected for the gravitational redshift
before transmission. Without this redshift correction, the satellite clocks would quickly get
out of synchronization with all the clocks on the ground, thereby eroding the GPS accuracy;
see Ex. 27.1. Thus, a good understanding of general relativity was crucial to the design of
the GPS!
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****************************
EXERCISES

Exercise 27.1 Practice: Gravitational Redshift for Global Positioning System
The GPS satellites are in circular orbits at a height of 20,200 km above the earth’s surface,
where their orbital period is 12 sidereal hours. If the ticking rates of the clocks on the
satellites were not corrected for the gravitational redshift, roughly how long would it take
them to accumulate a time shift, relative to clocks on the earth, large enough to degrade the
GPS position accuracy by 10 meters? by 1 kilometer?

****************************

27.2.2 Perihelion Advance of Mercury

It was known at the end of the nineteenth century that the point in Mercury’s orbit closest
to the sun, known as its perihelion, advances at a rate of about 575′′ per century with respect
to the fixed stars, of which about 532′′ can be accounted for by Newtonian perturbations due
to the other planets. The remaining ∼ 43′′ per century was a mystery until Einstein showed
that it can be accounted for quantitatively by the general theory of relativity.

More specifically (as is demonstrated in Ex. 27.2), if we idealize the sun as nonrotating
and spherical so its external gravitational field is Schwarzschild, and we ignore the presence
of the other planets, and we note that the radius of Mercury’s orbit is very large compared
to the sun’s mass (in geometrized units), then Mercury’s orbit will be very nearly an ellipse;
and the ellipse’s perihelion will advance, from one orbit to the next, by an angle

∆φ = 6πM/p+O(M2/p2) radians . (27.1)

Here M is the sun’s mass and p is the ellipse’s semi latus rectum, which is related to its
semimajor axis a (half its major diameter) and its eccentricity e by p = a(1 − e2). For the
parameters of Mercury’s orbit (M =M⊙ ≃ 1.4766 km, a = 5.79089×107 km, e = 0.205628),
this advance is 0.10352′′ per orbit. Since the orbital period is 0.24085 earth years, this
advance corresponds to 42.98 arc seconds per century.

Although the sun is not precisely spherical, its tiny gravitational oblateness (as inferred
from measurements of its spectrum of pulsations; Fig. 16.3) has been shown to contribute
negligibly to this perihelion advance; and the frame dragging due to the sun’s rotational
angular momentum is also (sadly!) negligible compared to the experimental accuracy; so
42.98′′ per century is the relativistic contribution to Mercury’s perihelion advance. Modern
observational data agree with this to within the data’s accuracy of about 1 part in 1000.

****************************
EXERCISES

Exercise 27.2 Example: Perihelion Advance
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Consider a small satellite in non-circular orbit about a spherical body with much larger
mass M , for which the external gravitational field is Schwarzschild. The satellite will follow
a timelike geodesic. Orient the Schwarzschild coordinates so the satellite’s orbit is in the
equatorial plane, θ = π/2.

(a) Because the metric coefficients are independent of t and φ, the satellite’s energy-at-
infinity E∞ = −pt and angular momentum L = pφ must be constants of the satellite’s
motion (Ex. 25.4). Show that

E∞ =

(

1− 2M

r

)

dt

dτ
, L = r2

dφ

dτ
. (27.2a)

See Ex. 26.12. Here and below we take the satellite to have unit mass, so its momentum
and 4-velocity are the same and its affine parameter ζ and proper time τ are the same.

(b) Introduce the coordinate u = r−1 and use the normalization of the 4-velocity to derive
the following differential equation for the orbit:

(

du

dφ

)2

=
E2
∞

L2
−

(

u2 +
1

L2

)

(1− 2Mu) . (27.2b)

(c) Differentiate this equation with respect to φ to obtain a second order differential equa-
tion

d2u

dφ2
+ u− M

L2
= 3Mu2. (27.2c)

By reinstating the constants G, c, and comparing with the Newtonian orbital equation,
argue that the right-hand side represents a relativistic perturbation to the Newtonian
equation of motion.

(d) Assume, henceforth in this exercise, that r ≫M (i.e. u≪ 1/M), and solve the orbital
equation (27.2c) by perturbation theory. More specifically: At zero order (i.e., setting
the right side to zero), show that the Kepler ellipse

uK =

(

M

L2

)

(1 + e cosφ), (27.2d)

is a solution. Here e (a constant of integration) is the ellipse’s eccentricity and L2/M
is the ellipse’s semi latus rectum. The orbit has its minimum radius at φ = 0.

(e) By substituting uK into the right hand side of the relativistic equation of motion
(27.2c), show (at first-order in the relativistic perturbation) that in one orbit the angle
φ at which the satellite is closest to the mass advances by ∆φ ≃ 6πM2/L2. (Hint: Try
to write the differential equation in the form d2u/dφ2+ (1+ ǫ)2u ≃ . . . , where ǫ≪ 1.)

(f) For the planet Mercury, the orbital period is P = 0.241 yr and the eccentricity is
e = 0.206. Deduce that the relativistic contribution to the rate of advance of the
perihelion (point of closest approach to the sun) is 43′′ per century.
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Exercise 27.3 Example: Gravitational Deflection of Light.

Repeat the analysis of Ex. 27.2 for a photon following a null geodesic. More specifically:

(a) Show that the photon trajectory u(φ) (with u ≡ 1/r) obeys the differential equation

d2u

dφ2
+ u = 3Mu2 . (27.3)

(b) Obtain the zero’th order solution by ignoring the right hand side,

u =
sinφ

b
. (27.4)

where b is an integration constant. Show that this is just a straight line in the asymptot-
ically flat region far from the body, and b is the impact parameter (projected distance
of closest approach to the body).

(c) Substitute this solution into the right hand side and show that the perturbed trajectory
satisfies

u =
sinφ

b
+
M

b2
(1− cos φ)2 . (27.5)

(d) Hence show that a ray with impact parameter b ≫ M will be deflected through an
angle

α =
4M

b
; (27.6)

cf. Eq. (6.77) and associated discussion.

****************************

27.2.3 Gravitational Deflection of Light, Fermat’s Principle and

Gravitational Lenses

Einstein not only explained the anomalous perihelion shift of Mercury. He also predicted
(Ex. 27.3) that the null rays along which starlight propagates will be deflected, when passing
through the curved spacetime near the sun, by an angle

∆φ = 4M/b+O(M2/b2) , (27.7)

relative to their trajectories if spacetime were flat. Here M is the sun’s mass and b is the ray’s
impact parameter (distance of closest approach to the sun’s center). For comparison, theories
that incorporated a Newtonian-like gravitational field into special relativity (Sec 25.1 and Ex.
25.1) predicted no deflection of light rays; and the corpuscular theory of light combined with
Newtonian gravity predicted half the general relativistic deflection, as did a 1911 principle-of-
equivalence argument by Einstein that was ignorant of the curvature of space. The deflection
was measured to an accuracy ∼ 20 per cent during the 1919 solar eclipse and agreed with
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general relativity rather than the competing theories—a triumph that helped make Einstein
famous. Modern experiments, based on the deflection of radio waves from distant quasars,
as measured using Very Long Baseline Interferometry (interfering the waves arriving at
radio telescopes with transcontinental or transworld separations; Sec. 9.3), have achieved
accuracies of about 1 part in 10,000, and they agree completely with general relativity.
Similar accuracies are now achievable using optical interferometers in space, and may soon
be achievable via optical interferometry on the ground.

These accuracies are so great that, when astronomers make maps of the sky using either
radio interferometers or optical interferometers, they must now correct for gravitational
deflection of the rays not only when the rays pass near the sun, but for rays coming in from
nearly all directions. This correction is not quite as easy as Eq. (27.7) suggests, since that
equation is valid only when the telescope is much farther from the sun than the impact
parameter. In the more general case, the correction is more complicated, and must include
aberration due to the telescope motion as well as the effects of spacetime curvature.

The gravitational deflection of light rays passing through or near a cluster of galaxies can
produce a spectacular array of distorted images of the light source. In Sec. 7.6, we deduced
the details of this gravitational lens effect using a model in which we treated spacetime as
flat, but endowed with a refractive index n(x) = 1 − 2Φ(x), where Φ(x) is the Newtonian
gravitational potential of the lensing system. This model can also be used to compute light
deflection in the solar system. We shall now derive this model from general relativity.

The foundation for this model is the following general relativistic version of Fermat’s
principle [see Eq. (7.45) for the Newtonian version]: Consider any static spacetime geometry,
i.e. one for which we can introduce a coordinate system in which ∂gαβ/∂t = 0 and gjt = 0;
so the only nonzero metric coefficients are g00(x

k) and gij(x
k). In such a spacetime the

time coordinate t is very special, since it is tied to the spacetime’s temporal symmetry. An
example is Schwarzschild spacetime and the Schwarzschild time coordinate t. Now, consider
a light ray emitted from a spatial point xj = aj in the static spacetime and received at a
spatial point xj = bj . Assuming the spatial path along which the ray travels is xj(η), where
η is any parameter with xj(0) = aj, xj(1) = bj , then the total coordinate time ∆t required
for the light’s trip from aj to bj (as computed from the fact that the ray must be null so
ds2 = g00dt

2 + gijdx
idxj = 0) is

∆t =

∫ 1

0

√

γjk
dxj

dη

dxk

dη
dη , where γjk ≡

gjk
−g00

. (27.8)

Fermat’s principle says that the actual spatial trajectory of the light path, in any static
spacetime, is one that extremizes this coordinate time lapse.

This principle can be proved (Ex. 27.4) by showing that the Euler-Lagrange equation for
the action (27.8) is equivalent to the geodesic equation for a photon in the static spacetime
with metric gµν(xk).

The index-of-refraction formalism used to study gravitational lenses in Chap. 7 is easily
deduced as a special case of this Fermat principle: In a nearly Newtonian situation, the
linearized-theory, Lorenz-gauge, trace-reversed metric perturbation has the form (25.91) with
only the time-time component being significantly large: h̄00 = −4Φ, h̄0j ≃ 0, h̄jk ≃ 0.
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Correspondingly, the metric perturbation [obtained by inverting Eq. (25.85)] is h00 = −2Φ,
hjk = −δjkΦ, and the full spacetime metric gµν = ηµν + hµν is

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)δjkdx
jdxk . (27.9)

This is the standard spacetime metric (25.79) in the Newtonian limit, with a special choice of
spatial coordinates, those of linearized-theory Lorenz gauge. The Newtonian limit includes
the slow-motion constraint that time derivatives of the metric are small compared to spatial
derivatives [Eq. (25.75b)], so on the timescale for light to travel through a lensing system, the
Newtonian potential can be regarded as static, Φ = Φ(xj). Therefore the Newtonian-limit
metric (27.9) can be regarded as static, and the coordinate time lapse along a trajectory
between two spatial points, Eq. (27.8), reduces to

∆t =

∫ 1

0

(1− 2Φ)dℓ , (27.10)

where dℓ =
√

δjkdxjdxk is distance traveled treating the coordinates as though they were
Cartesian, in flat space. According to the relativistic Fermat principle (27.8), this ∆t is
extremal for light rays. However, Eq. (27.10) is also the action for the Newtonian, nongrav-
itational version of Fermat’s principle, Eq. (6.42), with index of refraction

n(xj) = 1− 2Φ(xj) . (27.11)

Therefore, the spatial trajectories of the light rays can be computed via the Newtonian
Fermat principle, with the index of refraction (27.11). QED

Although this index-of-refraction model involves treating a special (Lorenz-gauge) co-
ordinate system as though the spatial coordinates were Cartesian and space were flat (so
dℓ2 = δjkdx

jdxk)— which does not correspond to reality—, nevertheless, this model predicts
the correct gravitational lens images. The reason is that it predicts the correct rays through
the Lorenz-gauge coordinates, and when the light reaches earth, the cumulative lensing has
become so great that the fact that the coordinates here are slightly different from truly
Cartesian has negligible influence on the images one sees.

****************************
EXERCISES

Exercise 27.4 Derivation: Fermat’s Principle for a Photon’s Path in a Static Spacetime

Show that the Euler-Lagrange equation for the action principle (27.8) is equivalent to the
geodesic equation for a photon in the static spacetime metric g00(xk), gij(xk). Specifically:

(a) The action (27.8) is the same as that for a geodesic in a 3-dimensional space with metric
γjk and with t playing the role of proper distance traveled [Eq. (25.19) converted to
a positive-definite, three-dimensional metric]. Therefore, the Euler-Lagrange equation
for (27.8) is the geodesic equation in that (fictitious) space [Eq. (25.14) with t the
affine parameter.] Using Eq. (24.38c) for the connection coefficients, show that the the
geodesic equation can be written in the form

γjk
d2xk

dt2
+

1

2
(γjk,l + γjl,k − γkl,j)

dxk

dt

dxj

dt
= 0 . (27.12a)
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(b) Take the geodesic equation (25.14) for the light ray in the real spacetime, with space-
time affine parameter ζ , and change parameters to t. Thereby obtain

gjk
d2xk

dt2
+ Γjkl

dxk

dt

dxl

dt
− Γj00

gkl
g00

dxk

dt

dxl

dt
+

d2tdζ2

(dt/dζ)2
gjk

dxk

dt
= 0 ,

d2t/dζ2

(dt/dζ)2
+ 2Γ0k0

dxk/dt

g00
= 0 . (27.12b)

(c) Insert the second of these equations into the first and write the connection coefficients
in terms of derivatives of the spacetime metric. With a little algebra, bring your result
into the form (27.12a) of the Fermat-principle Euler equation.

****************************

27.2.4 Shapiro time delay

In 1964, Irwin Shapiro proposed a new experiment to test general relativity: Monitor the
round-trip travel time for radio waves transmitted from earth and bounced off Venus or some
other planet, or transponded by a spacecraft. As the line-of-sight between the earth and the
planet or spacecraft gradually moves nearer then farther from the sun, the waves’ rays will
pass through regions of greater then smaller spacetime curvature, and this will influence the
round-trip travel time by greater then smaller amounts. From the time evolution of the
round-trip time, one can deduce the changing influence of the sun’s spacetime curvature.

One can compute the round-trip travel time with the aid of Fermat’s (geometric-optics)
principle. The round-trip proper time, as measured on earth (neglecting, for simplicity,
the earth’s orbital motion; i.e., pretending the earth is at rest relative to the sun while a
radio-wave’s rays go out and back) is ∆τ⊕ =

√

1− 2M/r⊕ ∆t ≃ (1 − M/r⊕)∆t, where
M is the sun’s mass, r⊕ is the earth’s distance from the sun’s center, ∆t is the round-trip
coordinate time in the static solar-system coordinates, and we have used g00 = −(1−2M/r⊕)
at earth. Because ∆t obeys Fermat’s principle, it is stationary under small perturbations
of the ray’s spatial trajectory. This allows us to compute it using a straight-line trajectory
through the spatial coordinate system. Letting b be the impact parameter (the ray’s closest
coordinate distance to the sun) and ℓ be coordinate distance along the straight-line trajectory
and neglecting the gravitational fields of the planets, we have Φ = −M/

√
ℓ2 + b2, so the

coordinate time lapse out and back is [Eq. (27.10)]

∆t = 2

∫

√
r2
refl

−b2

−
√
r2
⊕
−b2

(

1 +
2M√
ℓ2 + b2

)

dℓ . (27.13)

Here rrefl is the radius of the location at which the ray gets reflected (or transponded) back
to earth. Performing the integral and multiplying by

√
g00 ≃ 1 −M/r⊕, we obtain for the

round-trip travel time measured on earth

∆τ⊕ = 2 (a⊕ + arefl)

(

1− M

r⊕

)

+ 4M ln

[

(a⊕ + r⊕)(arefl + rrefl)

b2

]

, (27.14)
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where a⊕ =
√

r2⊕ − b2 and arefl =
√

r2refl − b2.
As the earth and the reflecting planet or transponding spacecraft move along their orbits,

only one term in this round-trip time varies sharply: the term

∆τ⊕ = 4M ln(1/b2) = −8M ln b ≃ −40µs ln b . (27.15)

When the planet or spacecraft passes nearly behind the sun, as seen from earth, b plunges
to a minimum (on a timescale of hours or days) then rises back up, and correspondingly
the time delay shows a sharp blip. By comparing the observed blip with the theory in a
measurement with the Cassini spacecraft, this Shapiro time delay has been verified to the
remarkable precision of about 1 part in 100,000 (Bertotti, Iess and Tortora 2003).

