
Physics 127c: Statistical Mechanics

Kosterlitz-Thouless Transition

The transition to superfluidity in thin films is an example of the Kosterlitz-Thouless transition, an exotic
new type of phase transition driven by the unbinding of vortex pairs. Many of the predictions of the theory
have been verified in experiments on thin films of He4 on a surface. This type of transition occurs in the
universality class of two dimensional XY models, where the broken symmetry variable is an angle: the phase
in superfluidity, the orientation of the spins in the xy plane for the magnet, etc.

The full treatment of the Kosterlitz-Thouless transition is a rather advanced topic, but the calculation
illustrates many of the techniques introduced in the first two terms, and the result is interesting!

The novel behavior of the transition arises from the long wavelength logarithmic divergence of the phase
or orientation fluctuations. It is therefore sufficient to take as the free energy

F̄ = F

kBT
= 1

2
K

∫
(∇θ)2d2x (1)

where for the superfluidθ = 8 andK = ρ̄s/kBT = (h̄/m)2ρs/kBT . From now on we will use the reduced
free energyF̄ .

Special Features

Phase fluctuations diverge (This calculation mirrors the one on the2d Heisenberg modelin Homework 4
of Ph127b.)

Introducing the usual expansion in Fourier modes

θ(x) =
∑

q

θqe
iq·x, (2)

the free energy becomes

F̄ = 1

2
K�

∑
q

q2
∣∣θq
∣∣2 , (3)

with � the area of the system. Equipartition gives〈∣∣θq
∣∣2〉 = 1

K�q2
, (4)

and then the mean square fluctuation is

∑
q

〈∣∣θq
∣∣2〉 = �

(2π)2

∫
d2q

1

K�q2
= 1

2πK

∫ 3

R−1

dq

q
(5)

where3 is a largeq (small distance) cutoff, and the system sizeR sets the smallq cutoff. The integral
diverges logarithmically for large systems,R→∞.

Note that the free energy was only expanded up to quadratic order in deviations ofθ(x) or θq. By analogy
with the calculation for magnets, this is called the “spin wave approximation”.
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Phase correlations decay with a power law We now calculate the decay of correlations of the phase or
angle coming from these smallq fluctuations, again starting from Eq. (1). We want to calculate the correlation
function

G(x) = 〈ei(θ(x)−θ(0)〉 = 〈cos(θ(x)− θ(0)〉 (6)

since this gives the〈ψ(x)ψ∗(0)〉 correlation function for the superfluid, or the〈m(x) ·m(0)〉 correlation
function for the magnet (the average of the corresponding sin is zero since positive and negativeθ(x)− θ(0)
are equally likely). Expanding in the Fourier modes

θ(x)− θ(0) =
∑

q

θq(e
iq·x − 1). (7)

The average is given by integrating over the Gaussian distribution of eachθq given by the Boltzmann factor
from the free energy Eq. (3)

G(x) =
∫ ··· ∫ (∏q dθq)exp

(
−∑q

1
2K�q

2
∣∣θq
∣∣2− iθq(e

iq·x − 1)
)

∫ ··· ∫ (∏q dθq)exp
(
−∑q

1
2K�q

2
∣∣θq
∣∣2) , (8)

where the first term in the sum in the exponential in the numerator is from the Boltzmann factor, the second
is from Eq. (7), and the products of exponentials has been written as a single sum.

The integrals are most reliably done by writingθq in real and imaginary parts

θq = Rq + iIq, (9)

where the fact thatθ(x) is real meansθ−q = θ∗q so thatRq is even andIq odd inq. Then we can write the
sum in the numerator∑

q

. . . =
∑

q

1

2
K�q2(R2

q + I 2
q )− iRq(cosq · x − 1)+ iIq sinq · x (10)

where the other terms such asRq sinq · x vanish on summing overq and−q. Now complete the squares∑
q

. . . =
∑

q

1

2
K�q2

[(
Rq − i(cosq · x − 1)

