
Physics 127b: Statistical Mechanics

Fokker-Planck Equation

The Langevin equation approach to the evolution of the velocity distribution for the Brownian particle might
leave you uncomfortable. A more formal treatment of this type of problem is given by the Fokker-Planck
equation. We can either formulate the question in terms of the evolution of a nonstationary probability
distribution from a defined initial condition, or in terms of the evolution of the conditional probabilities for
a stationary random process. I will choose the latter approach.

Remember the conditional probability

Pn(y1, t1; y2, t2; . . . | yn, tn)dyn (1)

is the probability (in the ensemble sense) that if y(t) takes on the values y1 at t1, y2 at t2 . . . yn−1 at tn−1

then it will lie between yn and yn + dyn at time tn (where t1 > t2 > t3 . . . > tn). Note the notation for
conditional probability is distinguished from the probabilities pn through the case, and the | notation. Also
note in P2(y, t | y′, t ′) the notation is y, t implies y′, t ′ with t ′ > t ; unfortunately Reif uses the reverse order,
i.e. y′, t ′ implies y, t . (For higher order Pn there is less possibility of confusion.)

The probability distributions pn and the conditional probabilities Pn are related through

pn(y1, t1; . . . ; yn, tn) = pn−1(y1, t1; . . . ; yn−1, tn−1)× Pn(y1, t1; . . . ; yn−1, tn−1 | yn, tn). (2)

A Markoff process is one for which future probabilities are determined by the most recently known value,
and do not depend on the previous history

Pn(y1, t1; y2, t2; . . . ; yn−1, tn−1 | yn, tn) = P2(yn−1, tn−1 | yn, tn). (3)

Stationary Markoff processes are therefore completely characterized by p1(y) and P2(y1|y2, t) =
p2(y1, 0; y2t)/p1(y1) (where we use the convenient notation P2(y1|y2, t) for P2(y1, t1|y2, t1 + t)). The
importance of Markoff processes is not that all physical processes are Markoff, but that the analysis of
Markoff processes is considerably simpler. For example in the description of Brownian motion in terms
sharp molecular kicks the x-velocity of the particle is Markoff (the probability of u(t + δt) depends only on
u(t) and the molecular collisions in time δt ; on the other hand the position x(t) is not, because x(t + δt)
depends on x(t) and u(t)δt ' x(t) − x(t − δt), as well as the molecular collisions. It is of course easy to
formulate the problem in terms of u(t) and then derive properties of x(t) from this. The question of whether
a random process is Markoff or not might depend on the level of the description. For example, in the coarse
grained description of Brownian motion where we discuss x(t) as a random walk (i.e. on a time scale large
compared to the relaxation time of the velocity), the random process x(t) becomes a Markoff one.

Time Evolution

From general probability theory the two point conditional probability distribution satisfies the Chapman-
Kolmogorov equation

P2(y1, t1 | y3, t3) =
∫
∞

−∞

dy2 P2(y1, t1 | y2, t2)P3(y1, t1; y2, t2 | y3, t3) (4)

where t1 < t2 < t3. This corresponds to integrating over all possibilities at the intermediate time t2.
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For a Markoff process the P3 is given by P2 and the equation reduces to the Smoluchowski equation

P2(y1, t1 | y3, t3) =
∫
∞

−∞

dy2 P2(y1, t1 | y2, t2)P2(y2, t2 | y3, t3). (5)

This is effectively an integral equation for the time evolution of P2.

If in a small time interval only small changes in y can occur, this time evolution of a Markoff random
process can be rewritten as a differential equation known as the Fokker-Planck equation. An example where
this is the case is the Brownian motion of a heavy particle: in a small time interval the velocity of the heavy
particle is only changed by a small amount by the small number of molecular collisions. On the other hand
for the velocity distribution of molecules in a gas, each binary collision can change the velocity by a large
amount, and the Fokker-Planck equation does not apply. Thus the Fokker-Planck equation is appropriate for
the fluctuations of macroscopic degrees of freedom.