27.2.5 Frame Dragging, Gravity Probe B, and LAGEOS

As we have discussed in Secs. 25.9.3 and 26.5, the angular momentum J of a gravitating
body places its imprint on the body’s asymptotic spacetime metric

ds2 = −
(

1− 2M

r

)

dt2 − 4ǫjkmJ
kxm

r3
dt dxj +

(

1 +
2M

r

)

δjkdx
jdxk . (27.16)

[Eq. (25.98c)], and that imprint can be measured by the frame-dragging precession it induces
in gyroscopes [Eq. (25.100)].

In magnitude, the precessional angular velocity is Ω ∼ J/r3 ∼(one arcsec per century) in
the vicinity of earth, due to the earth’s spin angular momentum; so measuring it is a tough
experimental challenge. Remarkably, this frame-dragging has been measured successfully,
confirming the prediction to approximately 20 percent accuracy, in two ways: by a set of
superconducting gyroscopes in earth orbit (the Gravity-Probe B experiment, Everitt et.al.
2011) and by the observations of two very compact, heavy earth-orbiting satellites whose
orbital motions act like gyroscopes (the LAGEOS satellites, Ciufolini et. al. 2011 and papers
cited therein).1 Frame dragging has also been seen in distant astronomical objects, but not
in ways that give an independent measure of the source’s angular momentum, which means
that quantitative tests are impossible.

27.2.6 Binary Pulsar

Gravity in the solar system is very weak. Even at Mercury’s orbit, the gravitational potential
of the sun is only |Φ| ∼ 3 × 10−8. Therefore, when one expands the spacetime metric in
powers of Φ, current experiments with their fractional accuracies ∼ 10−5 or worse are able
to see only the first-order terms beyond Newtonian theory; i.e. terms of first post-Newtonian
order. To move on to second post-Newtonian order, O(Φ2) beyond Newton, will require
major advances in technology, or observations of astronomical systems in which Φ is far
larger than 3× 10−8.

1There has been considerable controversy over the accuracy of the LAGEOS measurements; see Iorio,
Ruggiero and Corda (2013) and references therein. The critics will grant an accuracy of 40%, and the
proponents argue for 10%, as of December 2013.
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Radio observations of binary pulsars (this subsection) provide one opportunity for such
observations; gravitational-wave observations of neutron-star and black-hole binaries provide
another (Secs. 27.5.4, 27.5.5, and 27.6).

The best binary pulsar for tests of general relativity is PSR1913+16, discovered by Russell
Hulse and Joseph Taylor in 1974 (though others, particularly the double pulsar PSR J0737-
3039, may surpass it in the future). PSR1913+16 consists of two neutron stars in a mutual
elliptical orbit with period P ∼ 8 hr and eccentricity e ∼ 0.6. One of the stars emits pulses
at a regular rate. These are received at earth with time delays due to crossing the binary
orbit and other relativistic effects. We do not know a priori the orbital inclination or the
neutron-star masses. However, we obtain one relation between these three quantities by
analyzing the Newtonian orbit. A second relation comes from measuring the consequences
of the combined second order Doppler shift and gravitational redshift as the pulsar moves
in and out of its companion’s gravitational field. A third relation comes from measuring the
relativistic precession of the orbit’s periastron (analog of the perihelion shift of Mercury).
(The precession rate is far larger than for Mercury: about 4◦ per year!) From these three
relations one can solve for the stars’ masses and the orbital inclination, and as a check
can verify that the Shapiro time delay comes out correctly. One can then use the system’s
parameters to predict the rate of orbital inspiral due to gravitational-radiation reaction—a
phenomenon with magnitude ∼ |Φ|2.5 beyond Newton, i.e. 2.5 post-Newtonian order (Sec.
27.5.2 below). The prediction agrees with the measurements to accuracy ∼ 0.2 per cent
(Weissberg, Nice and Taylor 2011) —a major triumph for general relativity!

For reviews of other tests of general relativity using binary pulsars, see Stairs (2010) and
papers cited therein.

27.3 Gravitational Waves Propagating through Flat Space-

time

Gravitational waves are ripples in the curvature of spacetime that are emitted by violent
astrophysical events, and that propagate with the speed of light. It was clear to Einstein
and others, even before general relativity was fully formulated, that his theory would have to
predict gravitational waves, and within months after completing the theory, Einstein (1916,
1918) worked out the those waves’ basic properties.

It turns out that, after they have been emitted, gravitational waves propagate through
matter with near impunity, i.e., they propagate as though in vacuum, even when other matter
and fields are present. (For a proof and discussion see, e.g., Sec. 2.4.3 of Thorne, 1983). This
justifies simplifying our analysis to vacuum propagation.

27.3.1 Weak, Plane Waves in Linearized Theory

Once the waves are far from their source, the radii of curvature of their phase fronts are huge
compared to a wavelength, as is the radius of curvature of the spacetime through which they
propagate. This means that, to high accuracy, we can idealize the waves as plane-fronted
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and as propagating through flat spacetime. The appropriate formalism for describing this is
the Linearized Theory developed in Sec. 25.9.2:

We introduce coordinates that are as nearly Lorentz as possible, so the spacetime metric
can be written as

gαβ = ηαβ + hαβ , with |hαβ| ≪ 1 (27.17a)

[Eq. (25.82)], and we call hαβ the waves’ metric perturbation. We perform an “infinitesimal
coordinate transformation” (gauge change)

xαnew(P) = xαold(P) + ξα(P) , which produces hnewµν = holdµν − ξµ,ν − ξν,µ (27.17b)

[Eqs. (25.87) and (25.88)], with the gauge-change generators ξα(P) chosen so as to impose
the Lorenz gauge condition

h̄µν
,ν = 0 (27.17c)

[Eq. (25.89)] on the new trace-reversed metric perturbation

h̄µν ≡ hµν −
1

2
h ηµν , h ≡ ηαβhαβ (27.17d)

[Eqs. (25.85) and (25.84)]. In this Lorenz gauge, the vacuum Einstein field equation becomes
the flat-space wave equation for h̄µν and so also for hµν

h̄µν,α
α = hµν,α

α = 0 . (27.17e)

[Eq. (25.90)].
This is as far as we went in vacuum (far from the waves’ source) in Chap. 25. We now go

further: We simplify the mathematics by orienting the axes of our nearly Lorentz coordinates
so the waves are planar and propagate in the z direction. Then the obvious solution to the
wave equation (27.17e), and the consequence of the Lorenz gauge condition (27.17c) are

h̄µν = h̄µν(t− z) , h̄µ0 = −h̄µz . (27.18)

There are now six independent components of the trace-reversed metric perturbation, the
six spatial h̄ij; the second of Eqs. (27.18) fixes the time-space and time-time components in
terms of them.

Remarkably, these six independent components can be reduced to two by a further spe-
cialization of gauge. The original infinitesimal coordinate transformation (27.17b), which
brought us into Lorenz gauge, relied on four functions ξµ(P) = ξµ(x

α) of four spacetime
coordinates. A more restricted set of gauge-change generators, ξµ(t− z), that are functions
solely of retarded time (and thus satisfy the wave equation) will keep us in Lorenz gauge,
and can be used to annul the four components h̄xz, h̄yz, h̄zz, and h̄ ≡ ηµν h̄µν , whence (thanks
to the Lorenz conditions h̄µ0 = −h̄µz) all the h̄µ0 are also annulled. See Ex. 27.5. As a result,
the trace-reversed metric perturbation h̄µν and the metric perturbation hµν are now equal,
and their only nonzero components are hxx = −hyy and hxy = +hyx.

This very special new gauge has the name transverse-traceless gauge or TT gauge because
in it the metric perturbation is purely spatial, it is transverse to the waves’ propagation
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direction (the z direction), and it is traceless. It is convenient to use the notation hTT
µν for

the metric perturbation (27.19) in this TT gauge, and convenient to give the names h+ and
h× to its two independent, nonzero components (which are associated with two polarization
states for the waves, “+” and “×”):

hTT
xx = −hTT

yy = h+(t− z) , hTT
xy = +hTT

yx = h×(t− z) . (27.19)

The Riemann curvature tensor in this TT gauge, as in any gauge, can be expressed as

Rαβγδ =
1

2
hTT
{αβ,γδ} ≡

1

2
(hTT

αδ,βγ + hTT
βγ,αδ − hTT

αγ,βδ − hTT
βδ,αγ) (27.20)

[Eq. (25.80)]. Here the subscript symbol {...}, analogous to [...] for antisymmetrization and
(...) for symmetrization, means the combination of four terms on the right side of the ≡ sign.
Of particular interest for physical measurements is the relativistic tidal field Eij = Ri0j0,
which produces a relative acceleration of freely falling particles [geodesic deviation; Eq.
(25.34)]. Since the temporal components of hTT

µν vanish, in Eq. (27.20) for Ri0j0 the only
nonzero term is the third one, in which the temporal components are derivatives, whence

Eij = Ri0j0 = −1

2
ḧTT
ij ; i.e. Exx = −Eyy = −1

2
ḧ+(t− z) , Exy = +Eyx = −1

2
ḧ×(t− z) .

(27.21)
Here the dots mean time derivatives: ḧ+(t−x) ≡ ∂2h+/∂t

2. A useful index-free way to write
these equations is

E = −1

2
ḧ
TT

= −1

2
ḧ+e

+ − 1

2
ḧ×e

× , (27.22a)

where
e
+ = ~ex ⊗ ~ex − ~ey ⊗ ~ey , e

× = ~ex ⊗ ~ex + ~ey ⊗ ~ey (27.22b)

are the polarization tensors associated with the + and × polarizations.
It is a very important fact that the Riemann curvature tensor is gauge-invariant. An

infinitesimal coordinate transformation xαnew(P) = xαold(P) + ξα(P) changes it by tiny frac-
tional amounts of order ξα, by contrast with the metric perturbation, which gets changed
by amounts of order itself, δhµν = −2ξ(µ,ν), i.e. by fractional amounts of order unity (Ex.
25.19). This has two important consequences: (i) The gauge-invariant Riemann tensor (or
its space-time-space-time part, the tidal tensor) is an optimal tool for discussing physical
measurements (next subsection) — a much better tool, e.g., than the gauge-dependent met-
ric perturbation. (ii) The gauge invariance of Riemann motivates us to change our viewpoint
on hTT

ij in the following way:
We define a dimensionless “gravitational-wave field” hTT

ij to be minus twice the double
time integral of the wave’s tidal field

hTT
ij ≡ −2

∫

dt

∫

dt Eij . (27.23)
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And we regard the computation that led to Eq. (27.21) as a demonstration that it is possible
to find a gauge in which the metric perturbation is purely spatial and its spatial part is equal
to this gravitational-wave field, h0µ = 0 and hij = hTT

ij .
In Box 27.2, we show that, if we have found a gauge in which the metric pertubation

propagates as a plane wave at the speed of light, then we can compute the gravitational-wave
field hTT

ij from that gauge’s hαβ or h̄αβ by a simple projection process. This result is useful
in the theory of gravitational-wave generation; see, e.g., Sec. 27.5.2.

Box 27.2

Projecting Out the Gravitational-Wave Field hTT
ij

Suppose that, for some gravitational wave, we have found a gauge (not necessarily TT)
in which hµν = hµν(t − z). Then a simple calculation with Eq. (25.80) reveals that the
only nonzero components of this wave’s tidal field are Eab = −1

2
ḧab, where a and b run

over x and y. But by definition, Eab = −1
2
ḧTT
ab . Therefore, in this gauge we can compute

the gravitational wave field by simply throwing away all parts of hµν except the spatial,
transverse parts: hTT

xx = hxx, hTT
xy = hxy, hTT

yy = hyy.

When computing the generation of gravitational waves, it is often easier to evaluate
the trace-reversed metric perturbation h̄αβ than the metric perturbation itself [e.g., Eq.
(25.91)]. But h̄αβ differs from hαβ by only a trace, and the gravitational-wave field
hTT
jk is trace-free. Therefore, in any gauge where h̄µν = h̄µν(t − z), we can compute

the gravitational-wave field hTT
jk from h̄µν by throwing away everything except its spatial,

transverse part, and by then removing its trace — i.e., by projecting out the spatial,
transverse, traceless part:

hTT
jk =

(

h̄jk
)TT

; i.e. h+ = hTT
xx = h̄xx −

1

2
(h̄xx + h̄yy) =

1

2
(hxx − hyy) , h× = hTT

xy = h̄xy .

(1)
Here the symbol

(

h̄jk
)TT

means “project out the spatial, transverse, traceless part”.

If we rotate the spatial axes so the waves propagate along the unit spatial vector n instead
of along ez, then the “speed-of-light-propagation” forms of the metric perturbation and
its trace reversal become hαβ = hαβ(t − n · x) and h̄αβ = h̄αβ(t − n · x) , and the TT
projection can be achieved with the aid of the transverse projection tensor

P jk ≡ δjk − nj nk . (2)

Specifically,

hTT
jk = (h̄jk)

TT = Pj
lPk

mh̄lm − 1

2
PjkP

lmh̄lm . (3)

Here the notation is that of Cartesian coordinates with Pj
k = P jk = Pjk.

****************************
EXERCISES

Exercise 27.5 Derivation: Bringing hµν into TT gauge
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Consider a weak, planar gravitational wave propagating in the z direction, written in a
general Lorenz gauge, Eqs. (27.18). Show that by appropriate choices of new gauge-change
generators that have the plane-wave form ξµ(t− z), one can (i) keep the metric perturbation
in Lorenz gauge, (ii) annul h̄xz, h̄yz, h̄zz, and h̄ ≡ ηµν h̄µν , and (iii) thereby make the only
nonzero components of the metric perturbation be hxx = −hyy and hxy = +hyx. [Hint: Show
that a gauge change (27.17b) produces h̄newµν = h̄oldµν − ξµ,ν − ξν,µ + ηµνξα

,α, and use this in
your computations.]

****************************

27.3.2 Measuring a Gravitational Wave by its Tidal Forces

We seek physical insight into gravitational waves by studying the following idealized problem:
Consider a cloud of test particles that floats freely in space and is static and spherical

before the waves pass. Study the wave-induced deformations of the cloud as viewed in the
nearest thing there is to a rigid, orthonormal coordinate system: the local Lorentz frame
(in the physical spacetime) of a “fiducial particle” that sits at the cloud’s center. In that
frame the displacement vector ζj between the fiducial particle and some other particle has
components ζj = xj+δxj , where xj is the other particle’s spatial coordinate before the waves
pass, and δxj is its coordinate displacement, as produced by the waves. By inserting this
into the local-Lorentz-frame variant of the equation of geodesic deviation, Eq. (25.34), and
neglecting the tiny δxk compared to xk on the right side, we obtain

d2δxj

dt2
= −Rj0k0x

k = −Ejkxk =
1

2
ḧTT
jk x

k , (27.24)

which can be integrated twice to give

δxj =
1

2
hTT
jk x

k . (27.25)

Expression (27.24) is the gravitational-wave tidal acceleration that moves the particles back
and forth relative to each other. It is completely analogous to the Newtonian tidal accelera-
tion −Ejkxk = −(∂2Φ/∂xj∂xk)xk by which the moon raises tides on the earth’s oceans (Sec.
25.5.1).

Specialize, now, to a wave with + polarization (for which h× = 0). By inserting expression
(27.19) into (27.25), we obtain

δx =
1

2
h+x , δy = − 1

2
h+y , δz = 0 . (27.26)

This displacement is shown in Fig. 27.1a,b. Notice that, as the gravitational-wave field h+
oscillates at the cloud’s location, the cloud is left undisturbed in the z-direction (propagation
direction), and in transverse planes it gets deformed into an ellipse elongated first along the
x-axis (when h+ > 0), then along the y-axis (when h+ < 0). Because Exx = −Eyy, i.e.,
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(b) (d)(a) (c)

y

x

y

x

y y

x x

Fig. 27.1: Physical manifestations, in a particle’s local Lorentz frame, of h+ gravitational waves.
(a) Transverse deformation of an initially spherical cloud of test particles at a phase of the wave when
h+ > 0. (b) Deformation of the cloud when h+ < 0. (c) Field lines representing the acceleration
field δẍ that produces the cloud’s deformation, at a phase when ḧ+ > 0. (d) Acceleration field lines
when ḧ+ < 0.

because Ejk is traceless, the ellipse is squashed along one axis by the same amount as it is
stretched along the other, i.e., the area of the ellipse is preserved during the oscillations.

