
Physics 127a: Class Notes

Lecture 9: Grand Canonical Ensemble

This describes a system in contact with a reservoir with which it can exchangeenergyandparticles. The
equilibrium is characterized by the reservoirtemperatureT andchemical potentialµ. As for the canonical
ensemble, we can derive properties of the grand canonical ensemble by treating system plus reservoir as an
isolated system together described by the microcanonical ensemble. The results are:

• Probability for the system to haveN particles and be in statej with energyE(N)j is

Pj,N ∝ e−β(E
(N)
j −µN). (1)

(remember this comes from counting the number of states in thereservoir)

• Define thegrand canonical partition function

Q =
∑
N

∑
j

e
−β(E(N)j −µN), (2)

and the correspondinggrand potential

� = −kT lnQ. (3)

• For a macroscopic system we can replace the sums by integrals

Q '
∫
dN

∫
dE

1
e−β(E−µN−T S(E,N) (4)

whereeS/k is the number of states in the energy shell1. For largeN the integrand is dominated by
E ' Ē andN ' N̄ which minimizeE − µN − T S given by differentiation

µ = T
(
∂S

∂N

)
E

, (5)

1= T
(
∂S

∂E

)
N

. (6)

These two equations implicitly givēE, N̄ , and tell us the physical result that the temperature and
chemical potential of the system are given by the results of the isolated system at the most probableE

andN . Furthermore in evaluating lnQ only the value of the integrand at its maximum contributes at
O(N)

� ' U − T S − µN (7)

(strictly we should use the most probable valuesĒ, N̄ , but can replace them by the meansU,N since
the distribution is so narrow).

• Differentiating and usingdU = T dS − PdV + µdN gives the thermodynamic identity in the form

d� = −SdT −Ndµ− PdV. (8)

• Making a system atT ,µ, V by adding little volumesdV at the sameT , P gives us (since then
dT = dµ = 0)

� = −PV. (9)
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Grand Potential for the Classical Ideal Gas

We can write
Q =

∑
N

zNQN (10)

with z = eβµ known as the fugacity andQN thecanonical partition functionfor N particles. Also, for the
classical ideal gas

QN = (Q1)
N

N !
, (11)

so that

Q =
∑
N

(zQ1)
N

N !
= ezQ1. (12)

Thus

− �
kT
= PV

kT
= lnQ = zQ1. (13)

For a monatomic gas we found

Q1 = V
(

2πmkT

h2

)3/2

. (14)

This is the ideal gas law—but in terms ofµ rather thanN . Normally we would eliminateµ in terms of the
meanN using

N = −
(
∂�

∂µ

)
T ,V

. (15)

From Eq. (13) we see that the onlyµ dependence of� is in the fugacityz = eβµ, and differentiating gives

N = zQ1 (16)

which with Eq. (14) gives the same expression forµ(N, T , V ) as we found before, and with Eq. (13) gives
the ideal gas law in the familiar form.

Number fluctuations

In the grand canonical ensemble, the probability of findingN particles in the system is

P(N) =
∑

j e
−β(E(N)j −µN)∑

N

∑
j e
−β(E(N)j −µN)

= zNQN

Q . (17)

For the ideal gas

QN = (Q1)
N

N !
(18)

and
P(N) = zNQN

1 e
−zQ1. (19)

As we have seen〈N〉 = zQ1 (this can of course be derived as
∑

N NP(N) from equation (19)), so that for
the ideal gas the number fluctuations are described by thePoisson distribution

P(N) = 〈N〉
N e−〈N〉

N !
. (20)
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