
Ph 20.3 – Numerical Solution of Ordinary Differential Equations

Due:Week 5 -v20170314-

This Assignment

So far, your assignments have tried to familiarize you with the hardware and software in the
Physics Computing Lab, and to introduce you to the basic process of computational physics. In
particular you should now be familiar with the basic idea: taking some physical or mathematical
system formulated in terms of equations, implementing it using Python code, and plotting the
resulting output. The purpose of this assignment is to deepen your understanding of how to
investigate a system once you’ve implemented it in code.

In the first assignment, you already saw that it was sometimes appropriate to think of a
Lissajous figure as a function of time and sometimes more useful to think of it as tracing out
a fixed curve in the plane. In this assignment we will explore one of the most important model
systems in all of physics: the simple harmonic oscillator. In order to do this we’ll implement several
methods for the numerical solution of simple differential equations. If you have already studied
differential equations in a course on calculus, you may want to review them for this (and future)
assignments; if you haven’t yet, don’t worry: differential equations are just a fancy name for
equations that contain derivatives. Just like in the last assignment, because we know the analytic
behavior of the system we can evaluate the behavior of the three different methods we’ll use. While
some aspects of this behavior will be obvious just from plotting the various solutions directly (i.e.,
from plots of position and velocity as functions of time), we can gain a better understanding by
looking at the energy as a function of time or by looking at the geometry of the phase-space curve
of position versus velocity traced out as a function of time.

The basic coding task of this assignment is to implement equations (7), (8), and (12). These
three equations only differ by what’s written in their subscripts, but you’ll see they all have very
different behavior, so it’s very important to make sure you understand how to translate them to
code in order to implement them correctly. In the previous two assignments, we were able to avoid
loops entirely because each point in the array could be acted on independently, and therefore “at
the same time” using numpy routines. In this assignment this is no longer the case: e.g. the point
xi+1 depends explicitly on the previous point xi. So you will need to use loops. You are of course
free to continue using numpy arrays rather than Python lists! Note that it is in general much faster
for a computer to alter the values of an array of fixed size rather than to append new values to the
end of an array (talk to your TA if you’d like to know more!). So if, like in this assignment, you
know how long your list or array will end up being you may wish to create a dummy list/array of
that size to start with using e.g. [0]*n or np.zeros(n) and then alter its values as you go.

After completing the first three assignments of Ph 20 you should feel very comfortable using
Python to create, plot, and analyze numerical data. Starting with the next assignment we will step
away from Python to introduce other useful scientific computing tools: makefiles, version control,
and Mathematica. We will return briefly to Python in the last assignment of the term. The
remaining two terms in the Ph 2x sequence will use Python exclusively: Ph 21 for data analysis,
Ph 22 for numerical methods.

1



m

m

m

m

m

xx

An ideal, horizontal spring with
a mass m attached to its free end
oscillates freely, displacing the mass
a variable distance, x, with time.

The equilibrium position is that for which
the spring is neither compressed nor extended.

The force on the mass is proportional to the
displacement x of the mass, m, from its
equilibrium position:

F = ma = −kx.

Figure 1: The implementation of a simple harmonic oscillator as a mass on a spring.

Ordinary Differential Equations in Mechanics

Newton’s second law is force = mass×acceleration, or (for the motion of a system with one degree
of freedom)

F = ma

[
= m

dv

dt
= m

d2x

dt2

]
, (1)

where x, v, a, and t are respectively the position, velocity, accelation, and of course time. If the
acceleration, a, or the velocity, v, are known explicitly as functions of time alone, we can obtain
the position, x, very simply. [One would say that the problem is reduced to quadratures, which is a
fancy way of saying that the solution can be written explicitly as an integral of known functions.]
We get out our Simpson routine, and integrate. If the velocity is known explicitly,

x(t) = x0 +

∫ t

0
v(t′) dt′; (2)

if the acceleration is known explicitly, first integrate

v(t) = v0 +

∫ t

0
a(t′) dt′ (3)

to get the velocity at a set of equally spaced times; then integrate again to get the position.
In most interesting problems, however, acceleration and velocity are not known beforehand as

functions of time alone: rather, the expression for the force may involve the position and/or velocity
themselves (we have already seen this in the grapefruit problem in assignment 1). Consequently,
the straightforward integration of the acceleration or velocity is not a viable route. Enter numerical
techniques for the integration of ordinary differential equations. We shall try out the simplest of
these on a a very simple system: the simple harmonic oscillator, as exemplified by the case of a
mass attached to a spring (Fig. 1).

