## Physics 127a: Class Notes

## Lecture 16: Photons and Phonons

The thermodynamics of electromagnetic radiation in a cavity or of the vibrational motion of a crystal can be treated in two equivalent ways:

1. an assembly of harmonic oscillators with quantized energy levels $\left(n+\frac{1}{2}\right) \hbar \omega_{s}$, with $\omega_{s}, s=1,2, \ldots$ the frequencies of the normal modes of the cavity or crystal;
2. an ideal gas of identical, indistinguishable quanta (photons or phonons) with the energy of a single quanta for the mode $s$ equal to $\hbar \omega_{s}$, so that for $n$ quanta the contribution to the energy is $n \hbar \omega_{s}$. The vacuum state with no quanta present has the zero point energy $\frac{1}{2} \hbar \omega_{s}$ for each mode. The quanta are Bosons, but with chemical potential $\mu=0$, since their number is not conserved.

The equivalence is fundamental in the quantum mechanics of these systems (wave-particle duality), but can easily be seen from the consistency of the statistical mechanical description of the two approaches:

$$
\begin{align*}
& Q=\mathcal{Q}=\prod_{s} \sum_{n_{s}} e^{-\beta \hbar \omega_{s}}=\prod_{s} \frac{1}{1-e^{-\beta \hbar \omega_{s}}},  \tag{1}\\
& A=\Omega=k T \sum_{s} \ln \left(1-e^{-\beta \hbar \omega_{s}}\right) . \tag{2}
\end{align*}
$$

Note that the canonical description of the first approach, and the grand canonical description of the second approach with $\mu=0$ are identical, and formulas based on either approach may be used. In these expressions, and from now on, I have left out the zero point energy, since it is not relevant to the thermodynamics. (It is also infinite for the e.m. case!)

## Photons

For a cavity of sides $L$ with periodic boundary conditions the modes are labelled by the wave vector $\mathbf{k}=$ $\frac{2 \pi}{L}(l, m, n)$ and one of 2 polarizations. The spectrum is $\omega_{\mathbf{k}}=c k$, with $c$ the speed of light. As usual, for $L$ large we replace the sum over discrete wave vectors by an integral over a continuum, which for integrands that only depend on $\omega$ or $|\mathbf{k}|$ is

$$
\begin{equation*}
2 \sum_{\mathbf{k}} \cdots \rightarrow 2 \frac{V}{(2 \pi)^{3}} \int_{0}^{\infty} 4 \pi k^{2} \cdots d k=V \int_{0}^{\infty} g(\omega) \cdots d \omega \tag{3}
\end{equation*}
$$

with the density of states (no of states per unit frequency integral) for unit volume

$$
\begin{equation*}
g(\omega)=\frac{\omega^{2}}{\pi^{2} c^{3}} . \tag{4}
\end{equation*}
$$

The energy per volume is

$$
\begin{equation*}
u=\frac{U}{V}=\int_{0}^{\infty} g(\omega) \hbar \omega n_{B}(\omega) d \omega \tag{5}
\end{equation*}
$$

with $n_{B}(\omega)=\left(e^{\beta \hbar \omega}-1\right)^{-1}$ the Bose function. The energy spectrum $\varepsilon(\omega)=g(\omega) \hbar \omega n_{B}(\omega)$ such that $u=\int \varepsilon(\omega) d \omega$ is

$$
\begin{equation*}
\varepsilon(\omega)=\frac{\hbar}{\pi^{2} c^{3}} \frac{\omega^{3}}{e^{\beta \hbar \omega}-1} \tag{6}
\end{equation*}
$$

is known as the Planck distribution. Notice that without the quantum effects (e.g. expand at low frequencies, or high $T$ ) $\varepsilon(\omega)=\left(\pi^{2} c^{3}\right)^{-1} k T \omega^{2}$ which leads to a divergent total energy-one of the paradoxes of classical mechanics that led to the quantum theory.

The total energy per volume is

$$
\begin{equation*}
u=\left(\frac{8 \pi}{h^{3} c^{3}}\right)(k T)^{4} \int_{0}^{\infty} d x \frac{x^{3}}{e^{x}-1} \tag{7}
\end{equation*}
$$

The integral evaluates to $\pi^{4} / 15$. The energy flux $p$ from a nonreflecting surface at temperature $T$ must balance the energy incident from the radiation giving

$$
\begin{equation*}
p=\frac{1}{4} u c=\sigma T^{4} \tag{8}
\end{equation*}
$$

yielding an expression for Stefan's constant $\sigma$.
The photons also exert a pressure on a bounding container. From the general arguments we know for the spectrum $\varepsilon_{k} \propto k$ the pressure is

$$
\begin{equation*}
P=\frac{1}{3} u . \tag{9}
\end{equation*}
$$

This can also be derived using $P V=\ln \mathcal{Q}$, and integrating the resulting integral by parts.