The effects of the h+ polarization state can also be described in terms of the tidal accel-
eration field that it produces in the central particle’s local Lorentz frame:

d2

dt2
δx = −E+ · x =

1

2
ḧ+(xex − yey) , (27.27)

where ḧ+ ≡ ∂2h+/∂t
2. Notice that this acceleration vector field δẍ is divergence free.

Because it is divergence-free, it can be represented by lines of force, analogous to electric field
lines, which point along the field and have a density of lines proportional to the magnitude
of the field; and when this is done, the field lines will never end. Figure 27.1c,d shows this
acceleration field at the phases of oscillation when ḧ+ is positive and when it is negative.
Notice that the field is quadrupolar in shape, with a field strength (density of lines) that
increases linearly with distance from the origin of the local Lorentz frame. The elliptical
deformations of the spherical cloud of test particles shown in Fig. 27.1a,b are the responses
of that cloud to this quadrupolar acceleration field. The polarization state which produces
these accelerations and deformations is called the + state because of the orientation of the
axes of the quadrupolar acceleration field (Fig. 27.1c,d).

Turn, next, to the × polarization state. In this state the deformations of the initially
circular ring are described by

δx =
1

2
h×y , δy =

1

2
h×x , δz = 0 . (27.28)

These deformations, like those for the + state, are purely transverse; they are depicted in
Fig. 27.2a,b. The acceleration field that produces these deformations is

d2

dt2
δx = −E× · x =

1

2
ḧ×(yex + xey) . (27.29)
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Fig. 27.2: Physical manifestations, in a particle’s local Lorentz frame, of h× gravitational waves.
(a) Deformation of an initially circular sphere of test particles at a phase of the wave when h× > 0.
(b) Deformation of the sphere when h× < 0. (c) Field lines representing the acceleration field δẍ
that produces the sphere’s deformation, at a phase of the wave when ḧ× > 0. (d) Acceleration field
lines when ḧ× < 0.

This acceleration field, like the one for the + polarization state, is divergence free and
quadrupolar; the field lines describing it are depicted in Fig. 27.2c,d. The name “× po-
larization state” comes from the orientation of the axes of this quadrupolar acceleration
field.

Planar gravitational waves can also be depicted in terms of the tendex and vortex lines
associated with their tidal tensor field E and frame-drag tensor field B; see Box 27.3.

In defining the gravitational-wave fields h+ and h×, we have relied on a choice of (local
Lorentz) reference frame, i.e. a choice of local Lorentz basis vectors ~eα. Exercise 27.6 explores
how these fields change when the basis is changed. The conclusions are simple: (i) When
one rotates the transverse basis vectors ~ex and ~ey through an angle ψ, then h+ and h× rotate
through 2ψ in the sense that:

(h+ + ih×)new = (h+ + ih×)olde
2iψ , when (~ex + i~ey)new = (~ex + i~ey)e

iψ . (27.30)

(ii) When one boosts from an old frame to a new one moving at some other speed, but
chooses the old and new spatial bases such that (a) the waves propagate in the z direction
in both frames and (b) the plane spanned by ~ex and ~κ ≡ ~e0 + ~ez =(propagation direction in
spacetime) is the same in both frames, then h+ and h× are the same in the two frames—i.e.,
they are scalars under such a boost!

****************************
EXERCISES

Exercise 27.6 Derivation: Behavior of h+ and h× under rotations and boosts

(a) Derive the behavior (27.30) of h+ and h× under rotations in the transverse plane.
[Hint: Write the gravitational-wave field, viewed as a geometric object, as h

TT =
ℜ [(h+ + ih×)(e

+ − ie×)], where e+ = (~ex⊗~ex−~ey ⊗~ey) and e× = (~ex ⊗~ey +~ey ⊗~ex)
are the polarization tensors associated with + and × polarized waves [Eqs. (27.22b)].
Then show that e+−ie× rotates through −2ψ, and use this to infer the desired result.]
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Box 27.3

T2 Tendex and Vortex Lines for a Gravitational Wave

A plane gravitational wave with + polarization, propagating in the z direction, has as
its only nonzero tidal-field components Exx = −Eyy = −1

2
ḧ+(t − z) [Eq. (27.21)]. This

tidal field’s eigenvectors are ex and ey, so its tendex lines (Boxes 25.2 and 26.3) are
straight lines pointing along these basis vectors, i.e., the solid lines in this picture:

These lines’ tendicities Exx and Eyy are equal and opposite, so one set of lines stretches
(is red) and the other squeezes (is blue). As the wave propagates, each line’s tendicity
oscillates, so its color oscillates between red and blue.

From the Maxwell-like Bianchi identity ∂B/∂t = − (∇× E)S (Box 25.2), with E a
function of t − n · x and n = ez the wave’s propagation direction, we infer that the
wave’s frame-drag field and tidal field are related by B = (n× E)S. This means that
the nonzero components of B are Bxy = Byx = Exx = −Eyy = −1

2
ḧ+(t − z). Therefore,

the gravitational wave’s vortex lines are the dashed lines in the figure above (where the
propagation direction, n = ez is out of the screen or paper, toward you).

Electric and magnetic field lines are generally drawn with line densities proportional
to the magnitude of the field — a convention motivated by flux conservation. Not so for
tendex and vortex lines, which have no corresponding conservation law. Instead, their
field strengths (tendicities and vorticities) are usually indicated by color coding; see, e.g.,
Nichols et. al. (2012).

Most discussions of gravitational waves (including the text of this chapter) focus on
their tidal field E and its physical stretch and squeeze, and ignore the frame-drag field with
its differential precession (twisting) of gyroscopes. The reason is that modern technology
is able to detect and monitor the stretch and squeeze, but the precession is far too small
to be detected.

(b) Show that, with the orientations of spatial basis vectors described after Eq. (27.30),
h+ and h× are unchanged by boosts.

****************************
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27.3.3 Gravitons and their Spin and Rest Mass

Most of the above features of gravitational waves (though not expressed in this language)
were clear to Einstein in 1918. Two decades later, as part of the effort to understand quantum
fields, Markus Fierz and Wolfgang Pauli (1939), at the Eidgenössische Technische Hochschule
(ETH) in Zurich, Switzerland, formulated a classical theory of linear fields of arbitrary spin
so designed that the fields would be quantizable by canonical methods. Remarkably, their
canonical theory for a field of spin two and zero rest mass is identical to general relativity
with nonlinear effects removed, and the plane waves of that spin-two theory are identical to
the waves described above. When quantized by canonical techniques, these waves are carried
by zero-rest-mass, spin-two gravitons.

One can see by simple arguments that the gravitons which carry gravitational waves must
have zero rest mass and spin two:

First: Fundamental principles of quantum theory guarantee that any wave that propa-
gates in vacuum with the speed of light must be carried by particles which have that same
speed, i.e., particles whose 4-momenta are null, i.e., particles which have zero rest mass. Gen-
eral relativity predicts that gravitational waves propagate with the speed of light. Therefore,
its gravitons must have zero rest mass.

Next: Consider any plane-wave field (neutrino, electromagnetic, gravitational, . . .) that
propagate at the speed of light in the z-direction of a (local) Lorentz frame. At any moment of
time examine any physical manifestation of that field, e.g., the acceleration field it produces
on test particles. Rotate that manifestation of the field around the z axis, and ask what is
the minimum angle of rotation required to bring the field back to its original configuration.
Call that minimum angle, θret, the waves’ return angle. The spin S of the particles that
carry the wave will necessarily be related to that return angle by2

S =
360 degrees

θret
. (27.31)

This simple formula corresponds to the elegant mathematical statement that “the waves
generate an irreducible representation of order S = 360 degrees/θret of that subgroup of
the Lorentz group which leaves their propagation vector unchanged (the ‘Little group’ of
the rotation vector).” For electromagnetic waves, a physical manifestation is the electric
field, which is described by a vector lying in the x–y plane; if one rotates that vector about
the z-axis (propagation axis), it returns to its original orientation after a return angle θret =
360 degrees. Correspondingly, the spin of the particle which carries the electromagnetic wave
(the photon) is one. For neutrinos, the return angle is θret = 720 degrees; and correspondingly
the spin of a neutrino is 1

2
. For gravitational waves, the physical manifestations include the

deformation of a sphere of test particles (Figs. 27.1a,b and 27.2a,b) and the acceleration fields
(Figs. 27.1c,d and 27.2c,d). Both the deformed, ellipsoidal spheres and the quadrupolar lines
of force return to their original orientations after rotation through θret = 180 degrees; and
correspondingly, the graviton must have spin two. This spin 2 also shows up in the rotation
factor ei2ψ of Eq. (27.30).

2For spin 0 this formula fails. Spin 0 corresponds to circular symmetry around the spin axis.
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Although Fierz and Pauli (1939) showed us how to quantize linearized general relativity,
the quantization of full, nonlinear general relativity remains a difficult subject of current
research, to which we shall return briefly in the next chapter.

27.4 Gravitational Waves Propagating through Curved

Spacetime

Richard Isaacson (1968a,b) has developed a geometric-optics formulation of the theory of
gravitational waves propagating through curved spacetime, and as a byproduct he has given
a rigorous mathematical description of the waves’ stress-energy tensor and thence the energy
and momentum carried by the waves. In this section we shall sketch the main ideas and
results of Isaacson’s analysis.

The foundation for the analysis is a 2-lengthscale expansion λ̄/L like we used in Sec. 7.3
when formulating geometric optics: For any physical quantity, we identify the wave contri-
bution as the portion that varies on some short lengthscale λ̄ = λ/2π (the waves’ reduced
wavelength), and the background as the portion that varies on a far longer lengthscale L
(which is less than or of order the background’s spacetime radius of curvature R); see Fig.
27.3.

To make this idea work, analytically, we must use “steady” coordinates, i.e., coordinates
that are smooth, to as great an extent as the waves permit, on lengthscales shorter than L.
In such coordinates, components of the spacetime metric gαβ and of the Riemann curvature
tensor Rαβγδ split into background plus waves,

gαβ = gBαβ + hαβ , Rαβγδ = RB
αβγδ +RGW

αβγδ , (27.32a)

where the background quantitities are defined as the averages (denoted 〈...〉) of the full
quantities over lengthscales long compared to λ̄ and short compared to L:

gBαβ ≡ 〈gαβ〉 , RB
αβγδ ≡ 〈Rαβγδ〉 . (27.32b)

To assist us in solving the Einstein equation, we treat the Einstein tensor Gαβ a bit
differently from the metric and Riemann. We begin by expanding Gαβ as a power series in
the metric perturbation hαβ : Gαβ = GB

αβ +G
(1)
αβ +G

(2)
αβ + .... Here GB

αβ is the Einstein tensor

Fig. 27.3: Heuristic embedding diagram for the decomposition of curved spacetime into a back-
ground spacetime plus gravitational waves
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computed from the background metric gBαβ , G
(1)
αβ is linear in hαβ, G

(2)
αβ is quadratic, etc. We

then split Gαβ into its rapidly varying part, which is simply G
(1)
αβ at leading order, and its

smoothly varying part, which through quadratic order is 〈Gαβ〉 = GB
αβ+ 〈G(2)

αβ〉. The vacuum
Einstein equation Gαβ = 0 will be satisfied only if the rapidly and smoothly varying parts
both vanish.

In Sec. 27.4.1, by setting the fast-varying part G(1)
αβ to zero, we shall obtain a wave

equation, in the background curved spacetime, for hαβ (the gravitational waves), which we
can solve (Sec. 27.4.2) using the geometric optics approximation that underlies this analysis.
Then, in Sec. 27.4.3, by setting the slowly varying part GB

αβ + 〈G(2)
αβ〉 to zero, we shall obtain

Isaacson’s description of gravitational-wave energy and momentum.

27.4.1 Gravitational Wave Equation in Curved Spacetime

The metric perturbation hαβ can be regarded as a tensor field that lives in the background
spacetime.3 The rapidly varying part of the Einstein equation, G(1)

αβ = 0, gives rise to a wave
equation for this tensorial metric perturbation (Isaacson 1968a; Secs. 35.13 and 35.14 of
MTW). We can infer this wave equation most easily from a knowledge of the form it takes
in any local Lorentz frame of the background (with size ≫ λ̄ but ≪ L). In such a frame,
G

(1)
αβ = 0 must reduce to the field equation of linearized theory [the vacuum version of Eq.

(25.83)]. And if we introduce Lorenz gauge [Eq. (27.17c)], then G
(1)
αβ = 0 must become, in

a local Lorentz frame, the vacuum wave equation (27.17e). The frame-invariant versions of
these local-Lorentz-frame equations, in the background spacetime, should be obvious:

The trace-reversed metric perturbation (27.17d) in frame-invariant form must become

h̄µν ≡ hµν −
1

2
h gBµν , h ≡ gαβB hαβ . (27.33a)

The Lorenz-gauge condition (27.17c) must become

h̄µν
|ν = 0 , (27.33b)

where the | denotes a gradient in the background spacetime (i.e., a covariant derivative
computed using connection coefficients constructed from gBµν). And the gravitational wave
equation (Einstein field equation) (27.17e) must become

h̄µν|α
α = 0 (27.33c)

plus curvature coupling terms such as RB
αµβν h̄

αβ that result from the noncommutation of
the double gradients. The curvature coupling terms have magnitude h/R2 . h/L2 (where R
is the radius of curvature of the background spacetime; cf. Fig. 27.3), while the terms kept
in Eq. (27.33c) have the far larger magnitude h/λ̄2, so the curvature coupling terms can be
(and are) neglected.

3Actually, this requires that we restrict the coordinates to be steady.
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27.4.2 Geometric-Optics Propagation of Gravitational Waves

When one solves Eqs. (27.33) using the geometric optics techniques that we developed in Sec.
7.3, one obtains precisely the results that one should expect, knowing the solution (27.18)
for weak, planar gravitational waves in flat spacetime (linearized theory): (i) If we split hµν
up into two polarization pieces + and ×, each with its own rapidly varying phase ϕ and
slowly varying amplitude Aµν , then the Lorenz-gauge, trace-reversed metric perturbation for
each piece takes the standard geometric-optics form [Eq. (7.20)]:

hµν = ℜ(Aµνeiϕ) . (27.34a)

(ii) Corresponding to the fact that the linearized-theory waves propagate in a straight line
(z direction) and travel at the speed of light, the geometric-optics waves propagate through

curved spacetime on rays that are null geodesics. More specifically: the wave vector ~k = ~∇ϕ
is tangent to the null-ray geodesics, and ϕ is constant along a ray and hence is a rapidly
varying function of the retarded time τr at which the source (in its own reference frame)
emitted the ray:

ϕ = ϕ(τr) , ~k = ~∇ϕ , ~k · ~k = 0 , ∇~k
~k = 0 , ∇~kϕ = 0 . (27.34b)

(iii) Corresponding to the fact that the x and y axes that define the two polarizations in
linearized theory remain fixed as the wave propagates, for each polarization we can split the
amplitude Aµν up into a scalar amplitude A+ or A×, and a polarization tensor e+ or e× (like
those of Ex. 27.6), and the polarization tensors get parallel transported along the rays :

Aµν = A eµν , ∇~k e = 0 . (27.34c)

(iv) Because gravitons are conserved (cf. the conservation of quanta in our very general
treatment of geometric optics, Sec. 7.3.2), the flux of gravitons (which is proportional to the
square A

2 of the scalar amplitude; Sec. 27.4.3 below), times the cross sectional area A of a
bundle of rays that are carrying the gravitons, must be constant; therefore, the scalar wave
amplitude A must die out as 1/(square root of cross sectional area A of a bundle of rays):

A ∝ 1/
√
A . (27.34d)

Now, just as the volume of a 3-dimensional fluid element, for a perfect fluid, changes at the
rate dV/dτ = ~∇ · ~u, where ~u is the 4-velocity of the fluid [Eq. (2.65)], so (it turns out), the
cross sectional area of a bundle of rays increases as ∇~kA = ~∇ · ~k. Therefore, the transport
law for the wave amplitude, A ∝ 1/

√
A, becomes

∇~kA = −1

2
(~∇ · ~k)A . (27.34e)

Equations (27.34) are derived more rigorously by Isaacson (1968a) and in Sec. 35.14
of MTW. They can be used to compute the influence of the cosmological curvature of our
universe, and the gravitational fields of intervening bodies, on the propagation of graviational
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waves from their sources to the earth. Once the waves have reached earth, we can compute
the measured gravitational wave fields h+ and h× by projecting out the spatial transverse-
traceless parts of hµν = ℜ(Aeµν eiϕ), as discussed in Box 27.2.