2



Errors in numerical solutions

It is important to be aware of two types of errors that arise when we use computers to solve
mathematical problems.

The first is roundoff error, which occurs because computers use finite representations of real
numbers1. For instance, the real number

√
2 has a decimal representation with an infinite number

of digits; however, a computer has to make do with (typically) 64 bits of information to store this
number, corresponding to (roughly) 15 decimal digits. One example of roundoff error is computing
3+10−18: the computer sees only the first 15 or so digits of the number 3, so the answer to 3+10−18

will simply be 3. (There do exist arbitrary precision numerical routines that can store numbers to
any number of digits required for a given accuracy; for example, section 20.6 of Numerical Recipes
or some algorithms in Mathematica. However, these routines are typically complicated and are
much much slower than finite representation arithmetic).

Another kind of computational error is truncation error, which is introduced when we replace
procedures such as differentiation and integration, which are based on limits, with finite represen-
tations of these procedures. This all sounds very abstract, so here is an example. The derivative
f ′(x) of a real function is defined by

df(x)

dx
= lim

h→0

f(x + h)− f(x)

h
, (4)

and the limit (a symbolic operation) tells us what happens to the ratio on the right hand side of
the equation when h→ 0. On a computer, we can do something like

df(x)

dx
' f(x + h)− f(x)

h
, (5)

and we choose h small, but still finite (so that you don’t divide by zero!). The ' symbol is there
to point out that the equation is only approximate, because the exact definition of the derivative
requires that you really take the limit as h → 0. The error you make here is called truncation
error, which is different than roundoff error. Truncation error depends not on properties of the
computer memory, but on the value that you choose for h. The name ’truncation error’ comes
from the most usual source of such error, which is truncating an infinite Taylor series at a finite
number of terms. We have already seen truncation error in action in the last assignment where
we compared Simpson’s and Trapezoidal methods of computing definite integrals.

Note that if h is too small, Eq. (5) will not work because of roundoff error (think about what
happens if x is 3 and h is 10−18). One of the hardest jobs in computational science is to choose
parameters like h small enough that your solutions are acceptable (that is, truncation error is
small enough), but large enough that your computations are still viable on the computer you have
at hand (that is, roundoff error is small enough).

Integration of ordinary differential equations

Turning Eq. (5) around, we get a simple prescription to integrate numerically the first-order
differential equation df/dx = g(x):

f(x + h) ' f(x) + hg(x). (6)

1We are here ignoring symbolic computation (e.g. Mathematica), and we are considering instead numerical
computation in a language such as Python or C++

3



If you are given f0 ≡ f(x0) at the initial x = x0, you can apply (6) repeatedly to obtain the values
fi ' f(x0 + ih), for as many steps i as you wish.

Compare what we have just done with its analytic analogue: analytic integration (when it is
possible) yields the symbolic representation of f(x), given the initial value f(x0) and the symbolic
representation of g(x); numerical integration yields the approximate values fi ' f(xi) at the
discrete points xi, given f(x0) and g(x) [we are happy to work with a symbolic representation of
g(x), but we what we really need are only the values gi ≡ g(xi)].

