
Physics 127c: Statistical Mechanics

Path Integral Methods

The Trotter quantum Monte Carlo method leads easily into a discussion of path integral methods in statistical
mechanics. Feynman introduced a “sum over histories” approach to quantum mechanics that provides a nice
intuitive approach to many problems, as well as a new systematic formal approach. With very little effort
these ideas can be transferred to the formalism of statistical mechanics. This is often the approach used in
research on statistical mechanics of many body quantum systems, and my main motivation for introducing
the ideas is to connect with this modern literature. The method, and its Monte Carlo implementation, also
provides an informative way of understanding and calculating interacting Boson systems such as superfluid
He4, an approach introduced by Feynman in the early 1950s.

Quantum Mechanics and Statistical Mechanics

In quantum mechanics much can be learnt by focusing on the matrix elements of the evolution operator

U(x, x′; t) = 〈x ∣∣e−iH t/h̄∣∣ x′〉 . (1)

(I will formulate the argument in terms of the position of a single particle, but the ideas apply generally.) In
statistical mechanics the (unnormalized) density matrix

ρ̄(x, x′;β) = 〈x ∣∣e−βH ∣∣ x′〉 (2)

can be used to calculate the partition function and other averages.
There is clearly a close analogy between these two quantities. In fact we can think ofρ̄ as being given

by theimaginary time evolutiont →−iτ

h̄
∂ρ̄

∂τ
= −Hρ̄ (3)

and the density matrix is given by evolving for imaginary timeτ = βh̄. This analogy is very useful, and is
the basis in many formal methods in statistical mechanics. It is sometimes known asWick rotation.

The basic idea of the path integral approach was already introduced in the previous lecture: split the time
evolution up into small pieces. The evolution between states becomes simple over small time intervals, and
the full evolution is given by the product of the small steps. Taking the limit of the time step to zero, and the
number of steps to infinity, gives the path integral. Feynman formulated the path integral method in terms of
Eq. (1), but we can transfer his methods over to Eq. (2). In fact, the text books say that the expressions are
better defined mathematically for the statistical mechanics application.

The path integral approach has a number of advantages in complicated problems. It leads to compact
formal expressions involving integrals over numbers, rather than operators. This allows the application of
familiar approximation techniques, such as the method of steepest descents or stationary phase, giving mean
field approximations valid when fluctuations are small. In addition, it often gives nice intuitive pictures for
the different “classical” possibilities that make up the quantum state. Finally there is a close connection with
the quantum Monte Carlo implementation, which is just a discretization of the integral expressions.

I will first introduce the path integral representation of the quantum evolution operator, since the resulting
expressions may be familiar to you from other courses.
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Feynman’s Path Integral Method

As in the last lecture we split up the evolution into a number of stepsM, but now letM →∞. We insert the
completeness relation for some convenient choice of basis states between each evolution step.

U(x, x′; t) = lim
M→∞

∫ ··· ∫ M−1∏
n=1

dxn
〈
x
∣∣e−iHε/h̄∣∣ xM−1

〉 〈
xM−1

∣∣e−iHε/h̄∣∣ xM−2
〉
. . .
〈
x1

∣∣e−iHε/h̄∣∣ x′〉 , (4)

with ε = t/M. We now want some approximation to
〈
xn
∣∣e−iHε/h̄∣∣ xn−1

〉
taking advantage of the smallε.

This approximation must be chosen so that the product of all the terms gives the correct evolution. Suppose
the Hamiltonian is

H = p2

2m
+ V (x). (5)

SinceH depends onp andx it is convenient to introduce the complete set of momentum statespn and write〈
xn
∣∣e−iHε/h̄∣∣ xn−1

〉 =∑
pn

〈xn|pn〉
〈
pn
∣∣e−iHε/h̄∣∣ xn−1

〉
, (6a)

=
∑
pn

〈xn|pn〉 〈pn|xn−1〉 e−iε[p2
n/2m+V (xn−1)]/h̄ (6b)

Two different ways of treating this expression lead to a “Lagrangian” or a “Hamiltonian” formulation.
In the first, we introduce the explicitx representation of the momentum state

〈x|p〉 = 1√
V
eip·x/h̄ (7)

and do the momentum sum using
∑

p → V/(2πh̄)3
∫
d3p as usual, to give

〈
xn
∣∣e−iHε/h̄∣∣ xn−1

〉 = ∫ d3pn

(2πh̄)3
eipn·(xn−xn−1)/h̄e−iε[p

2
n/2m+V (xn−1)]/h̄ (8)

=
(

m

2πiεh̄

)3/2

exp

{
iε

h̄

[
m

2

(xn − xn−1)
2

ε2
− V (xn−1)

]}
. (9)

Now when we take the product of theM evolution steps, and letM →∞, we can write

(xn − xn−1)/ε→ ẋ(t), (10)

V (xn−1)→ V (x(t)), (11)
M−1∑
n=1

ε . . .→
∫ t

0
dt . . . . (12)

We also have to integrate over the intermediatexn and haveM factors of(m/2πiεh̄)3/2, which we lump
together into a formal expression for the “measure”(

m

2πiεh̄

)3M/2 ∫ ··· ∫ M−1∏
n=1

dxn→
∫Dx(t). (13)

Thus we get
U(x, x′; t) = ∫x(0)=x′

x(t)=x
Dx(t)eiS/h̄, (14)
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where the “action”S is

S =
∫ t

0
dt L(x(t)), (15)

with L the usual Lagrangian

L = 1

2
mẋ2− V (x(t)). (16)

The path variablesx(t)are integrated over all values consistent with the boundary conditionsx(0) = x′, x(t) =
x. This is undoubtedly a pretty expression, although the symbol

∫Dx(t) contains mathematical difficulties
that are in practice resolved by returning to the discrete expression, and takingM →∞ after the calculation
is done.