The geometric-optics propagation of gravitational waves, as embodied in Eqs. (27.34), is
essentially identical to that of electromagnetic waves: Both waves, gravitational and electro-
magnetic, propagate along rays that are null geodesics. Both parallel transport their polar-
izations. Both are carried by quanta that are conserved as they propagate along bundles of
rays and as a result both have scalar amplitudes that vary as A ∝ 1/

√
A, where A is the

cross sectional area of a ray bundle.
Therefore, gravitational waves must exhibit exactly the same vacuum propagation phenom-

ena as electromagnetic waves: Doppler shifts, cosmological redshifts, gravitational redshifts,
gravitational deflection of rays, and gravitational lensing!

In Ex. 27.14 below, we shall illustrate this geometric optics propagation of gravitational
waves by applying it to the waves from a binary system, which travel outward through our
expanding universe.

Exercise 27.7 explores an application where geometric optics breaks down due to diffrac-
tion.

****************************
EXERCISES

Exercise 27.7 **Example: Gravitational lensing of gravitational waves by the sun
Gravitational waves from a distant source travel through the sun with impunity (neg-

ligible absorption and scattering) and their rays are gravitationally deflected. The sun is
quite centrally condensed, so most of the deflection is produced by a central region with
mass Mc ≃ 0.3M⊙ and radius Rc ≃ 105km ≃ R⊙/7, and the maximum deflection angle is
∆φ ≃ 4Mc/Rc [Eq. (27.7)]. A few of the deflected rays, along which the waves propagate
according to geometric optics, are shown in Fig. 27.4.

(a) Show that the rays are brought to an imperfect focus and thence produce caustics (Sec.
7.5) at a distance from the sun (the focal length) f ∼ R2

c/4Mc ∼ 20 AU, which is near
the orbit of Uranus.

(b) If the waves were to have arbitrarily small wavelength λ, then at the caustics, their
wave fields h+ and h× would become divergently large (Sec. 7.5). Finite wavelength

Fig. 27.4: Some gravitational-wave rays that pass through the sun are brought to an imperfect
focus at a distance f, the focal length.
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causes diffraction near the caustics (Sec. 8.6). Explain why the focused field thereby
gets smeared out over a region with transverse size σ ∼ (λ/2Rc)f ∼ (λ/8Mc)Rc. [Hint:
see Eq. 8.9 and associated discussion.]

(c) Explain why, if σ ≪ Rc (i.e. if λ≪ 8Mc ∼ 3M⊙), there is substantial focusing and the
field near the caustics is strongly amplified, but if σ & Rc (i.e., λ≫ 3M⊙) there is only
small or no focusing. Explain why there are not likely to be any strong gravitational
wave sources in the universe that emit wavelengths shorter than 3M⊙ ∼ 5 km and
therefore get strongly lensed by the sun.

****************************

27.4.3 Energy and Momentum in Gravitational Waves

Turn, now, from the rapidly varying piece of the vacuum Einstein equations, G(1)
µν = 0, to

the piece that is averaged over scales long compared to λ̄ and short compared to L:

GB
αβ + 〈G(2)

αβ〉 = 0 . (27.35)

(Recall that GB
αβ is the Einstein tensor constructed from the slowly varying background

metric, and G
(2)
αβ is the piece of the full Einstein tensor that is quadratic in the rapidly

varying metric perturbation hµν and that therefore does not average to zero.)
Notice that equation (27.35) can be brought into the standard form for Einstein’s equation

in the background spacetime,

GB
αβ = 8πTGW

αβ , (27.36)

by moving 〈G(2)
αβ〉 to the right hand side and then attributing to the waves a stress-energy

tensor defined by

TGW
αβ = − 1

8π
〈G(2)

αβ〉 . (27.37)

Because this stress-energy tensor involves an average over a few wavelengths, its energy
density, momentum density, energy flux, and momentum flux are not defined on lengthscales
shorter than a wavelength. One cannot say how much energy or momentum resides in the
troughs of the waves and how much in the crests. One can only say how much total energy
there is in a region containing a few or more wavelengths. However, once one has reconciled
oneself to this amount of nonlocality, one finds that TGW

αβ has all the other properties that
one expects of any good stress-energy tensor. Most especially, in the absence of coupling of
the waves to matter (the situation we are treating), it obeys the standard conservation law

TGWαβ
|β = 0 , (27.38)

where, as above, “ |” denotes the covariant derivative in the background spacetime, i.e. using
the connection coefficients of gBαβ. This law is a direct consequence of the averaged field



25

equation (27.36) and the contracted Bianchi identity for the background spacetime GBαβ
|β =

0.
By grinding out the second-order perturbation of the Einstein tensor and inserting it into

Eq. (27.37), performing several integrations by parts in the average 〈. . .〉, and expressing the
result in terms of h+ and h×, one arrives at the following simple expression for TGW

αβ in terms
of the wave fields h+ and h×:

TGW
αβ =

1

16π
〈h+,αh+,β + h×,αh×,β〉 . (27.39)

[For details of the derivation, see Isaacson (1968b) or Secs. 35.13 and 35.15 of MTW.]
Let us examine this stress-energy tensor in a local Lorentz frame of the background

spacetime where the waves are locally plane and are propagating in the z direction—the
kind of frame we used in Sec. 27.3.2 above when exploring the properties of gravitational
waves. Because, in this frame, h+ = h+(t − z) and h× = h×(t − z), the only nonzero
components of Eq. (27.39) are

TGW 00 = TGW 0z = TGW z0 = TGW zz =
1

16π
〈ḣ2+ + ḣ2×〉 . (27.40)

This has the same form as the stress-energy tensor for a plane electromagnetic wave prop-
agating in the z direction, and the same form as the stress-energy tensor for any collection
of zero-rest-mass particles moving in the z-direction [cf. Eq. (3.30d)], as it must since the
gravitational waves are carried by zero-rest-mass gravitons just as electromagnetic waves are
carried by zero-rest-mass photons.

Suppose that the waves have frequency ∼ f and that the amplitudes of oscillation of h+
and h× are ∼ hamp. Then by inserting factors of G and c into Eq. (27.40) [i.e., by switching
from geometrized units to conventional units] and by setting 〈(∂h+/∂t)2〉 ≃ 1

2
(2πfhamp)

2

and similarly for h×, we obtain the following approximate expression for the energy flux in
the waves:

TGW0z ≃ π

4

c3

G
f 2h2amp ≃ 300

ergs

cm2 sec

(

f

1 kHz

)2(
hamp

10−21

)2

. (27.41)

The numbers in this equation correspond to a strongly emitting, highly asymmetric super-
nova or pair of colliding neutron stars in the Virgo cluster of galaxies. Contrast this huge
gravitational-wave energy flux with the peak electromagnetic flux at the height of a super-
nova, ∼ 10−9 erg cm−2 sec−1; but note that the gravitational waves should last for only a
few milliseconds, while the strong electromagnetic output lasts for weeks.

Corresponding to the huge energy flux (27.41) in an astrophysically interesting gravita-
tional wave is a huge mean occupation number for the quantum states of the gravitational-
wave field, i.e., a huge value for the number of spin-2, zero-rest-mass gravitons in each
quantum state. To compute that occupation number, we shall evaluate the volume in phase
space occupied by the waves from an extreme supernova and then divide by the volume
occupied by each quantum state (cf. Sec. 3.2.5). At a time when the waves have reached a
distance r from the source, they occupy a spherical shell of area 4πr2 and thickness of order
10λ̄, where λ̄ = 1/(2πf) is their reduced wavelength, so their volume in physical space is
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Vx ∼ 100r2λ̄. As seen by observers whom the waves are passing, they come from a solid angle
∆Ω ∼ (2λ̄/r)2 centered on the source, and they have a spread of angular frequencies ranging
from ω ∼ 1

2
c/λ̄ to ω ∼ 2c/λ̄. Since each graviton carries an energy ~ω = ~c/λ̄ and a mo-

mentum ~ω/c = ~/λ̄, the volume that they occupy in momentum space is Vp ∼ (2~/λ̄)3∆Ω,
i.e., Vp ∼ 10~3/(λr2) . The gravitons’ volume in phase space, then, is

VxVp ∼ 1000~3 ∼ 4(2π~)3 . (27.42)

Since each quantum state for a zero rest-mass particle occupies a volume (2π~)3 in phase
space [Eq. (3.17) with gs = 1], this means that the total number of quantum states occupied
by the gravitons is of order unity! Correspondingly, the mean occupation number of each
occupied state is of order the total number of gravitons emitted, which (since the total energy
radiated when two neutron stars collide might be of order 10−2M⊙c

2 ∼ 1052 ergs, and each
graviton carries an energy ~c/λ̄ ∼ 10−23 erg), is

η ∼ 1075 . (27.43a)

This is the mean occupation number from the viewpoint of the emitter.
A detector on earth has available to it only those gravitons that pass through a region with

transverse size of order their wavelength λ — which means a fraction ∼ λ2/(4πr)2 ∼ 10−33

of the emitted waves’ volume. We can think of the detector as collapsing the gravitons’ wave
function into that volume. The number of available quantum states is still of order unity
(demonstrate this!), but the number of gravitons occupying them is reduced by ∼ 10−33, so
from the detector’s viewpoint, the mean occupation number is

ηcollapsed ∼ 107510−33 ∼ 1042 (27.43b)

Whichever viewpoint one takes, the occupation number is enormouns. It guarantees that
the waves behave exceedingly classically; quantum-mechanical corrections to the classical
theory have fractional magnitude 1/

√
η ∼ 10−37 or ∼ 10−21.

27.5 The Generation of Gravitational Waves

When analyzing the generation of gravitational waves, it is useful to divide space around the
source (in the source’s rest frame) into the regions shown in Fig. 27.5.

λ

¬¬
Local Asymptotic Rest Frame

Fig. 27.5: Regions of space around a source of gravitational waves.
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If the source has size L .M , whereM is its mass, then spacetime is strongly curved inside
and near it, and we refer to it as a strong-gravity source. The region with radii (measured
from its center of mass) r . 10M is called the source’s strong-field region. Examples of
strong-gravity sources are vibrating or spinning neutron stars, and merging binary black
holes. The region with radii 10M . r . λ̄ = (the reduced wavelength of the emitted
waves) is called the source’s weak-field near zone. In this region, the source’s gravity is fairly
well approximated by Newtonian theory and a Newtonian gravitational potential Φ. As in
electromagnetic theory, the region λ̄ . r . λ is called the induction zone or the transition
zone. The wave zone begins at r ∼ λ = 2πλ̄.

It is useful to divide the wave zone into two parts: A part near the source (r . ro for
some ro) called the local wave zone, in which the spacetime curvature of external bodies and
of the universe as a whole are unimportant, and the distant wave zone (r & ro), in which
the emitted waves are significantly affected by external bodies and the external universe,
i.e., by background spacetime curvature. The theory of gravitational-wave generation deals
with computing, from the source’s dynamics, the gravitational waves in the local wave zone.
Propagation of the waves to earth is dealt with by using geometric optics (or other techniques)
to carry the waves from the local wave zone outward, through the distant wave zone, to earth.

The entire region in which gravity is weak and the spacetme curvature of external bodies
and the universe are unimportant, (10M . r . ro) — when viewed in nearly Lorentz
coordinates in which the source is at rest — is called the source’s local asymptotic rest
frame.

27.5.1 Multipole-moment expansion

The electromagnetic waves emitted by a dynamical charge distribution are usually expressed
as a sum over the source’s multipole moments. There are two families of moments: the
electric moments (moments of the electric charge distribution) and the magnetic moments
(moments of the electric current distribution).

Similarly, the gravitational waves emitted by a dynamical distribution of mass-energy
and momentum can be expressed, in the local wave zone, as a sum over multipole moments.
Again there are two families of moments: the mass moments (moments of the mass-energy
distribution) and the current moments (moments of the mass-current distribution, i.e. the
momentum distribution). The multipolar expansion of gravitational waves is developed in
great detail in Thorne (1980) and in Blanchet (2014). In this section we shall sketch and
explain its qualitative and order-of-magnitude features.

In the source’s weak-gravity near zone (if it has one), the mass moments show up in the
time-time part of the metric in a form familiar from Newtonian theory

g00 = −(1 + 2Φ) = −1 &
I0

r
&

I1

r2
&

I2

r3
& . . . . (27.44)

[cf. Eq. (25.79)]. Here r is radius, Iℓ is the mass moment of order ℓ, and “&” means “plus a
term with the form”, i.e. a term whose magnitude and parameter dependence are shown but
whose multiplicative numerical coefficients do not interest us, at least not for the moment.
The mass monopole moment I0 is the source’s mass, and the mass dipole moment I1 can be
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made to vanish by placing the origin of coordinates at the center of mass [Eq. (25.96) and
Ex. 25.21].

Similarly, in the source’s weak-gravity near zone, its current moments Sℓ show up in the
space-time part of the metric

g0j =
S1

r2
&

S2

r3
& . . . . (27.45)

Just as there is no magnetic monopole moment in classical electromagnetic theory, so there
is no current monopole moment in general relativity. The current dipole moment S1 is the
source’s angular momentum Jk, so the leading-order term in the expansion (27.45) has the
form (25.98c), which we have used to deduce the angular momenta of gravitating bodies.

If the source has mass M , size L and internal velocities ∼ v, then the magnitudes of its
moments are

Iℓ ∼MLℓ , Sℓ ∼MvLℓ (27.46)

These formulae guarantee that the near-zone fields g00 and g0j, as given by Eqs. (27.44) and
(27.45), are dimensionless.

As the source’s moments oscillate dynamically, they produce gravitational waves. Mass-
energy conservation [Eq. (25.102)] prevents the mass monopole moment I0 =M from oscil-
lating; angular-momentum conservation [Eq. (25.103)] prevents the current dipole moment
S1 = (angular momentum) from oscillating; and because the time derivative of the mass
dipole moment I1 is the source’s linear momentum, momentum conservation [Eq. (25.106)]
prevents the mass dipole moment from oscillating. Therefore, the lowest-order moments that
can oscillate and thereby contribute to the waves are the quadrupolar ones. The wave fields
h+ and h× in the source’s local wave zone must (i) be dimensionless, (ii) die out as 1/r, and
(iii) be expressed as a sum over derivatives of the multipole moments. These considerations
guarantee (Ex. 27.8) that the waves will have the following form:

h+ ∼ h× ∼ ∂2I2/∂t
2

r
&
∂3I3/∂t

3

r
& . . . &

∂2S2/∂t
2

r
&
∂3S3/∂t

3

r
& . . . . (27.47)

The timescale on which the moments oscillate is T ∼ L/v, so each time derivative pro-
duces a factor v/L. Correspondingly, the ℓ-pole contributions to the waves have magnitudes

∂ℓIℓ/∂tℓ
r

∼ M

r
vℓ ,

∂ℓSℓ/∂tℓ
r

∼ M

r
v(ℓ+1) . (27.48)

This means that, for a slow-motion source (one with internal velocities v small compared to
light so the reduced wavelength λ̄ ∼ L/v is large compared to the source size L), the mass
quadrupole moment I2 will produce the strongest waves. The mass octupole (3-pole) waves
and current quadrupole waves will be weaker by ∼ v ∼ L/λ̄; the mass 4-pole and current
octupole waves will be weaker by ∼ v2 ∼ L2/λ̄2, etc. This is analogous to the electromagnetic
case, where the electric dipole waves are the strongest, the electric quadrupole and magnetic
dipole are smaller by ∼ L/λ̄, etc.

