
Physics 127a: Class Notes

Lecture 16: Photons and Phonons

The thermodynamics of electromagnetic radiation in a cavity or of the vibrational motion of a crystal can be
treated in two equivalent ways:

1. an assembly of harmonic oscillators with quantized energy levels(n + 1
2)h̄ωs , with ωs, s = 1,2, . . .

the frequencies of the normal modes of the cavity or crystal;

2. an ideal gas of identical, indistinguishable quanta (photons or phonons) with the energy of a single
quanta for the modes equal toh̄ωs , so that forn quanta the contribution to the energy isnh̄ωs . The
vacuum statewith no quanta present has the zero point energy1

2h̄ωs for each mode. The quanta are
Bosons, but with chemical potentialµ = 0, since their number is not conserved.

The equivalence is fundamental in the quantum mechanics of these systems (wave-particle duality), but
can easily be seen from the consistency of the statistical mechanical description of the two approaches:

Q = Q =
∏
s

∑
ns

e−βh̄ωs =
∏
s

1

1− e−βh̄ωs , (1)

A = � = kT
∑
s

ln
(
1− e−βh̄ωs ) . (2)

Note that the canonical description of the first approach, and the grand canonical description of the second
approach withµ = 0 are identical, and formulas based on either approach may be used. In these expressions,
and from now on, I have left out the zero point energy, since it is not relevant to the thermodynamics. (It is
also infinite for the e.m. case!)

Photons

For a cavity of sidesL with periodic boundary conditions the modes are labelled by the wave vectork =
2π
L
(l,m, n) and one of 2 polarizations. The spectrum isωk = ck, with c the speed of light. As usual, forL

large we replace the sum over discrete wave vectors by an integral over a continuum, which for integrands
that only depend onω or |k| is

2
∑

k

· · · → 2
V

(2π)3

∫ ∞
0

4πk2 · · · dk = V
∫ ∞

0
g(ω) · · · dω (3)

with the density of states (no of states per unit frequency integral) for unit volume

g(ω) = ω2

π2c3
. (4)

The energy per volume is

u = U

V
=
∫ ∞

0
g(ω)h̄ω nB(ω) dω (5)

with nB(ω) = (eβh̄ω − 1)−1 the Bose function. The energy spectrumε(ω) = g(ω)h̄ω nB(ω) such that
u = ∫ ε(ω) dω is

ε(ω) = h̄

π2c3

ω3

eβh̄ω − 1
(6)
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is known as the Planck distribution. Notice that without the quantum effects (e.g. expand at low frequencies,
or highT ) ε(ω) = (π2c3)−1kT ω2 which leads to a divergent total energy—one of the paradoxes of classical
mechanics that led to the quantum theory.

The total energy per volume is

u =
(

8π

h3c3

)
(kT )4

∫ ∞
0
dx

x3

ex − 1
. (7)

The integral evaluates toπ4/15. The energy fluxp from a nonreflecting surface at temperatureT must
balance the energy incident from the radiation giving

p = 1

4
uc = σT 4 (8)

yielding an expression for Stefan’s constantσ .
The photons also exert a pressure on a bounding container. From the general arguments we know for the

spectrumεk ∝ k the pressure is

P = 1

3
u. (9)

This can also be derived usingPV = lnQ, and integrating the resulting integral by parts.

Phonons

TheDebye modelfor the vibrational degrees of freedom of a crystal is very similar, except we must recognize
that there are only a finite number of degrees of freedom in the crystal, so there is a maximum wave vector
cutoff to the sums.

In the Debye model the dispersion relation of the modes isapproximatedby the small wave vector
expressions, which are linear—the longitudinal sound (speedcl, one polarization) and transverse sound
(speedct , two polarizations) that can be derived using the equations of macroscopic elasticity theory. The
density of states, in analogy with Eq. (4) is

g(ω) = ω2

2π2

(
1

c3
l

+ 2

c3
t

)
= 3ω2

2π2c̄3
(10)

wherec̄ is an average speeddefinedby this expression.
In the sum over modes we define a cutoff at a theDebye frequencyωD∑

s

· · · → V

∫ ωD

0
dω g(ω) · · · (11)

with ωD defined such that the total number of modes is the number of dynamical degrees of freedom 3N∫ ωD

0
dω g(ω) = ω3

D

2π2c̄3
= 3N

V
. (12)

This gives the result
ωD = (6π2N/V )1/2c̄. (13)

This corresponds to a wave vector of order the inverse atomic spacing. The temperatureθD = h̄ωD/k

is called the Debye temperature. For many solidsθD is comparable to room temperature (e.g diamond,
1850K;aluminum, 398K;lead, 88K).
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Figure 1: Debye specific heatC/Nk as a function ofT/θD.

