
Physics 127a: Class Notes

Lecture 13: Ideal Quantum Gases

Quantum States

Consider an ideal gas in a box of sidesL with periodic boundary conditions

ψ(x + L, y, z) = ψ(x, y, z) etc. (1)

For a single particle the wavefunction of the energy eigenstate satisfies

− h̄
2

2m
∇2ψ = εψ (2)

and the eigenstates are plane waves

φk(x) = 1√
V
eik·x (3)

with V = L3. The eigenstates are labelled by a wave vectork which to satisfy the periodic boundary
conditions must be of the form

k = 2π

L
(l,m, n) l,m, n integers (positive, negative or zero). (4)

The energy eigenvalues are

εk = h̄2k2

2m
. (5)

ForN particles we must construct the many particle wavefunctionψ(x1, x2, . . . xN) satisfying

− h̄
2

2m

N∑
i=1

∇2
i 9 = E9, (6)

the periodic boundary conditions, and in addition symmetry restrictions under the interchange of any two
particles in the wavefunction

Bosons: (integer spin particles)

9(x1, x2, . . . xa, . . . xb, . . . xN) = 9(x1, x2, . . . xb, . . . xa, . . . xN) (7)

Fermions: (half integral spin particles)

9(x1, x2, . . . xa, . . . xb, . . . xN) = −9(x1, x2, . . . xb, . . . xa, . . . xN). (8)

Without the symmetry restriction the eigenstates would be the products of the single particle eigenstates

8(x1, x2, . . . xN) = φk1(x1)φk2(x2) . . . φkN (xN) (9)

with kα any choice of the single particle wave vectors (not necessarily all different). The symmetry require-
ments are given by taken appropriate linear combinations of the product wavefunctions with the particles
permuted amongst the different single particle states (these necessarily all are degenerate, so that the linear
combination is also an eigenstate):
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Bosons:
8(x1, x2, . . . xN) = CB

∑
P

P [φk1(x1)φk2(x2) . . . φkN (xN)] (10)

whereP permutes the particle coordinates, the sum runs over all permutations andCB is a normalization
constant that we will not need to calculate. For example for two particles and single particle statesk
andk ′ with k 6= k ′

8(x1, x2) = 1√
2

[φk(x1)φk ′(x2)+ φk(x2)φk ′(x1)] . (11)

Fermions: It is easiest to use theSlater determinantnotation

8(x1, x2, . . . xN) = CF

∣∣∣∣∣∣∣∣∣
φk1(x1) φk1(x2) · · · φk1(xN)
φk2(x1) φk2(x2) · · · φk2(xN)
...

...
. . .

...

φkN (x1) φkN (xN) · · · φkN (xN)

∣∣∣∣∣∣∣∣∣ (12)

withCF another normalization constant. Note, for Fermions, all theφkαmust be different for a nonzero
result—thePauli exclusion principle.

An important consequence of the (anti)symmetrization is that the quantum state is completely specified
by how many times eachφk appears in the wave function. We call this theoccupation numberof the state
φk and denote it bynk . We do not have to say which particle is associated with each single particle state as
we would for distinguishable particles. The set{nk} completely defines the quantum state

|8〉 ⇔ {nk} (13)

and to count the states we only need to count the number of different{nk} = {nk}. For example, for 3 Bosons
in 2 single particle states we would have justfour states|3,0〉 , |2,1〉 , |1,2〉 , |0,3〉 (where|n1, n2〉 is the
state with single particle state 1 occurringn1 times and single particle state 2 occurringn2 times).

Distribution of particles amongst degenerate levels

To illustrate the different counting of states for particles of different statistics we consider the problem of a set
of single particle energy levelsεi with degeneracygi—there aregi single particle eigenstates at the energy
εi . We want to calculate the number of many-particle states ofN such particles, whereNi particles are in
each single particle levelεi (so that the energy of the state is

∑
i Niεi). We call this the statistical weight

W {Ni}. You can probably see where this would come up in calculating the canonical partition function for
example, although in practice, it is often best to do the counting for each case needed by hand, rather than
using the formulas derived below.

Bosons Each single particle state may contain 0,1,…Ni particles, and we havegi “boxes” to place a total
ofNi particles. The counting is easily done by representing a particular state

∣∣n1, n2 . . . ngi
〉
by the schematic

form • • | | • | • •| · · · , where each| denotes the wall to a new box and each• denotes a particle (so this state
would be|2,0,1,2 . . .〉) The number of different states is then given by the number of ways we can arrange
Ni + gi − 1 particles and walls along the line, so that

W {Ni} =
∏
i

(Ni + gi − 1)!

Ni !(gi − 1)!
. (14)
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Fermions Each single particle state may only contain 0 or 1 particles, so we just have to pickNi out of the
gi states which will contain a particle

W {Ni} =
∏
i

gi !

Ni !(gi −Ni)! . (15)

Obviouslygi ≥ Ni for all i for the state to exist.

Boltzmann Statistics It is interesting to consider a fictitious system of distinguishable identical particles,
and then reduce the statistical weight by the Gibbs factorN !. For distinguishable particles we first have
to pick out which particles to put into each set of degenerate levels (N !/

∏
i Ni ! ways of choosing). Then

for each particle in theith set of levels we need to pick out which level to put it in (gNi ways of choosing).
Reducing the product byN ! gives

W {Ni} =
∏
i

g
Ni
i

Ni !
. (16)

Note that this expression is thelarge degeneracylimit gi � Ni,1 of either the Boson or Fermions expressions.