In the next section we shall develop the theory of mass-quadrupole gravitational waves.
For the corresponding theory of higher-order multipoles, see, e.g., Blanchet (2014) and Sec.
VIII of Thorne (1980).
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****************************
EXERCISES

Exercise 27.8 Derivation: Multipolar Expansion of Gravitational Waves

Show that conditions (i), (ii) and (iii) preceeding Eq. (27.47) guarantee that the multipolar
expansion of the gravitational-wave fields will have the form (27.47).

****************************

27.5.2 Quadrupole-moment formalism

Consider a weakly gravitating, nearly Newtonian system (which is guaranteed to be a slow-
motion gravitational-wave source, since Newtonian theory requires internal velocities v ≪ 1.
An example is a binary star system. Write the system’s Newtonian potential (in its near
zone) in the usual way

Φ(x) = −
∫

ρ(x′)

|x− x′|dVx′ . (27.49)

By using Cartesian coordinates, placing the origin of coordinates at the center of mass so
∫

ρxjdVx = 0, and expanding

1

|x− x′| =
1

r
+
xjxj

′

r3
+
xjxk(3xj

′

xk
′ − r′2δjk)

2r5
+ . . . , (27.50)

we obtain the multipolar expansion of the Newtonian potential

Φ(x) = −M
r

− 3Ijkxjxk
2r5

+ . . . . (27.51)

Here

M =

∫

ρdVx , Ijk =
∫

ρ

(

xjxk − 1

3
r2δjk

)

dVx (27.52)

are the system’s mass and mass quadrupole moment. Note that the mass quadrupole moment
is equal to the second moment of the mass distribution, with its trace removed.

As we have discussed, dynamical oscillations of the quadrupole moment generate the
source’s strongest gravitational waves. Those waves must be describable, in the source’s
near zone and local wave zone, by an outgoing-wave solution to the Lorenz-gauge, linearized
Einstein equations

h̄µν,
ν = 0 , h̄µν,α

α = 0 (27.53)

[Eqs. (25.89) and (25.90)] that has the near-zone Newtonian limit

1

2
(h̄00 + h̄xx + h̄yy + h̄zz) = h00 = (quadrupole part of − 2Φ) =

3Ijkxjxk
r

(27.54)
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[cf. Eq. (25.79)].
The desired solution can be written in the form

h̄00 = 2

[Ijk(t− r)

r

]

,jk

, h̄0j = 2

[

İjk(t− r)

r

]

,k

, h̄jk = 2
Ïjk(t− r)

r
, (27.55)

where the coordinates are Cartesian, r ≡
√

δjkxjxk, and the dots denote time derivatives.
To verify that this is the desired solution: (i) Compute its divergence h̄αβ,β and obtain zero
almost trivially. (ii) Notice that each Lorentz-frame component of h̄αβ has the form f(t−r)/r
aside from some derivatives that commute with the wave operator, which implies that it
satisfies the wave equation. (iii) Notice that in the near zone, the slow-motion assumption
inherent in the Newtonian limit makes the time derivatives negligible, so h̄jk ≃ 0 and h̄00 is
twice the right-hand side of Eq. (27.54), as desired.

Because the trace-reversed metric perturbation (27.55) in the local wave zone has the
speed-of-light-propagation form, aside from its very slow decay as 1/r, we can compute the
gravitational-wave field hTT

jk from it by transverse-traceless projection, Eq. (3) of Box 27.2
with n = er:

hTT
jk = 2

[

Ïjk(t− r)

r

]TT

. (27.56)

This is called the quadrupole-moment formula for gravitational-wave generation. Our deriva-
tion shows that it is valid for any nearly Newtonian source.

Looking back more carefully at the derivation, one can see that, in fact, it relied only on
the linearized Einstein equations and the Newtonian potential in the source’s local asymptotic
rest frame. Therefore, this quadrupole formula is also valid for slow-motion sources that have
strong internal gravity (e.g., slowly spinning neutron stars), so long as we read the quadrupole
moment Ijk(t−r) off the source’s weak-field, near-zone Newtonian potential (27.51) and don’t
try to compute it via the Newtonian volume integral (27.52).

When the source is nearly Newtonian, so the volume integral (27.52) can be used to
compute the quadrupole moment, the computation of the waves is simplified by computing
instead the second moment of the mass distribution

Ijk =

∫

ρxjxkdVx , (27.57)

which differs from the quadrupole moment solely in its trace. Then, because the TT projec-
tion is insensitive to the trace, the gravitational-wave field (27.56) can be computed as

hTT
jk = 2

[

Ïjk(t− r)

r

]TT

. (27.58)
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27.5.3 Quadrupolar Wave Strength, Energy, Angular Momentum

and Radiation Reaction

To get an order of magnitude feeling for the strength of the gravitational waves, notice
that the second time derivative of the quadrupole moment, in order of magnitude, is the
nonspherical part of the source’s internal kinetic energy, Ens

kin, so

h+ ∼ h× ∼ Ens
kin

r
= G

Ens
kin

c4r
, (27.59)

where the second expression is written in conventional units. Although this estimate is
based on the slow-motion assumption of source size small compared to reduced wavelength,
L ≪ λ̄, it remains valid in order of magnitude when extrapolated into the realm of the
strongest of all realistic astrophysical sources, which have L ∼ λ̄. In Ex. 27.16 we shall use
Eq. (27.59) to estimate the strongest gravitational waves that might be seen by ground-based
gravitational-wave detectors.

Because the gravitational stress-energy tensor TGW
µν produces background curvature via

the Einstein equation GB
µν = 8πTGW

µν , just like nongravitational stress-energy tensors, it must
contribute to the rate of change of the source’s mass M , linear momentum Pj and angular
momentum Ji [Eqs. (25.102)–(25.106)] just like other stress-energies. When one inserts the
quadrupolar TGW

µν into Eqs. (25.102)–(25.106) and integrates over a sphere in the wave zone
of the source’s local asymptotic rest frame, one finds that (Ex. 27.11)

dM

dt
= −1

5

〈

∂3Ijk
∂t3

∂3Ijk
∂t3

〉

, (27.60)

dJi
dt

= −2

5
ǫijk

〈

∂2Ijm
∂t2

∂3Ikm
∂t3

〉

, (27.61)

and dPj/dt = 0. It turns out [cf. Sec. IV of Thorne (1980)] that the dominant linear-
momentum change (i.e., the dominant radiation-reaction “kick”) arises from a beating of the
mass quadrupole moment against the mass octupole moment, and mass quadrupole against
current quadrupole:

dPi
dt

= − 2

63

〈

∂3Ijk
∂t3

∂4Ijki
∂t4

〉

− 16

45
ǫijk

〈

∂3Ijp
∂t3

∂3Skp
∂t3

〉

. (27.62)

Here the mass octupole moment Ijki is the trace-free part of the third moment of the mass
distribution, and the current quadrupole moment Skp is the symmetric, trace-free part of
the first moment of the vectorial angular momentum distribution. See, e.g., Secs. IV.C and
V.C of Thorne (1980), or Sec. 3 of Thorne (1983).

The back reaction of the emitted waves on their source shows up not only in changes of
the source’s mass, momentum, and angular momentum, but also in accompanying changes of
the source’s internal structure. These structure changes can be deduced fully, in many cases,
from dM/dt, dJj/dt and dPj/dt. A nearly Newtonian binary system is an example (Sec.
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27.5.4 below). However, in other cases (e.g., a compact body orbiting near the horizon of a
massive black hole), the only way to compute the structure changes is via a gravitational-
radiation-reaction force that acts back on the system.

The simplest example of such a force is one derived by William Burke (1971) for quadrupole
waves emitted by a nearly Newtonian system. Burke’s quadrupolar radiation-reaction force
can be incorporated into Newtonian gravitation theory by simply augmenting the system’s
near-zone Newtonian potential with a radiation-reaction term, computed from the fifth time
derivative of the system’s quadrupole moment:

Φreact =
1

5

∂5Ijk
∂t5

xjxk . (27.63)

This potential satisfies the vacuum Newtonian field equation ∇2Φ ≡ δjkΦ,jk = 0 because Ijk
is trace free.

This augmentation onto the Newtonian potential arises as a result of general relativity’s
outgoing-wave condition. If one were to switch to an ingoing-wave condition, Φreact would
change sign, and if the system’s oscillating quadrupole moment were joined onto standing
gravitational waves, Φreact would go away. In Ex. 27.12, it is shown that the radiation reaction
force density −ρ∇Φreact saps energy from the system at the same rate as the gravitational
waves carry it away.

Burke’s gravitational radiation-reaction potential Φreact and force density −ρ∇Φreact are
close analogs of the radiation reaction potential [last term in Eq. (16.79)] and acceleration
[right side of Eq. (16.82)] that act on an oscillating ball that emits sound waves into a
surrounding fluid. Moreover, Burke’s derivation of his gravitational radiation-reaction po-
tential is conceptually the same as the derivation, in Sec. 16.5.3, of the sound-wave reaction
potential.

****************************
EXERCISES

Exercise 27.9 Problem: Gravitational waves from arm waving
Wave your arms rapidly, and thereby try to generate gravitational waves.

(a) Compute in order of magnitude, using classical general relativity, the wavelength of the
waves you generate and their dimensionless amplitude at a distance of one wavelength
away from you.

(b) How many gravitons do you produce per second? Discuss the implications of your
result.

Exercise 27.10 Example: Quadrupolar wave generation in linearized theory
Derive the quadrupolar wave-generation formula (27.58) for a slow-motion, weak-gravity
source in linearized theory, in Lorenz gauge, beginning with the retarded-integral formula

h̄µν(t,x) =

∫

4Tµν(t− |x− x
′|,x′])

|x− x′| dVx′ (27.64)

[Eq. (25.91)]. Your derivation might proceed as follows:
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(a) Show that for a slow-motion source, the retarded integral gives for the 1/r ≡ 1/|x|
(radiative) part of h̄jk

h̄jk(t,x) =
4

r

∫

Tjk(t− r,x′)dVx′ . (27.65)

(b) Show that in linearized theory in Lorenz gauge, the vacuum Einstein equations −h̄µν,αα
= 16πTµν [Eq. (25.90)] and the Lorenz gauge condition h̄µν,ν = 0 [Eq. (25.89)] together
imply that the stress-energy tensor that generates the waves must have vanishing co-
ordinate divergence, T µν ,ν = 0. This means that linearized theory is ignorant of the
influence of self gravity on the gravitating T µν !

(c) Show that this vanishing divergence implies [T 00xjxk],00 = [T lmxjxk],ml − 2[T ljxk +
T lkxj ],l + 2T jk.

(d) By combining the results of (a) and (c), deduce that

h̄jk(t,x) =
2

r

d2Ijk(t− r)

dt2
, (27.66)

where Ijk is the second moment of the source’s (Newtonian) mass-energy distribution
T 00 = ρ [Eq. (27.57)].

(e) Noticing that the trace-reversed metric perturbation (27.66) has the “speed-of-light-
propagation” form, deduce that the gravitational-wave field hTT

jk can be computed from
(27.66) by a transverse-traceless projection, Box 27.2.

Comment: Part (b) shows that this linearized-theory analysis is incapable of deducing the
gravitational waves emitted by a source whose dynamics is controlled by its self gravity,
e.g., a nearly Newtonian binary star system. By contrast, the derivation of the quadrupole
formula given in Sec. 27.5.2 is valid for any slow-motion source, regardless of the strength
and roles of its internal gravity; see the discussion following Eq. (27.56).

Exercise 27.11 Problem: Energy and Angular Momentum Carried by Gravitational Waves

(a) Compute the net rate at which the quadrupolar waves (27.56) carry energy away from
their source, by carrying out the surface integral (25.102) with T 0j being Isaacson’s
gravitational-wave energy flux (27.39). Your answer should be Eq. (27.60). [Hint:
Perform the TT projection in Cartesian coordinates using the projection tensor, Eq.
(2) of Box 27.2, and make use of the following integrals over solid angle on the unit
sphere

1

4π

∫

nidΩ = 0 ,
1

4π

∫

ninjdΩ =
1

3
δij ,

1

4π

∫

ninjnkdΩ = 0; ,

1

4π

∫

ninjnknldΩ =
1

15
(δijδkl + δikδjl + δilδjk). (27.67)

These integrals should be obvious by symmetry, aside from the numerical factors out
in front. Those factors are most easily deduced by computing the z components, i.e.,
by setting i = j = k = l = z and using nz = cos θ.]
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(b) The computation of the waves’ angular momentum can be carried out in the same way,
but is somewhat delicate because a tiny nonradial component of the energy flux, that
dies out as 1/r3, gives rise to the O(1/r2) angular momentum flux. See Sec. IV.D of
Thorne (1980).

Exercise 27.12 Problem: Energy removed by gravitational radiation reaction
Burke’s radiation-reaction potential (27.63) produces a force per unit volume −ρ∇Φreact

on its nearly Newtonian source. If we multiply this force per unit volume by the velocity
v = dx/dt of the source’s material, we obtain thereby a rate of change of energy per unit
volume. Correspondingly, the net rate of change of the system’s mass-energy must be

dM

dt
= −

∫

ρv ·∇ΦreactdVx . (27.68)

Show that, when averaged over a few gravitational-wave periods, this formula agrees with
the rate of change of mass (27.60) that we derived in Ex. 27.11 by integrating the outgoing
waves’ energy flux.

****************************

27.5.4 Gravitational Waves from a Binary Star System

A very important application of the quadrupole formalism is to wave emission by a nearly
Newtonian binary star system. Denote the stars by indices A and B and their masses by
MA and MB, so their total and reduced mass are (as usual)

M =MA +MB , µ =
MAMB

M
; (27.69a)

and let the binary’s orbit be circular, for simplicity, with separation a between the stars’
centers of mass. Then Newtonian force balance dictates that the orbital angular velocity Ω
is given by Kepler’s law,

Ω =
√

M/a3 , (27.69b)

and the orbits of the two stars are

xA =
MB

M
a cosΩt , yA =

MB

M
a sinΩt , xB = −MA

M
a cosΩt , yB = −MA

M
a sinΩt .

(27.69c)
The second moment of the mass distribution, Eq. (27.57), is Ijk = MAx

j
Ax

k
A +MBx

j
Bx

k
B.

Inserting the stars’ time-dependent positions (27.69c), we obtain as the only nonzero com-
ponents

Ixx = µa2 cos2Ωt , Iyy = µa2 sin2Ωt , Ixy = Iyx = µa2 cosΩt sin Ωt . (27.69d)
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Noting that cos2 Ωt = 1
2
(1 + cos 2Ωt), sin2Ωt = 1

2
(1− cos 2Ωt) and cos Ωt sinΩt = 1

2
sin 2Ωt,

and evaluating the double time derivative, we obtain

Ïxx = −2µ(MΩ)2/3 cos 2Ωt , Ïyy = 2µ(MΩ)2/3 cos 2Ωt ,

Ïxy = Ïyx = −2µ(MΩ)2/3 sin 2Ωt . (27.69e)

We express this in terms of Ω rather than a because Ω is a direct gravitational-wave observ-
able: the waves’ angular frequency is 2Ω.

To compute the gravitational-wave field (27.56), we must project out the transverse
traceless part of this Ïjk. The projection is most easily performed in an orthonormal spherical
basis, since there the transverse part is just the projection into the plane spanned by ~eθ̂ and
~eφ̂, and the transverse-traceless part has components

(Ïθ̂θ̂)
TT = −(Ïφ̂φ̂)

TT =
1

2
(Ïθ̂θ̂ − Ïφ̂φ̂) , (Ïθ̂φ̂)

TT = Ïθ̂φ̂ (27.69f)

[cf. Eq. (1) of Box 27.2]. Now, a little thought will save us much work: We need only compute
these quantities at φ = 0 (i.e., in the x-z plane), since their circular motion guarantees that
their dependence on t and φ must be solely through the quantity Ωt − φ. At φ = 0,
~eθ̂ = ~ex cos θ − ~ez sin θ and ~eφ̂ = ~ey, so the only nonzero components of the transformation
matrices from the Cartesian basis to the transverse part of the spherical basis are Lxθ̂ =
cos θ, Lzθ̂ = − sin θ, Lyφ̂ = 1. Using this transformation matrix, we obtain, at φ = 0,

Ïθ̂θ̂ = Ïxx cos
2 θ, Ïφ̂φ̂ = Ïyy, Ïθ̂φ̂ = Ïxy cos θ. Inserting these and expressions (27.69e) into Eq.