Writing in terms of P2(y0|y, t) for starting at y0 and ending at y a time t later the Fokker-Planck equation is

∂

∂t
P2 = −

∂

∂y
[A(y)P2]+

1

2

∂2

∂y2
[B(y)P2] (6)

which is to be solved with the initial conditions P2(y0|y, 0) = δ(y − y0). In this expression A and B are
given by the rate of growth of the mean and standard deviation

A(y) = lim
1t→0

1

1t

∫
∞

−∞

(y′ − y)P2(y|y
′,1t)dy′, (7a)

B(y) = lim
1t→0

1

1t

∫
∞

−∞

(y′ − y)2 P2(y|y
′,1t)dy′. (7b)

The first term is a drift of the distribution corresponding to a systematic bias, and the second to a diffusion
of the distribution, corresponding to the residual average effect of positive and negative jumps. (Higher
moments of P2 increase less rapidly than 1t , and do not give higher order derivative terms in the equation.)

We have already encountered a Fokker-Planck equation: the diffusion equation for the probability distribu-
tion of a random walk is a simple example.

Derivation

The derivation from the Smoluchowski equation is elementary, albeit a little tricky. Write Eq. (5) in the form
(with y1 → y0, y3 → y, y2 → y − ξ and t2 − t1 → t , t3 − t2 → τ )

P2(y0 | y, t + τ) =
∫
∞

−∞

dξ P2(y0 | y − ξ, t)P2(y − ξ | y, τ ), (8)

where τ will be a small time increment. In this equation we are studying the conditional probability of
getting to y at time t + τ in terms of the probability of getting “nearby” to y − ξ at time t and then to y in
the small time increment τ . Now expand the left hand side in a Taylor expansion in τ

P2(y0 | y, t + τ) ' P2(y0 | y, t)+
∂P2(y0|y, t)

∂t
τ (9)

to give
∂P2(y0|y, t)

∂t
τ = −P2(y0 | y, t)+

∫
∞

−∞

dξ P2(y0 | y − ξ, t)P2(y − ξ | y, τ ). (10)
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Note that the first term on the right hand side could be written

−

∫
∞

−∞

dξ P2(y0 | y, t)P2(y | y − ξ, τ ) (11)

since
∫

dξ P2(y | y − ξ, τ ) = 1. The form of the equation is then a “scattering out” term and a “scattering
in” term, as in the Boltzmann equation. This sort of equation is known as a Master Equation. The difference
from the Boltzmann equation is that here we assume that only small changes in y are possible in small τ ,
and we expand the dependence on the “from” value z = y− ξ in the scattering-in term in small ξ . Note that
we are not expanding P2(y − ξ | y, τ ) in small ξ—for fixed y this function decreases rapidly with ξ , and it
is precisely because of this that we only need to know P2(y0 | z, t)P2(z | z + ξ, τ ) for z near y. Thus write

P2(y0 | y − ξ, t)P2(y − ξ | y, τ ) = P2(y0 | z, t)P2(z| z + ξ, τ )|z=y−ξ (12)

=

∞∑
n=0

(−1)n

n!
ξ n ∂

n

∂yn
[P2(y0|y, t)P2(y|y + ξ, τ )] . (13)

This gives

∂P2(y0|y, t)

∂t
τ = −P2(y0 | y, t)+

∞∑
n=0

(−1)n

n!

∂n

∂yn

[
P2(y0|y, t)

∫
∞

−∞

dξξ n P2(y|y + ξ, τ )

]
. (14)

The zeroth order terms cancel, leaving (taking τ → 0)

∂P2(y0|y, t)

∂t
=

∞∑
n=1

(−1)n

n!

∂n

∂yn

[
P2(y0|y, t) lim

τ→0

1

τ

∫
∞

−∞

dξξ n P2(y|y + ξ, τ )

]
. (15)

If the random process evolves through the effect of many small changes, only the first two moments n = 1, 2
pf P2 will contribute, with higher moments increasing as τ p with p > 1 giving no contribution as τ → 0.

Fokker-Plank Equation for the Brownian Velocity

Derivation

The Fokker-Planck approach Eq. (6) and Eq. (7) is really quite independent of the Langevin equation, and
in many ways is preferable from a formal point of view, since the Langevin equation is rather pathological
and needs careful treatment. We should therefore calculate A, B directly from thinking about the molecular
collisions, and indeed this can be done. But here I will just get them by integrating the Langevin equation
from a known velocity u over a small time interval

M1u + γ u1t =
∫ t+1t

t
F ′(t ′)dt ′. (16)

Using
〈
F ′
〉
= 0 gives

A = lim
1t→0

〈1u〉

1t
= −

u

τr
, τr =

M

γ
, (17)