K�q2

)2

+
(
Iq + i sinq · x

K�q2

)2
]
+
∑

q

(1− cosq · x)
K�q2

, (11)

where to get the last term use(cosq · x − 1)2+ (sinq · x)2 = 2(1− cosq · x). The integrals overRq, Iq in
the numerator of Eq. (8) cancel the integrals in the denominator (the shift of the center of the Gaussians does
not change the integral) so that

G(x) = e−g(x) (12)

with

g(x) = 1

K�

∑
q

(1− cosq · x)
q2

. (13)

Using as usual ∑
q

→ �

(2π)2

∫
d2q, (14)

and introducingφ the angle ofq in the plane measured from the direction ofx gives

g(x) = 1

2πK

∫ 3

0

dq

q

1

2π

∫ 2π

0
dφ[1− cos(q |x| cosφ)] (15)

= 1

2πK

∫ 3

0
dq

1− J0(q |x|)
q

, (16)
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with 3 a largeq cutoff. Without the Bessel function in the numerator the integral would diverge logarith-
mically from the smallq range. SinceJ0(q |x|)→ 0 for q large, andJ0(q |x|)→ 0 for q . 1/ |x| we have
for largex

g(x) = 1

2πK
ln(c |x|) (17)

with c some constant. This gives for the correlation function

G(x) ∝ |x|−η with η = 1

2πK
= kBT

2πρ̄s
. (18)

Thus the order parameter correlation function decays as apower lawwith an exponentη that depends on
temperature. The correlations decay more rapidly asT increases, as you might expect.

Equation (18) predicts power law correlations forall temperatures, whereas we would expect exponential
decay at large enough temperatures. We should actually have some confidence in the result. The calculation
was tractable because of the quadratic nature of the effective Hamiltonian. But this arisesnot from an
approximation that the deviations of the anglesθ(x) from some uniform state are small (which we would
doubt), but from the assumption of smallgradients, i.e. that thespatial variationof θ(x) is slow, and the
difference between “neighboring”angles is small. The power law correlations at long distances comes from
the smallq part of the behavior, which is where this approximation should be good! What we have left out
is the possibility of vortex excitations, for which Eq. (1) does not apply everywhere. Equation (18) turn out
to be accurate, until vortex excitations proliferate. How this develops is the next topic.

Vortex proliferation We have seen that the energy of a single vortex depends logarithmically on the system
size

Ev

kBT
= πK ln

(
αR

a

)
, (19)

and so we might expect no thermal excitation of a vortex. However the entropy, proportional to the log of
the number of ways we can put down a single vortex, also depends on the log of the system size. An estimate
would be

Sv = kB ln

(
CR2

a2

)
, (20)

withC some numerical constant. The (reduced) free energyF̄v = (Ev−T Sv)/kBT diverges with increasing
system size as

F̄v = (πK − 2) lnR + · · · , (21)

where the· · · denotes unimportant constant terms. As first pointed out by Kosterlitz and Thouless, this
diverging free energyswitches signat a critical temperatureTKT given by

K−1
KT =

kBTKT

ρ̄s
= π

2
. (22)

Above this temperature, at least in the approximation of isolated vortices,F̄v is negative, and vortices should
proliferate. Notice from Eq. (18) thatη = 1/4 atT = TKT so that the correlations decay as|x|−1/4 here.

Complete picture

Perhaps surprisingly, given the simplicity of the assumptions, the preceding results turn out to beexactly
correct, with the one modification thatK (or ρ̄s) is itself temperature dependent. There is a phase transition at
TKT . Above this temperature correlations decay exponentially. Below this temperature there is no long range
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Figure 1: Schematic of the Kosterlitz-Thouless transition.

order (consistent with the Mermin-Wagner theorem for any continuous order parameter in two dimensions).
However there are power-law correlations with the exponentη(T ) given by Eq. (18) where the temperature
dependent̄ρs(T ) (as would be measured in an experiment) is to be used. BelowTKT the long range order
is eliminated by the accumulation of small phase fluctuations (“spin wave theory”). The transition occurs by
the proliferation of free vortices, the topological defect of the broken symmetry. Since at any temperature
there are thermally excited vortex pairs, with small separations at low temperatures, probably a better way
to think of the transition is as avortex pair unbinding. At TKT the superfluid density jumps discontinuously
between a nonzero value and zero. The ratio1ρ̄s(TKT )/kBTKT is universaland takes on the value 2/π .
Power law correlations are associated with a critical point; the power law correlations for allT < TKT can
be understood in terms of acritical line. The correlations behave as|x|−1/4 atTKT , again universal behavior
at the transition temperature.