(27.69f), and setting Ωt → Ωt− φ to make the formulae valid away from φ = 0, we obtain

(Ïθ̂θ̂)
TT = −(Ïφ̂φ̂)

TT = −(1 + cos2 θ) µ(MΩ)2/3 cos[2(Ωt− φ)] ,

(Ïθ̂φ̂)
TT = +(Ïφ̂θ̂)

TT = −2 cos θ µ(MΩ)2/3 sin[2(Ωt− φ)] . (27.69g)

The gravitational-wave field (27.58) is 2/r times this quantity evaluated at the retarded time
t− r.

We shall make the conventional choice for the polarization tensors:

e
+ = (~eθ̂ ⊗ ~eθ̂ − ~eφ̂ ⊗ ~eφ̂) , e

× = (~eθ̂ ⊗ ~eφ̂ + ~eφ̂ ⊗ ~eθ̂) ; ~eθ̂ =
1

r

∂

∂θ
, ~eφ̂ =

1

r sin θ

∂

∂φ
.

(27.70a)
Then Eqs. (27.58) and (27.69g) tell us that the gravitational-wave field is, in slot-naming
index notation,

hTT
µν = h+e

+
µν + h×e

×
µν , (27.70b)

where

h+ = hTT
θ̂θ̂

=
2

r
[Ïθ̂θ̂(t− r)]TT = −2(1 + cos2 θ)

µ(MΩ)2/3

r
cos[2(Ωt− Ωr − φ)] , (27.70c)

h× = hTT
θ̂φ̂

=
2

r
[Ïθ̂φ̂(t− r)]TT = −4 cos θ

µ(MΩ)2/3

r
sin[2(Ωt− Ωr − φ)] . (27.70d)
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We have expressed the ampitudes of these waves in terms of the dimensionless quantity
(MΩ)2/3 =M/a = v2, where v is the relative velocity of the two stars.

Notice that, as viewed from the polar axis θ = 0, h+ and h× are identical except for a π/2
phase delay, which means that the net stretch-squeeze ellipse (the combination of those in
Figs. 27.1 and 27.2) rotates with angular velocity Ω. This is the gravitational-wave variant of
circular polarization and arises because the binary motion as viewed from the polar axis looks
circular. By contrast, as viewed by an observer in the equatorial plane θ = π/2, h× vanishes,
so the net stretch-squeeze ellipse just oscillates along the + axes and the waves have linear
polarization. This is natural, since the orbital motion as viewed by an equatorial observer is
just a linear, horizontal, back-and-forth oscillation. Notice also that the gravitational-wave
frequency is twice the orbital frequency, i.e.

f = 2
Ω

2π
=

Ω

π
. (27.71)

To compute, via Eqs. (27.60) and (27.61), the rate at which energy and angular momen-
tum are lost from the binary, we need to know the double and triple time derivatives of its
quadrupole moment Ijk. The double time derivative is just Ïjk with its trace removed, but
Eq. (27.69d) shows that Ïjk is already trace free so Ïjk = Ïjk. Inserting Eq. (27.69d) for this
quantity into Eqs. (27.60) and (27.61) and performing the average over a gravitational-wave
period, we find that

dM

dt
= −32

π

µ2

M2
(MΩ)10/3 ,

dJz
dt

= − 1

Ω

dM

dt
,

dJx
dt

=
dJy
dt

= 0 . (27.72)

This loss of energy and angular momentum causes the binary to spiral inward, decreasing
the stars’ separation a and increasing their orbital angular velocity Ω. By comparing Eqs.
(27.72) with the standard equations for the binary’s orbital energy and angular momentum,
M − (sum of rest masses of stars) = E = −1

2
µM/a = −1

2
µ(MΩ)2/3, and Jz = µa2Ω =

µ(MΩ)2/3/Ω, we obtain an equation for dΩ/dt which we can integrate to give

Ω = πf =

(

5

256

1

µM2/3

1

to − t

)3/8

. (27.73)

Here to (an integration constant) is the time remaining until the two stars merge, if the stars
are thought of as point masses so their surfaces do not collide sooner. This equation can be
inverted to read off the time until merger as a function of gravitational-wave frequency.

These results for a binary’s waves and radiation-reaction-induced inspiral are of great im-
portance for gravitational-wave detection; see, e.g., Cutler and Thorne (2002), and Sathyaprakash
and Schutz (2009).

****************************
EXERCISES

Exercise 27.13 Problem: Gravitational waves emitted by a linear oscillator
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Consider a mass m attached to a spring so it oscillates along the z axis of a Cartesian
coordinate system, moving along the world line z = a cosΩt, y = x = 0. Use the quadrupole
moment formalism to compute the gravitational waves h+(t, r, θ, φ) and h×(t, r, θ, φ) emitted
by this oscillator, with the polarization tensors chosen as in Eqs. (27.70a). Pattern your
analysis after the computation of waves from a binary in Sec. 27.5.4 .

Exercise 27.14 ** Example: Propagation of a binary’s waves through an expanding uni-
verse

As we shall see in Chap. 28, the following line element is a possible model for the large-scale
structure of our universe:

ds2 = b2[−dη2 + dχ2 + χ2(dθ2 + sin2 θdφ2)] , where b = boη
2 (27.74)

and bo is a constant with dimensions of length. This is an expanding universe with flat
spatial slices η = constant. Notice that the proper time measured by observers at rest in the
spatial coordinate system is t = bo

∫

η2dη = (bo/3)η
3.

A nearly Newtonian, circular binary is at rest at χ = 0 in an epoch when η ≃ ηo. The
coordinates of the binary’s local asymptotic rest frame are (t, r, θ, φ), where r = bχ and the
coordinates cover only a tiny region of the universe, χ . χo ≪ ηo. The gravitational waves
in this local asymptotic rest frame are described by Eqs. (27.70). Use geometric optics (Sec.
27.4.2) to propagate these waves out through the expanding universe. In particular:

(a) Show that the null rays along which the waves propagate are the curves of constant θ,
φ, and η − χ.

(b) Each ray can be characterized by the retarded time τr at which the source emitted it.
Show that

τr =
1

3
bo(η − χ)3 . (27.75a)

(c) Show that in the source’s local asymptotic rest frame, this retarded time is τr = t− r
and the phase of the wave is ϕ = 2(Ω τr + φ) [cf. Eqs. (27.70c) and (27.70d)]. Because
the frequency Ω varies with time due to the binary inspiral, a more accurate formula
for the wave’s phase is ϕ = 2(

∫

Ω dτr + φ). Using Eq. (27.73), show that

ϕ = 2φ−
(

to − τr
5M

)5/8

, Ω =
dϕ

dτr
=

(

5

256

1

M5/3

1

to − τr

)3/8

, (27.75b)

where
M ≡ µ3/5M2/5 (27.75c)

(with µ the reduced mass and M the total mass) is called the binary’s chirp mass
because, as Eqs. (27.75b) show, it controls the rate at which the binary’s orbital angular
frequency Ω and the gravitational-wave angular frequency 2Ω “chirp upward” as time
passes. Since τr as given by Eq. (27.75a) is constant along rays when they travel out of
the local wave zone and into and through the universe, so also: if we continue to write
ϕ in terms of τr on those rays using Eq. (27.75b), this ϕ will be conserved along the
rays in the external universe and therefore will satisfy the geometric optics equation
∇~k ϕ = 0 [Eq. (27.34b)].
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(d) Show that the orthonormal basis vectors and polarization tensors

~eθ̂ =
1

bχ

∂

∂θ
, ~eφ̂ =

1

bχ sin θ

∂

∂φ
, e

+ = (~eθ̂⊗~eθ̂−~eφ̂⊗~eφ̂) , e
× = (~eθ̂⊗~eφ̂+~eφ̂⊗~eθ̂)

(27.75d)
in the external universe: (i) are parallel transported along rays, and (ii) when carried
backward on rays into the local asymptotic rest frame, become the basis vectors and
tensors used in that frame’s solution (27.70) for the gravitational waves. Therefore,
these e+µν and e×µν are the polarization tensors needed for our geometric optics waves.

(e) Consider a bundle of rays that, at the source, extends from φ to φ + ∆φ and from θ
to θ +∆θ. Show that this bundle’s cross sectional area, as it moves outward to larger
and larger χ, is A = r2 sin θ∆θ∆φ, where r is a function of η and χ given by

r = bχ = boη
2χ . (27.75e)

Show that in the source’s local asymptotic rest frame, this r is the same as the distance
r from the source that appears in Eqs. (27.70c) and (27.70d) for h+ and h×.

(f) By putting together all the pieces from parts (a) through (e), show that the solution to
the equations of geometric optics (27.70) for the gravitational-wave field, as it travels
outward through the universe is

h
TT = h+e

+ + h×e
× , (27.75f)

with e+ and e× given by Eqs. (27.75d), with h+ and h× given by

h+ = −2(1 + cos2 θ)
M5/3Ω2/3

r
cosϕ , h× = −4 cos θ

M5/3Ω2/3

r
sinϕ , (27.75g)

and with Ω, ϕ and r given by Eqs. (27.75b), (27.75a) and (27.75e). [Hint: Note that
all quantities in this solution except r are constant along rays, and r varies as 1/

√
A,

where A is the area of a bundle of rays.]

(g) The angular frequency of the waves that are emitted at retarded time τr is ωe = 2Ω.
When received at earth these waves have a cosmologically redshifted frequency ωr =
∂ϕ/∂t, where t = (bo/3)η

3 is proper time measured at earth, and in the derivative
we must hold fixed the spatial coordinates of the earth: {χ, θ, φ}. The ratio of these
frequencies is ωe/ωr = 1+z, where z is the so-called cosmological redshift of the waves.
Show that 1 + z = (∂τr/∂t)

−1 = η2/(η − χ)2.

(h) Show that the information carried by the binary’s waves is the following: (i) From
the ratio of the amplitudes of the two polarizations one can read off the inclination
angle θ of the binary’s spin axis to the line of signt to the binary. (ii) From the waves’
measured angular frequency ω and its time rate of change dω/dt, one can read off
(1 + z)M, the binary’s redshifted chirp mass. (iii) From the amplitude of the waves,
with θ and (1 + z)M known, one can read off (1 + z)r, a quantity known to cosmol-
ogists as the binary’s luminosity distance. [Note: It is remarkable that gravitational
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waves by themselves reveal the source’s luminosity distance but not its redshift, while
electromagnetic observations reveal the redshift but not the luminosity distance. This
complementarity illustrates the importance and power of combined gravitational-wave
and electromagnetic observations.]

****************************

27.5.5 T2 Gravitational Waves from Binaries Made of Black Holes
and/or Neutron Stars: Numerical Relativity

Perhaps the most interesting sources of gravitational waves are binary systems made of two
black holes, a black hole and a neutron star, or two neutron stars — so-called compact bina-
ries. When the two bodies are far apart, their motion and waves can be described accurately
by Newtonian gravity and the quadrupole-moment formalism: the formulas in Sec. 27.5.4.
As the bodies spiral inward, (MΩ)2/3 =M/a = v2 grows larger, h+ and h× grow larger, and
relativistic corrections to our Newtonian, quadrupole analysis grow larger. Those relativistic
corrections (including current-quadrupole waves, mass-octupole waves, etc.) can be com-
puted using a post-Newtonian expansion of the Einstein field equations, i.e. an expansion in
M/a ∼ v2. The accuracies of ground-based detectors such as LIGO require that, for compact
binaries, the expansion be carried at least to order v7 beyond our Newtonian, quadrupole
analysis! (Blanchet 2014).

At the end of the inspiral, the binary’s bodies come crashing together. To compute the
waves from this final merger, with an accuracy comparable to the expected observations, it
is necessary to solve the Einstein field equation on a computer. The techniques for this are
called numerical relativity (Baumgarte and Shapiro 2010).

For binary black holes with approximately equal masses, simulations using numerical
relativity reveal that the total energy radiated in gravitational waves is ∆E ∼ 0.1Mc2

where M is the binary’s total mass. Most of this energy is emitted in the last ∼ 5 to
10 cycles of waves, at wave periods P ∼ (10 to 20)GM/c3 [i.e. frequencies f = 1/P ∼
1000Hz(10M⊙/M)]. The gravitational-wave power output in these last 5 to 10 cycles is
dE/dt ∼ 0.1Mc2/(100GM/c3) = 0.001c5/G, which is roughly 1024 times the luminosity of
the sun, and 10, 000 times the luminosity of all the stars in the universe put together! If
the holes have masses ∼ 10M⊙, this enormous luminosity lasts for only ∼ 0.1s and the total
energy emitted is the rest-mass energy of the sun. If the holes have masses ∼ 109M⊙, the
enormous luminosity lasts for ∼ 1 year, and the energy emitted is the rest-mass energy of
108 sun.

For the simplest case of two identical, nonspinning black holes that spiral together in a
circular orbit, both waveforms (both wave shapes) have the simple time evolution shown in
Fig. 27.6. As the holes spiral together, their amplitude and phase increase in accord with
the Newtonian-quadrupole formulas (27.70) and (27.71), but by the time of this figure, post-
Newtonian corrections are producing noticeable differences from those formulas. When the
holes merge, the gravitational-wave amplitude reaches a maximum amplitude. The merged
hole then vibrates and the waves “ring down” with exponentially decaying amplitude.
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Fig. 27.6: For a binary made of two identical, nonspinning black holes that spiral together and
merge: the time evolution of the gravitational-wave tidal field Eij ∝ ḧ+ [Eq. (27.21)] for the +
polarization. The other, × polarization waveform is the same as this, but with a phase shift. Based
on simulations performed by the Caltech/Cornell/CITA numerical relativity group (Moroué et. al.
2013).

Much more interesting are binaries made of black holes that spin. In this case, the
angular momentum of each spinning hole drags inertial frames, as does the binary’s orbital
angular momentum; this frame-dragging causes the spins and the orbital plane to precess;
and those precessions modulate the waves. Figure 27.7 depicts a generic example: a binary
whose holes have a mass ratio 6:1, dimensionless spins aA/MA = 0.91, aB/MB = 0.30,
and randomly chosen initial spin axes and orbital plane. Frame dragging causes the orbital
motion to be rather complex, and correspondingly the two waveforms are much richer than in
the nonspinning case. The waveforms carry detailed information about the binary’s masses,
spins, and orbital evolution, and also about the geometrodynamics of its merger (Box 27.4).

****************************
EXERCISES

Exercise 27.15 T2 Problem: Maximum Gravitational-Wave Amplitude
Extrapolating Eqs. (27.70)–(27.72) into the strong-gravity regime, estimate the maximum
gravitational-wave amplitude and emitted power for a nonspinning binary black hole with
equal masses, and with unequal masses. Compare with the results from numerical relativity
discussed in the text.

****************************
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Fig. 27.7: Top panel: The orbital motion of a small black hole around a larger black hole (mass
ratio MB/MA = 1/6), when the spins are aB/MB = 0.30 and aA/MA = 0.91 and the initial spin axes
and orbital plane are as shown in the bottom panel. Bottom panel: the two gravitational waveforms
emitted in the direction toward earth (blue dashed line). These waveforms are from a catalog of
simulations of 174 different binary-black-hole mergers, carried out by the Caltech/Cornell/CITA
numerical relativity group (Mroué et. al. 2013).

27.6 The Detection of Gravitational Waves

27.6.1 Frequency Bands and Detection Techniques

Physicists and astronomers are searching for gravitational waves in four different frequency
bands using four different techniques:

• In the extremely low frequency (ELF) band, ∼ 10−15 to ∼ 10−18 Hz, gravitational waves
are sought via their imprint on the polarization of the cosmic microwave background
(CMB) radiation. There is only one expected ELF source of gravitational waves, but
it is a very interesting one: quantum fluctuations in the gravitational field (spacetime
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Box 27.4

T2 Geometrodynamics

When spinning black holes collide, they excite nonlinear vibrations of curved spacetime—
a phenomenon that John Wheeler has called geometrodynamics. This nonlinear dynamics
can be visualized using tidal tendex lines (which depict the tidal field Eij) and frame-drag
vortex lines (which depict the frame-drag field Bij); see Boxes 25.2 and 26.3. Particularly
helpful are the concepts of a tendex (a collection of tendex lines with large tendicities)
and a (frame-drag) vortex (a collection of vortex lines with large vorticities). A spinning
black hole has a counterclockwise vortex emerging from its north polar region, and a
clockwise vortex emerging from its south polar region (lower right diagram in Box 26.3).

