
Physics 127b: Statistical Mechanics

Brownian Motion

Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid.
The particle must be small enough that the effects of the discrete nature of matter are apparent, but
large compared to the molecular scale (pollen in the early experiments, various plastic beads these
days). It is a convenient example to display the residual effects of molecular noise on macroscopic
degrees of freedom. I will use this example to investigate the type of physics encountered, and the
tools used to treat the fluctuations.

Random Walk

The first observation of Brownian motion is that the particle under the microscope appears to
perform a “random walk”, and it is first useful to study this aspect in its simplest form.

Lets consider first a one dimensional random walk, consisting ofn jumps of±l along thex axis.
We taken to be even (the odd case is essentially the same, but differs in minor details). For the
particle aftern jumps to be atx = ml there must have been12(n+m) forward jumps, and12(n−m)
backwards jumps (in any order), andm must be even. The probability of arriving atx = ml is
therefore

pn(m) = n![1
2(n−m)

]
!
[1

2(n+m)
]
!
. (1)

For largem, n Stirling’s approximationn! ' (2πn)1/2(n/e)n gives

pn(m) = 2√
2πn

e−m2/2n. (2)

This is a Gaussian probability centered aroundm = 0 (the most probable and mean position is the
origin) and the mean square displacement

〈
m2
〉 = n, or〈

x2〉 = nl2. (3)

For largen the discreteness of the displacements is unimportant compared to the root mean square
distance of the walk. Transforming to a continuous variablex and a probability densityp(x, t)
usingpn(m) = p(x)×2l (since the interval between the discrete results isdx = 2l) and introducing
time supposing there aren jumps in timet

p(x, t) = 1√
4πDt

exp

(
− x2

4Dt

)
(4)

where we have written
nl2/2t = D. (5)

We recognize that this is the expression for diffusion, withp satisfying

∂p

∂t
= D∂

2p

∂x2
, p(x, t = 0) = δ(x) (6)
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with the diffusion constantD. In terms ofD〈
x2〉 = 2Dt. (7)

These results are readily extended to 3 dimensions, since we can consider a walk with steps
(±l,±l,±l) for example, so that the walk is the product of walks in each dimension. The mean
square distance gone aftern walks is again

〈
r2
〉 = nL2 with L = √3l the length of each step. The

probability distributionp(Ex, t) satisfies the 3d diffusion equation

∂p

∂t
= 1

(4πDt)3/2
exp

(
− r2

4Dt

)
(8)

with r2 = x2 + y2 + z2. This equation is simply the product of three 1d diffusion equations with
D = nl2/2t as before. The means square distance is〈

r2〉 = 6Dt. (9)

(The results in 2d can similarly be constructed.)

The fact that the mean displacement is zero, and the mean square displacement grows linearly in
time can be derived by very simple arguments. Lets consider the two dimensional case of a random
walk consisting ofn vectors of lengths but with arbitrary anglesθi taken from a uniform probability
distribution. The total displacement in thex direction is

X =
∑
i

s cosθi. (10)

Clearly〈X〉 = 0 since cosθi is equally likely to be positive or negative. On the other hand

〈
X2〉 = 〈(∑

i

s cosθi

)2〉
= s2

〈∑
i

cosθi
∑
j

cosθj

〉
(11)

= s2

〈∑
i

(cosθi)
2

〉
= ns2/2 (12)

where we have used the fact that
〈∑

i,j 6=i cosθi cosθj
〉
= 0 since again each cosθi is equally likely

to be positive or negative. Thus the mean square distance is〈
R2〉 = 〈X2+ Y 2〉 = ns2. (13)

This specific result is useful in adding complex numbers with random phases: the average amplitude
is zero, and the mean square magnitude (the “intensity”) scales linearly with the number of vectors.

Some general nomenclature

The positionx(t) in a one dimensional random walk forms a one dimensionalrandom process—in
general a scalar functiony(t) for which the future data is not determined uniquely by the known
initial data.
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The random process is in general characterized by probability distributionsp1, p2 . . . such that

pn(y1, t1; y2, t2 . . . ; yn, tn)dy1dy2 . . . dyn (14)

is the probability that a single process drawn from the ensemble of processes will take on a value
betweeny1 andy1+ dy1 at t1 etc. The differentpn are related by∫ ∞

−∞
pndyj → pn−1. (15)

Ensemble averages are determined by integrating over the appropriate distribution, e.g. for themean
and thetwo point correlation function

〈y(t1)〉 =
∫ ∞
−∞

y1p1(y1, t1)dy1, (16)

〈y(t1)y(t2)〉 =
∫ ∞
−∞

∫ ∞
−∞

y1y2p2(y1, t1; y2, t2)dy1dy2. (17)

Higher order correlation functions require the knowledge of higher order distribution functions. In
the random walk we have just looked atp1.