The simple calculations break down in ignoring the effect of the vortices on theθq modes. In fact the
vortices act to renormalize the stiffnessK of these modes. This is what makesρ̄s → 0 for T > TKT , and is
why Eq. (18) is not correct at all temperatures. This can be understood using a RNG treatment, as outlined
in the next section.

RNG Treatment

We first want to see how the vortices change the effective long-distance stiffness constant. We already know
that vortex pairs reduce the mass flowρsvs (cf. the discussion of critical velocities inLecture 5, where the
vortex pair in the tube reduces the total flow). We can calculate the effect more completely from the change
in free energy of an imposed superfluid velocityv. (In this chapter I will definev = ∇8 without a factor of
h̄/m.) The full, renormalized̄ρs is then

ρ̄Rs = lim
v→0

F(v)− F(0)
1
2�v

2
, (23)

or in terms ofK = ρ̄s/kBT
KR = lim

v→0

F̄ (v)− F̄ (0)
1
2�v

2
. (24)

The free energy is

F̄ = − ln Tr
[
e−H̄eff (v)

]
(25)

with the effective Hamiltonian (divided bykBT )

H̄eff = 1

2
K

∫
d2x(v + vv)2. (26)
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Here Tr denotes the integral over all configurations of the vortices, andvv(x) is the superfluid velocity field
due to the vortices. (The small angle fluctuations are supposed already included in the “bare”K.) Expanding
out

H̄eff = 1

2
K

∫
d2x v2+ 1

2
K

∫
d2x v2

v +K
∫
d2x vv · v. (27)

The first term is an additive constant, what we would have without vortices; the second plays the role of the
unperturbed Hamiltonian̄H0 for the vortices (no externalv), and the third is the small perturbation. Now
expanding the exponential to second order inv

− ln Tr
[
e−H̄eff (v)

]
' 1

2
K�v2− ln Tr

[
e−H̄0

{
1−K

∫
d2x vv · v+1

2
K2

(∫
d2x vv · v

)2

+ · · ·
}]

(28)

' F̄0+ 1

2
K�v2− ln

[
1+

〈
1

2
K2

(∫
d2x vv · v

)2
〉

0

]
(29)

' F̄0+ 1

2
K�v2− 1

2
K2

〈(∫
d2x vv · v

)2
〉

0

, (30)

where the average〈 〉0 is with respect toH̄0, and〈vv〉0 = 0 has been used. Using isotropy and homogeneity
we have 〈(∫

d2x vv · v
)2
〉

0

=
∑
ij

vivj

∫
d2x

∫
d2x ′

〈
vv,i(x)vv,j (x′

〉
0 (31)

= 1

2
�v2

∫
d2x 〈vv(x) · vv(0〉0 . (32)

Thus from Eq. (24)

KR = K − 1
2K

2
∫
d2x 〈vv(x) · vv(0〉0 . (33)

This relates the superfluid density to the velocity-velocity correlation function, a result reminiscent linear
response theory.

The velocityvv is due to the vortices. Now we introduce a configuration of vortices represented by the
vorticity densitynv(x)

∇ × vv = 2πnv(x)ẑ= 2π ẑ
∑
α

kαδ(x − Xα), (34)

with theαth vortex having signkα = ±1 and positionXα (the higher charged vortices have a larger energy,
and can be neglected). We want to relate thevv correlation function to the vortex density correlation function,
which we will then evaluate from the statistical mechanics of the interacting vortices. The final result is∫

d2x 〈vv(x) · vv(0〉0 = π2
∫
d2x x2 〈nv(x)nv(0〉0 . (35)

It seems to me I should be able to do this by integrating Eq. (34) directly, but the standard approach goes
through Fourier space.