As an example of geometrodynamics, consider two identical black holes that collide
head on, with their spins transverse to the collision direction. Numerical-relativity sim-
ulations (Owen et. al. 2011) reveal that, when the holes collide and merge, each hole
deposits its two vortexes onto the merged horizon. The four vortexes dynamically at-
tach onto each other in pairs [(a) below], and the pairs then interact, with surprising
consequences:

(a)

(b) (c)

The blue (clockwise) vortex disconnects from the hole and forms a set of closed vortex
loops that wrap around a torus [thick blue lines in (c)], and the red (counterclockwise)
vortex does the same [thin red lines in (c)]. This torus expands outward at the speed of
light, while energy temporarily stored in near-horizon tendexes (not shown) regenerates
the new pair of horizon penetrating vortexes shown in (b), with reversed vorticities
(reversed directions of twist). As the torus expands outward, its motion, via the Maxwell-
like Bianchi identity ∂E/∂t = (∇× B)S (Box 25.2), generates a set of tendex lines that
wrap around the torus at 45-degree angles to the vortex lines [dashed lines in (c)]. The
torus’s interleaved vortex and tendex lines have become a gravitational wave, which
locally looks like the plane wave discussed in Box 27.3. This process repeats, with
amplitude damping, generating a sequence of expanding tori. [Figure adapted from
Owen et. al. (2011).]
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curvature) that emerge from the big bang’s quantum-gravity regime, the Planck era,
and that are subsequently amplified to classical, detectable sizes by the universe’s
early inflationary expansion. We shall study this amplification and the resulting ELF
gravitational waves in Chap. 28 and shall see these waves’ great potential for probing
the physics of inflation.

• In the very low frequency (VLF) band, ∼ 10−7 to ∼ 10−9 Hz, gravitational waves
are sought via their influence on the propagation of radio waves emitted by pulsars
(spinning neutron stars) and by the resulting fluctuations in the arrival times of the
pulsars’ radio-wave pulses at earth (Ex. 27.19). The expected VLF sources are violent
processes in the first fraction of a second of the universe’s life (Chap. 28), and the
orbital motion of extremely massive pairs of black holes in the distant universe.

• In the low frequency (LF) band, ∼ 10−4 to ∼ 0.1 Hz, gravitational waves have been
sought, in the past, via their influence on the radio signals by which NASA tracks
interplanetary spacecraft. In the 2020s or 2030s, this technique will likely be supplanted
by some variant of the proposed Laser Interferometer Space Antenna (LISA)—three
“drag-free” spacecraft in a triangular configuration with 5-kilometer-long arms, that
track each other via laser beams. LISA is likely to see waves from massive black-hole
binaries (hole masses ∼ 105 to 107M⊙) out to cosmological distances; from small holes,
neutron stars, and white dwarfs spiraling into massive black holes out to cosmological
distances; from the orbital motion of white-dwarf binaries, neutron-star binaries, and
stellar-mass black-hole binaries in our own galaxy; and possibly from violent processes
in the very early universe.

• In the high frequency (HF) band, ∼ 10 to ∼ 103 Hz, is where earth-based detectors
operate: laser interferometer gravitational-wave detectors such as LIGO, and resonant-
mass detectors in which a gravitational wave alters the amplitude and phase of vibra-
tions of a normal mode of a large, cylindrical bar. The interferometric detectors are
likely to see waves from spinning, slightly deformed neutron stars (e.g. pulsars) in our
Milky Way galaxy, and from a variety of sources in the more distant universe: the
final inspiral and collisions of binaries made from neutron stars and/or stellar-mass
black holes (up to hundreds of solar masses); the tearing apart of a neutron star by
the spacetime curvature of a companion black hole; supernovae; the triggers of gamma
ray bursts; and possibly waves from violent processes in the very early universe.

For detailed discussions of these gravitational-wave sources in all four frequency bands,
and of prospects for their detection, see e.g. Cutler and Thorne (2002), Sathyaprakash and
Schutz (2009), and references therein. It is likely that waves will be seen in all four bands by
about 2030, and the first detection is likely to occur in the HF band before 2020, using the
Advanced LIGO and possibly the Advanced Virgo gravitational-wave interferometers, with
sensitivities h+ ∼ h× ∼ 10−22 near 100 Hz.

****************************
EXERCISES
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Exercise 27.16 Example: Strongest Gravitational Waves in High-Frequency Band

(a) Using an order of magnitude analysis based on Eq. (27.59), show that the strongest
gravitational waves that are likely to occur each year in LIGO’s high-frequency band
have h+ ∼ h× ∼ 10−21 – 10−22. [Hint: The highest nonspherical kinetic energy achiev-
able must be for a highly deformed object (or two colliding objects), in which the
internal velocities approach the speed of light — say, for realism, v ∼ 0.3c. To achieve
these velocities, the object’s size L must be of order 2 or 3 Schwarzschild radii, L ∼ 5M
where M is the source’s total mass. The emitted waves must have f ∼ 0.01 Hz (the
frequency at the minimum of Advanced LIGO’s noise curve—which is similar to initial
LIGO, Fig. 6.7, but a factor ∼ 10 lower). Using these considerations, estimate the
internal angular frequency of the source’s motion, and thence the source’s mass, and
thence the source’s internal kinetic energy. Such a source will be very rare, so to see
a few per year, its distance must be some substantial fraction of the Hubble distance.
From this estimate h+ ∼ h×.]

(b) As a concrete example, estimate the gravitational-wave strength from the final mo-
ments of inspiral and merger of two black holes, as described by Eqs. (27.70) and
(27.69b) extrapolated into the highly relativistic domain.

****************************

27.6.2 Gravitational-Wave Interferometers: Overview and Elemen-
tary Treatment

We briefly discussed earth-based gravitational-wave interferometers such as LIGO in Sec. 9.5,
focusing on optical interferometry issues. In this chapter we shall analyze the interaction
of a gravitational wave with such an interferometer. This analysis will not only teach us
much about gravitational waves, but will also illustrate some central issues in the physical
interpretation of general relativity theory.

To get quickly to the essentials, we shall examine a rather idealized interferometer: A
Michelson interferometer (one without the input mirrors of Fig. 9.13) that floats freely in
space, so there is no need to hang its mirrors by wires; see Fig. 27.8. In Sec. 27.6.5, we shall
briefly discuss more realistic interferometers.

If we ignore delicate details, the operation of this idealized interferometer is very simple:
As seen in a local Lorentz frame of the beam splitter, the gravitational wave changes the
length of the x arm by δx = 1

2
h+ℓx where ℓx is the unperturbed length, and changes that

of the y arm by the opposite amount δy = −1
2
h+ℓy [Eqs. (27.28)]. The interferometer is

operated with unperturbed lengths ℓx and ℓy that are nearly but not quite equal, so there is
a small amount of light going toward the photodetector. The wave-induced change of arm
length causes a relative phase shift of the light returning down the two arms to the beam
splitter given by ∆ϕ(t) = ωo(2δy − 2δx) = ωo(ℓx + ℓy)h+(t), where ωo is the light’s angular
frequency (and we have set the speed of light to unity); cf. Sec. 9.5. This oscillating phase
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Fig. 27.8: An idealized gravitational-wave interferometer

shift modulates the intensity of the light going into the photodetector by ∆IPD(t) ∝ ∆ϕ(t).
Setting ℓx ≃ ℓy = ℓ, this modulation is

∆IPD(t) ∝ ∆ϕ(t) = 2ωoℓh+(t) . (27.76)

Therefore, the photodetector output tells us directly the gravitational waveform h+(t).
In the following two (track-2) subsections, we shall rederive this result much more care-

fully in two different coordinate systems (two different gauges). Our two analyses will predict
the same result (27.76) for the interferometer output, but they will appear to attribute that
result to two different mechanisms.

In our first analysis (performed in TT gauge; Sec. 27.6.3), the interferometer’s test masses
will remain always at rest in our chosen coordinate system, and the gravitational waves
h+(t − z) will interact with the interferometer’s light. The imprint that h+(t − z) leaves
on the light will cause a fluctuating light intensity Iout(t) ∝ h+(t) to emerge from the
interferometer’s output port and be measured by the photodetector.

In our second analysis (a more rigorous version of the above quick analysis, performed in
the proper reference frame of the interferometer’s beam splitter; Sec. 27.6.4) the gravitational
waves will interact hardly at all with the light. Instead, they will push the end mirrors back
and forth relative to the coordinate system, thereby lengthening one arm while shortening the
other. These changing arm lengths will cause a changing interference of the light returning
to the beam splitter from the two arms, and that changing interference will produce the
fluctuating light intensity Iout(t) ∝ h+(t) measured by the photodetectors.

These differences of viewpoint are somewhat like the differences between the Heisen-
berg Picture and the Schrödinger Picture in quantum mechanics. The intuitive pictures
associated with two viewpoints appear to be very different (Schrödinger’s wave function
vs. Heisenberg’s matrices; gravitational waves interacting with light vs. gravitational waves
pushing on mirrors). But whenever one computes the same physical observable from the
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two different viewpoints (probability for a quantum measurement outcome; light intensity
measured by photodetector), the two viewpoints give the same answer.

27.6.3 T2 Interferometer analyzed in TT gauge

For our first analysis, we place the interferometer at rest in the x-y plane of a TT coordinate
system, with its arms along the x and y axes and its beam splitter at the origin as shown in
Fig. 27.8 above. For simplicity, we assume that the gravitational wave propagates in the z
direction and has + polarization, so the linearized spacetime metric has the TT-gauge form

ds2 = −dt2 + [1 + h+(t− z)]dx2 + [1− h+(t− z)]dy2 + dz2 (27.77)

[Eq. (27.19)]. For ease of notation, we shall omit the subscript + from h+ in the remainder
of this section.

The beam splitter and end mirrors move freely and thus travel along geodesics of the
metric (27.77). The splitter and mirrors are at rest in the TT coordinate system before the
wave arrives, so initially the spatial components of their 4-velocities vanish, uj = 0. Because
the metric coefficients gαβ are all independent of x and y, the geodesic equation dictates that
the components ux and uy are conserved and thus remain zero as the wave passes, which
implies (since the metric is diagonal) ux = dx/dτ = 0 and uy = dy/dτ = 0. One can also
show (see Ex. 27.17) that uz = dz/dτ = 0 throughout the wave’s passage. Thus, in terms of
motion relative to the TT coordinate system, the gravitational wave has no influence at all
on the beam splitter and mirrors; they all remain at rest (constant x, y and z) as the waves
pass.

(Despite this lack of motion, the proper distances between the mirrors and the beam
splitter—the interferometer’s physically measured arm lengths—do change. If the unchang-
ing coordinate lengths of the two arms are ∆x = ℓx and ∆y = ℓy, then the metric (27.77)
says that the physically measured arm lengths are

Lx =

[

1 +
1

2
h(t)

]

ℓx , Ly =

[

1− 1

2
h(t)

]

ℓy . (27.78)

When h is positive, the x arm is lengthened and the y arm is shortened; when negative, Lx
is shortened and Ly is lengthened.)

Turn, next, to the propagation of light in the interferometer. We assume, for simplicity,
that the light beams have large enough transverse sizes that we can idealize them, on their
optic axes, as plane electromagnetic waves. (In reality, they will be Gaussian beams, of the
sort studied in Sec. 8.5.5). The light’s vector potential Aα satisfies the curved-spacetime
vacuum wave equation Aα;µµ = 0 [Eq. (25.60) with vanishing Ricci tensor]. We write the
vector potential in geometric optics (eikonal-approximation) form as

Aα = ℜ(Aαeiϕ) , (27.79)

where A
α is a slowly varying amplitude and ϕ is a rapidly varying phase; cf. Eq. (7.20).

Because the wavefronts are (nearly) planar and the spacetime metric is nearly flat, the light’s
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amplitude Aα will be very nearly constant as it propagates down the arms, and we can ignore
its variations. Not so the phase. It oscillates at the laser frequency ωo/2π ∼ 3 × 1014 Hz;
i.e., ϕout

x arm ≃ ωo(x − t) for light propagating outward from the beam splitter along the x
arm, and similarly for the returning light and the light in the y arm. The gravitational wave
places onto the phase tiny deviations from this ωo(x− t); we must compute those deviations.

In the spirit of geometric optics, we introduce the light’s spacetime wave vector

~k ≡ ~∇ϕ , (27.80)

and we assume that ~k varies extremely slowly compared to the variations of ϕ. Then the
wave equation Aα;µµ = 0 reduces to the statement that the wave vector is null, ~k · ~k =
ϕ,αϕ,βg

αβ = 0. For light in the x arm the phase depends only on x and t; for that in the
y arm it depends only on y and t. Combining this with the TT metric (27.77) and noting
that the interferometer lies in the z = 0 plane, we obtain

−
(

∂ϕx arm

∂t

)2

+ [1− h(t)]

(

∂ϕx arm

∂x

)2

= 0 ,

−
(

∂ϕy arm

∂t

)2

+ [1 + h(t)]

(

∂ϕy arm

∂y

)2

= 0 . (27.81)

We idealize the laser as perfectly monochromatic and we place it at rest in our TT
coordinates, arbitrarily close to the beam splitter. Then the outgoing light frequency, as
measured by the beam splitter, must be precisely ωo and cannot vary with time. Since proper
time, as measured by the beam splitter, is equal to coordinate time t [cf. the metric (27.77))],
the frequency that the laser and beam splitter measure must be ω = −∂ϕ/∂t = −kt. This
dictates the following boundary conditions (initial conditions) on the phase of the light that
travels outward from the beam splitter:

∂ϕout
x arm

∂t
= −ωo at x = 0 ,

∂ϕout
y arm

∂t
= −ωo at y = 0 . (27.82)

It is straightforward to verify that the solutions to Eq. (27.81) [and thence to the wave
equation and thence to Maxwell’s equations] that satisfy the boundary conditions (27.82)
are

ϕout
x arm = −ωo

[

t− x+
1

2
H(t− x)− 1

2
H(t)

]

,

ϕout
y arm = −ωo

[

t− y − 1

2
H(t− y) +

1

2
H(t)

]

, (27.83)

where H(t) is the first time integral of the gravitational waveform,

H(t) ≡
∫ t

0

h(t′)dt′ ; (27.84)

cf. Ex. 27.18.
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The outgoing light reflects off the mirrors, which are at rest in the TT coordinates at
locations x = ℓx and y = ℓy. As measured by observers at rest in these coordinates, there
is no doppler shift of the light because the mirrors are not moving. Correspondingly, the
phases of the reflected light, returning back along the two arms, have the following forms:

ϕback
x arm = −ωo

[

t + x− 2ℓx +
1

2
H(t+ x− 2ℓx)−

1

2
H(t)

]

,

ϕback
y arm = −ωo

[

t + y − 2ℓy −
1

2
H(t+ y − 2ℓy) +

1

2
H(t)

]

. (27.85)

The difference of the phases of the returning light, at the beam splitter (x = y = 0), is

∆ϕ ≡ ϕback
x arm − ϕback

y arm = −ωo[−2(ℓx − ℓy) +
1

2
H(t− 2ℓx) +

1

2
H(t− 2ℓy)−H(t)]

≃ +2ωo[ℓx − ℓy + ℓh(t)] for earth-based interferometers. (27.86)

In the second line we have used the fact that for earth-based interferometers operating in
the high-frequency band, the gravitational wavelength λGW ∼ c/(100Hz) ∼ 3000 km is long
compared to the interferometers’ ∼ 4 km arms, and the arms have nearly the same length,
ℓy ≃ ℓx ≡ ℓ.