The energyU and specific heatC = dU/dT are now readily calculated. Scaling the integration variable
gives

C(T ) = 3Nk

(
3

x3
0

)∫ x0

0

x4ex

(ex − 1)2
dx (14)

with x0 = h̄ωD/kT . This is theDebye formulafor the specific heat of a crystal. Notice that the result only
depends onT/θD. At smallT the upper limit of the integration may be replaced by∞, when the integral
evaluates to 4π4/15, so that

C(T → 0) = 3Nk

(
3

x3
0

)∫ ∞
0

x4ex

(ex − 1)2
dx = Nk12π4

5

(
T

θD

)3

. (15)

For largeT , i.e.kT � h̄θD we get (expand the exponentials in the integrand) the classical equipartition result
C → 3Nk. TheT 3 low temperature expression is only a good approximation forvery low temperatures,
e.g. better than 3% below 0.1θD.

Counting States in a Periodic System

We are often interested in periodic systems such as a crystal. The periodicity is defined by thelatticewhich
is the set of points (lattice vectors) formed from theprimitive lattice vectorsa,b, c

xl,m,n = la+mb+ nc, l, m,m integers. (16)

The vectorsa,b, c define a parallelepiped called theprimitive unit cell, that is the smallest repeat unit of the
structure (the red region in the figure). The volume of the primitive unit cell isa·b×c. The periodic structure
is formed by copying the contents of this parallelepiped to every lattice point. The states (phonons, electron
eigenstates, vibrational modes etc.) in a periodic system such as a crystal are no longer simple plane waves.
HoweverBloch’s theoremtells us that the states are still labelled by a wave vectork. The displacement of
the ith atom in the unit cell atxl,m,n in a vibrational mode, for example, in the state labelled byk takes the
form

u(i)k (l, m, n) = eik·(la+mb+nc)e(i) (17)
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Figure 2: Lattice and reciprocal lattice for hexagonal crystal.

and an electron wavefunction at the pointx = xl,m,n +1x in the unit cell atxl,m,n can be written

ψk(x) =eik·(la+mb+nc)φ(1x). (18)

In each case the wave vectork tells us the phase change of the state on moving through a distance equal to a
lattice vector i.e. a displacement that leaves the periodic structure unchanged.

It is useful to define thereciprocal latticein the space of wave vectors. The primitive lattice vectors of
the reciprocal lattice are defined as

A = 2πb× c
a · b× c

, B = 2πc× a
a · b× c

, C = 2πa× b
a · b× c

, (19)

andA,B,C define a parallelepiped which is the unit cell of the reciprocal lattice (the blue region in the
figure). Any vector in the lattice

G = l′A +m′B+ n′C, l′, m′, n′ integers. (20)

is areciprocal lattice vector.
The importance of the reciprocal lattice vector is that wave vectors differing by anyG (i.e. k and

k ′ = k +G) define thesamestate via Eqs. (17) and (18) sinceG · xl,m,n = 2π × integer. This means that in
counting the states we must restrict thek to lie within a single unit cell of the reciprocal lattice. The volume
of the reciprocal lattice unit cell is 8π3/a ·b× c and the volume ofk-space per state is 8π3/V (take periodic
boundary conditions over a volumeV ). Thus the number of wave vectors corresponding to distinct states
is V/a · b × c i.e. the number of unit cells in the crystal. Rather than the unit cell of the reciprocal lattice
delineated byA,B,C is is convenient to use thefirst Brillouin zonewhich retains the rotational symmetry of
the crystal. This unit cell may be defined as the region such that each point isnearer to the origin than to any
other reciprocal lattice pointG (see Fig. (2). It is easily constructed by theperpendicular planeconstruction:
draw planes that bisect each reciprocal lattice vectorG perpendicularly, and then the first Brillouiin zone is
the smallest volume entirely enclosed by the planes.

The thermodynamics is giving by summing over state of given frequencyω or energyε. We therefore
need to calculate the density of states. e.g.g(ω). Sinceg(ω)dω gives the number of states betweenω and
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ω+ dω, this may be calculated as the volume ink-space between frequency surfacesω andω+ dω divided
by the volume ofk-space per state: ∑

k

→
∫
dω g(ω) (21)

with

g(ω) = 1

8π3

∫
dSω

vG
. (22)

HerevG is the group speeddω/dk (which gives us the distancedk between surfaces separated bydω), and
the integral is the surface integral over the constantω surface.
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