Introducing the Fourier representation and using
〈
vv(q) · vv(q′

〉
0 ∝ δq,−q′∫

d2x 〈vv(x) · vv(0〉0 =
∫
d2x

∑
q,q′

eiq·x
〈
vv(q) · vv(q′

〉
0 (36a)

=
∫
d2x

∑
q

eiq·x 〈vv(q) · vv(−q〉0 (36b)

= � lim
q→0
〈vv(q) · vv(−q〉0 . (36c)
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(Normally we would just evaluate the result atq = 0, but here we need to keep the limit.) In terms ofnv(q),
the Fourier transform ofnv(x) we can write

lim
q→0
〈vv(q) · vv(−q〉0 = 4π2 lim

q→0

〈nv(q)nv(−q〉0
q2

. (37)

Now we want to calculate� 〈nv(q)nv(−q〉0 for smallq:

� 〈nv(q)nv(−q〉0 = �−1
∫
d2x

∫
d2x ′

〈
nv(x)nv(x′)

〉
0 e

iq·(x−x′) (38)

' �−1
∫
d2x

∫
d2x ′

〈
nv(x)nv(x′)

〉
0 [1− iq · (x − x′)− 1

2
qiqj (x − x′)i(x − x′)j + · · · ].

(39)

The first term is zero since the total vortex charge
∫
d2x 〈nv(x)〉 is zero. The second is odd inx − x′ and

integrates to zero. This leaves the last term, which gives (doing the angular average, giving a factor of 1/2)

� 〈nv(q)nv(−q〉0 ' −
1

4
q2
∫
d2x x2 〈nv(x)nv(0〉0 . (40)

Hence with Eq. (36) we get Eq. (35).
Thus from Eqs. (33) and (35) we have our final formal result for the renormalization of the superfluid

density by vortices

KR = K + π
2

2
K2

∫
d2x x2 〈nv(x)nv(0〉0 . (41)

We are left with calculating the correlation function of the vortex density. The vortices interact with a
logarithmic dependence on separation, which in the present notation is

Ēpair = 2πK ln

( |x|
a

)
, (42)

(where I have absorbed constants inside the logarithm into the small scale cutoffa). The problem actually
reduces to a two dimensional gas of charges. Equation (41) is analogous to the dielectric constant for the
charged gas: the polarization of intervening charge pairs changes the interaction of well separated charges.
This is a nontrivial problem! We can make progress assuming a dilute gas. This is reasonable if the core
energy of the vortex is large compared tokBT , or in other words if thefugacityy = exp(−Ec/kBT ), is
small. In this limit we can evaluate the correlation function in terms of the Boltzmann factor forEpair

〈nv(x)nv(0〉0 = −2a−4y2 exp

[
−2πK ln

( |x|
a

)]
, (43)

where the factor ofa−4 is from two factors of the average density which we estimate as〈nv〉 = a−2y, and
the minus sign is because the charges must be opposite to get a low energy configuration. The factor of 2
is for the two configurations+ at x and− at 0 and the reverse, but actually any numerical prefactor can
be absorbed into a slightly redefined fugacity, sinceEc is not precisely known. The important part is the
dependence onx, which is the exponential of the interaction potential.

It is convenient to rewrite Eq. (41) in terms ofK−1 = kBT /ρ̄s . Because we are assuming a dilute gas,
so that the second term is small, this finally gives

(
K−1

)R ' K−1+ 2π3y2
∫ ∞
a

dr

a

∣∣∣ r
a

∣∣∣3−2πK
. (44)
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This expression imagines starting with “microscopic”y andK and calculating the “macroscopic”K = KR

taking into account the reduction in the total momentum and energy due to the polarization (realignment and
stretching) of the vortex pairs.