Euler methods for the spring

Going back to the spring, a let us apply the method that we have just learned. For simplicity,
we shall set k/m = 1 (where k is the spring constant and m is the mass); if you’re bothered that
this isn’t general you can convince yourself that we can always do this by an appropriate choice
of units. We want to obtain the approximate values xi ' x(ti) and vi ' v(ti) for ti = t0 + ih, with
i = 1, . . . , N [careful with the notation, here x becomes a dependent variable, while t is the new
independent variable]. We get to pick the initial conditions x0 and v0, and for simplicity we also
set t0 = 0. The straightforward application of Eq. (6) then yields the explicit Euler method,

xi+1 = xi + hvi, vi+1 = vi − hxi. (7)

Here the old position and velocity are used to compute, respectively, the new velocity and position.
It should be clear that this choice is arbitrary. In fact, we could also have used an implicit Euler
method,

xi+1 = xi + hvi+1, vi+1 = vi − hxi+1, (8)

where the new position and velocity are used to compute the new velocity and position. In this
case, we need the unknown values xi+1 and vi+1 to update the known values xi and vi, so Eq. (8)
encodes the linear system (

1 −h
h 1

)
·
(

xi+1

vi+1

)
=

(
xi
vi

)
, (9)

which we need to solve before we can get xi+1 and vi+1 as functions of xi and vi. The solution
is easy to obtain in the case of the spring (and you will work it out in this week’s assignment),
but for many differential equations the discrete system (9) is not linear, which makes its solution
difficult. This is why in practice explicit methods [generalizations of (7)] are used more often than
implicit methods [generalizations of (8)].

Assignment (Part 1)

1. Write a program in Python to investigate numerically the motion of a mass on a spring,
implementing the explicit Euler method. Plot x and v as functions of time for a few cycles
of oscillation, choosing h small enough that the graph looks smooth, but not smaller. Choose
reasonable initial conditions.

2. Work out the analytic solution to this problem for your initial conditions, and compare it to
your numerical solution by plotting the global errors xanalytic(ti) − xi and vanalytic(ti) − vi.
Choose h so that the errors become apparent within a few cycles of oscillation.

3. Show that the truncation error is proportional to h for reasonably small values of h. One
way to do this is to plot the maximum value of xanalytic(ti) − xi versus h for several runs

4



of different h integrating up to the same final time. You need only a few values of h, say
h = h0, h0/2, h0/4, h0/8 and h0/16.

4. Now compute the numerical evolution of the normalized total energy E = x2 + v2 (which
should be conserved in this physical system), and plot E as a function of time. What is the
long-range trend for E? How does it compare with the evolution of the global errors?

5. Solve the system (9) to obtain equations similar to (7) for the implicit Euler method (you
need expressions for xi+1 and vi+1 in terms of xi and vi only). Implement the implicit Euler
method numerically, and investigate how the global errors and the evolution of the energy
change with respect to the explicit Euler method (to draw a fair comparison, use the same
h for both methods).

6. When you are done with all this, read on.

The conservation of energy and motion in phase space

Fair enough: we had been cautioned that Eq. (6) was only approximate, and that it would in-
troduce errors in our solutions. Still, it is troubling to find that the cherished principle of energy
conservation does not hold for the numerical spring. A modern way to look at this kind of prob-
lems is the following. When we write the finite-difference equations (7) and (8), we do something
very drastic: we take a differential equation that has many properties (including the fact that
its analytic solutions conserve energy) and we replace it with a very different beast, a discrete
iterative map. This is essentially a rule (call it F ) to produce the values xi+1 and vi+1 from the
values xi and vi, as in

(xi+1, vi+1) = F [(xi, vi)]; (10)

or, equivalently, to produce the n’th values xn and vn from the n’th iteration of the map,

(xn, vn) = F (n)[(x0, v0)] = F [F [. . . F︸ ︷︷ ︸
n times

[(x0, v0)] . . .]]. (11)

Depending on how we generate F from the particular differential equation that we are trying to
solve, the iterative map can have very different properties from the original analytic equation. For
instance, in the case of the spring, the explicit and implicit Euler methods generate iterative maps
that do not conserve energy (that is, they are dissipative).

There is a branch of numerical analysis (known as backward error analysis) that studies the
behavior of numerical methods for differential equations by building the iterative maps, and then
finding the analytic differential equations (typically modifications of the original ones) that the
iterative maps are actually solving exactly. Because error has to creep in somewhere (we never
said computers are perfect!), you will seldom be able to find a map that yields exact solutions for
the very equation you want; but you can try to arrange things so that the modified equation that
you are really solving is not so different, at least with regard to its crucial properties.