A stationaryrandom process is one for which thepn depend only on time differences, or

pn(y1, t1+ τ ; y2, t2+ τ ; . . . ; yn, tn + τ) = pn(y1, t1; y2, t2 . . . ; yn, tn). (18)

I have chosen to formulate the random walk as starting a particle from a particular position at time
t = 0, so thatx(t) is not stationary. Alternatively we could have considered a stationary process
(e.g. the field of vision of a microscope with many Brownian particles) and then calculated the
conditional probabilityP2(x1, t1|x2, t2)which is the probability of the particle being atx2 at timet2
given that it was atx1 at timet1. ThenP2(0,0|x, t) takes the diffusive form that we have calculated
and thepn all just depend on the time difference (p1(x, t) is just constant, for example).

Means and correlation functions are defined with respect to the ensemble average. For a stationary
random process we usually assumeergodicity, and replace the ensemble average by a time average,
e.g.

〈y〉 = y(t) = lim
T→∞

1

T

∫ T/2

−T/2
y(t)dt. (19)

The probability distribution for the random walk is a Gaussian function. AGaussian processin
general is one in whichall the probability distributions are Gaussian

pn(y1, t1; y2, t2 . . . ; yn, tn) = Aexp

− n∑
j=1

n∑
k=1

αjk(yj − 〈y〉)(yk − 〈y〉)
 (20)

where〈y〉 is the mean ofy, αjk is a positive definite matrix andA is a normalization constant. For
a stationary process〈y〉 is time independent andα andA depend only on time differences.

Gaussian processes are important in physics because of thecentral limit theorem: if

Y = 1

N

∑
yi (21)
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with yi a random process or variable with arbitrary distribution but with finite mean〈y〉 and variance
σ 2
y then forN largeY is a Gaussian process or variable

p(Y ) = 1√
2πσ 2

Y

exp

[
−(Y − 〈Y 〉)

2

2σ 2
Y

]
(22)

with 〈Y 〉 = 〈y〉 andσY = σy/
√
N . The central limit theorem is why the Gaussian distribution

of the random walk is independent of the details of the step (e.g. fixed length, or varying length)
providing the mean is zero and the variance is finite.

Equation (6) for the time evolution of the probability distribution is actually theFokker-Planck
equation for this random process. We will return to this topic in more detail later.

Spectral description of a random process

For a conventional functiony(t) a convenient definition of the Fourier transform is

ỹ(f ) =
∫ ∞
−∞

y(t)ei2πf tdt, (23a)

y(t) =
∫ ∞
−∞

ỹ(f )e−i2πf tdf. (23b)

The correctness of the inverse is shown from the result∫ ∞
−∞

ei2πxydx = lim
x→∞

sin 2πxy

πy
= δ(y). (24)

For a real functiony(t) we haveỹ∗(f ) = ỹ(−f ).
For a stationary random process the integral definingỹ(f ) diverges, so we instead define the
auxiliary process

yT (t) =
{
y(t) −T/2< t < T/2

0 otherwise
(25)

and then use the finitẽyT (f ).

Parseval’s theorem tells us

lim
T→∞

1

T

∫ T/2

−T/2
[y(t)]2 = lim

T→∞
2

T

∫ ∞
0
|ỹT (f )|2 df. (26)

Here and elsewhere we useỹ∗(f ) = ỹ(−f ) to restrict the frequency domain to positive values.

With these preliminaries in mind, we define the spectral density of the random processy(t) as

Gy(f ) = lim
T→∞

2

T

∣∣∣∣∫ T/2

−T/2
[y(t)− ȳ]ei2πf tdt

∣∣∣∣2 . (27)

whereȳ is the time average overT . Why do we use this expression? Lets suppose that the mean
has been subtracted off ofy, so ȳ = 0. The quantity inside the| | is the Fourier transform of the
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processyT (t) . How does this grow withT ? We can estimate this by supposing the intervalT to
be formed ofN subintervals of lengthτ . The Fourier transform̃yT is then the sum ofN transforms
ỹτ of processesyτ (t)defined over the intervalτ . For a random process we would expect each of
the ỹτ to be of similar magnitude, but with arbitrary phase, since the latter depends sensitively on
the phasing of theei2πf t with respect to the time start of the signal. AddingN complex numbers
with random phase gives a number of magnitude∝ √N and random phase. Thus the transform
of y(t) − ȳ grows as

√
T and the phase varies over all values asT changes. The spectral density

Gy(f ) is constructed to beindependent of Tand to contain all the useful information. Parseval’s
theorem now gives us∫ ∞

0
Gy(f )df = lim

T→∞
1

T

∫ T/2

−T/2
[y(t)− ȳ]2dt = σ 2

y , (28)

so that the frequency integral of the spectral density is the variance of the signal.