The beam splitter sends a light field ∝ eiϕ
back
x arm + eiϕ

back
y arm back toward the laser, and a

field ∝ eiϕ
back
x arm − eiϕ

back
y arm = eiϕ

back
y arm(ei∆ϕ − 1) toward the photodetector. The intensity of

the light entering the photodetector is proportional to the squared amplitude of the field,
IPD ∝ |ei∆ϕ − 1|2. We adjust the interferometer’s arm lengths so their difference ℓx − ℓy is
small compared to the light’s reduced wavelength 1/ωo = c/ωo but large compared to |ℓh(t)|.
Correspondingly, |∆ϕ| ≪ 1, so only a tiny fraction of the light goes toward the photodetector
(it is the interferometer’s “dark port”), and that dark-port light intensity is

IPD ∝ |ei∆ϕ − 1|2 ≃ |∆ϕ|2 ≃ 4ω2
o(ℓx − ℓy)

2 + 8ω2
o(ℓx − ℓy)ℓh+(t) . (27.87)

Here we have restored the subscript + onto h. The time varying part of this intensity is
proportional to the gravitational waveform h+(t) [in agreement with Eq. (27.76)], and it is
this time varying part that the photodetector reports as the interferometer output.

****************************
EXERCISES

Exercise 27.17 T2 Derivation and Practice: Geodesic motion in TT coordinates
Consider a particle that is at rest in the TT coordinate system of the gravitational-wave
metric (27.77) before the gravitational wave arrives. In the text it is shown that the parti-
cle’s 4-velocity has ux = uy = 0 as the wave passes. Show that uz = 0 and ut = 1 as the wave
passes, so the components of the particle’s 4-velocity are unaffected by the passing gravita-
tional wave, and the particle remains at rest (constant x, y, and z) in the TT coordinate
system.
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Exercise 27.18 T2 Example: Light in an interferometric gravitational-wave detector in
TT gauge
Consider the light propagating outward from the beam splitter, along the x arm of an interfer-
ometric gravitational-wave detector, as analyzed in TT gauge, so (suppressing the subscript
“x arm” and superscript “out”) the electromagnetic vector potential is Aα = ℜ(Aαeiϕ(x,t))
with A

α constant and with ϕ = −ωo
[

t− x+ 1
2
H(t− x)− 1

2
H(t)

]

[Eqs. (27.83) and (27.84).]

(a) Show that this ϕ satisfies the nullness equation (27.81), as claimed in the text — which
implies that Aα = ℜ(Aαeiϕ(x,t)) satisfies Maxwell’s equations in the geometric optics
limit.

(b) Show that this ϕ satisfies the initial condition (27.82), as claimed in the text.

(c) Show that, because the gradient ~k = ~∇ϕ of this ϕ satisfies ~k · ~k = 0, it also satisfies
∇~k
~k = 0. Thus, the wave vector is the tangent vector to geometric optics rays that

are null geodesics in the gravitational-wave metric. Photons travel along these null
geodesics and have 4-momenta ~p = ~~k.

(d) Because the gravitational-wave metric (27.77) is independent of x, the px component
of a photon’s 4-momentum must be conserved along its geodesic world line. Compute
px = kx = ∂ϕ/∂x, and thereby verify this conservation law.

(e) Explain why the photon’s frequency, as measured by observers at rest in our TT
coordinate system, is ω = −kt = −∂ϕ/∂t. Explain why the rate of change of this
frequency, as computed moving with the photon, is dω/dt ≃ (∂/∂t + ∂/∂x)ω, and
show that dω/dt ≃ −1

2
ωodh/dt.

Exercise 27.19 T2 Example: Pulsar Timing Array

An international collaboration of radio astronomers (IPTA 2013) is searching for gravita-
tional waves by measuring the pulse arrival times for an array of pulsars spread over the
sky—a Pulsar Timing Array, or PTA. Compute the influence of a planar gravitational wave
on the arrival times, and discuss how the wave’s direction and polarization can be read off
the arrival-time data. More specifically:

(a) Introduce TT coordinates in which a pulsar is at rest at the origin and the earth
also is at rest (for simplicity), at spatial location x = αL, y = βL, z = γL, with
α2 + β2 + γ2 = 1. The linearized spacetime metric of the gravitational wave is Eq.
(27.77), where for ease of notation we shall drop the + from h+. Note from the
metric that proper time, as measured by the pulsar and also on the earth, is equal to
coordinate time t. Radio waves are emitted toward earth by the pulsar at its proper
times tem = 0, τ, 2τ, ... — i.e., with precisely constant interpulse spacings τ . Show
that, to first order in h, the proper time trec that a pulse is received at earth differs
from the proper time tem it is emitted at the pulsar by

trec − tem = L+
α2 − β2

2

∫ L

0

h(tem + [1− γ]r)dr . (27.88)
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Here the integral is with respect to distance r traveled by the pulse, from pulsar to
earth.

[Hint: One way to derive this result is from the action 1
2

∫

gαβ(dx
α/dζ)(dxβ/dζ)dζ that

underlies the rays’ super-Hamiltonian; Ex. 25.7. The numerical value of the action is
zero, and since it is an extremum along each true ray, if you evaluate it along a path
that is a straight line in the TT coordinate system instead of along the true ray, you
will still get zero at first order in h.]

(b) The arrival times of pulses at earth fluctuate, relative to their steady emission times,
by some fractional amount t′rec ≡ dtrec/dtem − 1 Show that

t′rec =
(α2 − β2)(1 + γ)

α2 + β2
[h(trec − γL)− h(tem)] . (27.89)

Note that the first h is evaluated at the earth at the time of reception, and the second
is evaluated at the pulsar at the time of emission. Thus, the fractional fluctuation of
arrival times is proportional to the gravitational-wave field at reception minus that at
emission, with a weighting factor that depends on the direction n = −αex−βey− γez
from the earth to the pulsar.

(c) The gravitational waves bathing the earth will produce correlated signals in the arrival-
time fluctuations for the many pulsars in the PTA, while those bathing the pulsars at
emission will not produce correlations, from pulsar to pulsar. Recognizing this, explain
how the PTA data can be analyzed to extract the direction to and polarization of the
gravitational waves from, say, a supermassive black-hole binary in some distant galaxy.

****************************

27.6.4 T2 Interferometer analyzed in the proper reference frame

of the beam splitter

We now shall carefully reanalyze our idealized interferometer in the proper reference frame
of its beam splitter, denoting that frame’s coordinates by x̂α. Because the beam splitter
is freely falling (moving along a geodesic through the gravitational-wave spacetime), its
proper reference frame is locally Lorentz (“LL”), and its metric coefficients have the form
gα̂β̂ = ηαβ + O(δjkx̂

j x̂k/R2) [Eq. (25.9a)]. Here R is the radius of curvature of spacetime,

and 1/R2 is of order the components of the Riemann tensor, which have magnitude ḧ(t̂− ẑ)
[Eq. (27.21) with t and z equal to t̂ and ẑ aside from fractional corrections of order h]. Thus,

gα̂β̂ = ηαβ +O[ḧ(t̂− ẑ)δjkx̂
j x̂k] . (27.90)

(Here and below we again omit the subscript + on h for ease of notation.)
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The following coordinate transformation takes us from the TT coordinates xα used in
the previous section to the beam splitter’s LL coordinates:

x =

[

1− 1

2
h(t̂− ẑ)

]

x̂ , y =

[

1 +
1

2
h(t̂− ẑ)

]

ŷ ,

t = t̂− 1

4
ḣ(t̂− ẑ)(x̂2 − ŷ2) , z = ẑ − 1

4
ḣ(t̂− ẑ)(x̂2 − ŷ2) . (27.91)

It is straightforward to insert this coordinate transformation into the TT-gauge metric
(27.77) and thereby obtain, to linear order in h,

ds2 = −dt̂2 + dx̂2 + dŷ2 + dẑ2 +
1

2
(x̂2 − ŷ2)ḧ(t− z)(dt̂− dẑ)2 . (27.92)

This has the expected LL form (27.90) and, remarkably, it turns out not only to be a solution
of the vacuum Einstein equations in linearized theory but also an exact solution to the full
vacuum Einstein equations (cf. Ex. 35.8 of MTW)!

Throughout our idealized interferometer, the magnitude of the metric perturbation in
these LL coordinates is |hα̂β̂| . (ℓ/λ̄GW)2h, where λ̄GW = λGW/2π is the waves’ reduced
wavelength and h is the magnitude of h(t̂− ẑ). For earth-based interferometers operating in
the HF band (∼ 10 to ∼ 1000 Hz), λ̄GW is of order 50 to 5000 km, and the arm lengths are
ℓ ≤ 4 km, so (L/λ̄)2 . 10−2 to 10−6. Thus, the metric coefficients hα̂β̂ are no larger than
h/100. This has a valuable consequence for the analysis of the interferometer: Up to frac-
tional accuracy ∼ (ℓ/λ̄GW)2h . h/100, the LL coordinates are globally Lorentz throughout
the interferometer; i.e., t̂ measures proper time, and x̂j are Cartesian and measure proper
distance. In the rest of this section, we shall restrict attention to such earth-based interfer-
ometers, but shall continue to treat them as though they were freely falling. (See Sec. 27.6.5
for the influence of the earth’s gravity.)

The beam splitter, being initially at rest at the origin of these LL coordinates, remains
always at rest, but the mirrors move. Not surprisingly, the geodesic equation for the mirrors
in the metric (27.92) dictates that their coordinate positions are, up to fractional errors of
order (ℓ/λ̄GW)2h,

x̂ = Lx =

[

1 +
1

2
h(t̂)

]

ℓx , ŷ = ẑ = 0 for mirror in x arm,

ŷ = Ly =

[

[1− 1

2
h(t̂)

]

ℓy , x̂ = ẑ = 0 for mirror in y arm. (27.93)

(This can also be deduced from the gravitational-wave tidal acceleration −Eĵk̂x̂k , as in Eq.
(27.24), and from the fact that to good accuracy x̂ and ŷ measure proper distance from the
beam splitter.) Thus, although the mirrors do not move in TT coordinates, they do move
in LL coordinates. The two coordinate systems predict the same time-varying physical arm
lengths (the same proper distances from beam splitter to mirrors), Lx and Ly [Eqs. (27.78)
and (27.93)].

As in TT coordinates, so also in LL coordinates, we can analyze the light propagation
in the geometric optics approximation, with Aα̂ = ℜ(Aα̂eiϕ). Just as the wave equation
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for the vector potential dictates, in TT coordinates, that the rapidly varying phase of the
outward light in the x arm has the form ϕout

x arm = −ωo(t− x) + O(ωoℓhµν) [Eq. (27.83) with
x ∼ ℓ ≪ λ̄GW so H(t − x) − H(t) ≃ Ḣ(t)x = h(t)x ∼ hL ∼ hµνL], so similarly the wave
equation in LL coordinates turns out to dictate that

ϕout
x arm = −ωo(t̂− x̂) + O(ωoℓhµ̂ν̂) = −ωo(t̂− x̂) + O

(

ωoℓh
ℓ2

λ̄2GW

)

, (27.94)

and similarly for the returning light and the light in the y arm. The term O(ωoℓh ℓ
2/λ̄2GW)

is the influence of the direct interaction between the gravitational wave and the light. Aside
from this term, the analysis of the interferometer proceeds in exactly the same way as in
flat space (because t̂ measures proper time and x̂ and ŷ proper distance): The light travels
a round trip distance Lx in one arm and Ly in the other, and therefore acquires a phase
difference, upon arriving back at the beam splitter, given by

∆ϕ = −ωo[−2(Lx − Ly)] + O

(

ωoℓh
ℓ2

λ̄2GW

)

≃ +2ωo[ℓx − ℓy + ℓh(t̂)] + O

(

ωoℓh
ℓ2

λ̄2GW

)

. (27.95)

This net phase difference for the light returning from the two arms is the same as we
deduced in TT coordinates [Eq. (27.86)], up to the negligible correction O(ωoℓh ℓ

2/λ̄2GW),
and therefore the time-varying intensity of the light into the photodetector will be the same
[Eq. (27.87)].

In our TT analysis the phase shift 2ωoℓh(t) arose from the interaction of the light with
the gravitational waves. In the LL analysis, it is due to the displacements of the mirrors in
the LL coordinates (i.e., the displacements as measured in terms of proper distance), which
cause the light to travel different distances in the two arms. The direct LL interaction of the
waves with the light produces only the tiny correction O(ωoℓh ℓ

2/λ̄2GW) to the phase shift.
It should be evident that the LL description is much closer to elementary physics than

the TT description. This is always the case, when one’s apparatus is sufficiently small that
one can regard t̂ as measuring proper time and x̂j as Cartesian coordinates that measure
proper distance throughout the apparatus. But for a large apparatus (e.g. planned space-
based interferometers such as LISA, with arm lengths ℓ & λ̄GW) the LL analysis becomes
quite complicated, as one must pay close attention to the O(ωoℓh ℓ

2/λ̄2GW) corrections. In
such a case, the TT analysis is much simpler.

27.6.5 T2 Realistic Interferometers

For realistic, earth-based interferometers, one must take account of the acceleration of grav-
ity. Experimenters do this by hanging their beam splitters and test masses on wires or fibers.
The simplest way to analyze such an interferometer is in the proper reference frame of the
beam splitter, where the metric must now include the influence of the acceleration of gravity
by adding a term −2gẑ to the metric coefficient h0̂0̂ [cf. Eq. (24.60b)]. The resulting analysis,
like that in the LL frame of our freely falling interferometer, will be identical to what one
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would do in an accelerated reference frame of flat spacetime, so long as one takes account
of the motion of the test masses driven by the gravitational-wave tidal acceleration −Eîĵ x̂j ,
and so long as one is willing to ignore the tiny effects of O(ωoℓh ℓ

2/λ̄2GW).
To make the realistic interferometer achieve high sensitivity, the experimenters introduce

a lot of clever complications, such as the input mirrors of Fig. 9.13 which turn the arms into
Fabry-Perot cavities. All these complications can be analyzed, in the beam splitter’s proper
reference frame, using standard flat-spacetime techniques augmented by the gravitational-
wave tidal acceleration. The direct coupling of the light to the gravitational waves can be
neglected, as in our idealized interferometer.

Bibliographic Note

For an elementary introduction to experimental tests of general relativity in the solar system,
we recommend Chap. 10 of Hartle (2003). For an enjoyable, popular-level book on exper-
imental tests, see Will (1993a). For a very complete monograph on the theory underlying
experimental tests, see Will (1993b), and for a more nearly up to date review of experimental
tests, see Will (2006).

For elementary and fairly complete introductions to gravitational waves, we recommend
Chaps. 16 and 23 of Hartle (2003) and Chap. 9 of Schutz (2009). For more advanced treat-
ments, we suggest Thorne (1983), Secs. 5.3–5.7 of Straumann (2013), and MTW Sec. 18.2
and Chaps. 35 and 36; but MTW Chap. 37 on gravitational-wave detection is terribly out
of date and not recommended. For fairly complete reviews of gravitational-wave sources for
ground-based detectors (LIGO etc.) and space-based detectors (LISA etc.), see Cutler and
Thorne (2002) and Sathyaprakash and Schutz (2009). For a lovely monograph on the physics
of interferometric gravitational-wave detectors, see Saulson (1994).

Because gravitational-wave science is a rapidly maturing and burgeoning field, there are
long, in-depth treatments that include considerable experimental detail and much detail on
data analysis techniques, as well as on wave sources and the fundamental theory: Maggiore
(2008), Creighton and Anderson (2011), and Thorne, Bondarescu and chen (2002).
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Box 27.5

Important Concepts in Chapter 27

• Experimental Tests of general relativity, Sec. 27.2
– Weak equivalence principle (universality of free fall), Sec. 27.2.1

– Gravitational redshift, Sec. 27.2.1

– Perihelion shift, Sec.27.2.2 and Ex. 27.2

– Fermat’s principle, gravitational lenses, and deflection of light, Sec. 27.2.3 and
Ex. 27.3

– Shapiro time delay, Sec. 27.2.4

– Frame dragging, Sec. 27.2.5

• Gravitational waves in flat spacetime, Sec. 27.3
– Gravitational wave fields Eij , hTT

ij , h+, h× and their polarization tensors e+,
e
×, Sec. 27.3.1

– Computing hTT
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• Gravitational-wave detection, Sec. 27.6
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– How to analyze an interferometer in TT gauge (Sec. 27.6.3) and in the proper
reference frame of the beam splitter (Sec. 27.6.4)
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