So what are the crucial properties that physicists are mostly concerned with? This is a hard
question! We can give a general answer for a very broad class of physical systems of interest to
physicists, those described by Hamilton’s equations. You will meet the Hamiltonian formalism
later in the course of your studies; suffice it to say now that the dynamics of these systems can
be derived from a variational principle, which states that the physical solutions are found to be
the functions that extremize certain physical quantities, such as the the time integral of the total
energy. The simple harmonic oscillator is one such system.

5



It is especially instructive to study the behavior of Hamiltonian systems in phase space, whose
dimensions are (roughly speaking) all the generalized2 positions of the system and all the cor-
responding generalized velocities. For the one-dimensional spring, phase space is just the (x, v)
plane. Any imaginable evolution of the spring appears as a trajectory (x(t), v(t)) in phase space,
but the actual physical solutions are all circles, defined by x2 + v2 = E; that is, the physical
trajectories trace out the curves of constant energy!

Symplecticity (that is, conservation of volume in phase space) is a characteristic property of
Hamiltonian systems. What does it mean to conserve volume (or, for the spring, area) in phase
space? Suppose we are given a group of springs with slightly different initial conditions, so that
at the time t0 they occupy the region S0 in phase space almost uniformly; at the later time t1, the
springs will have all evolved to occupy a different region S1 in phase space, but the area of S1 will
be the same as the original area of S0. In the numerical arena, one can build symplectic numerical
integrators that, indeed, conserve area in phase space. In doing so, they produce solutions that,
at least qualitatively, look more physical than those produced by nonsymplectic integrators (for
instance, on the average they conserve energy). A very simple symplectic integrator is a cross (of
sorts) between the explicit and implicit Euler methods:

xi+1 = xi + hvi, vi+1 = vi − hxi+1; (12)

this is the symplectic Euler method. Backward error analysis would show that (12) solves exactly
a modified analytic system that is (first of all) Hamiltonian, and (second) much closer to original
system.

This is the reason why symplectic integrators are often used for Hamiltonian systems. They
are not, however, the solution to all evils, because of what I call the ’conservation of pain’ or that
is sometimes also called the blanket principle (the blanket is always too short to cover both your
feet and your head). Error will spare the symplectic structure of phase space, but it must reappear
elsewhere: for instance, symplectic integrators might preserve better the amplitude of the spring
oscillations, which appears in the expression for the energy; but the precise position of the mass
within each oscillation (i.e., its phase) will accumulate a growing error with respect to the exact
solution.

Assignment (Part 2)

1. Investigate the phase-space geometry of the trajectories produced by the explicit and implicit
Euler methods. Set h so that deviations from closed circles (i.e. the analytic solutions, which
you should also plot) are obvious.

2. Implement the symplectic Euler method in Python and investigate the phase-space geometry
of the trajectories that it produces. Compare them with the trajectories obtained at the
previous point, for the same h. This is your Ph20 Beautiful PlotTM of the week.

3. Study the evolution of total energy obtained with the symplectic Euler method. Set h so
that deviations from the constant value of the analytic solution are obvious. What do they
look like? How does this evolution relate to what you just saw in phase space?

4. ? (optional) Examine the long-term evolution of the global error in the phase for trajectories
produced by the symplectic Euler method, as compared to the exact solution. To do so, plot

2In the Hamiltonian formalism it is often useful to use position-like variables that do not correspond directly to
measurements of distance.

6



the symplectic-Euler solution on top of the exact solution, and see if the oscillations develop
a lag. Many oscillations may be needed for the error to grow appreciably; plot only the last
few (of many) to estimate the lag visually.

If this assignment was interesting to you, consider taking Ph 22, which takes the knowledge
obtained from this assignment as a starting point and builds up to full N -body simulations of
gravitationally-interacting objects.

7