Partition functions

Bose and Fermi gases Consider first the canonical partition function for an ideal Bose or Fermi gas. Since
the occupation numbers{np} uniquely defines the quantum state

QN =
∑
{np}

′
e−β

∑
p εpnp (17)

where the sum is constrained (denoted by the prime) so that
∑

p np = N and for Fermions eachnp can only
be 0 or 1. (For particles with spin, the labelp really stands forp, σ with σ the spin state.) The first constraint
is hard to calculate with. Instead we look at the grand canonical partition function

Q(T , µ, V ) =
∞∑
N=0

∑
{np}

′
e−β

∑
p(εp−µ)np . (18)

The sum over allN effectively removes the constraint, so that

Q =
∑
{np}

e−β
∑

p(εp−µ)np (19)

with now the sum constrained only by statistics. The sum can now be written as a product over all momentum
states

Q =
∏

p

Qp (20)

with Qp the grand canonical potential for the single particle statep

Qp =
∑
np

e−β(εp−µ)np . (21)

For the grand potential� = −kT lnQ this gives

� =
∑

p

�p with �p = −kT lnQp. (22)
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For Fermions the sum overnp is just two terms, and for Bosons the sum is a geometric series. The results
are

� = ∓kT
∑

p

ln
(
1± e−β(εp−µ)) (23)

with the top sign for Fermions and the bottom sign for Bosons.
Usually we are dealing with a large system, and know the number of particles rather than the chemical

potential. We can evaluateµ(N, T , V ) fromµ = −(∂�/∂N)T,V . This givesN =∑p

〈
np
〉
with the average

occupation number of the statep given by 〈
np
〉 = 1

eβ(εp−µ) ± 1
(24)

(with the same sign convention).

“Boltzmann statistics” For the fictitious particles where we count the states as if the particles are distin-
guishable, and then divide by the GibbsN ! factor the statistical weight of the set of occupation numbers{np}
is
∏

p(np!)−1 (the number of ways of choosing whichnp particles to put into each single particle statep, and
then divide byN !). So

Q(T , µ, V ) =
∞∑
N=0

∑
{np}

′∏
p

(
1

np!
e−β(εp−µ)np

)
. (25)

Using the same tricks as in the Bose and Fermi cases this can be rewritten as

Q =
∏

p

∑
np

1

np!
e−β(εp−µ)np

 (26)

=
∏

p

∑
np

1

np!

(
e−β(εp−µ)

)np

 (27)

∏
p

exp
(
e−β(εp−µ)) . (28)

The grand potential is then
� = −kT

∑
p

e−β(εp−µ). (29)

Alternatively we can write Eq. (25) using the multinomial (cf. binomial) expansion

Q(T , µ, V ) =
∞∑
N=0

1

N !

(∑
p

eβ(εp−µ)
)

(30)

=
∞∑
N=0

eβµNQN with QN = QN
1

N !
and Q1 =

∑
p

e−βεp (31)

giving the expression in terms of the canonical partition function of the “classical gas” we found earlier.
Note that the results can all be combined into

� = −kT 1

a

∑
p

ln
(
1+ ae−β(εp−µ)) (32)

N =
∑

p

1

eβ(εp−µ) + a (33)

with a = −1 for Bosons,a = +1 for Fermions, anda→ 0 for Boltzmann statistics.
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Momentum Sums

For a gas in 3d in a box of sidesL the allowed momenta arep = h̄k with k =2π
L
(l,m, n) andl, m, n are any

integers. For largeN,L we canusuallyreplace the discrete sum over momentap by an integral∑
p

→ V

(2πh̄)3
∑
σ

∫ ∫ ∫
dpxdpydpz, (34)

with the spin sum remaining. If we are summing an isotropic function, such as any function of the energy
f (εp)which is spin independent as in the expressions for� andN∑

p

f (εp) = V (2s + 1)V

(2πh̄)3

∫ ∞
0
dp 4πp2f (εp) (35)

with 2s+1 coming from the spin degeneracy. Now we can transform thep integration to an integration over
the energyε(p) = εp to give ∑

p

f (εp) =
∫ ∞

0
dε ρ(ε) f (ε) (36)

with ρ(ε) the density of states (such thatρ(ε)dε is the number of single particle states between energiesε

andε + dε)
ρ(ε) = V (2s + 1)p2

2π2h̄3dε/dp
. (37)

For the energy spectrumεp = p2/2m this becomes

ρ(ε) = (2s + 1)
V

4π2

(
2m

h̄2

)3/2

ε1/2. (38)

The thermodynamic potential is then

� = −kT 1

a

∫ ∞
0
dε ρ(ε) ln

(
1+ ae−β(ε−µ)) (39)

and the number of particles is

N =
∫ ∞

0
dε ρ(ε) n(ε) with n(ε) = 1

eβ(ε−µ) + a . (40)

For classical particles in 3 dimensions the latter expression can be written

N

V
λ3 = (2s + 1)

2

π1/2

∫ ∞
0
dy y1/2 1

ey−βµ + a (41)

introducing the integration variabley = βε, and the thermal lengthλ = (h2/πmkT )1/2. Note the right hand
side is a function ofβµ, and so this implicitly fixesµ(T ,N/V ).
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