## Phonons

The Debye model for the vibrational degrees of freedom of a crystal is very similar, except we must recognize that there are only a finite number of degrees of freedom in the crystal, so there is a maximum wave vector cutoff to the sums.

In the Debye model the dispersion relation of the modes is approximated by the small wave vector expressions, which are linear-the longitudinal sound (speed $c_{l}$, one polarization) and transverse sound (speed $c_{t}$, two polarizations) that can be derived using the equations of macroscopic elasticity theory. The density of states, in analogy with Eq. (4) is

$$
\begin{equation*}
g(\omega)=\frac{\omega^{2}}{2 \pi^{2}}\left(\frac{1}{c_{l}^{3}}+\frac{2}{c_{t}^{3}}\right)=\frac{3 \omega^{2}}{2 \pi^{2} \bar{c}^{3}} \tag{10}
\end{equation*}
$$

where $\bar{c}$ is an average speed defined by this expression.
In the sum over modes we define a cutoff at a the Debye frequency $\omega_{D}$

$$
\begin{equation*}
\sum_{s} \cdots \rightarrow V \int_{0}^{\omega_{D}} d \omega g(\omega) \cdots \tag{11}
\end{equation*}
$$

with $\omega_{D}$ defined such that the total number of modes is the number of dynamical degrees of freedom 3 N

$$
\begin{equation*}
\int_{0}^{\omega_{D}} d \omega g(\omega)=\frac{\omega_{D}^{3}}{2 \pi^{2} \bar{c}^{3}}=\frac{3 N}{V} \tag{12}
\end{equation*}
$$

This gives the result

$$
\begin{equation*}
\omega_{D}=\left(6 \pi^{2} N / V\right)^{1 / 2} \bar{c} \tag{13}
\end{equation*}
$$

This corresponds to a wave vector of order the inverse atomic spacing. The temperature $\theta_{D}=\hbar \omega_{D} / k$ is called the Debye temperature. For many solids $\theta_{D}$ is comparable to room temperature (e.g diamond, 1850K; aluminum, 398K; lead, 88K).


Figure 1: Debye specific heat $C / N k$ as a function of $T / \theta_{D}$.

The energy $U$ and specific heat $C=d U / d T$ are now readily calculated. Scaling the integration variable gives

$$
\begin{equation*}
C(T)=3 N k\left(\frac{3}{x_{0}^{3}}\right) \int_{0}^{x_{0}} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x \tag{14}
\end{equation*}
$$

with $x_{0}=\hbar \omega_{D} / k T$. This is the Debye formula for the specific heat of a crystal. Notice that the result only depends on $T / \theta_{D}$. At small $T$ the upper limit of the integration may be replaced by $\infty$, when the integral evaluates to $4 \pi^{4} / 15$, so that

$$
\begin{equation*}
C(T \rightarrow 0)=3 N k\left(\frac{3}{x_{0}^{3}}\right) \int_{0}^{\infty} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x=N k \frac{12 \pi^{4}}{5}\left(\frac{T}{\theta_{D}}\right)^{3} . \tag{15}
\end{equation*}
$$

For large $T$, i.e. $k T \gg \hbar \theta_{D}$ we get (expand the exponentials in the integrand) the classical equipartition result $C \rightarrow 3 N k$. The $T^{3}$ low temperature expression is only a good approximation for very low temperatures, e.g. better than $3 \%$ below $0.1 \theta_{D}$.

## Counting States in a Periodic System

We are often interested in periodic systems such as a crystal. The periodicity is defined by the lattice which is the set of points (lattice vectors) formed from the primitive lattice vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$

$$
\begin{equation*}
\mathbf{x}_{l, m, n}=l \mathbf{a}+m \mathbf{b}+n \mathbf{c}, \quad l, m, m \text { integers. } \tag{16}
\end{equation*}
$$