Alternatively we can keep thepn sum introduced in Eq. (6) and write

〈xn|pn〉 〈pn|xn−1〉exp

{
− iε
h̄

[
p2
n

2m
+ V (xn−1)

]}
= 1

V
exp

{
iε

h̄

[
pn · (xn − xn−1)

ε
− p2

n

2m
− V (xn−1)

]}
,

(17)
which on taking the limits gives

U(x, x′; t) =
∫
x(0)=x′
x(t)=x

Dx(t)Dp(t)exp

{
i

h̄

∫ t

0

[
p · ẋ −H(p, x)]} , (18)

whereDp(t) stands for ∫
· · ·
∫ ∏

n

d3pn

(2πh̄)3
→ Dp(t). (19)

The momentap(t) are integrated over all values.

Application to Statistical Mechanics

For simple particle problems with the standardp2/2m term in the Hamiltonian the “Lagrangian” expression
is usually used. Repeating the derivation witht →−iτ leads to

ρ̄(x, x′;β) = ∫ x(0)=x′
x(βh̄)=x

Dx(t)exp

{
−1

h̄

∫ βh̄

0
dτ
[m

2
ẋ2+ V (x(τ )

]}
(20)

with ẋ nowdx/dτ and the measure

Dx(t) = lim
M→∞

(
m

2πεh̄

)3M/2 ∫ ··· ∫ M−1∏
n=1

dxn. (21)

According to the text books this is better defined mathematically than for the real time case. The partition
function involves settingx′ = x and then integrating overx, which is often written as

Z = ∫x(0)=x(βh̄)Dx(t)exp

{
−1

h̄

∫ βh̄

0
dτ
[m

2
ẋ2+ V (x(τ )

]}
, (22)

implying the integration over all paths with periodic boundary condition in imaginary time.
For a many particle system in the particle coordinate representation the same expression apply withx the

3N coordinate vectorx = (x(1), x(2) . . . x(N)). For indistinguishable particles we do not care which particle
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is at each final position, and must implement the symmetry or antisymmetry requirement. Thus for Bosons
we must include all possible permutations of the paths, and the density matrix becomes

ρ̄B(x, x′;β) = 1

N !

∑
P

ρ̄(x, Px′;β). (23)

Often we prefer the second quantized representation in terms of particle creation and annihilation op-
erators. For Bosons we can generate a convenient path integral representation by usingcoherent statesas
the complete set of states at each time step. (Coherent states actually form an over-complete set, but the
completeness relation is all that is required, so this is not a problem.) The coherent states are defined as
eigenfunctions of the particle annihilation operator

ψ̂α |ψa〉 = ψα |ψa〉 . (24)

Hereψ̂α is the annihilation operator for stateα (which might be a momentum state, position state, or some
other choice),|ψa〉 is the coherent state eigenvector corresponding to the eigenvalueψα which is a complex
number. Without going through all the algebra of coherent states, we can motivate the resulting expression
by noting the commutation rule [

ψα,ψ
+
α

] = 1 (25)

is like thex,p commutation rule if we think ofih̄ψ+α as the momentum conjugate toψα. Using the Hamil-
tonian version of the path integral Eq. (18) then gives (witht → −iτ ) for the grand canonical partition
function

Z =
∫
DψαDψ∗α exp

{
−
∫ βh̄

0
dτ

[∑
α

ψ∗α(τ )
(
∂

∂τ
− µ

)
ψα(τ)+H

(
ψα(τ), ψ

∗
α(τ )

)]}
. (26)

Remember that hereψα is just a complex number for each labelα (x or k, etc.).
Fermions are significantly harder, because the anticommutation properties mean we have to introduce

“anticommuting numbers” known as Grassmann variables. I will leave you to consult texts (e.g.Negele and
Ormand) if you are interested in this.

Further Reading

A classic introduction to the application of path integral methods to statistical mechanics isStatistical Me-
chanicsby Feynman. Section 11.10 discusses his application of the method to theλ-transition leading to
superfluid He. More modern books that gomuchdeeper into the applications to many body physics are
Quantum Many-Particle Systemsby Negele and Ormand (§2.2 is a nice, if terse, introduction including the
Fermion case) andField Theories of Condensed Matter Systemsby Fradkin. The review article byCeperley
Rev. Mod. Phys.67, 279 (1995)has a colloquial discussion of path integrals in statistical mechanics empha-
sizing the connection to quantum Monte Carlo methods, and also the application to superfluid He4 which I
will talk about in the next lecture.
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