B = lim
1t→0

〈
1u2

〉
1t
= lim

1t→0

1

1t

1

M2

∫ t+1t

t

∫ t+1t

t

〈
F ′(t1)F

′(t1)
〉
dt1dt2. (18)
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You should be familiar with this sort of double integral by now! Note that although 1t is small, we assume
it to be large compared to the molecular collision time, so that the force correlation function is nonzero only
over time differences short compared to 1t . In the usual way we have

lim
1t→0

1

1t

∫ t+1t

t

∫ t+1t

t

〈
F ′(t1)F

′(t1)
〉
dt1dt2 = lim

1t→0

2

1t

∫ t+1t

t
dt1

∫
∞

0

〈
F ′(0)F ′(τ )

〉
dτ (19)

=
1

2
G F(0) = 2kT γ (20)

so that

B =
2γ kT

M2
. (21)

Solution

To study the decay of the velocity to the equilibrium Maxwellian we solve the Fokker-Planck for P2(u0 | u, t)
with the initial condition P2(u0|u, t = 0) = δ(u − u0). You can find a “forward” solution in Reif §15.12. I
will just show the solution and let you verify that it satisfies the differential equation by substitution:

P2(u0 | u, t) =
1√

2πσ 2
u (t)

exp

[
−
(u − ū(t))2

2σ 2
u (t)

]
(22)

where the time dependent mean ū(t) and variance σ 2
u (t) are what we found before

ū(t) = u0e−t/τr (23)

σ 2
u (t) =

kT

M
(1− e−2t/τr ). (24)

Example

As an example of how to use the solution, consider the calculation of the correlation function

Cu(τ ) = 〈u(0)u(t)〉 =
∫
∞

−∞

∫
∞

−∞

p2(u1, 0; u2, t)u1u2du1du2. (25)

For the stationary random process u(t) we have

p2(u1, 0; u2, t) = p1(u1)P2(u1 | u2, t) (26)

and
p1(u) = lim

t→∞
P2(u0 | u, t) (27)

so that

Cu(τ ) =

∫
∞

−∞

∫
∞

−∞

1√
2πσ 2

m

e−u2
1/2σ

2
m

1√
2πσ 2

u (t)
exp

[
−
(u2 − ū(t))2

2σ 2
u (t)

]
u1u2du1du2, (28)

with σ 2
m = kT/M and ū(t) = u1e−t/τr . The u2 integration just gives ū(t), so that

Cu(τ ) = e−t/τr

∫
∞

−∞

1√
2πσ 2

m

e−u2
1/2σ

2
m u2

1 du1 (29)

=
kT

M
e−t/τr . (30)

From this the spectral density is given by Fourier transform

Gu( f ) =
4kT

Mτr

1

(2π f )2 + (1/τr )2
. (31)
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Stationary, Gaussian, Markoff Processes

Results very similar to the ones we have just calculated actually apply to a large class of random processes
namely those that are stationary, Gaussian, and Markoff. For such a process y(t) all the statistical properties
are determined by the mean ȳ, the variance σ 2

y , and the two point correlation time τr . This is known as
Doob’s theorem. Remember that a stationary Markoff process is characterized by p1(y) and P2(y1|y2, t) or
p2(y1, 0; y2, t). For a Gaussian process p1 is characterized by ȳ and σ 2

y , and for p2 we need in addition the
α12 parameter of the Gaussian distribution, which is determined by the two point correlation function Cy(t).
Further, since the behavior in each successive time increment does not depend on the history, the decay of
correlations must be a simple exponential

Cy(τ ) = σ
2
y e−t/τr . (32)

The spectral density is then Lorenzian

G y( f ) =
(4/τr )σ

2
y

(2π f )2 + (1/τr )2
. (33)

This appears white for f � τ−1
r , and falls off as f −2 for high frequencies. The complete characterization

also involves

p1(y) =
1√

2πσ 2
y

exp

[
−
(y − ȳ)2

2σ 2
y

]
(34)

and

P2(y1|y2, t) =
1√

2πσ 2(t)
exp

[
−
(y2 − ȳ(t))2

2σ 2(t)

]
(35)

using the notation

ȳ(t) = ȳ + e−t/τr (y1 − ȳ) (36a)

σ 2(t) = (1− e−2t/τr )σ 2
y (36b)

showing how the mean and the variance of the conditional probability relaxes from the initial value set by
the “initial condition” y = y1 to the long time asymptotic forms set by p1. I will not derive these general
results here.
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