
Physics 127b: Statistical Mechanics

Langevin Equation

To understand the Brownian motion more completely, we need to start from the basic physics, i.e. Newton’s
law of motion. The most direct way of implementing this is to recognize that there is a stochastic component
to the force on the particle, which we only know through a probabilistic description. This gives us aLangevin
equationfor the velocityu(t) (which is a random process)

M
du

dt
+ γ u = F(t). (1)

Hereγ u (with γ = µ−1) is the systematic part of the molecular force, andF(t) is the random component
with 〈F 〉 = 0. (We could also include a nonstochastic external force, but will not do so here.) We also assume
there is no causal connection ofF(t) with the velocity, i.e.F(t) is uncorrelated with the velocityu(t ′) for
t > t ′. Since the time scale of the molecular collisions is small compared to the time scaleM/γ set by the
dynamics of the particle,F is a series of randomly spaced spikes or delta functions—a very nasty looking
function! However we are interested in the effect on the time scaleM/γ during which many molecular
collisions occur, and on this sort of time scale the noise force behaves as a Gaussian random process.

Solution of the Langevin Equation

Spectral Method

If we are just interested in the stationary random processu(t) a long time after any initial transients have
died out it is easy to solve the Langevin equation by taking Fourier transforms. Without being too careful
we can write forT →∞

ũT (f ) = F̃T (f )

(−2πifM)+ γ (2)

so that the spectral density of the velocity is

Gu(f ) = 1

(2πfM)2+ γ 2
g. (3)

But we know that the integral ofGu over all frequencies is just the variance
〈
u2
〉
of u, which by equipartition

is kT /M. This allows us to fix the strength of the stochastic force

g = GF(f ) = 4kT γ. (4)

Thus the stochastic force is completely determined by the dissipationγ and the temperature, again a man-
ifestation of the common origin of dissipative and stochastic forces in the molecular collisions. This result
is analogous to the Johnson noise term in electrical circuits, and is an example of a general result relating
stochastic forcing terms to dissipation coefficients. Note that our derivation here has been purely classical,
and so we get the classical limit of the Nyquest expression.

Solution in the time domain

The Langevin equation is a complete description (in the stochastic sense!) of the Brownian motion, but is a
nasty equation to deal with, since the forcing term is a random sequence of delta functions—very singular!
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However, we are usually interested in mean values or low order correlation functions, and we can proceed
by constructing appropriate quantities and taking expectation values.

Write the equation in the form
du

dt
+ u

τr
= A(t) (5)

whereτr = M/γ is a relaxation time of the macroscopic motion of the particle andA(t) = F(t)/M is the
stochastic driving. Physically, we expect the stochastic driving to be unaffected by the position and velocity
of the particle (remember the average part of the force, which will act in the opposite direction to the particle
velocity, is theu/τr term). Loosely we would say the force is “uncorrelated with the velocity”. However, the
velocity responds to the force, so we must be careful:〈

A(t)u(t ′)
〉 { = 0 t > t ′ “force uncorrelated with velocity”
6= 0 t < t ′ “velocity correlated with earlier force”

(6)

Velocity First lets look at the statistics of the velocityu(t). This is given by formally integrating the
Langevin equation. We again suppose we have a tagged particle that att = 0 has a velocity that is known
precisely. Then

u(t) = u(0)e−t/τr + e−t/τr
∫ t

0
et
′/τrA(t ′)dt ′. (7)

Now take averages as desired. Since〈A〉 = 0 this immediately gives for the mean

〈u(t)〉 = u(0)e−t/τr . (8)

For the mean square velocity〈
u2(t)

〉 = u2(0)e−2t/τr + e−2t/τr

∫ t

0

∫ t

0
e(t1+t2)/τr 〈A(t1)A(t2)〉 , (9)

where we have used〈u(0)A(t > 0)〉 = 0 to eliminate the cross term. This is the same type of double integral
we evaluated in the previous lecture. Writingt2 = t1+ τ and proceeding as there〈

u2(t)
〉 = u2(0)e−2t/τr + 2e−2t/τr

∫ t

0
dt1e

2t1/τr

∫ t−t1

0
dτ eτ/τr 〈A(t1)A(t1+ τ)〉 , (10)

' u2(0)e−2t/τr + τr(1− e−2t/τr )

∫ ∞
0
dτ 〈A(0)A(τ)〉 . (11)

Writing
∫∞

0 dτ 〈A(0)A(τ)〉 as 1
4GA(0) = 1

4gA and using Eq. (8) this finally gives for the variance ofu(t)

σ 2
u (t) =

〈
(u(t)− 〈u(t)〉)2〉 = gAτr

4
(1− e−2t/τr ). (12)

We can evaluategA = 4kT γ /M or note thatσ 2
u must approach the equipartition value at large times, so that

σ 2
u (t) =

kT

M
(1− e−2t/τr ). (13)

Position To follow the position we can multiply the Langevin equation byx and average. Use

xu = x dx
dt
= 1

2

dx2

dt
, (14a)

x
du

dt
= d(xu)

dt
− u2 = 1

2

d2x2

dt2
− u2. (14b)
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On averaging, since the force is uncorrelated with the position
〈
A(t)x(t ′)

〉 = 0, this gives

d2
〈
x2
〉

dt2
+ 1

τr

d
〈
x2
〉

dt
= 2

〈
u2
〉
. (15)

We could study the behavior of a Brownian particle originally at rest, using the results of the previous
section for how

〈
u2
〉
relaxes to the equilibrium value, but instead of going into this complication, lets suppose

that the particle already has this mean square speed
〈
u2
〉 = kT /M. Integrating from the initial values〈

x2(0)
〉 = d 〈x2(0)

〉
/dt = 0 gives

〈
x2(t)

〉 = 2kT

M
τ 2
r

[
t

τr
− (1− e−t/τr )

]
. (16)

For smallt � τr this gives propagation at the thermal speed√〈
x2(t)

〉 ' t√kT /M (17)

and at long timest � τr diffusion 〈
x2(t)

〉 ' 2kT τr
M

t (18)

again relating the diffusion constant to the dissipation (here expressed in terms ofτr ).
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