The spectral density is directly related to the Fourier transform of the correlation functionCy(τ).
Let’s set the mean̄y to zero for simplicity. Then, using assumption of ergodicity to replace the
ensemble average by a time average, the correlation function is

Cy(τ) = lim
T→∞

1

T

∫ T/2

−T/2
dt y(t)y(t + τ) (29)

= lim
T→∞

1

T

∫ ∞
−∞

dt yT (t)yT (t + τ) (30)

where the small error in replacingy(t + τ) by yT (t + τ) is unimportant in the limit. Now inserting
the Fourier transforms and usingỹ∗(f ) = ỹ(−f )

Cy(τ) = lim
T→∞

1

T

∫ ∞
−∞

dt

∫ ∞
−∞

df

∫ ∞
−∞

df ′ỹT (f )ỹT (f ′)e−i2πf
′τ ei2π(f+f ′)t . (31)

Thet integrations isδ(f + f ′), and usingỹ∗(f ) = ỹ(−f ) gives

Cy(τ) = lim
T→∞

1

T

∫ ∞
−∞

df |ỹT (f )|2 e−i2πf τ (32)

= lim
T→∞

2

T

∫ ∞
0

df |ỹT (f )|2 cos 2πf τ (33)

=
∫ ∞

0
Gy(f ) cos(2πf τ)df. (34)

Thus we have the inverse pair

Cy(τ) =
∫ ∞

0
Gy(f ) cos(2πf τ)df (35a)

Gy(f ) = 4
∫ ∞

0
Cy(τ) cos(2πf τ)dτ (35b)

(sinceCy andGf are both even functions, we have written the results as cosine transforms only
involving the positive domain). These equations are known as theWiener-Khintchinetheorem.
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A particularly simple spectral density is a flat one, independent of frequency. We describe such
a random process as beingwhite. The corresponding correlation function is a delta function, i.e.
no correlations except for time differences tending to zerp. One strength parameterg is needed to
specify the force

GF(f ) = g, (36a)

CF (τ) = g

2
δ(τ ). (36b)

The Einstein Relation

Einstein showed how to relate the diffusion constant, describing the random fluctuations of the
Brownian particle, to its mobilityµ, the systematic response to an externally applied force.

Under an applied force−dV/dx the drift velocity of the particle is (the definition of the mobility)

ud = −µdV
dx
. (37)

For a sphere of radiusa in a liquid the viscosityη the mobility is given by the Stokes expression
µ = (6πηaud)−1, and soµ is related to thedissipationin the fluid.

Consider now the thermodynamic equilibrium of a densityn(x) of independent Brownian particles
in the potentialV (x). We can dynamically understand the equilibrium in terms of the cancelling
of the particle currents due to diffusion and mobility

−Ddn
dx
+ n

(
−µdV

dx

)
= 0. (38)

Equilibrium thermodynamics on the other hand tells usn(x) ∝ exp[−V (x)/kT ]. Substituting into
Eq. (38) gives the Einstein identity

D = kT µ. (39)

Note the use ofequilibriumconstraints to relatefluctuationquantities (the diffusion constant which
gives us

〈
x2(t)

〉
) anddissipationcoefficients (µ or η). This is an example of a general approach

known asfluctuation dissipationtheory, that we will take up again later. The fact that the fluctuations
and dissipation of a Brownian particle are related should not be unexpected: both are a reflection
of the molecular buffeting, the dissipation given by the net force due to the systematic component
of the collisions coming from the drift of the particle relative to the equilibrium molecular velocity
distribution, and the fluctuations coming from the random component.

Fluctuation-Dissipation Theory

The relationship between the dissipation coefficient and the fluctuations is made more explicit by
directly evaluatingD in terms of the fluctuations producing the random walk

D = lim
t→∞

1

2t

〈
[x(t)− x(0)]2〉 . (40)
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Expressing the displacement as the integral of the stochastic velocityu

x(t)− x(0) =
∫ t

0
u(t1)dt1 (41)

leads to

D = lim
t→∞

1

2t

∫ t

0
dt1

∫ t

0
dt2 〈u(t1)u(t2)〉 , (42)

which depends on thevelocity correlation function. The integrand is symmetric int1, t2 and we can
replace the integral over the square by twice the integral over the triangle 0< t1 < t, t1 < t2 < t ,
and then introducing the time differenceτ = t2− t1

D = lim
t→∞

1

t

∫ t

0
dt1

∫ t−t1

0
dτ 〈u(t1)u(t1+ τ)〉 . (43)

Since the correlation function〈u(t1)u(t1+ τ)〉 decays to zero in some finite relaxation timeτr , as
t → ∞ the limit of the second integral can be replaced by infinity for almost all values oft1 in
the first integration. Further,〈u(t1)u(t1+ τ)〉 = Cu(τ) is independent oft1 (u(t) is a stationary
random process if external conditions are fixed). Hence

D =
∫ ∞

0
dτ 〈u(0)u(τ )〉 (44)

and

µ = 1

kT

∫ ∞
0

dτ 〈u(0)u(τ )〉 (45)

directly relating adissipation coefficientto acorrelation function.
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