The vectors a, $\mathbf{b}, \mathbf{c}$ define a parallelepiped called the primitive unit cell, that is the smallest repeat unit of the structure (the red region in the figure). The volume of the primitive unit cell is $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$. The periodic structure is formed by copying the contents of this parallelepiped to every lattice point. The states (phonons, electron eigenstates, vibrational modes etc.) in a periodic system such as a crystal are no longer simple plane waves. However Bloch's theorem tells us that the states are still labelled by a wave vector $\mathbf{k}$. The displacement of the $i$ th atom in the unit cell at $\mathbf{x}_{l, m, n}$ in a vibrational mode, for example, in the state labelled by $\mathbf{k}$ takes the form

$$
\begin{equation*}
\mathbf{u}_{\mathbf{k}}^{(i)}(l, m, n)=e^{i \mathbf{k} \cdot(l \mathbf{a}+m \mathbf{b}+n \mathbf{c})} \mathbf{e}^{(i)} \tag{17}
\end{equation*}
$$



Figure 2: Lattice and reciprocal lattice for hexagonal crystal.
and an electron wavefunction at the point $\mathbf{x}=\mathbf{x}_{l, m, n}+\Delta \mathbf{x}$ in the unit cell at $\mathbf{x}_{l, m, n}$ can be written

$$
\begin{equation*}
\psi_{\mathbf{k}}(\mathbf{x})=e^{i \mathbf{k} \cdot(l \mathbf{a}+m \mathbf{b}+n \mathbf{c})} \phi(\Delta \mathbf{x}) . \tag{18}
\end{equation*}
$$

In each case the wave vector $\mathbf{k}$ tells us the phase change of the state on moving through a distance equal to a lattice vector i.e. a displacement that leaves the periodic structure unchanged.

It is useful to define the reciprocal lattice in the space of wave vectors. The primitive lattice vectors of the reciprocal lattice are defined as

$$
\begin{equation*}
\mathbf{A}=\frac{2 \pi \mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}, \mathbf{B}=\frac{2 \pi \mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}, \mathbf{C}=\frac{2 \pi \mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}, \tag{19}
\end{equation*}
$$

and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ define a parallelepiped which is the unit cell of the reciprocal lattice (the blue region in the figure). Any vector in the lattice

$$
\begin{equation*}
\mathbf{G}=l^{\prime} \mathbf{A}+m^{\prime} \mathbf{B}+n^{\prime} \mathbf{C}, \quad l^{\prime}, m^{\prime}, n^{\prime} \text { integers. } \tag{20}
\end{equation*}
$$

is a reciprocal lattice vector.
The importance of the reciprocal lattice vector is that wave vectors differing by any $\mathbf{G}$ (i.e. $\mathbf{k}$ and $\mathbf{k}^{\prime}=\mathbf{k}+\mathbf{G}$ ) define the same state via Eqs. (17) and (18) since $\mathbf{G} \cdot \mathbf{x}_{l, m, n}=2 \pi \times$ integer. This means that in counting the states we must restrict the $\mathbf{k}$ to lie within a single unit cell of the reciprocal lattice. The volume of the reciprocal lattice unit cell is $8 \pi^{3} / \mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ and the volume of $k$-space per state is $8 \pi^{3} / V$ (take periodic boundary conditions over a volume $V$ ). Thus the number of wave vectors corresponding to distinct states is $V / \mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ i.e. the number of unit cells in the crystal. Rather than the unit cell of the reciprocal lattice delineated by $\mathbf{A}, \mathbf{B}, \mathbf{C}$ is is convenient to use the first Brillouin zone which retains the rotational symmetry of the crystal. This unit cell may be defined as the region such that each point is nearer to the origin than to any other reciprocal lattice point $\mathbf{G}$ (see Fig. (2). It is easily constructed by the perpendicular plane construction: draw planes that bisect each reciprocal lattice vector $\mathbf{G}$ perpendicularly, and then the first Brillouiin zone is the smallest volume entirely enclosed by the planes.

The thermodynamics is giving by summing over state of given frequency $\omega$ or energy $\varepsilon$. We therefore need to calculate the density of states. e.g. $g(\omega)$. Since $g(\omega) d \omega$ gives the number of states between $\omega$ and
$\omega+d \omega$, this may be calculated as the volume in $k$-space between frequency surfaces $\omega$ and $\omega+d \omega$ divided by the volume of $k$-space per state:

$$
\begin{equation*}
\sum_{\mathbf{k}} \rightarrow \int d \omega g(\omega) \tag{21}
\end{equation*}
$$

with

$$
\begin{equation*}
g(\omega)=\frac{1}{8 \pi^{3}} \int \frac{d S_{\omega}}{v_{G}} . \tag{22}
\end{equation*}
$$

Here $v_{G}$ is the group speed $d \omega / d k$ (which gives us the distance $d k$ between surfaces separated by $d \omega$ ), and the integral is the surface integral over the constant $\omega$ surface.

