
Physics 127a: Statistical Mechanics

Diamagnetism of the Electron Gas

The Hamiltonian coupling the electron current to the magnetic fieldEB is

H =
∑
i
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2m
[ Epi + e

c
EA(Exi)]2 (1)

summing over the electronsi with position Exi and momentumEpi . (I will consider “spinless Fermions” so that I
can ignore the paramagnetic terms.) For a uniform fieldEB = Bẑ it is convenient to choose the vector potential
EA = (−By,0,0).
In the grand canonical approach we sum over single particle energy levels, so we first want to understand the one-
particle Hamiltonian:
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]
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Incidentally, from this Hamiltonian we can immediately see that the canonical partition function for the classical gas is
independent of the magnetic field, sinceB is eliminated by shifting thepx integration variable tōpx = px− (eB/c)y.
This is known as van Leeuwen’s theorem.

The one particle eigenstates are given by solvingHψ = εψ . Since the Hamiltonian is independent of thex, z
coordinates the eigenfunctions are plane waves in this direction, and we can write the wave function as

ψ = ei(kxx+kzz)f (y) (3)

wheref (y) must satisfy the one-dimensional Schrodinger equation (by substitution)[
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]
f (y) = ε′f (y) (4)

with h̄ω0 = eh̄B/mc = 2µBB the cyclotron frequency andµB = eh̄/2mc the Bohr magneton, andy0 a constant
determined by the value of thex-momentum,y0 = (h̄c/eB)kx . The one particle energy is

ε = ε′ + h̄
2k2
z

2m
. (5)

Equation (4) is Schrodinger’s equation for a simple harmonic oscillator, so we can immediately find the energies

ε′ = (j + 1

2
)h̄ω0 with j a positive integer. (6)

The eigenfunctionsf (y) are Hermite polynomials iny − y0, which are Gaussians multiplied by a polynomial. Thus
the wave functions are localized aroundy0. The energy levels of the full problem depend onkz andj

ε(j, kz) = (j + 1

2
)h̄ω0+ h̄

2k2
z

2m
. (7)

The discrete energy levels for the motion transverse to the field are known as Landau levels.

Since the energies are independent ofkx , the levels are degenerate, and to do the counting we need to find the
degeneracy factor. As usual we imagine the system in a finite box with periodic boundary conditions over distances
L. The allowed values ofkx are thenl(2π/L) with l integral. Sincekx determines the center of they-wavefunctions
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y0, and increasingy0 byLwill, by the periodic boundary conditions, simply duplicate an already-counted eigenstate,
the finite size in they direction yields constraints onl

0< l <
eB

hc
L2. (8)

The energy is independent ofkx and this gives the degeneracy factorg = (eB/hc)L2. This counting of the degeneracy
is a little suspect: what happens, for example, ifL is not a multiple ofhc/eB? More sophisticated arguments give
the same result for the largeL we are interested in, however.

The solution to the quantum problem seems rather strange, since classically we expect the electrons to be in circular
orbits, i.e. oscillating in both thex andy directions. The harmonic oscillator frequencyω0 doescorrespond to the
classical rotation frequency, so this is comforting. The strangeness of the quantum results can partially be understood
from the degeneracy: we are free to take any orthonormal set given by linear combinations of the degenerate states,
and we have chosen a combination that is convenient for counting the states, if not very intuitive

We can now calculate the grand canonical potential by summing over the single particle states in the usual way
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with z = eβµ the fugacity. For smallB the sum can be evaluated using the Euler summation formula (e.g. see
Handbook of Mathematical Functionby Abramowitz and Stegun, §23.1.32, p806 in my edition)
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where the· · · will involve higher derivative off which in our case will bring down extra factors ofeh̄B/mc. This
gives (also collecting constants and introducing the Bohr magnetonµB = eh̄/2mc)

− �

kT
' V eB

h2c

{∫ ∞
−∞

dpz

∫ ∞
0
dx ln

{
1+ z exp

[
−β

(
2µBBx + p2

z

2m

)]}
− 1

12
βµBB

∫ ∞
−∞

dpz
1

eβ(p
2
z /2m−µ) + 1

}
(11)

Remarkably, the first term in Eq. (11), which is the classical result, is independent ofB, e, c, as can be seen by
introducing the integration variabley = 2µBBx, and is an obscure way of writing the expression for the grand
potential of a Fermi gas in zero field. The second term gives aB2 contribution from which we can calculate the
susceptibility
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For high temperatures
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The integral is just
√

2πmkBT and using the classical-gas expression forµ gives (withn = N/V )

χ →− nµ
2
B

3kBT
. (14)

At low temperatures the Fermi function is unity for−pF < pz < pF and zero otherwise, so that

χ →−1
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Notice χ is negative, corresponding to diamagnetism (known as Landau diamagnetism). For both high and low
temperatures,χ is of comparable size, but of opposite sign, to the Pauli paramagnetic susceptibility coming from the
coupling of the field to the spins. Both susceptibilities are proportional toh̄2, and so disappear in the classical limit,
in agreement with the van Leeuwen’s theorem.
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