Inspecting the integral reproduces the elementary Kosterlitz-Thouless result: forK−1 > π/2 the integral
diverges. We can understand this more completely using a renormalization group treatment allowing the
coupling constantsK andy to depend on scale factorl, and evaluating the integral over all scales piece by
piece. Suppose we integrate out the small separations betweena anda′ = a(1+ δl)

(
K−1

)R ' K−1+ 2π3y2
∫ a+aδl

a

dr

a

∣∣∣ r
a

∣∣∣3−2πK + 2π3y2
∫ ∞
a′

dr

a

∣∣∣ r
a

∣∣∣3−2πK
. (45)

The first integral gives an additive correction that can be absorbed into a newK:(
K−1

)′ = K−1+ 2π3y2δl. (46)

The second integral can be put in the same form as before, now in terms of the cutoffa′, by defining a newy:(
y ′
)2 = y2(1+ δl)4−2πK. (47)

These transformations leave the expression forKR unchanged, withK → K ′, y → y ′, a → a′, and the
process can be iterated.

0.5 1.0 1.5 2.0 2.5

0.1

0.2

y

K-1

Figure 2: RNG flows forK−1 andy generated by numerical solutions of Eqs. (46) and (47).

The equations (46) and (47) can be written as differential equations for the evolution ofK−1(l) andy(l)

dK−1

dl
= 2π3y2, (48a)

dy

dl
= (2− πK)y. (48b)
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These are the RNGflowsfor the Kosterlitz-Thouless transition. Some numerically generated solutions for
the flows are shown in Fig.2. We have derived the results for smally.

The final step of the RNG is to rescale lengthsL→ L/(1+ δl), so that the cutoff returns to its original
value. Thus lengths such as the correlation length evolve as

dL

dl
= −L i.e. L ∝ e−l . (49)

The liney = 0 is afixed line. ForK−1 < π/2 the line isstable, forK−1 > π/2 the line is unstable. The
superfluid state corresponds to initial values ofK andy such thaty → 0 andK−1→ K−1∞ < π/2 asl→∞.
The valueK∞ is the large distance reduced stiffness constantρ̄s/kBT that would be measured in experiment.
As we increase temperature, the initialy increases, andK decreases, until we reach a temperatureTKT which
gives initial values ofy,K such that the RNG flow terminates aty = 0, K−1∞ = π/2. For a slightly larger
temperature the RNG flows pass near this point, but then flow away to largey andK−1. Presumably this
corresponds to the disordered state, although we cannot follow the behavior to largey. ForT = TKT the
physical (large length scale) superfluid density isρ̄s = (2/π)kBTKT ; for slightly larger temperatures̄ρs = 0.
Thus the phase transition is signalled by adiscontinuous jump in the superfluid density. The ratio of the
jump in ρ̄s at the transition tokB times the transition temperature isuniversal. Note thatρ̄s is a stiffness
constant, not a thermodynamic variable, so this is not a first order transition. In fact the entropy is continuous,
and the specific heat show only a very weak singularity atTKT . This is because the energy in the vortices
is small—most resides in the elementary excitations or quadratic modes. However the vortices are vital to
the properties such as the superfluid density.Neary = 0,K−1 = π/2 the flow trajectories are hyperbolae,
and the scaling behavior of other quantities such as the correlation length near the transition can be derived
from this. For example it is found that the correlation length diverges approachingTKT from above as
ξ ∝ exp(c/

√
T − Tc), rather than the usual power law divergence.

Further Reading

The original paper isOrdering, Metastability, and Phase Transitions in 2-Dimensional Systmes, by J. M.
Kosterlitz and D. J.Thouless, J. Phys.C1181, (1973), availablehere. Kosterlitz introduced the RNG treatment
in Critical Properties Of 2-Dimensional XY-ModelJ. Phys.C7, 1046 (1974) orhere, but the standard reference
on this isRenormalization, Vortices, and Symmetry-Breaking Perturbations in 2-Dimensional Planar Model,
by J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev.B16, 1217 (1977) oronline.
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